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Executive Summary 

Recent research shows a relationship between track geometry defects and track subsurface 
conditions as measured by Ground Penetrating Radar (GPR). This report presents the results of a 
comprehensive study funded by the Federal Railroad Administration (FRA) from 2016 and 2019. 
The study was conducted by the University of Delaware at their facility to review the 
development of a probability model for the growth of track geometry defects as a function of key 
subgrade parameters as measured by GPR. 
The analysis made use of multiple track geometry runs and the associated track geometry 
degradation behavior combined with GPR data to include the ballast fouling index (BFI), 
moisture content, and ballast layer thickness (BLT). Correlation and statistical analyses were 
performed looking at the relationship between the probability of significant geometry 
degradation and measured GPR parameters (e.g., BFI and BLT). 
A first order Logistic Regression (LR) model was developed showing a well-defined relationship 
between track geometry degradation and poor subsurface condition as defined by the ballast 
fouling (BFI and BLT). 
A second order data analytics approach was performed using a hybrid analysis to include a 
hierarchical clustering analysis with histogram data, LR analysis, and an application of higher 
degree polynomial. The result was a high order polynomial LR model for determination of the 
probability of a track geometry surface defect occurring at locations with measured ballast 
fouling and measured ballast thickness. This model showed good correlation with the data and 
good predictive behavior. 
The model results showed that there was a statistically significant relationship between high rates 
of geometry degradation and poor subsurface condition as defined by the GPR parameters: BFI 
and BLT. The predictive model allowed for the determination of the probability of a high rate of 
geometry degradation as a function of these key GPR parameters. 
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1. Introduction 

Measurement of track geometry is one of the key track inspection approaches used for 
maintenance of the track structure for all types of railway operations to include the full range of 
passenger and freight operations. These track geometry measurements were generally used on a 
threshold exceedance basis, i.e., when a geometry parameter exceeds a predefined maintenance 
or safety limit. In addition, using statistically defined Track Quality Indices (TQI) based on these 
measurements, forecasting the rate of track geometry degradation was performed on a limited 
basis, usually in a detailed study environment [1] [2] [3]. Ground Penetrating Radar (GPR) is one 
of a new generation of inspection technologies that are being implemented in conjunction with 
and support of the fundamental track geometry measurements. 

1.1 Background 
The railroad industry in general and the Federal Railroad Administration (FRA) are actively 
involved in the development of improved track inspection technologies focusing on the track 
structure/substructure which includes crossties, ballast, sub-ballast, and subgrade elements of the 
track structure. This portion of the track structure is the primary area associated with track 
geometry degradation. The ability to predict the development of safety related track defects, such 
as geometry defects, using these improved inspection technologies would be of real value to both 
the railroads and to the FRA Office of Railroad Safety which is tasked with monitoring the safety 
of the railroads. One such inspection tool is GPR. 
The relationship between these track substructure inspection tools and development of track 
geometry defects is key interest. This is because track geometry derailments represent one of 
largest category of track caused derailments. This relationship between track 
structure/substructure performance and geometry defects was discussed in the literature, but 
there is no well accepted and validated relationship between potential for developing a geometry 
defect and condition of track. Furthermore, there was little research into the forecasting of 
geometry defect development as a function of measured subsurface track parameters, particularly 
in the development of a quantitative relationship between these subsurface parameters and the 
probability of a geometry defect developing at the point of measurement. 

1.2 Objectives 
The objective of this research effort was to develop statistical relationships between inspection 
parameters from different subsurface and surface inspection technologies and the development of 
track geometry defects and other manifestations of track geometry degradation. These subsurface 
inspection technologies are to include technologies currently used by railroads as well as 
technologies currently undergoing developed or demonstration by FRA, such as technologies 
being implemented on the U.S. Department of Transportation (DOT) X218 car. This includes 
such measurement technologies as GPR and track deflection measurements (MRail). The 
objective was to allow for identification of track locations with the potential for development, 
growth, and propagation of track geometry defects. 
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1.3 Overall Approach 
As part of this activity, analysis algorithms to correlate multiple inspection parameters, from the 
different inspection technologies were developed and evaluated. This inspection data was then 
correlated with track geometry data obtained from FRA and several U.S. railroads, as measured 
by their track geometry inspection vehicles. As such, the track geometry data included 
continuous (foot by foot) measurement of the individual track geometry parameters as well as 
exception data that included the type of geometry defect, its location, size, and date of detection. 
The research focused on the use of multi-variate analysis tools combined with understanding of 
the interrelation of the different inspection technologies and their primary output parameters, as 
well as their correlation with the occurrence of geometry defects to allow for this combination of 
complementary data into useable inspection information. Such techniques as Logistic Regression 
(LR) and a more comprehensive data analytics-based approach using hybrid analysis were 
employed to develop relationships between subsurface inspection technologies (GPR, MRail) 
and development of track geometry defects. The result is a statistically significant relationship 
between track geometry defects and key track subsurface conditions as measured by GPR; 
specifically ballast fouling as measured by the ballast fouling index (BFI) and ballast layer 
thickness (BLT). 

1.4 Scope 
The scope of this activity encompassed two emerging inspection technologies, GPR and MRail. 
However, data issues with MRail resulting in a major focus on GPR, and the relationship 
between GPR measured ballast conditions and the development of track geometry defects. The 
resulting analysis addressed the relationship between the probability of significant geometry 
degradation and measured GPR parameters (e.g., BFI, BLT). Other inspection technologies were 
not considered in this work. 
The overall relationship between GPR and track geometry deterioration can be of substantial 
value to railroad maintenance managers and maintenance planners because it allows for the 
prediction of the occurrence of geometry defects, particularly severe defects that can result in 
track slow orders or even derailments. By planning for this type of geometry maintenance, 
maintenance costs can be reduced through more efficient planning and scheduling, and failures 
can be averted. 

1.5 Organization of the Report 
This report is organized in order of the analysis approach used. Section 1 provides the 
introduction and background. Section 2 discusses the input data. Section 3 discusses data 
preparation and Exploratory Data Analysis (EDA). Section 4 discusses the initial LR analyses. 
Sections 5 and 6 discusses expanded analyses to include expanded LR analysis (Section 5) and a 
new hybrid analysis combining hierarchical clustering with a high polynomial based LR 
analysis. Section 7 summarizes the results and potential applications of the research work. 
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2. Input Data 

The focus of this study is on two subsurface inspections technologies; specifically, ground 
penetrating radar and vertical track deflection as collected on several U.S. railroads. These two 
subsurface inspection technologies can be described as follows: 

• GPR uses a reflection of radar waves in the 300 to 400 MHz range to identify conditions 
in the ballast, sub-ballast, and subgrade. This technology has advanced to the point where 
it is considered useful, and railroads began to deploy this technology as a supplement to 
their traditional track geometry inspections. To date GRP is used by FRA, Amtrak, 
Burlington Northern Santa Fe Railway (BNSF), Norfolk Southern Corporation (NS), and 
Union Pacific Railway (UP). 

• Vertical deflection measurements (MRail) make use of deflection of the track under load. 
This inspection technique is based on the Beam on Elastic Foundation theory, which 
develops a support parameter k (or u)2 to define the track support condition. MRail uses a 
loaded and unloaded track measurement to determine a value for the track support 
condition. To date MRail was used, on some basis, by FRA, BNSF, Canadian Pacific 
Railway (CP), and UP. 

As noted previously, these technologies are to be correlated with track geometry data to include 
continuous (foot by foot) measurement of the individual track geometry parameters as well as 
exception data. 

2.1 Track Geometry Data 
Track geometry data in the form of exception reports, to include red and yellow level exceptions, 
was obtained from: 

• CSX Transportation: CSX’s Peninsula Subdivision milepost (MP) 67–69, a 2 mile stretch 
of track on CSX, taken by the DOTX218 car on April 5, 2016 

• Amtrak: Continuous track geometry data for 1.6 miles of track near Oakington Road, 
Havre de Grace, MD (see Figure 1); Track 2, MP 62.6–to 64.0; this represents monthly 
continuous geometry data from June 2013 to September 2016, a total of 31 runs 

                                                 
2 The track support parameter (track modulus), k, sometimes referred to as u, represents the effect of the crossties, 
fasteners, tie pads, ballast, and sub-grades, which support the rail. 
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Figure 1: Amtrak Oakington Road site MP 62.6 to 61 

As noted, the primary CSX data was a foot by foot measurement run by the FRA DOTX218 car 
on April 5, 2016, on CSX’s Peninsula Subdivision between MP 67 and 69. In addition, CSX 
provided track geometry exception data for 5 years of inspection from 2008 to 2012. 
In addition, as noted, track geometry data files were obtained from Amtrak on the Northeast 
Corridor near Oakington Road, Havre de Grace, MD, near MP 63.7 between Philadelphia and 
Washington, DC. This data is continuous track geometry measurement data (as opposed to 
exception data provided by BNSF and CSX) and represents approximately 1.6 miles of data 
representing multiple subgrade conditions, see Figure 1. Approximately 4 years’ worth of 
geometry data was available representing monthly track geometry inspections. Approximately 31 
data files were provided that contained key track geometry parameters to include surface (left, 
right) and profile (see Figure 2). 
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Figure 2: Amtrak continuous track geometry data from Oakington Road test site (Track 

Profile Right 62-foot chord)3 MP 62.6 to 64.0 (test of December 2013) 

2.2 MRail Data 
The MRail data was obtained from an MRail unit mounted on the FRA DOTX218 track 
inspection vehicle as measured on CSX track. The CSX data taken from DOTX218 represents 
one continuous run made from MP 67 to 69 on the Peninsula Subdivision on April 2016. The 
MRail portion of the CSX DOTX218 data is presented in Table 1. 

Table 1: MRail data from FRA’s DOTX218 taken on CSX 

MP FEET Speed 
Track 
Class 

Posted 
Speed 

Track 
Number 

YRel 
Left 

YRel 
Right Lat Lon 

Counts Counts Mph Number Mph Number Inches Inches Degrees Degrees 
67 0 49 4 79 5 0.0261 0.15276 37.46399 -77.1414 
67 1 49 4 79 5 0.01618 0.14053 37.46399 -77.1414 
67 2 49 4 79 5 0.01222 0.13481 37.46399 -77.1414 
67 3 49 4 79 5 0.02503 0.10977 37.46399 -77.1414 
67 4 49 4 79 5 0.02046 0.10093 37.46399 -77.1414 
67 5 49 4 79 5 0.03794 0.12167 37.46399 -77.1414 
67 6 49 4 79 5 0.05662 0.12906 37.46399 -77.1414 
67 7 49 4 79 5 0.07493 0.13764 37.46399 -77.1414 

                                                 
3 Right Profile 62 is the deviation from the vertical surface as measured by a 62 foot-chord on right rail 
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2.3 GPR Data 
Consistent with the track geometry data, two sets of GPR data were obtained from FRA and 
Amtrak respectively. 
The first represents a 2 mile stretch of track on CSX, taken by the DOTX218 car on April 5, 
2016. The 2 miles are MP 67 to 69 on the CSX Peninsula Subdivision. Table 2 includes the data 
that was processed by ENSCO and includes specific parameters. 
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Table 2: GPR data taken by FRA’s DOTX218 on CSX 
Rail Division Sub-

Division 
Line 
Segment 

Track 
ID 

Collection 
Date 

BMP EMP Latitude Longitude LRI_CAT_Left LRI_CAT 
Center 

LRI_CAT 
Right 

BTI_CAT
_Left 

CSX Huntington
-East 

Peninsula Unknown 1 4/5/2016 67.000 67.003 37.464020 -77.14152 0 3 0 0 

CSX Huntington
-East 

Peninsula Unknown 1 4/5/2016 67.003 67.006 37.464039 -77.14158 0 3 0 0 

CSX Huntington
-East 

Peninsula Unknown 1 4/5/2016 67.006 67.009 37.464050 -77.14163 0 3 0 0 

CSX Huntington
-East 

Peninsula Unknown 1 4/5/2016 67.009 67.012 37.464060 -77.14168 0 2 0 0 

CSX Huntington
-East 

Peninsula Unknown 1 4/5/2016 67.012 67.015 37. 
464073 

-77.14174 0 2 0 0 

CSX Huntington
-East 

Peninsula Unknown 1 4/5/2016 67.015 67.018 37. 
464087 

-77.14179 0 2 0 0 

CSX Huntington
-East 

Peninsula Unknown 1 4/5/2016 67.018 67.021 37. 
4640108 

-77.14184 0 2 0 0 

CSX Huntington
-East 

Peninsula Unknown 1 4/5/2016 67.021 67.024 37. 
4640113 

-77.14190 0 2 0 0 

CSX Huntington
-East 

Peninsula Unknown 1 4/5/2016 67.024 67.027 37. 
4640131 

-77.14195 0 2 0 0 
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Table 2: GPR data taken by FRA’s DOTX218 on CSX (continued) 
BTI_CAT
_Center 

BTI_CAT
_Center 

FDL_Value
_Left 

FDL_Value
_Right 

FDL_CAT
_Left 

FDL_CAT
_Center 

FDL_CAT
_Right 

BFI_Value
_Left 

BFI_Value
_Center 

BFI_Value
_Right 

BFI_CAT
_Left 

BFI_CAT
_Center 

BFI_CAT
_Right 

5 0 10 9 -1 2 0 15 18 -1 3 3 0 

5 0 11 9 -1 2 0 14 13 -1 3 3 0 

5 0 11 9 -1 2 0 15 12 -1 3 3 0 

5 0 10 9 -1 2 0 19 17 -1 3 3 0 

4 0 10 9 -1 2 0 20 12 -1 3 3 0 

3 0 10 10 -1 2 0 12 11 -1 3 3 0 

4 0 10 10 -1 2 0 12 13 -1 3 3 0 

4 0 10 10 -1 2 0 18 12 -1 3 3 0 
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2.3.1 Ballast Fouling Index (BFI) 
The BFI results were calibrated to the Selig Fouling Index using data and ballast samples 
acquired in the U.S. in 2014. The range of values used are presented in Table 3. 

Table 3: Ballast fouling indexes 

BFI Category Description Modelled Fouling Index (Selig) 
5 Clean 0 to <5 
4 Moderately Clean 5 to <10 
3 Moderately Fouled 10 to <25 
2 Fouled 25 to <30 
1 Highly Fouled >30 
0 Unavailable n/a 

Note: Values of 0 in the BFI category column and -999 in the BFI value column (see Table 2) 
indicate that the fouling index could not be calculated due to high EMI or the presence of a 
surface/sub-surface structure. 

2.3.2 Layer Roughness Index (LRI) 
The layer roughness index (LRI) provides a visual indication of the level of variation in the depth 
to the base of the primary track bed layer, designed to highlight areas where the interface with 
the underlying materials is highly irregular. Such areas can be indicative of sub-grade erosion, 
ballast pumping and wet-bed formation. The LRI is displayed as color-coded values for each 
channel of data, reported over three categories from good (green) to very poor (red) (see Table 
4). 
A “Good” rating indicates less than 2 inches of depth variance over 66 feet, 'Poor' indicates 
between 2 inches and 4 inches of variance, while “Very Poor” indicates greater than 4-inch 
variance over 66 feet. Both the wavelength and thresholds can be customized as required. 

Table 4: Layer roughness indexes 

Category Description Variance (inch) 
3 Good < 2 
2 Poor 2–4 
1 Very Poor > 4 
0 Unavailable n/a 

2.3.3 Ballast Thickness Index (BTI) 
The ballast thickness index (BTI) provides an indication of sections of track where the thickness 
of the primary ballast layer falls outside of an optimum range as defined by the standard track 
bed design thickness. The category thresholds are relative to top of tie (Table 5). 
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Table 5: Ballast thickness indexes 

Category Description Thickness (inch) 
5 Positive Exceedance Level 2 > 23 
4 Positive Exceedance Level 1 17–23 
3 No Exceedance 11–17 
2 Negative Exceedance Level 1 5–11 
1 Negative Exceedance Level 2 < 5 
0 Unavailable n/a 

2.3.4 Free Draining Layer (FDL) Depth Index 
The free draining layer (FDL) interface represents the boundary between relatively clean ballast 
and highly fouled ballast and is determined by applying a BFI threshold to the 2D ballast fouling 
map that is used to determine the one-dimensional BFI. 
The FDL depth index is designed to help highlight areas were the depth to the top of the ballast 
fouling is above or at the level of the base of the tie. In such instances, the track bed drainage 
may be significantly compromised. The FDL is reported relative to top of tie (see Table 6). 

Table 6: Free draining layer depth indexes 

Category Description Thickness (inch) 
3 Good >12 
2 Poor 6-12 
1 Very Poor <6 
0 Unavailable n/a 

The second set of GPR data was from Amtrak’s Oakington Road site, MP 62.57 to MP 64.5 
Track 2. The data provided is in a graphical format as shown in Figure 3. The data included a 
BFI, calculated fouling condition and relative moisture information, BLT, etc. 
Figure 3 presents the GPR output for MP 62+3100 (62.6) to 63+3000 (63.58)4 which is matched 
to the track geometry data section. Note, the GPR data encompasses three sections corresponding 
to the right, center and left portions of the track,5 and includes multiple sets of information: 

• Light Detection and Ranging (LIDAR) view (top level in Figure 3) 

• Relative moisture for left, center and right of track 2 (2nd, 3rd, and 4th levels) 

• Top and bottom of ballast layer depth for left, center and right of track 2 (2nd, 3rd, and 4th 
levels) 

                                                 
4 A shorter GPR display is presented for clarity of viewing, the actual analysis used the full matching length MP 
62.6 to 64.0. 
5 The GPR system used three measurement antennae with one between the rails (center antenna) and the other two 
on the field side of the left and right rail respectively. 
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• BFI (5th level) for  

ο Left 

ο Center 

ο Right 

• Running roughness of profile (62-foot chord) 
This data was digitized manually, based on 16.7 foot intervals. Note, the BFI digitization used 
the color-BFI relationship shown in Table 7. 

 
Figure 3: Amtrak Oakington Road GPR image data 

Table 7: BFI conversion table 

Color Condition Index BFI Value 

- Clean 1 3.6 

Green - 2 10.7 

- - 3 17.9 

Yellow Moderately Fouled 4 25.0 

- - 5 32.0 

Red - 6 39.3 

Black Highly Fouled 7 46.4 



 

13 

2.4 Consolidation of Data into the Common Database 
The next step in the analysis process is the consolidation and pre-processing of the data into a 
common database. The consolidation and pre-processing of the data was done using a 
combination of Microsoft Excel and R software.6 

2.4.1 Management of Data 
The research team received more than 100 files in various file formats to include pdf, txt, Excel, 
and csv from FRA and Class I railroads. The data file distribution, by data type, is summarized in 
Table 8 below. 

Table 8: Received data file distribution 

Type of data Number of files received 
Geometry 71 
Exceptions 9 

TQI 13 
DEF 18 

MRail 9 
MGT 7 
GPR 2 
total 129 

The range and variability of the data required extensive data processing, correlation and follow 
up data analysis. The type of data issues addressed included data variability, data dispersion, data 
diversity, and data interdependence caused by such factors as:  

• Variable data source (to include raw and processed data) from the different Class I 
railroads, FRA and its data analysis contractors. 

• Type of the data (see Table 8) 

• Differing inspection dates 

• Differing locations to include division, sub-division, track and exact location (MP) 

• Data reference and alignment errors 

• Calibration and data drift 

• Missing data 

• Other data errors associated with large volumes of data. 

                                                 
6 Programming language utilized for statistical computing and graphics. R Core Team (2018). R: A language and 
environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. The R Project for 
Statistical Computing 

https://www.r-project.org/
https://www.r-project.org/
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Based on the above, an essential task in the project was to organize and manage the data file. The 
approach taken here started with creating a traceability table (see Table 9) by file type, location, 
version, etc. This was extremely helpful in identifying any data organization problems. 

Table 9: Data traceability example table 

 

2.4.2 Preprocessing and Development of Database 
Consolidation of data is a key foundation step, and is critical in the tasks where analysis was 
performed on the consolidated database. Due to the disparate nature of the data, this step was 
time consuming. Incorrect data handling at this stage will lead to potential errors during analysis 
since all the data analysis are highly dependent on the quality of the data and the database. 
In the data base construction, MP locations were used as the reference value for the combination 
and referencing of different data sets. However, the analysis goes beyond the simple reference 
locations e.g., such as for relationship development between variables. Since each database has 
its own “purpose,” it was necessary to start with defining the research problem, so that the 
database can be purpose built for the analysis. 
The steps used for the data base construction and evaluation included: 

a. Creation, or converting of files to .csv7 type files 
b. Extraction, splitting, combination and grouping of the data frames8 for a specific problem 

analysis of the data. 
c. Aggregating data frames by variables and observation manipulation, e.g., consolidation, 

cleaning, filtering, aggregating and processing. For example: data base per division, 
defect level tags, date of collection, defect type, magnitude, track class, etc. 

d. Organizing the data frame after simple plotting to find errors, missing data, or 
irregularities in the data 

                                                 
7 Comma separated values 
8 Data frame – a two-dimensional array structure, in which each column contains measurements of single variable, 
and each row contains one observation. Observation may be a numeric, or character type data. 
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e. Alignment of the data/observations as applicable. For some of the larger data files, this 
step was done in the analysis stage of this project. 

2.4.3 Development of Amtrak Oakington Road Data 
The approach used to provide a consolidated database for the analysis of the Amtrak Oakington 
Road data required the consolidation of 31 geometry measurements in a single data folder. This 
further required conversion of data to a common .csv format and renaming the files to a common 
(and easily recognizable) programming identifying names. All 31 files were then loaded into the 
R software, and the key variables and observations defined to allow for effective data 
manipulation. Each geometry file contained 1 mile of foot by foot measurement data for the data 
variables, which are presented in Table 10. 

Table 10: Amtrak Oakington Road geometry data 

 

Table 11: Amtrak Oakington Road geometry data (continued) 

 

After identifying the variables, the research team defined an initial statement problem for the 
analysis of this data, which is that of finding a relationship between the GPR data and the track 
degradation as a function of geometry measurement type and chord length (for Amtrak 31, 64 
and 124 foot chords). Table 12 illustrate a data frame constructed from the geometry data at 
Oakington Road, designed for this specific problem and analysis approach. The database was 
created using code developed in the R software. A data frame was created for each variable, e.g., 
Right Profile. Table 12 illustrates the data frame for right profile observations per each 
measurement date at MP 64. 

Table 12: Amtrak Oakington Road geometry data frame per inspection date 

Date 31 ft. 
chord 

64 ft. 
chord 

124 ft. 
chord 

06_2013 -0.003 0.018 0.022 
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Date 31 ft. 
chord 

64 ft. 
chord 

124 ft. 
chord 

07_2013 -0.125 -0.108 -0.077 
08_2013 -0.111 -0.087 -0.078 
09_2013 -0.117 -0.118 -0.072 
10_2013 -0.117 -0.091 -0.078 
12_2013 -0.116 -0.12 -0.09 
01_2014 0.074 0.075 0.067 
03_2014 0.064 0.049 0.034 
04_2014 0.049 0.041 0.028 
06_2014 0.066 0.041 0.028 
07_2014 0.056 0.051 0.029 
10_2014 0.001 0.025 0.017 
11_2014 0.006 -0.009 0.008 
12_2014 -0.015 -0.001 0.016 
01_2015 -0.001 -0.004 0.024 
02_2015 -0.002 -0.002 

 

03_2015 -0.008 -0.007 
 

04_2015 -0.025 0.016 
 

05_2015 -0.019 -0.008 
 

06_2015 0.001 -0.006 
 

07_2015 -0.03 -0.02 
 

08_2015 -0.029 -0.007 
 

11_2015 0.016 0.016 
 

12_2015 -0.081 -0.089 
 

01_2016 -0.018 -0.023 
 

02_2016 -0.022 -0.023 
 

03_2016 -0.021 -0.026 
 

04_2016 -0.018 -0.018 
 

05_2016 -0.005 -0.033 
 

06_2016 -0.028 -0.05 
 

09_2016 0.055 0.052 
 

The next stage for this data frame was data plotting and summary of the variables to find any 
error, or irregularity in the data. This was performed on all 16 variables9 resulting in the creation 
of 16 data frames with one variable each. Additional data frames for combinations of variables 
were also be created for use in the analysis of the relationships. 

                                                 
9 Gage, Cross Level, Right Profile 62 ft., Right Profile 124 ft., Left Profile 62 ft., Left Profile 124 ft., Right 
Alignment 124 ft., Left Alignment 62 ft., Left Alignment 124 ft., Curvature, Warp 62 ft. 
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Analysis of the continuous track geometry data frames showed what appeared to be a 
misalignment between different geometry runs, a not-uncommon occurrence. As a result, the 
data frames were carefully and individually examined and then re-alignment of the data was 
performed, as illustrated in Figure 4 and Figure 5. By examining and comparison of the identical 
inspection variables, e.g., Right Profile in different inspection dates, it was possible to identify 
with high probability which inspection data needed alignment and the required amount of 
alignment. Figure 4 and Figure 5 present an example of four sets of geometry signals before and 
after alignment (each color represents a different date of inspection). 

 
Figure 4: Data alignment example, before alignment10 

                                                 
10 Note that variation is difficult to see between runs due to longitudinal dis-alignment 
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Figure 5: Data alignment example, after alignment 
Using the location and inspection date as references, the data set was consolidated into a unified 
database. As noted, database preparation included matching GPR and geometry inspection 
measuring points, and creation of a mutual data frame of reference, considering different data 
sampling rates. After alignment of the inspection data by shifting the signal to match the peaks, 
the signals were consolidated into a common reference MP, noting that each inspection has 
different sampling steps and corresponding different number of measurements in the 
approximately 2 miles of data. 
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3. Data Preparation and Exploratory Data Analysis (EDA) 

Once the data was collected into a common database, the following data preparation, data 
mining, and EDA steps were performed: 

1) Data cleaning – removing noise and inconsistent data. 
2) Data integration – grouping/combining multiple data source variables. 
3) Data selection – creation of relevant datasets from the existing database for sake of 

specific analyses. 
4) Data description and transformation – analysis of data “spread” and overall description of 

data set using descriptive statistics and other methods. This included transformation of 
data to a Track Quality Index (TQI) for preliminary analysis. 

5) Data mining – process where intelligent methods are applied to find and extract patterns 
from data. 

6) Pattern evaluation – process to identify patterns based on domain knowledge and origin 
of the data. Develop preliminary relationships between track subsurface data and track 
geometry. Identify potential correlation relationships between geometry defects and GPR 
data. 

7) Data visualization – a technique to graphically represent valuable “knowledge” regarding 
the data. 

EDA is an approach that allows a first insight into data by means of a variety of analysis 
techniques, many of them graphical [4]. EDA helps characterize the data whether there are 
anomalies in the variables (outliers), or if there are simple relationships within the variables, 
patterns etc. In this activity, EDA was used to explore each inspection/dataset separately and via 
multivariable analysis; using GPR data such as BFI and BLT. The objective was to identify 
potential simple correlation relationships between multiple datasets: geometry, GPR (BFI, BLT 
etc.). The approach included the following techniques: 

• Measures of spread and overall description of a set of data 

• Descriptive statistics 

• Data class and structure 

• Sample of the data head/tail, the beginning/end of an organic data frame 

• Direct and principles of analytic using visualization technics 

• Box and whisker plot 

• Histograms 

• Quantile-quantile plots 

• Visualization and others 
Appendix A provides a more comprehensive set of these EDA plots. 
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3.1 Data Analytics Using Visualization Techniques 
Visualization and graphical analysis play a significant role in finding relationships and patterns 
in the data. In the EDA, several basic visualization approaches were used to examine if there is a 
direct relationship between the variables of the different inspection datasets. Visualization may 
point to relationships and patterns, as well as providing guidance towards which advanced 
analyses techniques are most promising. 
In this section, several visualization techniques that were in this EDA activity are presented. 

3.1.1 Base and Exploratory Graphics 
The base plotting system in the R software provides many important tools for data visualization 
and representation. The following application of the base plotting system was performed on the 
CSX Peninsula Subdivision data MP 67 to 69. 

Bivariable Visualization 
Bivariable visualization is the simplest method of finding patterns between two variables. 
Figure 6 below shows the relationship of two interesting variables of the CSX Peninsula 
Subdivision data MP 67 to 69; YRel Right (from MRail) and Right Profile 31 (track geometry 
car), and the possible correlation between them. A predominant decreasing linear relationship 
band appears to exist suggesting that there may be a relationship.  
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Figure 6: CSX Peninsula Subdivision MP 67–69; YRel Right and Right Profile 31 
correlation plot multivariable visualization 

Figure 7A and Figure 7B illustrate the graphical relationship between several of the variables of 
the data in this CSX dataset. These figures show a scatter plot of each variable against one 
another. The diagonal shows the variable of interest. The plots to the left and right of the variable 
have that variable as the ordinate, and the plots above and below the variable are abscissa. A 
distinguishable pattern in the plot shows a correlation between the two variables. 
Each figure contains a combination of variables, for left and right rail respectively, that can be 
used to evaluate patterns, and identify changes and behaviors. Note that the figures are quite 
dense and difficult to define in detail; however, global relationships can be inferred. 
The first variable in each figure is MP. The rest of the variables are unique, however in some 
cases, variables are intentionally repeated, e.g., to find patterns between the right, and left 
measurements. The second, third and fourth variables are Profile 31 (profile over a 31-foot 
chord), Profile 62 (profile over a 62-foot chord), and Profile 124 (profile over a 124-foot chord), 
for the left and right rails respectively. The last variable is YRail which is the MRail deflection 
values. The figures show a relationship between the three profile measurements, which is 
expected, as well as a possible relationship with YRail. 
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Figure 7A: CSX Peninsula Subdivision MP 67–69 multivariable plot-Left rail 
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Figure 7B: CSX Peninsula Subdivision MP 67–69 multivariable plot-Right rail 
To illustrate the visual ability of this approach, the geometry realignment of the different Amtrak 
track geometry measurements (corresponding to a time series data set) before and after 
alignment, as previously shown in Figure 4 and Figure 5, is presented in the same format in 
Figure 8 and Figure 9, which show the cross correlation for the several time series. Again, the 
first variable in each figure is MP. The rest of the variables represent different dates of 
measurement. If the data is properly aligned, the correlations should be very well behaved (a 
straight line with a slope of 1) to reflect the fact that this is the same section of track, just 
measured at different times. 
However, as can be seen in Figure 8, there is a very poor correlation between the June inspection 
and the other dates of inspection, corresponding to the data misalignment problem shown 
previously in Figure 4. After alignment (Figure 9), there is a significant increase in correlation of 
the June and remaining inspection data, as reflected by the now well-defined linear relationship. 
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Figure 8: Graphical illustration of the time series variables correlation plot before 
alignment 
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Figure 9: Graphical illustration of the time series variables correlation plot after alignment 

3.1.2 3.1.2 Box and Whisker Plot 
Box and whisker plots explicitly depict the shape of the data distribution, as well as its central 
value and variability. 
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As illustrated in Figure 10 below in a box and whisker plot, the median, 4 quartiles (0–25, 
25–50, 50–75, and 75–100 percent), the interquartile range, and all the outliers can clearly be 
seen. 
The outliers are observation which are from the mean and is defined as a sample that has more 
than 50 percent in the range of the data between it and the mean. In the case of box and whisker 
plots, outliers may be ignored, or deleted only in specific cases.11 
In Figure 10 and Figure 11 below, the box plots of all Left and Right profiles of the CSX 
Peninsula Subdivision MP 67–69 data are presented together with the YRel data. 

 

Figure 10: Box and whisker plot CSX Peninsula Subdivision MP 67–69 data plot-Left rail 

                                                 
11 All outliers were investigated as to cause and eliminated if deemed appropriate. 
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Figure 11: Box and whisker plot CSX Peninsula Subdivision MP 67–69 data plot-Right rail 

3.1.3 Combination of Box and Whisker Plot and Scatter Graphical Representation 
Figure 12 below presents a combination of a box and whisker plot and a bi-variable scatter plot. It 
shows the variability in the data along the track. This figure is a good example of the power of the 
box plot illustration, for the same CSX data presented previously; YRel Left and MP. This shows 
that the track support has a relative mean with variation of stiffness along the track, including 
localized soft/stiff sections. 

 
Figure 12: Box and whisker plot and Scatter CSX data; YRel Left and MP 
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3.1.4 Histograms 
Since a histogram provides an accurate visualization of the distribution/frequency/density of a 
continuous numerical variable in a certain interval, it is an integral part of the EDA. The 
histogram separates the range of values into different numbers of sections/bins, thus showing the 
overall distribution of the observations/measurements. 

Density vs. Frequency Histogram 
Figure 13 and Figure 14 present a standard histogram in two related formats; the density 
histogram (Figure 13) and the frequency histogram (Figure 14). Note the two are directly related 
where the density (height) multiplied by the width of the column (bin size) equals the total count 
or frequency. 

 

Figure 13: Density histogram, CSX Peninsula Subdivision MP 67–69 data  
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Figure 14: Frequency histogram, CSX Peninsula Subdivision MP 67–69 data 
By separating the range of values into different numbers of sections/bins, the histogram can be 
modified to represent the distribution of the variable observations, as shown in Figure 15 and 
Figure 16 below. Figure 15 illustrates a 100-bin distribution, while Figure 16 is for 10,000 bins 
with the same number of observations. (Note, Figure 14 had 1,000 bins.) 
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Figure 15: 100 bins histogram, CSX Peninsula Subdivision MP 67–69 data  
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Figure 16: 10,000 bins histogram, CSX Peninsula Subdivision MP 67–69 data 

Combination of a Histogram and Nonparametric Density Estimation Line12 

A combination of histogram and Kernel Density Estimation (KDE) creates a useful illustration of 
optimally smoothed distribution of random variables in the histogram with high bin numbers. 
KDE is a non-parametric estimation of the probability density function of a given random 
variable. 
Figure 17 through Figure 20 present the Left and Right Profile62 and YRail data for the CSX 
Peninsula Subdivision, MP 67–69. 

                                                 
12 Vertical axis of histogram represents the number of counts per division of horizontal axis 
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Figure 17: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection data, 
Right Profile 62 

 

Figure 18: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection data, 
YRail-Right 
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Figure 19: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection data, 
Left Profile 62 

 

Figure 20: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection data, 
YRail Left 

Quantile-Quantile (QQ) Plot 
The Quantile-Quantile (QQ) probability plot is a subsidiary graphical technique for EDA, which 
compares two probability distributions by their quantiles against one another. The two 
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probability distributions may be: two variables, an ordered variable and a reference, or a variable 
and a theoretical distribution. 
A typical QQ plot of the variable observations would suggest that they are normally distributed, 
if observation points on the plot would create an approximate straight line, as shown below, 
passing through the 1st and 3rd quantiles (the red line on the plots). Thus, for further analysis, as a 
tool the QQ plots can be used to measure whether variable observations are normally distributed 
as well as to determine how far from a normal distribution the data set is. 
Figure 21 through Figure 24 represent the QQ plots for the CSX Peninsula Subdivision 
MP 67–69 inspection data (Profile 62 left and right and Yre left and right). 

 

Figure 21: QQ plot, CSX Peninsula Subdivision MP 67–69 inspection data, Left Profile 62 
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Figure 22: QQ Plot, CSX Peninsula Subdivision MP 67–69 inspection data, YRail Left 

 

Figure 23: QQ plot, CSX Peninsula Subdivision MP 67–69 inspection data, Right Profile 62 
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Figure 24: QQ plot, CSX Peninsula Subdivision MP 67–69 inspection data, YRail Right 

3.2 Degradation Analysis 
Simultaneous with the EDA, an analysis of the degradation of the track geometry data was 
performed. The focus of this analysis was on the Amtrak continuous track geometry data, where 
31 monthly geometry runs over a 4-year period were available for analysis. 
Initial analysis of the Oakington Road data focused on overlaying the track geometry data and 
specifically the Right Profile 62 (profile as measured over a 62-foot chord) and comparing this 
data with the BFI from the GPR data. This is presented in Figure 25 and Figure 26 which present 
Right Profile 62 data vs MP as a time series of runs from June 2013 to September 2016. Note 
Figure 26 shows the absolute value of Right Profile 62. In all the figures, the BFI is presented as 
red lines, as measured in the center of the track. Note; the BFI is represented as secondary y-axis 
in the figures (right hand axis) and starts at the BFI= 15 following the Selig Fouling Index 

3.2.1 TQI based on Standard Deviation (SD) 
To better understand the rate of track geometry degradation, the raw (foot by foot) data presented 
in Figure 25 and Figure 26 were converted to a TQI based on the standard deviation (SD) of the 
track geometry over a constant window of 100 ft., or 200 ft. according to the following equation: 
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 – mean value of the measurements in the window 
xi – measurement point value in the window 
n - number of measurements in the length of track in the window 
The TQI (i.e., SD) was determined for windows of 100 ft. and 200 ft. over all the 31 inspections 
(time series) from June 2013 to September 2016 on Amtrak’s Oakington Road. The analysis was 
performed on the Right Profile 62 designated in this report as Right Profile 62. The resulting TQI 
plots are presented in Figure 25 (100 foot window) and Figure 26 (200 foot window). Note, each 
line represents a different section of track with different ballast conditions, thus the rate of 
degradation will vary signifciantly from section to section. 
In both figures, the degradation of the track, as shown by increasing TQI values with time, can 
be observed together with the periodic corrective maintenance (surfacing or tamping) which can 
be identified by the sudden decrease (improvement) in TQI. This can be seen clearly on the top 
degradation curve in Figure 26 (grey line) where there is a short period of degradation, with a 
very high TQI (poor track condition), followed in December 2013 by a well-defined tamping 
activity—where the TQI shows a very significant drop in value (improvement due to the 
tamping). The track then starts to degrade with time (increasing TQI) for a period of 
approximately 1 year, until December 2014, when a new tamping activity performed on the track 
shows an improvement (decrease) in TQI. The cycle continues, but it should be noted that there 
was a complete rebuilding of the track (and installation of a geocell layer) around September 
2015, with a corresponding improvement in track geometry performance. Again, each line 
represents a different section of track with different ballast conditions, thus the rate of 
degradation will vary signifciantly from section to section. 
It should also be noted that the right BFI antenna value appears to show better correlation to the 
track geometry degradation as defined by the right surface condition (Right Profile 62). 
To better see the relationship between BFI and track degradation (as defined by TQI), sections 
with differing ballast condition were isolated and examined with regard to standard deviation. 
The three series in Figure 33 below represents unfouled, moderately fouled and highly fouled 
ballast sections with corresponding time series of SD100 (SD over 100 feet) from the Right 
Profile 62 channel of the geometry data. Note, the degradation/maintenance cycles over the time 
period and the corresponding linear regression fit (with R2 values of 70 to 87 percent). 
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Figure 25: Three sections Right Profile 62 SD100 & linear fit vs. inspection date Amtrak 

Oakington Road MP 63–64, January 2014 to January 2015 
Figure 26 is like Figure 25 with SD calculated on a 200-foot window. 
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Figure 26: Three sections Right Profile 62 SD200 & linear fit vs inspection date on 

Amtrak’s Oakington Road MP 63–64, January 2014 to January 2015 
The rate of degradation of track geometry (using TQIs) can then be directly compared to such 
GPR parameters as BFI. This is illustrated in Figure 27, which shows three segments of track 
corresponding to highly fouled (red), moderately fouled (yellow) and relatively clean (green) 
ballast. The corresponding track degradation relations (using TQI analysis of the three segments 
over a period of approximately 1 year) show significant rates of degradation for the highly fouled 
and moderately fouled sections, but no significant degradation for the relatively clean ballast 
section. Note that the track quality regression curves show very high R2 values which indicate a 
good statistical fit. 
Figure 28 presents all the sections of Track 2 MP 63–64 of Amtrak’s Oakington Road comparing 
the rate of degradation of the TQI as related to the BFI. Note the significant variation in TQI 
behavior as a function of the ballast condition as defined by the BFI. 
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Figure 27: Three sections Right Profile 62 SD100 & linear fit index vs inspection date+ BFI 

R (sections 80–280) Amtrak Oakington Road, January 2014 to January 2015 
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Figure 28: Three sections Right Profile 62 SD100 & linear fit index vs inspection date+ BFI 
R (sections 380–880) Amtrak Oakington Road, January 2014 to January 2015 

The above data suggests that for the higher BFI values (more fouled ballast conditions), the rate 
of degradation is more rapid than for the less fouled conditions. Furthermore, the data suggests 
that the December 2013 geometry run represented a “degraded” track geometry condition that 
could be selected (among the 31 runs) for use in the more detailed analysis. 
The results of this EDA and preliminary data analysis stage was a determination that there was a 
potential relationship between track geometry degradation, and several key GPR measurements to 
include BFI and BLT. This, in turn led to the application of a next level of data analytics, using 
LR analysis. 

3.3 Preliminary Observations 
The goal of this activity to date was to extensively explore the input data sources that may be 
associated with track geometry degradation, and determine if there was a potential relationship 
with available subsurface inspection data, namely, GPR and MRail. Particularly, EDA was 
performed for all the available datasets, along with advanced analytic techniques, parameter 
combination and data mining activities. As a result, several patterns and relationships began to 
emerge, which will guide the future analytic techniques to be employed. 
The data showed massive and diverse datasets even for the same inspection (repeated, as well as 
over time), as well as randomness and uncertainty. There was a level of poor-quality data, i.e., 
missing values, with many outliers. The data is quite variable, as was expected. 
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The EDA could help identify “bad data” conditions such as seen in the box and whisker plots 
and correlation analyses (e.g., GPR right channel on CSX was found to be questionable). The 
EDA results suggest that there appears to be a better correlation between BFI and 
geometry/profile data, rather than between MRail and geometry. However, there does appear to 
be some initial correlation between BFI and MRail data. The EDA results also suggest that for 
the higher BFI values (more fouled ballast conditions), the rate of degradation is more rapid than 
for the less fouled conditions (e.g., see Figure 35). This EDA analysis also helped identify 
sections with high probability of having potential subsurface defects or issues. 
The EDA analysis sets the stage for and provides guidance to the next level of “Big Data” 
analysis, which will be discussed in the next section. Among other information, EDA analysis 
allowed for the identification of specific variables among the extensive array of existing data for 
further analysis. In addition, it helped identify which is the best source of data, e.g., which chord 
is preferable to use, what is the best alignment distance to avoid over fit, or under fit (+/- 15, 25, 
and 50 feet), and how best to align the inspection with varying numbers of observations for the 
same distance. 
Moreover, exploring the data showed the reliability of the inspection variables, which ones 
should be ignored in the analysis, and which require further investigation. Without performing 
this type of analysis, results could be very misleading, and the detailed analysis more difficult to 
implement. 
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4. Logistic Regression Analysis 

The primary analysis tool used in the next phase of the analysis is LR. LR is a regression model 
where the dependent variable is categorical, i.e., a variable that can take on one of a limited, and 
usually fixed, number of possible values [5]. A common application is the case of a binary 
dependent variable, where the output can take only two values, "0" and "1," which represent 
outcomes such as pass/fail of a defined criterion. 
LR is part of the class of algorithms known as Generalized Linear Model (GLM). The main 
output of the LR model is the probability of an outcome, i.e., the dependent variable. Thus, the 
binary logistic regression model is used to estimate the probability of a binary response based on 
one or more predictor (or independent) variables (features), i.e., it models the probability of 
output in terms of input. 
The LR model is trying to find the estimated probability, P, where: 

 (4-1) 
As part of the process, it calculates the “Odds” that the outcome will occur given a particular 
exposure: 

 (4-2) 
The associated odds ratio is: 

 (4-3) 
Note, the odds ratio for a variable in LR represents how much the odds change with a one-unit 
increase in that variable holding all other variables constant. In LR we are estimating an 
unknown P for any given linear combination of the independent variables. 
Thus, to estimate the P we take the natural logarithm (ln) of the odds, which is the logit of P 

 (4-4) 
 (4-5) 

Where β = regression coefficients 
x = independent variables 
k = number of independent variables 

Inverting between x and y axis, so y was the probability (also called mean function): 

 (4-6) 

https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Dependent_and_independent_variables
https://en.wikipedia.org/wiki/Categorical_variable
https://en.wikipedia.org/wiki/Variable_(research)
https://en.wikipedia.org/wiki/Binary_variable
https://en.wikipedia.org/wiki/Binary_variable
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α – a linear combination of variables and their coefficients, including regression coefficients and 
independent variables calculated using maximum likelihood estimation (MLE), which attempts 
to find the parameter values that maximize the likelihood function, given the observations. 
e – constant for the base of the natural logarithm, 2.71828 
The LR model estimates the probability of the binary event given the input, therefore solving for 
P gives: 

 (4-7) 

 (4-8) 
This process was applied to the track geometry and GPR data from the previous sections, 
specifically the Amtrak Northeast Corridor data (Oakington Road) where multiple track 
geometry data and a complete GPR data set was available. A limited analysis of CSX data to 
include MRail data was also performed. 
The resulting analysis is presented here in three “generations:” 

1. Initial generation of the LR model with limited data variables 
2. Expanded LR model with additional data variables 
3. Higher order hybrid analysis 

The specific analysis was performed on two distinct data sets as follows: 

• CSX MP 67–69 (limited to initial analysis only) 

• Amtrak: MP 62+3,000 to 64+0000 
All these analyses are discussed herein. 

4.1 Initial Analyses 
As noted, an initial analysis was performed of both CSX and Amtrak data sets as follows: 

• CSX Analysis 

– Dependent variable: Left Profile, 62-foot chord 
– Independent variables; BFI- L, YRail-L since only Left Profile was being considered 

• Initial Amtrak Analysis 

– Dependent variable: Right Profile, 62-foot chord 
– Independent variables 
– BFI Right, BFI Center, and BFI Left 

https://en.wikipedia.org/wiki/Likelihood_function


 

45 

4.2 CSX Analysis 
The analysis of the CSX data focused on the one-track geometry run of the DOTX218 car on 
April 5, 2016, on the Peninsula Subdivision MP 67 to 69. In addition to the foot-by-foot track 
geometry data, both GPR and MRail data was available for this section. Based on the EDA, the 
analysis focused on Left Profile (Lprof62), BFI from GPR and YRel Left from MRail. 
As noted, the LR analysis uses a binary dependent variable, in this case the probability of a track 
geometry defect occurring. Thus, the output can take only two values, "0" and "1," which 
represents a pass/fail of a defined criterion. Analysis of CSX historical maintenance data (when 
tamping was performed) suggested that Lprof62 value > 0.54 inches represented degraded 
conditions requiring maintenance. As such, for the analysis of CSX data, the pass/fail binary 
criterion was the probability that the absolute value of the left profile (62 ft.) was 0.54 inches; 
thus: 

• P(Lprof62) < 0.54 = 0 No Defect 

• P(Lprof62)>0.54 = 1 Defect 
Thus, the resulting equation was to be of the form 

P(Lprof62(0.54:0.9))=f(BFI, MRail) (4-9) 
Where the independent variables were BFI Left and YRel L and the dependent variable is 
Lprof62. 
The resulting LR equation was 

 (4-10) 
Note, the exponential nature of the LR equation; this is typical of the LR models. 
This relationship is clearly visible in Figure 29, which fixes the YRail value [blue curve at YRel 
= 0.239 inches] and shows probability of having a profile defect LProf 62 > 0.54 inches vs. BFI 
Left [orange curve] as a function of increasing BFI (to a maximum probability of 0.42). 

https://en.wikipedia.org/wiki/Binary_variable
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Figure 29: Two-dimensional graph of LR model for CSX MP 67–69; MRail fixed at 0.239 

inches 
Figure 30 fixes the BFI value [Blue curve at BFI = 22.5] and shows probability of having a 
profile defect LProf 62 > 0.54 inches vs. YRel (left) [orange]. 

 

Figure 30: Two-dimensional graph of LR model for CSX MP 67–69; BFI fixed at 22.5 
The behavior exhibited in Figure 30 is opposite to what was expected, since increasing YRel is 
supposed to correlate with poor ballast/subgrade conditions which would result in a high 
probability of having a geometry defect. Subsequent discussions with FRA indicated that there 
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was a problem with the MRail measurements in this test, and as a result the MRail data was 
suspect and not used further in the analysis activity. 
The results of the analysis of the CSX data showed a direct relationship between increasing BFI 
values (increased ballast fouling) and increased probability of having surface/profile deviation in 
the Surface/Profile 62-foot chord measurement. However, the CSX data was limited in that there 
was only one geometry run, which was not a “worst case” run (as opposed to the Amtrak data 
such as illustrated in Figure 27 and Figure 28, where multiple geometry runs allow for the 
selection of a “poor” or “degraded” geometry condition.) While CSX did provide track geometry 
exception report data, this exception report data was not sufficiently detailed to allow for the 
level of analysis required here. 
Based on this, the remaining analysis focused on the Amtrak geometry data, though the CSX 
correlation with BFI was a forerunner of the more detailed relations developed further in this 
report. Again, as noted, because of the poor correlation with YRel, and the suspect YRel data, no 
further MRail analysis was performed. 

4.3 Preliminary Amtrak Analysis 
The analysis of the Amtrak data included the 31 geometry runs between 2013 and 2016, however 
as a result of the track degradation analysis discussed previously, a “degraded” track condition 
was evident in the track geometry run of December 2013 between Track 2, MP 62.6–64.0. In 
addition to the foot-by-foot track geometry data, GPR data was available for this section. Based 
on the EDA, the analysis focused on Right Profile (Rprof62) and all three BFIs from GPR: 

• BFI Left 

• BFI Center 

• BFI Right 
Again, as noted, the LR analysis uses a binary dependent variable, in this case P(abs(Rprof62)), 
probability of a track geometry exceedance occurring. Thus, the output can take only two values, 
"0" and "1," which represent a pass/fail of a defined criterion. For the analysis of Amtrak data, 
the pass/fail binary criterion was the probability that the absolute value of the Rprof62 was 
greater than 0.4 inches. This threshold was based on analysis of the 31 Amtrak track geometry 
runs, and when maintenance was performed. Note that this is less than the value of 0.54” used 
for CSX, which operates at slower speeds and thus can allow for larger values of profile. 

• P(abs(Rprof62))< 0.4 = 0 No Defect 

• P(abs(Rprof62))>0.4 = 1 Defect 
Thus, the resulting equation was to be of the form 

P(abs(Rprof62(>0.4))=f(BFI L, BFI C, BFI R) (4-11) 
Where the independent variables were BFI Left, BFI Center, and BFI Right and the dependent 
variable is Rprof62. The resulting LR equation was 

 (4-12) 

https://en.wikipedia.org/wiki/Binary_variable
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Analysis of the equation exponent values shows that BFI Left was not significant (very small 
weight), and in fact was behaving in the wrong direction (negative sign). Figure 31 presents this 
as a two-dimensional graph where it fixes the BFI Left and Right values and shows probability 
of having a profile defect abs(RProf 62)> 0.4inches vs. BFI Center. Note the strong relationship 
shown between geometry defect and BFI. Furthermore, observe that the curve shows both the 
mean relationship and the mean +/- one standard deviation. Based on this, the analysis of the 
Amtrak data was expanded as discussed in the next section. 

 
Figure 31: Two-dimensional graph of LR model for Amtrak; BFI Right and Left fixed 



 

49 

5. Expanded Logistic Regression Analysis of Amtrak Data 

As noted above, examination of the data set, to include the EDA, suggested that a LR model 
could be developed to determinate a relationship between the probability of generating a track 
geometry defect and key GPR inputs (i.e., BFI). The follow up analysis (see below) expanded on 
this to also include BLT, as measured by GPR. 
Again, as in the previous initial analysis, the two key data sets used were GPR data and track 
geometry data. Since the objective was to develop a relationship between GPR data 
measurements of ballast and subgrade condition and the probability of generating a track 
geometry defect; the GPR data served as the primary independent variables and the track 
geometry as the dependent variable. As such there was extensive data preparation, as noted in the 
previous chapters to include 

– Expanded GPR data analysis, preparation, and filtering 
– Geometry data preparation to include correlating the geometry data with GPR data and 

create single database 
Figure 32 presents the track geometry input used, specifically, the right profile data as taken 
from the track geometry car (specifically the Rprof62 channel which is the right profile as 
measured over a 62-foot chord). Note, the specific geometry run used in this analysis was dated 
December 2013 which represent a “worst case” condition. Note, this data was provided in 
digitized format with data points at one foot intervals. The GPR output for MP 62+3100 (62.6) to 
63+3000 (63.58) matches the track geometry data section. 
Note, the GPR data encompasses the three sections of Track 2 (Left, Center, and Right) though 
as noted earlier, the focus will be on the Right rail, and thus only the center and right GPR 
measurements are used. The key GPR input values used in this analysis are as follows: 

– BLT (as determined from the top and bottom of ballast layer for center and right of Track 
2) 

– BFI for 
o Center 
o Right 

As noted earlier, this data was digitized manually, based on 16.7 intervals. Note, the BFI 
digitization used the color-BFI index relationship shown previously in Table 6. In general, 
moderately fouled ballast has a BFI value greater than 15. 
As noted, this data set was consolidated into a unified database, which included matching 
between GPR and geometry inspection measuring points and creation of a mutual data frame of 
reference, taking into account different data sampling rate. After alignment of the inspection data 
by shifting the signal to match the peaks, the signals were consolidated into a common reference 
MP, noting that each inspection has different sampling steps and corresponding different number 
of measurements in the approximately 2 miles of data. 
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Figure 32: Right Profile 62 (December 2013) by MP 

After performance of EDA as illustrated in Figure 33 it was determined that the potentially most 
useful GPR data channels were ballast thickness, as determined at the center of the track, and 
BFI. Thus, for the right profile, BFI Right and Center were both useful.  
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Figure 33: Amtrak MP 62+3,000-64+0000 relationship between BFI, Thickness C13 

Thus, using the right rail profile (62-foot chord) as the dependent variable and the GPR values of 
BLT Center, and BFI Right and Center as the independent variables, the LR model was 
developed. 
LR modeling determines a probabilistic relationship between the independent variables (GPR 
measurements) and the dependent variables (track geometry defects). As noted earlier, LR is 
a regression model where the dependent variable is categorical, i.e., a variable that can take on 
one of a limited, and usually fixed, number of possible values [5]. A common application is the 
case of a binary dependent variable, where the output can take only two values, "0" and "1," 
which represent outcomes such as pass/fail of a defined criterion. 
As before, the LR model estimates the probability P of the binary event given the input, therefore 
solving for P gives: 

 (5-1) 

 (5-2) 
Where β = regression coefficients 

x = independent variables 
k = number of independent variables 

                                                 
13 BLT Center 

https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Dependent_and_independent_variables
https://en.wikipedia.org/wiki/Categorical_variable
https://en.wikipedia.org/wiki/Variable_(research)
https://en.wikipedia.org/wiki/Binary_variable


 

52 

Using the right rail profile as measured over a 62-foot chord as the dependent variable and the 
GPR values of BLT Center and BFI (Right and Center) as the independent variables, the LR 
model was developed. However, since the output of a LR model must be binary in nature, it was 
necessary to convert the profile data into a binary data set. This was done by defining the 
absolute value of the profile data as being 

• P(abs(Rprof62)) < 0.4 = 0 No Defect 

• P(abs(Rprof62))>0.4 = 1 Defect 
The threshold of 0.4 was selected based on the analysis of the track geometry (profile). This 
further allowed for a statistically significant number of data points to be used in the LR analysis. 
The database used in the analysis included: 

- Right Profile 62 measured on December 2013; abs(Rprof62) 
o Note, this was the worst measured profile condition among the approximately 31 set 

of inspections available. 

- BFI Right and BFI Center 
o Digitized every 16.7 feet 
o After removal of values of BFI smaller than 15 

- Ballast Layer Thickness as measured in the track BLT Center 
The resulting LR models thus calculated the probability that the Right Profile 62 exceeded a 
value of 0.4 (“defect”) as a function of BFI Center and Right, and BLT center. The resulting 
relations, in generalized form is given as: 

P(abs(Rprof62) > .4) = f[BFIcenter,BFIright,BLTcenter] (5-3) 
The resulting LR equation calculated from this dataset utilizing the R software is:14 

 (5-4) 

 (5-5) 
As can be seen in this equation, the model coefficients can be defined in terms of an increase in 
logit score in one-unit as follows: 

- Increase in BFI Right is 0.18 

- Increase in BFI Center is 0.04 

- Decrease in BLT Center is 0.92 
As a result, the probability of having a profile “defect” increase as a function of BFI (with BFI 
Right more significant than BFI Center) and decreases with ballast thickness. This corresponds 
with engineering expectations and was discussed further under sensitivity analysis. 

                                                 
14 Note the coefficients of the equation come directly from the analysis performed with the R software 
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Looking at the statistical significance of the resulting LR model, according to the z-test, there is a 
strong likelihood for a relation between BFI Right and target variable, i.e., abs (Rprof62)>0.4 
(i.e., presence of as profile defect). Furthermore, the test suggests that BFI Right is a very 
significant variable in predicting the variable abs(Rprof62)>0.4 (presence of a profile defect). 
The results of BFI Center and BLT Center p-values are not as strong and implies a relationship 
that is not as strong or well defined as the BFI Right relationship. 
It should be noted that several different LR models were developed as part of this activity. 
Appendix B presents three of these, where Model 3.1 in Appendix B corresponds to the LR 
model presented in this report. The other models did not have the same level of performance and 
are presented in the appendix for completeness. 

5.1 Sensitivity Analysis 
This section presents the sensitivity of the LR model to the three independent variables used as 
discussed previously. Noting that the model has three independent variables, there are six 
permutations when presented as two-dimensional sensitivity graphs and three permutations when 
presented as a three-dimensional graph. Effective illustration of the sensitivity was achieved by 
preparing plots as follow: 

• One independent variable was presented as a continuous function 

• Second independent variable as a set of three values (Minimum, Average, and Maximum) 

• Third independent variable held constant 
Using this approach, it is possible to observe the influence of each parameter in predicting the 
probability of having a profile exceedance [P(abs(Rprof62)>0.4)]. The results are illustrated in 
two- and three-dimensions charts. 
Figure 34 shows the probability of having a profile defect [P(abs(Rprof62)>0.4] as a function of 
BFI Right for three cases: 

o Ballast Layer Thickness (BLT) = Minimum 
o Ballast Layer Thickness (BLT) = Average 
o Ballast Layer Thickness (BLT) = Maximum 

Note, BFI Center is held constant at its average value for this graph. 
As can be seen from this graph, the probability of having a defect is very sensitive to BFI Right, 
with increasing ballast fouling (higher BFI value) causing a greater probability of having a 
defect. Note, the inverse sensitivity to ballast thickness, with decreasing ballast thickness 
increasing the probability of having a defect, as expected from engineering experience. 
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Figure 34: Probability of geometry defect as a function of BFI Right and BLT 
Figure 35 shows the same behavior in three-dimensional. Again, BLT has significant importance 
and influence on the likelihood of having a profile defect, the thicker the layer of the ballast in 
the center of the track the lower the probability of having a profile defect. BFI Right also has a 
strong influence on the profile defect likelihood, but it is significantly lower when the ballast 
layer in the center of the track is thick. 

 

Figure 35: Probability of geometry defect as a function of BLT and BFI Right 
Figure 36 and Figure 37 show the same data in an inverted format, with the probability of having 
a profile defect (P(abs(Rprof62)>0.4) as a function of BLT, for three cases: 

• BFI Right = Minimum 

• BFI Right = Average 
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• BFI Right = Maximum 
Note, BFI Center is held constant at its average value for this graph. 
As can be seen in these graphs, the probability of having a defect is inversely sensitivity to 
ballast thickness, with decreasing ballast thickness increasing the probability of having a defect, 
as expected from engineering experience. Note, the strong sensitivity to BFI Right. 

 

Figure 36: Probability of geometry defect as a function of BLT and BFI Right 

 

Figure 37: Probability of geometry defect as a function of BLT and BFI Center (alternate 
view) 

Figure 38 and Figure 39 show the probability of having a profile defect [P(abs(Rprof62)>0.4] as 
a function of the two BFI parameters, holding BLT constant. In this case, BFI Right, is 
continuous and BFI Center is presented for three values: 

• BFI Center (BFI C) = Minimum 
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• BFI Center (BFI C) = Average 

• BFI Center (BFI C) = Maximum 
Note, BLT Center is held constant at its average value for this graph. 
As can be seen from this graph, the probability of having a defect is sensitive to both BFI Right 
and BFI Center, however, the sensitivity to BFI Center is not as great as that observed for BFI 
Right. 

 

Figure 38: Probability of geometry defect as a function of BFI Right and BFI Center 

 

Figure 39: Probability of geometry defect as a function of BFI Center and BFI Right 
Figure 40 presents a complementary view that shows BFI Center has low influence on the 
probability, especially when the BFI Right values are low. Thus, when BFI Right is less than 10 
(no fouling) the probability of a defect is close to 0. When BFI Right is 40, fouled ballast, there 
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is a definite effect, but the effect of increasing BFI Center is not as significant as compared to 
BFI Right. 

 

Figure 40: Probability of geometry defect as function of BFI Center and BFI Right 
(alternate view) 

Finally, in Figure 41, the sensitivity of BFI Center and BLT shown, with BFI Center a 
continuous value, and BLT presented as discrete values. From the figure, it is shown that BFI 
Center has little influence on the probability of having a profile defect and BLT has relatively 
significant influence on the probability. Having sufficient thickness ballast layer, e.g., higher 
than 2 ft., will dramatically reduce the likelihood of having a profile defect even when the BFI 
Center is very high. As noted previously, the sensitivity to BFI Right is greater than that of BFI 
Center. 

 

Figure 41: Probability of geometry defect as a function of BFI Center and BLT 
While summarizing the results of the sensitivity analysis, the following is clear: 
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- BFI Right has the highest influence on the probability for having a profile defect. 

- The two highest probabilities for having a profile defect is a combination of: 
o High BFI Right and BFI Center, the probability of having a profile defect is 90 percent. 

(BLT equals its average value of 23 inches) 
o High BFI Right and low BLT, the probability of having a profile defect is 84 percent. 

(BFI Center equals its average value of 17) 

- For a thick ballast layer, the highest probability is of the order of 42 percent, even for 
highly fouled conditions (high BFI values). For a thin ballast layer, this rises to 84 
percent for highly fouled conditions. 

5.2 Statistical Validation 
To statistically validate the model, an error matrix or “confusion matrix” approach [6] was used 
as illustrated in Table 13. The confusion matrix validation process constructs the model from the 
entire training dataset, then separates the dataset into parts, and applying the model on the 
subdivided datasets. By counting the predicted versus actual observations, a 2x2 matrix can be 
constructed showing the number of correct and incorrect predictions based on the reference and 
the corresponding performance of the model. 
Table 13 presents the results of the confusion matrix application to the LR model and associated 
training dataset. As can be seen in Table 13, of the 253 predictions, 220 (213+7) or 87 percent 
match the actual (true condition) value, i.e., predicted positive = actual condition positive and 
predicated negative = actual condition negative. Of the remaining 13, 29 or 11.5 percent are false 
positive and 4 or 1.5 percent are false negatives. The analysis showed that the true positive rate 
(TPR), i.e., sensitivity of the model is 98.16 percent, [213/217] which is very good and the false 
negative rate (FNR), “miss” rate of 1.86 percent [4/217] is very low. The other statistical values 
also support the validity of the LR model in this application. 
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Table 13: “Confusion” matrix for logistic regression analysis 
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6. Hybrid Analysis 

Following up on the initial LR analysis, a more extensive data analytics approach using 
combinational hybrid analysis was implemented and applied to the dataset. The objective was a 
higher order polynomial LR model, with increased accuracy, for the determination of the 
probability of a rail profile defect occurring at locations with measured ballast fouling and 
measured ballast thickness. 
As part of this more comprehensive analysis approach EDA was again used to map the initial 
correlation between the GPR and profile data, and to identify the GPR parameters that appeared 
to be most influential for the profile degradation analysis. As noted previously, EDA is an 
approach that allows a first insight into data by means of a variety of analytic techniques, many 
of them graphical [4]. EDA helps characterize the data where there are anomalies in the variables 
(outliers), or if there are complex relationships within the variables, patterns, etc. 
The results were then used in a combinational hybrid analysis of emerging and well-established 
data analysis techniques consisting of hierarchical clustering analysis of histogram-valued data, a 
corresponding application of higher degree polynomial functions on the defined parameters, and 
the generation of the LR model based on these higher order polynomials. 
Figure 42 presents the data analysis steps and their order of application. 

 
Figure 42: Hybrid analysis steps 

6.1 Hierarchical Clustering Analysis of Histogram-Valued Data 
Hierarchical clustering analysis of histogram-valued data is an unsupervised classification 
technique that combines both the clustering analysis and the symbolic data analysis. Both 
methods are well established and widely used in data analysis. The advantage of using these 
combinations allows for better classification of massively large datasets. 
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6.1.1 Introduction 
The clustering method is a machine learning technique whose main objective is to automatically 
group a dataset, such that similar data objects (samples) are within one cluster [4]. The objects 
are grouped together into a cluster based on a pre-defined and selected measures to determine the 
underlying structure within a dataset. This analysis used the clustering method as a first step 
before the LR modeling since its goal is to group the data by dividing it to similar parameters, 
thus bringing meaningful sense of their behavior. 
Clustering analysis belongs to the category of unsupervised learning, i.e., where examples are 
not labeled [4], therefore, the model tries to understand the patterns of data in it. According to 
Milligan [5], the steps for cluster analysis are: 

• Choosing the objects to be clustered 

• Choosing the measurements or variables 

• Standardization of variables 

• Choosing a (dis-)similarity measure 

• Choosing a clustering method 

• Finding the number of clusters 
The clustering analysis used here is polythetic, unlike monotectic, where each category members 
are alike, as well as hierarchical. The roots of the hierarchical clustering methods go back to 
1960s, and suggest that the clustering will have paternal structure ordering from top to bottom 
[7]. However, the polythetic hierarchical clustering, as used in this section, is done by an 
agglomerative approach, which groups the members from the bottom up. This way, each 
cluster’s observation is considered as its own cluster, i.e., node, and new members, will join 
iteratively to the existing cluster until all members are joined to the most common clusters and 
only a single cluster, i.e., root remains. The result of that process is a hierarchical pattern 
structure of the clustered members on distance and nodes, i.e., a tree plotted as a dendrogram. 
Various clustering schemes share this procedure as a common definition, but differ in the way in 
which the measure of inter-cluster dissimilarity is updated after each step. 
The proximity between each of the other members that define the clusters are determined by the 
linkage type, distance, and the method of its calculation. Many different types of methods are 
used to establish for the linkage between clusters, to include the more commonly used: single 
linkage, complete linkage, average linkage, and centroid methods. The method to calculate the 
distance between clusters for these methods will be presented in the next section. 
The clustering analysis groups symbolic data, rather than classical data. Symbolic data analysis 
(SDA) is an extension of standard data analysis where symbolic data tables are used as input and 
symbolic objects are made output as a result [7]. The data units are called symbolic since they 
are more complex than standard ones, as they not only contain values or categories, but also 
include internal variation and structure. The symbolic representation of a variable is not a single 
value, e.g., mean of dataset, but a new variable that stands for variability of the entire dataset. 
Symbolic data as used in this research refers to distributional data representation, i.e., histogram-
valued variables. 

https://en.wikipedia.org/wiki/Data_analysis
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6.1.2 Theory of Wasserstein-Distance Based Mean 
For computing the distance between the distributions, the Wasserstein distance method is used, 
which gives the possibility of defining a single center in the form of a distribution. There are 
different formulations of the Wasserstein distance in the literature, but the L2 version of the 
Wasserstein distance as defined by Reference 10 was used. This formalization defines the 
distance (dWp) between two densities  using the quantile functions  that 
associates with cumulative distribution functions (CDF)  [9] as follows: 

 (6-1) 

Where, P is the probability, as defined in Equation 5-2. 
To avoid multiple solution for the distance, the following formula was proposed for the L2 
Wasserstein distance between two probability distributions: 

 (6-2) 

In the equation below Y stands for the Fréchet mean, i.e., a single representative point for a group 
of points, with respect to dW and assuming equal weights wi. The mean quantile function (MW) 
below solves optimization problem for distribution variable (Y). Note that arg min returns the 
combination of parameters that minimizes the function. 

 (6-3) 

6.1.3 Benefits and Motivation for Application of HCA of Histogram-Valued Data 
Clustering methodology analysis is a very useful tool to reveal the relationship between datasets 
parameters and is well established for classical data [8]. However, with extremely large datasets, 
such as the railway track data used in these analyses, they are difficult to implement using 
traditional approaches [4]. Aggregation of classical data as into symbolic data, e.g., histograms 
data, is one of the tools used when confronted with large, excessively large, datasets [8]. It 
reduces the number of parameters by the creation of symbolic objects, i.e., categories, thus 
reducing the computational complexity associated with the large datasets. 
In addition, track inspections generate multivariable data, which is very complex to analyze for 
relationship development and classification. Thus, unsupervised machine learning algorithms 
like hierarchical clustering analysis with symbolic data are used to provide enhanced analyses. 
Histogram-valued data defines each variable as a histogram, as presented in the following 
formula. 
Yu = ({[ajk,bjk],Pujk;kj = 1, … , suj}, j = 1, … , p), u= 1, … , m (6-4) 
Where, 

Yu = histogram of random variable Y of observation u 
Pujk = relative frequencies associated with the subinterval [ajk, bujk) 
Suj = number of subintervals 
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These two techniques, hierarchical clustering analysis and histogram-valued data analysis, can 
then be combined into a composite hierarchical clustering analysis with histogram data. The 
resulting hierarchical clustering analysis with histogram data analysis approach can shed light on 
deep relationships between track structure components and conditions, which are difficult to see 
and to prove. As these non-obvious relationships are identified, a more accurate model, or 
equation for the relationship, can be generated, e.g., a model following LR analysis. Due to this, 
hierarchical clustering analysis with histogram data is one of the methods used for finding the 
most representative relationship between the key variables from the track geometry inspection 
and the substructure condition as measured by GPR. 
Data Preparation 

A key part of the hierarchical clustering analysis of histogram-valued data is dataset preparation. 
During that process, the variables of geometry inspection Rprof62 (Right Profile 62) and GPR 
inspection. BLT, and BFI Center and BFI Right were accurately aligned using the inspections 
MP. Missing values in the data were either removed or filled-in using linear interpolation. 
For example, while GPR data was recorded continuously, the data sampling rate used was 100 ft. 
for BLT Center and 16.67 ft. for BFI Center and BFI Right. Furthermore, the track geometry 
data recording rate was foot by foot so that there was a 1-foot sample rate for Rprof62. Noting 
that the BLT did not vary abruptly but rather varied gradually, the chosen interval rate for all the 
variables was selected as 16.67 feet. The Rprof62 data were matched to this interval, while BLT 
Center linear interpolation obtained this data interval. 
Data Normalization 

To ensure that the data could be used for the analysis, they had to be “standardized,” through 
either normalization or scaling. Standardization of variables is a form of transformation, but with 
a different ration. Standardization turns the focus of a distance measurement of the clustering 
analyses between given variables, rather within each variable. That is because the normalization 
process allows the analyst to ignore the relative scale of the variable observations as compared to 
other variables observations, and reducing the observations scale’s influence on any further 
analysis. This transformation has significant impact on the clustering, particularly if the variables 
are measured on different scales. Thus, in the datasets used here, the BFI variable scale is 
between 0 to 100, the moisture variable scale is between 0 to -5, the thickness variable scale is 
between 0 to 5, and surface/profile variable scale between -2 to 2. Normalization adjusts the 
scales of the observation in such a way that all variable means are zero and the standard 
deviation one. 
The normalization/standardization is applied to the variables in the prepared dataset and each 
observation uses the following equation for each variable 

 (6-5) 
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The resulting normalized means and standard deviations are presented in Table 14 

Table 14: Variable mean and SD values used for normalization 

 BFI Center BFI Right BLT Center BLT Right abs(Right Prof 62) 
Variables Mean 21.61 20.2 1.81 1.86 0.22 
Variables SD 6.82 4 0.45 0.34 0.17 

Table 15 and Table 16 present the summary statistics for these dataset variables before and after 
normalization. As can be seen in Table 15, the variables have different scaling and distribution. 

Table 15: Variables statistical summary before normalization 
BFI Center BFI Right BLT Center BLT Right abs(Right Prof 62) 
Min.: 17.90 Min.: 17.90 Min.: 1.030 Min.:1.130 Min.: 0.03845 
1st Qu:15 17.90 1st Qu:9 17.90 1st Qu:9 1.470 1st Qu9: 1.600 1st Qu:9 0.10925 
Median: 17.90 Median: 17.90 Median: 1.800 Median: 1.800 Median: 0.16052 
Mean: 21.61 Mean: 20.23 Mean: 1.811 Mean: 1.858 Mean: 0.22461 
3rd Qu.: 25.00 3rd Qu.: 25.00 3rd Qu.: 2.10 3rd Qu.: 2.00 3rd Qu: 0.29816 
Max.: 46.40 Max.: 39.30 Max.: 2.800 Max.: 2.600 Max.:  0.85022 

In Table 16, which represents the statistical summary of the variables after normalization, the 
impact and influence of the normalization process can be clearly observed in the form of the 
scaling of the statistical values. 

Table 16: Normalized variables statistical summary 
BFI Center BFI Right BLT Center BLT Right abs(Right Prof 62) 
Min.: -0.5442 Min.: -0.5829 Min.: -1.7445 Min.: -2.1518 Min.: -1.0742 
1st Qu.:-0.5442 1st Qu.: -0.5829 1st Qu.: -0.7615 1st Qu.: -0.7627 1st Qu.: -0.6657 
Median: -0.544 Median: -0.583 Median: -0.024 Median: -0.172 Median: -0.37 
Mean: 0.00 Mean: 0.00 Mean: 0.00 Mean: 0.00 Mean: 0.00 
3rd Qu.: 0.4975 3rd Qu.: 1.1936 3rd Qu.: 0.6461 3rd Qu.: 0.4195 3rd Qu.: 0.4244 
Max.: 3.6375 Max.: 4.7717 Max.: 2.2100 Max.: 2.1928 Max.: 3.6099 

The impact of the normalization can also be seen in the scatter plots presented in Figure 43 
below. Note the first chart represents variables behavior before normalization and the bottom 
chart represents after normalization. The difference in the inter-variable behavior can clearly be 
seen in the change in the axes scale. In the before normalization, the scale of the variables (BFI, 
BLT, RProfil62) are all different, corresponding to the defined units, e.g., profile is defined in 
fractions of an inch. After the normalization, the scale is the same for all the variables. 

                                                 
15 Quantile 
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Figure 43: Inter-variable relationship chart before (bottom chart) and after (upper chart) 

normalization 
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6.1.4 Converting Classical Data to Symbolic Data 

The next step in the analytical process was converting classical histogram-valued data (Figure 
44) to symbolic data. This was accomplished using the ‘data2hist’ function of ‘HistDAWass’ 
package.16 As presented below, each variable is valued as a histogram, so that real-valued data is 
aggregated by means of intervals and the corresponding distribution is not considered. 

 
Figure 44: Histogram representation of real-valued data 

The real-valued data is aggregated by means of intervals into n classes with the histogram-valued 
variable defined as follows: 

 (6-6) 

Where, 
S = histogram of random variable 
pi1 = relative frequencies associated with the subinterval [Ij1, ii1] 

Thus, for the profile track geometry data, Rprof62, a histogram of data observation is presented 
in Figure 45 below. The corresponding summary statistics are presented in Table 17. 

                                                 
16 ‘HistDAWass’ is an analysis package available in the R software 
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Figure 45: Histogram of real-valued variable absolute Rprof62 

Table 17: Summary of real-valued variable absolute Rprof62 

Min. 1st Qu. Median Mean 3rd Qu. Max. 
17.9 17.9 17.9 20.23 25 39.3 

The results of converting absolute Rprof62 variable from classical data to histogram-valued data 
(Figure 46), as stored in the software database, are presented in the Table 18 below. 

Table 18: Description of histogram-valued variable absolute Rprof62 

 

 Bins intervals Probability 
Bin_1 [-1.0742--0.81397) 0.09881 
Bin_2 [-0.81397--0.55374) 0.2253 
Bin_3 [-0.55374--0.29351) 0.2569 
Bin_4 [-0.29351--0.033283) 0.07905 
Bin_5 [-0.033283-0.22695) 0.07115 
Bin_14 [2.3088 ; 2.569) 3.95E-06 
Bin_15 [2.569 ; 2.8292) 3.95E-06 
Bin_16 [2.8292 ; 3.0895) 3.95E-06 
Bin_17 [3.0895 ; 3.3497) 0.003953 
Bin_18 [3.3497 ; 3.6099) 0.02767 
Mean = 0.0043 
SD = 0.997 
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Figure 46: Histogram of histogram-valued variable absolute Rprof62 

As noted above, the normalization process compensates for the relative scale of the variable 
observations and the reduction in observation’s scale influence on the follow-up analysis. This is 
important for those cases where most of the data is of low value with a limited number of high 
value occurrences. This can be seen in Figure 46 where only a few high value profile exceptions 
are found but which represents key input data into the model analysis. This normalization adjusts 
the scales of the observation so that all variable means was zero and the standard deviation one. 
Using these histograms for the independent and dependent variables, a matrix of distributions 
was created, where all the parameters in the matrix cells are stored as histograms. 
Appendices C. 1 through C.3 present a more comprehensive set of this histogram data. 

6.1.5 Creating a Matrix of Distributions by Rows 
The last stage of data preparation for the hybrid analysis i.e., before using hierarchical clustering 
analysis of histogram-valued data, is the creation of a matrix of distributions with the model 
parameters. All parameters in the matrixes cells are stored as distributions and represented by the 
following information (see Table 19): 

• Parameter name 

• Mean 

• Standard deviation 
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Table 19: Matrix of distributions description 

Variable Mean/SD 
abs_RProf_62 [ m= 0.0042916  ,s= 0.99696 ] 
BFI Center [ m= -0.13211  ,s= 0.82406 ] 
BFI Right [ m= -0.2243  ,s= 0.8209 ] 
C_Layer [ m= 0.023813  ,s= 0.99858 ] 
R_Layer [ m= -0.0015034  ,s= 0.99479 ] 

Figure 47, Figure 48, and Figure 49 below are respectively: histogram, density approximation 
and box-plot presentations of the data for the key variables; track geometry (RProf_62), BFI 
Right and BFI Center, and BLT (R_Layer and C_Layer). Each plot is a comparative plot to 
describe graphically the parameters in the matrix of distributions. 

 
Figure 47: Comparative histogram plot of matrix of distributions 
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Figure 48: Comparative density approximation plot of matrix of histograms 
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Figure 49: Comparative box-plot of matrix of histograms 

Examination of these charts gives a useful picture of the variability, and distribution of the 
variables. For example, the following can be seen: 

- BFI Center is much spread out than BFI Right, showing a wider range of variability in 
the data with high peak values.17 

- There is no true symmetricity in the data. 
- BLT has a broad distribution of data with a low peak value and two peaks. 
- Absolute Rprofile62 is the most diverse variable. 
- Most of the charts are skewed to the right, i.e., to the positive direction, as clearly seen in 

the box-plot and density approximation plot. 

6.1.6 Hierarchical Clustering for a Set of Histogram-Valued Data Results and 
Interpretations 
Once the matrix of histogram data was developed, a hierarchical clustering analysis of the 
histogram data was performed. As already noted, hierarchical clustering analysis of histogram-
valued data is an unsupervised classification technique that combines both clustering analysis 
and symbolic data analysis [8] [9]. Both methods are well established and widely used in data 
analysis. The advantage of using their combination is it allows for classification of very large 
datasets. 
The main objective of the clustering analysis is to group the dataset so that similar data objects 
are within one cluster. Clustering methods rely on a distance matrix where the dij value is the 
                                                 
17 BFI Right has outlier data indicated by the large maximum 
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distance between pairs of observations [4]. The goal is to minimize the distances within clusters 
and maximize the distance between clusters. In this analysis, several clustering analyses were 
performed to include K-mean and adaptive K-mean clustering analyses [4] [8] [10] [11]. 
Hierarchical clustering organizes the data into hierarchical structures of partitions starting from 
singleton clusters (each data point is its own cluster) and progressing until one cluster covers the 
entire data [4]. Eight different linkage methods were used here, based on different approaches to 
the measurement distance, but all using L2 Wasserstein method for distance calculation between 
two probability distributions (ϕi, ϕi’), as defined by the equation [9] [10] [11] [12]:  

 (6-7) 

Where, dw = Wasserstein distance 

Φi-1, Φi’-1 = quantile functions 
For each linkage method, a cluster dendrogram was prepared.18 The linkage methods used 
included [4] [11] [12]: 

• The complete linkage method, also called “farthest neighbor,” is the proximity between 
two parameters, or clusters is the distance between their two most distant objects (see 
Figure 50 for a graphical example of the dendrogram). 

• The average linkage method where the distance between two clusters is defined as the 
average of distances between all pairs of objects, where each pair is made up of 
one object from each group (see Figure 51 for a graphical example of the dendrogram). 

• The single linkage method also referred to as “nearest neighbor” where the distance 
between two points is the minimum distance (see Figure 52 for a graphical example of 
the dendrogram). 

• The Ward.D linkage method also called “Ward’s method,” or minimal increase of sum-
of-squares (MISSQ) is the proximity between two clusters as the magnitude by which the 
summed square in their joint cluster was greater than the combined summed square in 
these two clusters (see Figure 53). 

• The centroid linkage method where the distance between two clusters is the distance 
between the two mean vectors of the clusters. The proximity between two clusters is the 
proximity between their geometric centroids: [squared] Euclidean distance between those 
clusters (see Figure 54). 

• The Ward.D2 linkage method uses squared Euclidean distances in Ward.D linkage (see 
Figure 55). 

• The median linkage method uses Euclidean distance as the distance metric (see Figure 
56). 

                                                 
18 Eight cluster Dendrograms were developed, one for each link; however only one is presented in this paper to 
illustrate the Cluster Dendrogram concept. 
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• The McQuitty linkage method also called the equilibrium centroid method (WPGMC) 
measures the proximity between two clusters using their geometric centroids applying: 
squared Euclidean distance between those two clusters (see Figure 57). 

6.1.7 Dendrogram for Different Linkages Methods 
The result of the clustering analysis using different clusters methods are concentrated below by 
the linkage methods. 
Figure 50 through Figure 57 below are a dendrogram representation of the hierarchical structure 
of the data. The "Y" axis stands for the distance between the parameters, or merged clusters, 
while “X” axis shows the parameters that are clustered. (Also, see Appendix C.4 for the details 
of the calculation of the clusters and dendrograms.) 

Linkages Method = "complete" 

 

Figure 50: Cluster dendrogram with maximum dissimilarity (complete linkage) 

Linkages Method = "average" 
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Figure 51: Cluster dendrogram with average dissimilarity (average linkage) 

Linkages Method = "single" 

 

Figure 52: Cluster dendrogram with minimum dissimilarity (single linkage) 

Linkages Method = "Ward.D" 
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Figure 53: Cluster dendrogram with Ward method 

Linkages method = "centroid" 

 

Figure 54: Cluster dendrogram with centroid method 
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Linkages Method = "Ward.D2" 

 

Figure 55: Cluster dendrogram with Ward.D2 method 

Linkages Method = "median" 

 

Figure 56: Cluster dendrogram with median method 
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Linkages method = "McQuitty" 

 

Figure 57: Cluster dendrogram with McQuitty method 
Note the difference in the height scale for the eight different dendrograms. 
The resulting dendrograms were then analyzed using the “cut the tree” method which is a 
function that “cuts” the dendrogram, i.e., the “tree,” of hierarchical clustering, for a set of 
histogram-valued data based on the L2 Wasserstein distance, to several groups either by the 
desired number of groups or the desired cut height. Due to having five parameters, cut the tree 
generates four groups, which is the optimal number of depended variables in the model equation. 
Appendix C.5 shows the details of the cut the tree approach used here. 
The results for the clustering analysis for the eight different linkage types are presented in Table 
20 below: 

Table 20: Summary of cut the tree for four groups 

 
Table 20 shows, for each of the eight linkage methods, the clustered parameters belonging to 
groups after the hierarchical dendrogram is “cut” creates four clusters. The results in the table 
suggest that in any linkage method BLT Center and BLT Right are grouped together, while the 
rest of the parameters are identified as independent clusters. These results suggest that modeling 
the relationship between the parameters BLT Right, or BLT Center separately should correlate 
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with other parameters. Based on this, the LR models (see below) measure the two main 
parameter combinations as follows: 

•  

•  

6.2 Logistic Regression Analysis with Higher Order Polynomials 
Based on the results of the hierarchical clustering analysis with histogram data, the key LR 
parameters were identified and incorporated into four different LR models. These parameters 
were: 

• Right Profile 62 (dependent variable)19 

• BFI Center 

• BFI Right 

• BLT Center 

• BTL Right (not used in all LR models) 
However, unlike the original analysis presented previously [15] higher order polynomial 
combinations of these variables were included in the LR analysis. Application of higher order 
polynomials was used here to create a more accurate model given the variables to approximate 
the complex nonlinear relationship between the variables [12] [13]. The purpose of the 
application of the higher order polynomial parameters is the improvement of the model 
performance by improving the function approximation. The order of the polynomial model used 
here is that of first and second order polynomials e.g. x, x2, y, y2, xy, etc. Table 21A, Table 21B, 
and Table 21C define the variables and the associated higher order polynomials used in the LR 
analysis. These tables are a map to the variables in the LR model for ease of display. 

Table 21A: Parameter definitions 

Parameter Description 
Rprof 62 Right Profile 62 (dependent variable-binary 
BFI C  Ballast Fouling Index Center 
(BFI C)^2 BFI C Squared 
BFI R  Ballast Fouling Index Right 
(BFI R)^2 BFI R Squared 
BLT C  Ballast Layer Thickness Center 
(BLT C)^2 BLT C Squared 
BLT R Ballast Layer Thickness Right 
(BLT R)^2  BLT R Squared 

                                                 
19 As noted previous, the output is presented as a binary value equal to 1 if the absolute value of Right Profile 62 is 
greater than 10 mm [0.4 inch], otherwise 0. 
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Table 21B: Parameters representation 1 

parameter BFI C BFI R (BFI C)^2 (BFI R)^2 BLT C BLT R 
representation C R C2 R2 LC LR 

Table 21C: Parameters representation 2 

parameter (BLT L)^2 (BLT R)^2 (BFI C)^2 (BFI R)^2 BLT C BLT R 

representation C R C2 R2 LC LR 

As noted, four LR models were developed with the following formats (per Table 21A, Table 
21B, and Table 21C) and are schematically presented below (probability of a Right Profile 62 
exceedance is a function of the associated independent variable per the above table): 

•  

•  
•  
•  

The resulting final models are the following equations, where the probability of exceedance is 
defined as a function various independent variables and associated weighting factors: 
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(6-8) 

 

(6-9) 

          (6-10) 

         (6-11) 
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Note, Models 1 and 2 were more complex with the higher order polynomial effect. Models 3 and 
4 were first order, like the second-generation model presented previously [15]. Appendix C.6 
presents additional details of the LR models. 

6.3 Statistical Validation 
To compare the four models as well as to statistically validate the models, an error matrix or 
“confusion matrix” approach was used [6]. The confusion matrix validation process examines 
the number of correct and incorrect predictions based on the reference and the corresponding 
performance of the model. Table 22 summarizes the models’ statistics, validation and 
performance: 

Table 22: Hybrid LR models’ results comparison 

 

Examination of the statistical performance of the four models showed that the higher order 
models (Models 1 and 2) have greater accuracy than the lower order polynomial models (Models 
3 and 4). That is because of the non-linear relationships between the input parameters and “cross-
influence” it generates. 
In comparing Models 1 and 2, while Model 2 has a slightly higher accuracy, Model 1 has a better 
prediction behavior as shown in the confusion matrix statistics. Thus, it has more—Predictive 
Positive (Pred 0)—Actual Positive (Ref 0) “hits” (215 vs 213) and a better miss rate with fewer 
false negatives (Pred 1 – Ref 0) with 2 false negatives as opposed to 4 for Model 2 (miss rate of 
0.9% vs 1.8%). 
Comparing model 1, developed here, with the previously developed second-generation LR 
model [15], in the confusion matrix of Table 23, again shows that Model 1 has a measurably 
higher accuracy, higher Predictive Positive (Pred 0)—Actual Positive (Ref 0) “hits” (215 vs 213) 
and a better miss rate. 
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Table 23: Comparison of hybrid Model 1 to second-generation LR model 

 

See Appendix C.7, Appendix C.8, and Appendix C.9 for additional details. 

6.4 Sensitivity Analysis 
Noting that model 1 is the most statistically accurate of the models, the sensitivity of Model 1 
prediction of the probability of having a track geometry profile defect to the three independent 
variables (BFI-C, BFI-R, and BLT-C)20 can be examined. Noting that the model has three 
independent variables, there are six permutations when presented as two-dimensional sensitivity 
graphs and three permutations when presented as a three-dimensional graph. To effectively 
display these sensitivities, one independent variable was presented as a continuous function, a 
second as a set of three values (Minimum, Average, and Maximum) and the third held constant. 
Using this approach, it is possible to observe the influence of each parameter in predicting the 
probability of having a profile defect (P(abs(Rprof62)>10 mm [0.4 inches]). The results are 
illustrated in two and three-dimensions charts as follows. (see Appendix C.10 for additional 
plots.) 
Figure 58 show the probability of having a profile defect (P(abs(Rprof62)>10 mm [0.4 inches]) 
as a function of BFI Right (BFI R), for three cases: 

• Ballast Layer Thickness (BLT) = Minimum 

• Ballast Layer Thickness (BLT) = Average 

• Ballast Layer Thickness (BLT) = Maximum 

• Note, BFI Center (BFI C) is held constant at its average value for this graph 
As can be seen from this graph, the probability of having a defect is very sensitive to BFI R, with 
increasing ballast fouling (higher BFI value) causing a greater probability of having a defect. 
Note, the inverse sensitivity to ballast thickness, with decreasing ballast thickness increasing the 
probability of having a defect, as expected from engineering experience. 
                                                 
20 BLT-R drops out in Model 1 
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Figure 58: Probability of geometry defect as a function of ballast fouling index (BFI-Right) 
and ballast layer thickness (BFI Center held constant) 

Figure 59A and Figure 59B show the probability of having a profile defect (P(abs(Rprof62)>10 
mm [0.4 in]) as a function of BLT Center for three cases: 

• Ballast Fouling Index-Right (BFI-R) = Minimum 

• Ballast Fouling Index-Right (BFI-R) = Average 

• Ballast Fouling Index-Right (BFI-R) = Maximum 

• Note; BFI Center (BFI C) is held constant at its average value for this graph 
As in the case with Figure 58, the probability of having a defect is very sensitive to BFI R, with 
increasing ballast fouling (higher BFI value) causing a greater probability of having a defect. 
Again, note, the inverse sensitivity to ballast thickness, with decreasing ballast thickness 
increasing the probability of having a defect, as expected from engineering experience. 
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Figure 59A: Probability of geometry defect as a function of BFI Right and BLT (BFI-

Center held constant) 

 
Figure 59B: Probability of geometry defect as a function of BFI Right and BLT (BFI-

Center held constant)–axes reversed 
As can be seen from the above figures, BLT has significant importance and influence on the 
likelihood of having a profile defect, the thicker the ballast layer in the center of the track, the 
lower the probability of having a profile defect. BFI Right also has a strong influence on the 
profile defect likelihood, but it is significantly lower when the ballast layer in the center of the 
track is thick. 
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Figure 60 presents a three-dimensional plot of the probability of a track geometry profile defect 
as a function of BFI Right and BLT.21 Thus, the maximum probability of a geometry (profile) 
defect occurs when the ballast is fouled (high BFI) and there is a thin ballast layer (low BLT). 
This probability is of the order of 92 percent. Furthermore, as can be seen in this figure, as 
ballast fouling decreases (lower BFI) the probability of a profile defect decreases. Likewise, as 
ballast thickness increases (high BLT), the probability of a profile defect decreases. However, 
sensitivity to BFI-Right appears to be greater than that to BLT (this can be seen more clearly in 
Figure 59A and Figure 59B). 

 

Figure 60: Three-dimensional plot of probability of profile defect as a function of BFI 
Right and BLT (BFI Center held constant) 

                                                 
21 Note the BLT axis is reversed, going from maximum to minimum (decreasing magnitude). This allows for a better 
visualization of the three-dimensional model. 
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Figure 61A and Figure 61B show the probability of having a profile defect (P(abs(Rprof62)>10 
mm [0.4 in]) as a function of the two BFI parameters, holding BLT constant. In Figure 61A, BFI 
Right (BFI R), is continuous and BFI Center is presented for three values (Minimum, Average, 
and Maximum). In Figure 61B, BFI Center is continuous and BFI right is given as three values. 
Note: BLT Center is held constant in both cases at its average value for these figures. 
As can be seen from this graph, the probability of having a defect is sensitive to both BFI Right 
and BFI Center, however, the sensitivity to BFI Center is not as great as that observed for BFI 
Right. 

 

Figure 61A: Probability of profile defect as function of BFI Right and BFI Center (BLT 
constant) 
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Figure 61B: Probability of profile defect as function of BFI Right and BFI Center (BLT 
constant) 

Finally, in Figure 62 the sensitivity of BFI Center and BLT is shown, with BFI Center presented 
as a continuous value, and BLT presented as discrete values. Note, the behavior for a thick 
ballast section. It appears that a thin ballast layer does not have consistent expected behavior 
with respect to BFI Center. It appears that the BFI Center value introduces some sensitivities that 
are not consistent with expected engineering behavior. 
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Figure 62: Probability of profile defect as function of BLT and BFI Center (BFI Right 
constant) 

Summarizing the results of the sensitivity analysis as the following: 

- BFI Right has the highest influence on the probability for having a profile defect with 
increasing fouling condition resulting in an increased probability of having a defect 
develop at that location. 

- BLT has a significant influence on the probability for having a profile defect with 
decreasing BLT resulting in an increased probability of having a defect develop at that 
location. 

- The two highest probabilities for having a profile defect are from the following 
combinations: 
o High BFI Right and BFI Center, the probability of having a profile defect is 96.5 

percent. (BLT equals its average value of 584 mm [23 inches]) 
o High BFI Right and low BLT, the probability of having a profile defect is 91.8 

percent. (BFI Center equals its average value of 17) 
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7. Conclusion 

This report presented the results of an FRA sponsored study on the relationship between track 
geometry defects and track subsurface conditions as measured by GPR. The analysis made use of 
multiple track geometry runs and the associated track geometry degradation behavior combined 
with data, specifically BFI and BLT. Correlation and statistical analyses were performed looking 
at the relationship between probability of significant geometry degradation (i.e., the development 
of a profile defect) and measured GPR parameters (e.g., BFI, BLT) 
A LR model was used to develop the relationship between the probability of having a geometry 
(profile) defect, defined in the analysis as having a profile value greater than 0.4 inches, and the 
GPR based independent variables: BFI Right and Center and BLT. The resulting model showed 
that both BFI Right and BLT had significant influence on the likelihood of having a profile 
defect. In the case of BLT, the thicker the layer of the ballast in the center of the track the lower 
the probability of having a profile defect. In the case of BFI Right, the greater the ballast fouling 
(high BFI value) the greater the probability of having a defect. However, while BFI had a strong 
influence on the probability of developing a profile defect it was significantly lower when the 
ballast layer in the center of the track was thick. Furthermore, when the BFI index is low, the 
probability of having a defect was low even with thin ballast layers. Overall, BFI Right had the 
highest influence on the probability for having a profile defect (on the right rail), with BLT also 
having a significant influence. BFI Center, likewise effects the probability of having a profile 
defect, but not as significant as BFI Right. 
Figure 63 presents these results in an alternative way; by showing lines of constant “probability” 
of developing a defect. Thus, for example, looking at the dark blue line at the right of the graph, 
which corresponds to a 90 percent defect probability, Figure 63 presents the combination of BFI 
Right and BLT Center that will give a 90 percent probability of developing a profile defect in the 
right rail (BFI Center is held at a constant at the “average” value). Any combination to the right 
of that dark blue (90%) limit line will have a greater than 90 percent probability of having a 
profile exceedance. Conversely, for the grey line at the left of the graph, which corresponds to a 
10 percent defect probability, Figure 63 presents the combination of BFI Right and BLT Center 
that will give a 10 percent probability of developing a profile defect in the right rail. Any 
combination to the left of that grey (10%) line will have a less than 10 percent probability of 
having a profile exceedance. Similar lines are presented for 25, 50, and 75 percent levels of 
probability of having a profile exceedance. 
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Figure 63: Probability of a profile defect as a function of BFI/BLT combinations 

Figure 63 can be particularly useful to track engineers who know the condition of their BFI and 
BLT so they can ascertain the risk of developing a profile exceedance. In addition, trade-off 
analyses can be performed to look at what is the benefit of cleaning the ballast or increasing the 
depth of the ballast layer. 
Building upon the initial LR model, a higher order data analytics approach using combinational 
hybrid analysis to include hierarchical clustering analysis with histogram data, LR analysis, and 
application of higher degree polynomials was performed. The result was a higher order 
polynomial LR model for determination of the probability of a rail profile defect occurring at 
locations with measured ballast fouling (as defined by the BFI) and measured BLT (as measured 
by GPR as the BLT). 
The resulting higher order LR model developed for the relationship between the probability of 
having a track geometry (profile) defect, defined in the analysis as having a measured value 
greater than 10 mm [0.4 inches], and the GPR based independent variables: BFI Right and BFI 
Center and BLT. The resulting model showed that both BFI Right and BLT had significant 
influence on the likelihood of having a profile defect. In the case of BLT, the thicker the layer of 
the ballast in the center of the track the lower the probability of having a profile defect. In the 
case of BFI Right, the greater the ballast fouling (high BFI value) the greater the probability of 
having a defect. However, while BFI had a strong influence on the probability of developing a 
profile defect it was significantly lower when the ballast layer in the center of the track was 
thick. Furthermore, when the BFI is low, the probability of having a defect was low even with 
thin ballast layers. Overall, BFI Right had the highest influence on the probability for having a 
profile defect (on the right rail), with BLT also having a significant influence. BFI Center, 
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likewise effected the probability of having a profile defect, but introduced some engineering 
inconsistencies, particularly at low ballast thickness values. 
Figure 64A and Figure 64B present the models sensitivities in a manner that can be utilized in 
practice; by showing lines of constant “probability” of developing a defect. Thus, for example, in 
Figure 64A looking at the blue zone at the bottom-right of the graph, this corresponds to an 80 
percent to 100 percent probability that a profile defect greater than 10 mm [0.4 inches] will 
develop at a location with a BFI Right-BLT combination as shown in this figure. Similarly, the 
yellow zone in Figure 64A corresponds to a 60 percent to 80 percent probability that a profile 
defect greater than 0.4 inches will develop at a location with a BFI Right–BLT combination as 
shown. Similar zones are presented for 0–20 percent, 20–40 percent, and 40 to 60 percent levels 
of probability of having a profile defect. Figure 64B presents the same date with the axes 
reversed. 

 

Figure 64A: Probability of a profile defect as a function of BFI/BLT combinations 
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Figure 65B: Probability of a profile defect as a function of BFI/BLT combinations (axes 
reversed) 

These figures can likewise be particularly useful to track engineers who know the condition of 
their BFI and BLT so they can ascertain the risk of developing a track geometry profile value of 
greater than 10 mm [0.4 inches]. 
Overall, the results of the study showed that there was a statistically significant relationship 
between high rates of geometry degradation and poor subsurface conditions as defined by GPR 
parameters, particularly the BFI and the BLT. The result was a predictive model that was 
developed to determine the probability of a track geometry defect developing as a function of 
these key GPR parameters. Moreover, this probability model can be used by track design and 
maintenance engineers to look at the effect of such important ballast parameters as level of 
ballast fouling and ballast thickness on the development of track geometry defects and to further 
look at different actions (and associated trade-offs) that can be performed to improve the 
performance of the track. 
The results of this study showed a statistically significant relationship between the probability of 
occurrence of a defined measurement value of track geometry profile/surface and poor 
subsurface conditions as defined by GPR parameters, particularly the BFI and the BLT. 
Specifically, a high degree of ballast fouling and a thin ballast layer combine to result in an 
increased probability of a significant track geometry profile measurement for high speed track (> 
10 mm [0.4 inches]). The result was a predictive model that was developed to determine the 
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probability of a track geometry profile measurement greater than 10 mm [0.4 inches] developing 
as a function of these key GPR parameters. This probability model provides a methodology by 
which track design and maintenance engineers can evaluate the effect of such important ballast 
parameters (level of ballast fouling and ballast thickness) on the development of track geometry 
defects. This in turn can be used to further evaluate different maintenance actions (and associated 
trade-offs) that can be implemented to improve the long-term performance of the track. 
In addition, the analyses approach presented here, particularly the higher order data analytics 
approach using combinational hybrid analysis to include hierarchical clustering analysis with 
histogram data, lends itself to other analyses involving large datasets. Particularly, the benefit of 
this approach is that it is an unsupervised learning analysis approach where the model tries to 
understand the patterns of data in the dataset and identifies the key variables that influence the 
analysis. Thus, several independent variables can be initially identified, and the model (using the 
dendrogram approach) will cluster the independent variables together in similar groups and then 
identify the key independent variables that influence the dependent variable (which in this 
analysis was the probability of having a track geometry defect). This is a powerful tool with 
broad application to the railway (and other) industries which is experiencing order of magnitude 
increases in data collected, without necessarily having the tools to analyze this data beyond the 
most simplistic means (e.g., threshold analysis, etc.) 
7.1 Recommendations 
The results of this model and the analytical tools used in its development represent only the 
starting point of this research. This study clearly shows a relationship between GPR 
measurement of the ballast condition and one (key) track geometry parameter profile (surface). 
The first extension of this research should be to widen its scope beyond the initial dataset and to 
add additional data, both from Amtrak (where significant additional data is available) and other 
Class I railroads, particularly freight railroads, where the maintenance thresholds for track 
geometry maintenance are much lower than on the Northeast Corridor for high-speed rail. 
Continued research should also be extended to include the other track geometry parameters, 
particularly cross-level, warp, and twist, all of which are related to profile variation. 
The initial study included MRail data (as recorded by the FRA DOTX218 car on CSX), but the 
validity of this data was questionable. It would be of great value to obtain useful MRail data and 
combine it with the GPR data to determine if improved modeling analysis can be performed with 
a better developed model. 
Likewise, other ballast and subgrade measurement techniques can be added and correlated with 
the GPR data analyzed here. 
Finally, the higher order data analytics approach using combinational hybrid analysis to include 
hierarchical clustering analysis with histogram data, lends itself to other analyses involving large 
data sets. This unsupervised learning analysis approach can assist in the analysis of very large-
scale datasets where no clear engineering or superficially apparent relationships exist, but where 
there may be significant underlying relationships. 



 

94 

8. References 

Citation References 

[1] Palese, J. W., Hartsough, C. H., Zarembski, A. M., Thompson, H., Ling, H. L., and 
Pagano, W., "Life Cycle Benefits of Subgrade Reinforcement Using Geocell on a 
Highspeed Railway - A Case Study," in American Railway Engineering Association 
Annual Conference, Indianapolis, IN, September 2017. 

[2] Zarembski, A. M., Grissom, G. T., and Euston, T. L., "On the Use of Ballast 
Inspection Technology for the Management of Track Substructure," Journal of 
Transportation Infrastructure Geotechnology, 1(1), pp. 83–109, 2014. 

[3] Zarembski, A. M., Palese, J. W., Hartsough, C. M., Ling, H. I., and Thompson, H., 
"Application of Geocell Track Substructure Support System to Correct Surface 
Degradation Problems Under High-Speed Passenger Railroad Operations," Journal of 
Transportation Infrastructure Geotechnology, 4(4), pp. 106–125, December 2017. 

[4] Attoh-Okine, N. O, Big Data and Differential Policy: Analysis Strategies for Railroad 
Track Engineering, Hoboken, NJ: John Wiley & Sons, 2017. 

[5] Freedman, D. A., "Selecting and interpreting measures of thematic classification 
accuracy," in Statistical Models: Theory and Practice, Revised Edition: 2009.6 ed., 
vol. 62, S. V. Stehman, Ed., Cambridge University Press, 1997, pp. 77–89.7. 

[6] Milligan, G. W., and Cheng, R., "Measuring the influence of individual data points in 
a cluster analysis," Journal of Classification, 13(2), pp. 315–335, 1996. 

[7] Billard, L., and Diday, E., Symbolic Data Analysis: Conceptual Statistics and Data 
Mining, John Wiley & Sons, 2012. 

[8] Billard, L., and Kim, J., "Hierarchical clustering for histogram data," Wiley 
Interdisciplinary Reviews: Computational Statistics, 9(5), pp. e1405, 2017. 

[9] Irpino, A., and Verde, R., "Basic statistics for distributional symbolic variables: a new 
metric-based approach," Advances in Data Analysis and Classification, 9(2), pp. 143–
175, 2015. 

[10] Müllner, D., "Modern hierarchical, agglomerative clustering algorithms," IEEE Signal 
Processing Letters, 19(4), pp. 231–234.12, 2011. 

[11] Punj, G., and Stewart, D.W., "Cluster Analysis in Marketing Research: Review and 
Suggestions for Application," Journal of Marketing Research, 20(2), pp. 134, 1983. 

[12] Irpino, A., Verde, R., and De Carvalho, F. D. A. T., "Dynamic Clustering of histogram 
data based on adaptive squared Wasserstein distances," Expert Systems with 
Applications, 41(7), pp. 3351–3366, 2014. 

https://www.prs-med.com/wp-content/uploads/2017/10/Geocell-Palese-Life-Cycle-Benefits.pdf
https://www.prs-med.com/wp-content/uploads/2017/10/Geocell-Palese-Life-Cycle-Benefits.pdf
doi:10.1016/S0034-4257(97)00083-7
doi:10.1016/S0034-4257(97)00083-7
https://doi.org/10.1007/BF01246105
https://doi.org/10.1007/BF01246105
https://doi.org/10.1002/wics.1405
https://arxiv.org/pdf/1109.2378.pdf


 

95 

Citation References 

[13] Hosmer. D., Lemeshow, S., and Sturdivant, R. X., "Logistic Regression Modelsfor the 
Analysis of Correlated Data," in Applied Logistic Regression, Third Edition ed., John 
Wiley & Sons, 2013, pp. 313–376. 

[14] Boryga, M., and Graboś, A., "Planning of manipulator motion trajectory with higher-
degree polynomials use," Mechanism and Machine Theory, 44(7), pp. 1400–1419, 
2009. 

[15] Zarembski, A. M., Yurlov, D., Palese, J. W., Attoh-Okine, N., and Thompson, H., 
"Relationship between Track Geomery Degradation and Subsurface Condition as 
Measured by GPR," in American Railway Engineering Annual Conference, Chicago, 
IL, September 2018. 

 

https://doi.org/10.1002/9781118548387.ch9
https://doi.org/10.1002/9781118548387.ch9


 

96 

Appendix A: 
Exploratory Data Analysis (EDA) 

A.1. EDA Dataset Description 

Table A.1: Variables summary output, rows description 
Row Number Information given about the variable 

1 Variable name 

2 Number of observation and min value 

3 Class of the variable and its 1st quartile value 

4 Provide the Mode of the character and its median 

5 Provide the mean 

6 Provide the 3rd quartile value 

7 Provide the max value 

A.1.1 Multivariable Plot 
Variables of the CSX Peninsula Subdivision data MP 67 to 69; YRel Right (from MRail and 
Right Profile 31 (track geometry car). 
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Figure A.1: CSX Peninsula Subdivision MP 67–69 multivariable plot-2 

 

Figure A.2: CSX Peninsula Subdivision MP 67–69 multivariable plot-3 
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Figure A.3: CSX Peninsula Subdivision MP 67–69 multivariable plot-4 

 

Figure A.4: CSX Peninsula Subdivision MP 67–69 multivariable plot-5 
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Figure A.5: CSX Peninsula Subdivision MP 67–69 multivariable plot-6 

A.1.2 Box Plots 
From the CSX Peninsula Subdivision MP 67–69 database box-plot examples. 

 
Figure A.6: Box and whisker plot CSX Peninsula Subdivision MP 67–69 data plot-2 
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Figure A.7: Box and whisker plot CSX Peninsula Subdivision MP 67–69 data plot-3 

 

Figure A.8: Box and whisker plot CSX Peninsula Subdivision MP 67–69 data plot-4 
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Figure A.9: Box and whisker plot CSX Peninsula Subdivision MP 67–69 data plot-5 

 

Figure A.10: Box and whisker plot CSX Peninsula Subdivision MP 67–69 data plot-6 
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Figure A.11: Box and whisker plot CSX Peninsula Subdivision MP 67–69 data plot-7 

A.1.3 Histogram and KDE 

 

Figure A.12: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection 
RProf62 
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Figure A.13: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection 
Rprof124 

 

Figure A.14: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection 
YRel R 
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Figure A.15: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection 
RAlign31 

 

Figure A.16: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection 
RAlign62 
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Figure A.17: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection 

RProfSP 

 

Figure A.18: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection 
RAlignSP 
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Figure A.19: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection 
TotalLatForce 

 

Figure A.20: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection 
TotalLatForce concentration on the one peak 
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Figure A.21: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection 
LProf31 

 

Figure A.22: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection 
LProf124  
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Figure A.23: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection 
LProf62 

 

Figure A.24: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection 
YRel L 
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Figure A.25: Histogram and KDE of CSX Peninsula Subdivision MP 67– 69 inspection 
LAlign31 

 

Figure A.26: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection 
LAlign124. Note, most measurements are at zero  
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Figure A.27: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection 

LProfSP 

 

Figure A.28: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection 
LAlignSP. Note majority of measurements are at zero  
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Figure A.29: Histogram and KDE of CSX Peninsula Subdivision MP 67–69 inspection 
AvgVertForce 

A.2 QQ plots 

 

Figure A.30: QQ Plot, CSX Peninsula Subdivision MP 67–69 inspection LProf62 
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Figure A.31: QQ Plot, CSX Peninsula Subdivision MP 67–69 inspection LProf124 

 

Figure A.32: QQ Plot, CSX Peninsula Subdivision MP 67–69 inspection YRel L 
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Figure A.33: QQ Plot, CSX Peninsula Subdivision MP 67–69 inspection LAlign31 

 

Figure A.34: QQ Plot, CSX Peninsula Subdivision MP 67–69 inspection LAlign62 
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Figure A.35: QQ Plot, CSX Peninsula Subdivision MP 67–69 inspection LAlign124 

 

Figure A.36: QQ Plot, CSX Peninsula Subdivision MP 67–69 inspection LAlignSP 
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Figure A.37: QQ Plot, CSX Peninsula Subdivision MP 67–69 inspection RProf31 

 

Figure A.38: QQ Plot, CSX Peninsula Subdivision MP 67–69 inspection RProf62 
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Figure A.39: QQ Plot, CSX Peninsula Subdivision MP 67–69 inspection RProf124 

 

Figure A.40: QQ Plot, CSX Peninsula Subdivision MP 67–69 inspection YRel R 
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Figure A.41: QQ Plot, CSX Peninsula Subdivision MP 67–69 inspection RAlign31 

 

Figure A.42: QQ Plot, CSX Peninsula Subdivision MP 67–69 inspection RAlign62 
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Figure A.43: QQ Plot, CSX Peninsula Subdivision MP 67–69 inspection RAlign124 

 

Figure A.44: QQ Plot, CSX Peninsula Subdivision MP 67–69 inspection RProfSP 
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Figure A.45: QQ Plot, CSX Peninsula Subdivision MP 67–69 inspection RAlignSP 

 

Figure A.46: QQ Plot, CSX Peninsula Subdivision MP 67–69 inspection AvgVertForce 
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Figure A.47: QQ Plot, CSX Peninsula Subdivision MP 67–69 inspection TotalLatForce 
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Appendix B: 
Logistic Regression Models 

B.1 Logistic Regression Model 3.1 P(abs(Rprof62)>0.4) = f(BFIR, BFIC, BLTC) 

From R software 

> summary(logit) 
Call: 
glm(formula = data1$`abs(Right Prof 62)>0.4` ~ data1$Center +  
    data1$Right + data1$`Center: Top of Layer`, family = binomial,  
    data = data1) 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.4819  -0.5349  -0.3641  -0.2875   2.6376   
Coefficients: 
                             Estimate Std. Error z value Pr(>|z|)     
(Intercept)                  -4.98175    1.67692  -2.971  0.00297 **  
data1$Center                  0.03969    0.02707   1.466  0.14268     
data1$Right                   0.18025    0.04385   4.111 3.94e-05 *** 
data1$`Center: Top of Layer` -0.92397    0.56415  -1.638  0.10146     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Dispersion parameter for binomial family taken to be 1) 
    Null deviance: 207.01  on 252  degrees of freedom 
Residual deviance: 169.71  on 249  degrees of freedom 
AIC: 177.71 
Number of Fisher Scoring iterations: 5 

B.1.1 Logistic Regression Model 3.1 Sensitivity Analysis 

 

Figure B.1: Sensitivity plot - P(BFI C MIN/AVG/MAX, BFI R, BLT C avg) 
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Figure B.2: Sensitivity plot - P(BFI C avg, BFI R, BLT C MIN/AVG/MAX) 

 

Figure B.3: Sensitivity plot - logistic regression Model 3.1 P(BFI C, BFI R avg, BLT C 
MIN/AVG/MAX) 
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Figure B.4: Sensitivity plot - P(BFI C, BFI R MIN/AVG/MAX, BLT C avg) 

 

Figure B.5: Sensitivity plot - P(BFI C avg, BFI R MIN/AVG/MAX, BLT C) 
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Figure B.6: Sensitivity plot - P(BFI C MIN/AVG/MAX, BFI R avg, BLT C) 

B.1.2 Logistic Regression Model 3.1 Statistical Validation 
> crossVal<- train(as.factor(`abs(Right Prof 62)>0.4`) ~  
+                    Center+ 
+                    Right+ 
+                    `Center: Top of Layer` 
+                    ,data = data1, 
+                  family = binomial,  method = "glm", trControl = crossValSettings) 
> crossVal 
Generalized Linear Model  
 
253 samples 
  3 predictor 
  2 classes: '0', '1'  
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 1 times)  
Summary of sample sizes: 228, 227, 228, 229, 229, 227, ...  
Resampling results: 
 
  Accuracy   Kappa     
  0.8657692  0.2046351 

B.1.3 Logistic Regression Model 3.1 Confusion Matrix 
> confusionMatrix(data = pred, data1$`abs(Right Prof 62)>0.4`) 
Confusion Matrix and Statistics 
          Reference 
Prediction   0   1 
         0 213  29 
         1   4   7 
                                           
               Accuracy : 0.8696           
                 95% CI : (0.8217, 0.9085) 
    No Information Rate : 0.8577           
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    P-Value [Acc > NIR] : 0.3327           
                                           
                  Kappa : 0.2478           
 Mcnemar's Test P-Value : 2.943e-05        
                                           
            Sensitivity : 0.9816           
            Specificity : 0.1944           
         Pos Pred Value : 0.8802           
         Neg Pred Value : 0.6364           
             Prevalence : 0.8577           
         Detection Rate : 0.8419           
   Detection Prevalence : 0.9565           
      Balanced Accuracy : 0.5880           
                                           
       'Positive' Class : 0          

B.1.4 Logistic Regression Model 3.1 ROC and AUC 
> AUC 
An object of class "performance" 
Slot "x.name": 
[1] "None" 
 
Slot "y.name": 
[1] "Area under the ROC curve" 
 
Slot "alpha.name": 
[1] "none" 
 
Slot "x.values": 
list() 
 
Slot "y.values": 
[[1]] 
[1] 0.7798899 

B.2 Logistic Regression Model 3.2 P(abs(Rprof62)>0.4) = f(BFI R, BLT C) and 
f(BFI R, BFI C, BLT C) 

B.2.1 P(abs(Rprof62)>0.4) = f(BFI R, BFI C, BLT C) 
> logit<-glm(data1$`abs(9/27/2016_Right Prof 62)>0.4` ~  
+              data1$Center+ 
+              data1$Right+ 
+              data1$`Thickness Center` 
+              ,family = binomial, data = data1) 
> summary(logit) 
 
Call: 
glm(formula = data1$`abs(9/27/2016_Right Prof 62)>0.4` ~ data1$Center +  
    data1$Right + data1$`Thickness Center`, family = binomial,  
    data = data1) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.9677  -0.4063  -0.3487  -0.2559   2.2913   
 
Coefficients: 
                           Estimate Std. Error z value Pr(>|z|) 
(Intercept)                37.09705 4269.64701   0.009    0.993 
data1$Center               -2.01129  238.52749  -0.008    0.993 
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data1$Right                 0.12011    0.07979   1.505    0.132 
data1$`Thickness Center`   -3.16552    2.70766  -1.169    0.242 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 49.829  on 93  degrees of freedom 
Residual deviance: 46.422  on 90  degrees of freedom 
AIC: 54.422 
 
Number of Fisher Scoring iterations: 15 

confidence interval: 2.5 and 95%: 

> round(exp(cbind(estimate=coef(logit),confint(logit))),2) 
Waiting for profiling to be done... 
                         estimate 2.5 %   97.5 % 
(Intercept)                  1.79  0.00 71794.62 
data1$Right                  1.13  0.96     1.33 
data1$`Thickness Center`     0.05  0.00     8.18 

B.2.2 P(abs(Rprof62)>0.4) = f(BFI R, BLT C) 
> logit<-glm(data1$`abs(9/27/2016_Right Prof 62)>0.4` ~  
+              data1$Right+ 
+              data1$`Thickness Center` 
+              ,family = binomial, data = data1) 
> summary(logit) 

Call: 
glm(formula = data1$`abs(9/27/2016_Right Prof 62)>0.4` ~ data1$Right +  
    data1$`Thickness Center`, family = binomial, data = data1) 

Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.9866  -0.3922  -0.3399  -0.2545   2.2850   

Coefficients: 
                         Estimate Std. Error z value Pr(>|z|) 
(Intercept)               0.58062    5.10543   0.114    0.909 
data1$Right               0.12389    0.07964   1.556    0.120 
data1$`Thickness Center` -2.95825    2.67466  -1.106    0.269 

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 49.829  on 93  degrees of freedom 
Residual deviance: 46.794  on 91  degrees of freedom 
AIC: 52.794 
Number of Fisher Scoring iterations: 5 

B.2.3 Logistic Regression Model 3.2 Cross Validation and Performance 
Measurement  
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B.2.3.1 Logistic Regression Model 3.2 Confusion Matrix 
> crossVal 
Generalized Linear Model  

94 samples 
 2 predictor 
 2 classes: '0', '1'  

No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 1 times)  
Summary of sample sizes: 85, 85, 84, 84, 84, 85, ...  
Resampling results: 

  Accuracy   Kappa 
  0.9166667  0     

> confusionMatrix(data = pred, data1$`abs(9/27/2016_Right Prof 62)>0.4`) 
Confusion Matrix and Statistics 

          Reference 
Prediction  0  1 
         0 87  7 
         1  0  0 
                                           
               Accuracy : 0.9255           
                 95% CI : (0.8526, 0.9695) 
    No Information Rate : 0.9255           
    P-Value [Acc > NIR] : 0.59879          
                                           
                  Kappa : 0                
 Mcnemar's Test P-Value : 0.02334          
                                           
            Sensitivity : 1.0000           
            Specificity : 0.0000           
         Pos Pred Value : 0.9255           
         Neg Pred Value :    NaN           
             Prevalence : 0.9255           
         Detection Rate : 0.9255           
   Detection Prevalence : 1.0000           
      Balanced Accuracy : 0.5000           
                                           
       'Positive' Class : 0  

B.2.3.2 Logistic Regression Model 3.2 ROC and AUC 

> AUC 
An object of class "performance" 
Slot "x.name": 
[1] "None" 

Slot "y.name": 
[1] "Area under the ROC curve" 

Slot "alpha.name": 
[1] "none" 

Slot "x.values": 
list() 

Slot "y.values": 
[[1]] 
[1] 0.727422 

Slot "alpha.values": 
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list() 

B.3 Logistic Regression Model 3.3 P(abs(Rprof62)>0.4) = f(BFIR, BFIC, BLTC) 

B.3.1 Logistic Regression Model 3.3 
> summary(logit) 
Call: 
glm(formula = data1$`abs(Right Prof 62)>0.4` ~ data1$Center +  
    data1$Right + data1$`Center: Top of Layer` + data1$`Right: Top of Layer`,  
    family = binomial, data = data1) 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.4927  -0.4871  -0.3406  -0.2593   2.6621   
Coefficients: 
                             Estimate Std. Error z value Pr(>|z|)     
(Intercept)                  -8.07644    2.06097  -3.919 8.90e-05 *** 
data1$Center                  0.02457    0.02831   0.868  0.38541     
data1$Right                   0.22252    0.04898   4.543 5.54e-06 *** 
data1$`Center: Top of Layer` -3.09444    0.99263  -3.117  0.00182 **  
data1$`Right: Top of Layer`   3.43919    1.30317   2.639  0.00831 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Dispersion parameter for binomial family taken to be 1) 
    Null deviance: 207.01  on 252  degrees of freedom 
Residual deviance: 162.38  on 248  degrees of freedom 
AIC: 172.38 
Number of Fisher Scoring iterations: 5 

confidence interval: 2.5 and 95%: 

> round(exp(cbind(estimate=coef(logit),confint(logit))),2) 
Waiting for profiling to be done... 
                             estimate 2.5 % 97.5 % 
(Intercept)                      0.00  0.00   0.02 
data1$Center                     1.02  0.97   1.08 
data1$Right                      1.25  1.14   1.38 
data1$`Center: Top of Layer`     0.05  0.01   0.31 
data1$`Right: Top of Layer`     31.16  2.55 434.23 

B.3.2 Logistic Regression Model 3.3 Cross Validation and Performance 
Measurement 

B.3.2.1 Logistic Regression Model 3.3 Confusion Matrix 

Settings for cross validation: 

> crossVal<- train(as.factor(`abs(Right Prof 62)>0.4`) ~  
+                    Center+ 
+                    Right+ 
+                    `Center: Top of Layer`+ 
+                    `Right: Top of Layer` 
+                    ,data = data1, 
+                  family = binomial,  method = "glm", trControl = crossValSettings) 
> crossVal 
Generalized Linear Model  
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253 samples 
  4 predictor 
  2 classes: '0', '1'  

No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 1 times)  
Summary of sample sizes: 227, 228, 228, 228, 227, 228, ...  
Resampling results: 

  Accuracy   Kappa     
  0.8733462  0.2688603 

> confusionMatrix(data = pred, data1$`abs(Right Prof 62)>0.4`) 
Confusion Matrix and Statistics 
          Reference 
Prediction   0   1 
         0 215  24 
         1   2  12 
                                           
               Accuracy : 0.8972           
                 95% CI : (0.8531, 0.9318) 
    No Information Rate : 0.8577           
    P-Value [Acc > NIR] : 0.03938          
                                           
                  Kappa : 0.435            
 Mcnemar's Test P-Value : 3.814e-05        
                                           
            Sensitivity : 0.9908           
            Specificity : 0.3333           
         Pos Pred Value : 0.8996           
         Neg Pred Value : 0.8571           
             Prevalence : 0.8577           
         Detection Rate : 0.8498           
   Detection Prevalence : 0.9447           
      Balanced Accuracy : 0.6621           
                                           
       'Positive' Class : 0 

B.3.2.2 Logistic Regression Model 3.3 ROC and AUC 

> AUC 
An object of class "performance" 
Slot "x.name": 
[1] "None" 
Slot "y.name": 
[1] "Area under the ROC curve" 
Slot "alpha.name": 
[1] "none" 
Slot "x.values": 
list() 
Slot "y.values": 
[[1]] 
[1] 0.7804019 
Slot "alpha.values": 
list() 
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Appendix C: Hierarchical Clustering Analysis of Histogram-Valued Data 

C.1 Summary of All the Variables Normalized and Presented as Histograms 
Below is a summary table of all the variables used in this appendix. The variables are normalized 
and presented as HVD. If the variable is highly distributed, each table shows the first five and the 
last five bins due to excessive length. 

Table C.1: Absolute RProf62 variable as histogram-valued data in a table 

 

Table C.2: BFI Center variable as histogram-valued data in a table 

 

Table C.3: BFI Right variable as histogram-valued data in a table 
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Table C.4: BLT Center variable as histogram-valued data in a table 

 

Table C.5: BLT Right variable as histogram-valued data in a table 

 

C.2 Histogram-Valued Data Plot as Histogram 
This subsection, as part of the EDA and after variables normalization, presented for each 
normalized variable a histogram plot. 
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Figure C.1: abs(Rprof62) variable histogram 

 

Figure C.2: BFI_C variable histogram 

 

Figure C.3: BFI_R variable histogram 
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Figure C.4: C_Layer BFI_R variable histogram 

 

Figure C.5: R_Layer variable histogram 

C.3 Histogram-Valued Data Plot as CDF 
This subsection, as part of the EDA and after variables normalization, presented for each 
normalized variable a histogram plot.  



 

134 

 

Figure C.6: abs(Rprof62) variable CDF plot 

 

Figure C.7: BFI_C variable CDF plot 

 

Figure C.8: BFI_R variable CDF plot 
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Figure C.9: C_Layer variable CDF plot 

 

Figure C.10: R_Layer variable CDF plot 

C.4 Calculation of Clusters and Dendrogram for Eight Different Linkages 
Methods 

Figures C.11 to C.17 present the resulted dendrograms of the hierarchical structure of the data 
according to different linkage methods. 

 

Figure C.11: Cluster dendrogram with maximum dissimilarity (complete linkage) 
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Figure C.12: Cluster dendrogram with average dissimilarity (average linkage) 

 

Figure C.13: Cluster dendrogram with minimum dissimilarity (single linkage)  
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Figure C.14: Cluster dendrogram with ward linkage 

 

Figure C.15: Cluster dendrogram with centroid linkage  



 

138 

 

Figure C.16: Cluster dendrogram with Ward.D2 linkage 

 

Figure C.17: Cluster dendrogram with median linkage 

 

Figure C.18: Cluster dendrogram with McQuitty linkage 
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C.5 Cut the Tree for Four Groups 
The following eight R software codes plots, presented in Table C.6, illustrate variables 
classification by groups. For example, first three lines of code plot Table C.6 belong complete 
linkage cut tree results, where that the parameters: abs_RProf_62_norm, BFI_C_norm, and 
BFI_R_norm create three different groups and the fourth group contains two parameters: 
R_Layer_norm and C_Layer_norm. 

Table C.6: Cut tree for four groups plot summary 

 

C.6 Logistic Regression models following HCA of HD 

C.6.1 Logistic Regression Model 5.1 Plot from R Software 

> logit<-glm(data1$`abs(Right Prof 62)>0.4` ~  
+              data1$C+ 
+              data1$R+ 
+              data1$LC+ 
+              data1$C2+ 
+              data1$R2+ 
+              data1$LC2+ 
+              data1$CLC+ 
+              data1$RLC 
+            ,family = binomial, data = data1) 
> summary(logit) 

Call: 
glm(formula = data1$`abs(Right Prof 62)>0.4` ~ data1$C + data1$R +  
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    data1$LC + data1$C2 + data1$R2 + data1$LC2 + data1$CLC +  
    data1$RLC, family = binomial, data = data1) 

Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.6908  -0.5126  -0.3503  -0.2217   2.8842   

Coefficients: 
              Estimate Std. Error z value Pr(>|z|)   
(Intercept)  1.7150559 11.9074993   0.144    0.885   
data1$C      0.0174463  0.2760985   0.063    0.950   
data1$R      0.1058282  0.5553687   0.191    0.849   
data1$LC    -8.1665796  7.4685535  -1.093    0.274   
data1$C2    -0.0046809  0.0035432  -1.321    0.186   
data1$R2     0.0008867  0.0092530   0.096    0.924   
data1$LC2    0.6866286  1.4040470   0.489    0.625   
data1$CLC    0.1963029  0.0920449   2.133    0.033 * 
data1$RLC    0.0130212  0.1517269   0.086    0.932   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 207.01  on 252  degrees of freedom 
Residual deviance: 158.73  on 244  degrees of freedom 
AIC: 176.73 

Number of Fisher Scoring iterations: 6 

LR model 1 confidence interval: 

> round(exp(cbind(estimate=coef(logit),confint(logit))),2) 
Waiting for profiling to be done... 
            estimate 2.5 %       97.5 % 
(Intercept)     5.56  0.00 8.478787e+10 
data1$C         1.02  0.57 1.710000e+00 
data1$R         1.11  0.35 3.190000e+00 
data1$LC        0.00  0.00 9.010300e+02 
data1$C2        1.00  0.99 1.000000e+00 
data1$R2        1.00  0.98 1.020000e+00 
data1$LC2       1.99  0.11 2.886000e+01 
data1$CLC       1.22  1.04 1.510000e+00 
data1$RLC       1.01  0.74 1.350000e+00 

C.6.2 LR Model 5.2 Plot from R Software 
> logit2<-glm(data1$`abs(Right Prof 62)>0.4` ~  
+              data1$C+ 
+              data1$R+ 
+              data1$LR+ 
+              data1$C2+ 
+              data1$R2+ 
+              data1$LR2+ 
+              data1$CLR+ 
+              data1$RLR 
+            ,family = binomial, data = data1) 
> summary(logit2) 

Call: 
glm(formula = data1$`abs(Right Prof 62)>0.4` ~ data1$C + data1$R +  
    data1$LR + data1$C2 + data1$R2 + data1$LR2 + data1$CLR +  
    data1$RLR, family = binomial, data = data1) 

Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.9116  -0.5180  -0.3347  -0.2245   3.2440   
Coefficients: 
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             Estimate Std. Error z value Pr(>|z|)    
(Intercept) -4.003450  17.477024  -0.229  0.81882    
data1$C      0.333616   0.295725   1.128  0.25926    
data1$R     -0.570349   0.726061  -0.786  0.43214    
data1$LR    -0.002112  11.677144   0.000  0.99986    
data1$C2    -0.010419   0.003803  -2.739  0.00616 ** 
data1$R2     0.006826   0.010126   0.674  0.50023    
data1$LR2   -2.528446   2.188817  -1.155  0.24802    
data1$CLR    0.201844   0.128047   1.576  0.11495    
data1$RLR    0.254390   0.218514   1.164  0.24435    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 207.01  on 252  degrees of freedom 
Residual deviance: 155.88  on 244  degrees of freedom 
AIC: 173.88 

Number of Fisher Scoring iterations: 6 

C.6.3 Logistic Regression Model 5.3 Plot from R Software 
> logit3<-glm(data1$`abs(Right Prof 62)>0.4` ~  
+               data1$C+ 
+               data1$R+ 
+               data1$LR 
+               ,family = binomial, data = data1) 
> summary(logit3) 

Call: 
glm(formula = data1$`abs(Right Prof 62)>0.4` ~ data1$C + data1$R +  
    data1$LR, family = binomial, data = data1) 

Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.5237  -0.5262  -0.3490  -0.3464   2.3864   

Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept) -7.36131    1.93037  -3.813 0.000137 *** 
data1$C      0.06265    0.02466   2.540 0.011083 *   
data1$R      0.18886    0.04503   4.194 2.74e-05 *** 
data1$LR     0.04563    0.65117   0.070 0.944132     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 207.01  on 252  degrees of freedom 
Residual deviance: 172.61  on 249  degrees of freedom 
AIC: 180.61 

Number of Fisher Scoring iterations: 5 

LR Model 5.4 plot from R software. 
> logit4<-glm(data1$`abs(Right Prof 62)>0.4` ~  
+               data1$C+ 
+               data1$R+ 
+               data1$LC 
+               ,family = binomial, data = data1) 
> summary(logit4) 

Call: 
glm(formula = data1$`abs(Right Prof 62)>0.4` ~ data1$C + data1$R +  
    data1$LC, family = binomial, data = data1) 
Deviance Residuals:  
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    Min       1Q   Median       3Q      Max   
-1.4819  -0.5349  -0.3641  -0.2875   2.6376   

Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept) -4.98175    1.67692  -2.971  0.00297 **  
data1$C      0.03969    0.02707   1.466  0.14268     
data1$R      0.18025    0.04385   4.111 3.94e-05 *** 
data1$LC    -0.92397    0.56415  -1.638  0.10146     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 207.01  on 252  degrees of freedom 
Residual deviance: 169.71  on 249  degrees of freedom 
AIC: 177.71 

Number of Fisher Scoring iterations: 5 

C.7 Logistic Regression Following HCA of HD Cross Validation and Confusion 
Matrix 

> crossVal<- train(as.factor(`abs(Right Prof 62)>0.4`) ~  
+                    C+ 
+                    R+ 
+                    LC+ 
+                    C2+ 
+                    R2+ 
+                    LC2+ 
+                    CLC+ 
+                    RLC 
+                  ,family = binomial, data = data1[,c(1:4,5,7,9,11,13)], method = 
"glm", trControl = crossValSettings) 
> crossVal 
Generalized Linear Model  

253 samples 
  8 predictor 
  2 classes: '0', '1'  

No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 1 times)  
Summary of sample sizes: 227, 228, 228, 227, 227, 228, ...  
Resampling results: 

  Accuracy   Kappa     
  0.8728718  0.2398409 

C.8 Logistic Regression Model 5.1 Confusion Matrix and Statistics 
> confusionMatrix(data = pred, as.factor(data1$`abs(Right Prof 62)>0.4`)) 
Confusion Matrix and Statistics 

          Reference 
Prediction   0   1 
         0 215  27 
         1   2   9 
               Accuracy : 0.8854           
                 95% CI : (0.8395, 0.9219) 
    No Information Rate : 0.8577           
    P-Value [Acc > NIR] : 0.1192           
                                           
                  Kappa : 0.3389           
 Mcnemar's Test P-Value : 8.324e-06        
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            Sensitivity : 0.9908           
            Specificity : 0.2500           
         Pos Pred Value : 0.8884           
         Neg Pred Value : 0.8182           
             Prevalence : 0.8577           
         Detection Rate : 0.8498           
   Detection Prevalence : 0.9565           
      Balanced Accuracy : 0.6204           
                                           
       'Positive' Class : 0 

C.9 Logistic Regression Model 5.1 Performance ROC Curve 

 

Figure C.19: Model 5.1 ROC curve 
> AUC 
An object of class "performance" 
Slot "x.name": 
[1] "None" 

Slot "y.name": 
[1] "Area under the ROC curve" 

Slot "alpha.name": 
[1] "none" 

Slot "x.values": 
list() 

Slot "y.values": 
[[1]] 
[1] 0.7951229 
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Slot "alpha.values": 
list() 

C.10 Model 5.1 Sensitivity Analysis Two-Dimensional Plots 

 

Figure C.20: Model 5.1 - P(BFI C avg, BFI R MIN/AVG/MAX, BLT C) 

 

Figure C.21: Model 5.1 - P(BFI C MIN/AVG/MAX, BFI R avg, BLT C) 
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Figure C.22: Model 5.1 - P(BFI C, BFI R avg, BLT C MIN/AVG/MAX) 

 

Figure C.22: Model 5.1 - P(BFI C, BFI R MIN/AVG/MAX, BLT C avg) 
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Figure C.23: Model 5.1 - P(BFI C avg, BFI R, BLT C MIN/AVG/MAX) 

 

Figure C.24: Model 5.1 - P(BFI C MIN/AVG/MAX, BFI R, BLT C avg)  
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Abbreviations and Acronyms 

ACRONYMS EXPLANATION 

AIC Akaike Information Criterion 
AUC Area Under Curve 
BFI Ballast Fouling Index 
BLT Ballast Layer Thickness 
BTI Ballast Thickness Index 
BNSF Burlington Norther Santa Fe Railway 
CP Canadian Pacific Railway 
CDF Cumulative Distribution Function 
EDA Exploratory Data Analysis  
FPR False Positive Rate 

FRA Federal Railroad Administration 
FDL Free Draining Layer 
GLM Generalized Linear Model 
GPR Ground Penetrating Radar 
HCA Hierarchical Clustering Analysis 
HVD Histogram Valued Data 
KDE Kernel Density Estimation 
LRI Layer Roughness Index 

LIDAR Light Detection and Ranging 
MLE Likelihood Estimation 

LR Logistic Regression 
MP Milepost 
MISSQ Minimal Increase of Sum-of-Squares 
NS Norfolk Southern Corporation 
QQ Quantile-Quantile 
ROC Receiver Operating Characteristic 
SD Standard Deviation 
SDA Symbolic Data Analysis 
MRail Track Deflection Measurements 

TQI Track Quality Indices 
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ACRONYMS EXPLANATION 
TPR True Positive Rate  
UP Union Pacific Railroad 
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