

APPENDIX C ZONE 3 SITE-SPECIFIC SEISMIC STUDY

We performed a site-specific seismic analysis for Zone 3 of the platform. The key assumptions and results are summarized below.

1 Subsurface Conditions

The subsurface conditions at Zone 3 consist of fill, underlain by clay, silt, glacial till, decomposed rock and finally bedrock. The depth to bedrock varies from 80 to 115 feet increasing east to west. We selected two soil columns (C1 and C2) to represent differing soil conditions and the variation in depth to bedrock of the zone. The soil layer thicknesses and shear wave velocities used for each column are listed in Table C-1.

The shear wave velocity of the rock is estimated to be about 9,000 feet per second (fps), based on cross-hole seismic testing and borehole suspension logging from nearby sites in the same rock formation.

Table C-1 - Summary of Assumed Soil Layer Thickness and Shear Wave Velocities

Column 1(C1) - Representative of west side of the zone Based on G-47 and SCPT-70			
		Shear wave velocity used in model (fps)	
Fill	22	360 to 950	670
Clay	52	380 to 570	500
Clay/Silt	36	550 to 740	640
Glacial Till	5	1,100 to 1,310	1,200
Bedrock	N/A	9,000	9,000

Column 2(C2) - Representative of the east side of the zone Based on G-48 and SCPT-41			
Layer	Average layer thickness (feet) Range of measured/assumed shear wave velocities (fps)		Shear wave velocity used in model (fps)
Fill	17	590 to 830	710
Organic Clay	10	380 to 580	510
Clay/Silt	50	310 to 660	510
Glacier Till/ Decomposed Rock	6	1,100 to 1,310	1,200
Bedrock	N/A	9,000	9,000

2 Site Class

We calculated weighted-average shear-wave velocities (\overline{V}_s) between about 550 and 590 fps. The site was preliminarily classified as Site Class E, as per 1613.5.2 of 2014 NYCBC, without consideration of soil liquefaction. The site was re-classified as Site Class F because of its potential for liquefaction using simplified methods, as described below.

3 Soil Liquefaction

We evaluated the soil liquefaction potential using the peak ground accelerations (PGA) adjusted for site class effects per Table 1813.2.1 of 2014 NYCBC. Figure C-1 shows a plot of the factor of safety with

depth using standard penetration test (SPT) and cone penetration test (CPT) results according to the Youd et al. (2001) procedures with the following parameters:

- An earthquake magnitude of 5.75 earthquake event, which is more conservative than the estimated mean deaggregation magnitude, but consistent with older studies (2008 USGS Seismic Hazard Maps and the 2016 NYCDOT Report);
- A PGA of 0.33 g. (In accordance with ASCE 7-10 section 21.5.3, the PGA was taken as the higher value determined from: 1) 80 percent of PGA for Site Class E (i.e. 0.8 * 0.33g); and 2) the site-specific PGA (0.12 g) determined from total-stress analyses.);
- A magnitude scaling factor (MSF) of 2.2, as per the Youd et al. 2001 recommendations.

The Youd et al. (2001) liquefaction analysis indicated liquefaction potential around 10 feet and 80 feet below ground surface. We then performed DMOD2000 effective-stress nonlinear analyses and estimated maximum excess pore water pressure ratios are zero along the depth of the soil columns. The excess pore water pressure ratios estimated from DMOD2000 analyses are presented on Figure C-2. Based on our effective-stress analyses, there is enough margins towards liquefaction. Site Class remains as E.

We estimated about 0.1 to 0.2 inches of seismic-induced settlement for free-field conditions after the MCE_{B} -level event.

4 Design Acceleration Response Spectrum

The design spectrum recommendations based on the SHAKE2000 total-stress analyses are listed in Table C-2. The plot of the SHAKE2000 design spectra, and 80 percent of the Site Class E design spectrum (minimum allowed per the 2014 NYCBC) are presented on Figure C-3. The red triangles show our recommended design acceleration-response spectrum, which follows the 80% Site Class E line.

Table C-2 – Recommended Design Smooth Site-Specific spectrum, SA(g) for 5 percent damping

Period T (seconds)	Recommended Design Acceleration (g)
0.00	0.136
0.075	0.359
0.384	0.359
0.500	0.273
T>0.5	0.136/T

The recommended design spectrum satisfies the 2014 NYCBC, 2015 NYSBC and ASCE 7-10 requirements. A plot of the recommended design response spectrum containing a table with the spectral ordinates is presented on Figure C-4. The short-period and 1 second period design accelerations obtained from the recommended design spectrum are as follows:

- SDS = 0.359 g at a period of 0.2 seconds
- SD1 = 0.136 g at a period of 1.0 second

5 Seismic Design Category

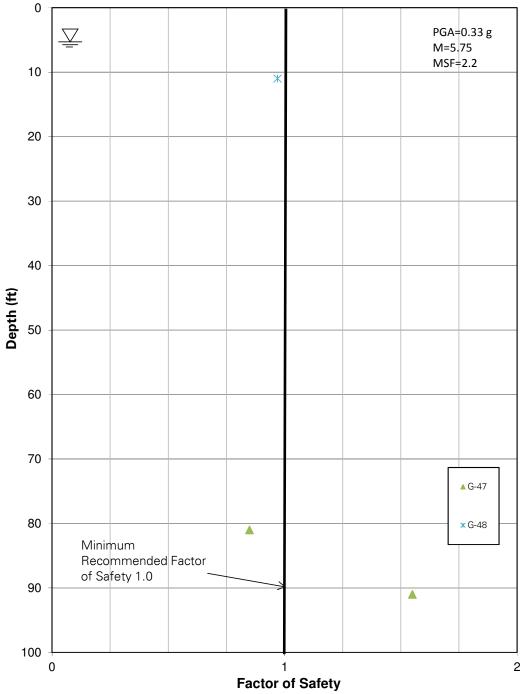

For Risk Category I, II and III, the recommended design spectral accelerations obtained from our site-specific analysis result in a Seismic Design Category, regardless of the structure's fundamental period of vibration. The results of the site-specific seismic study are listed in Table C-3:

Table C-3 – Recommended Seismic Design Parameters – Site-Specific Seismic Study

Design Parameter	Design Value
Site Class	Е
Spectral Acceleration at short periods, S _{DS}	0.359 g
Spectral Acceleration at 1-sec period, S _{D1}	0.136 g
Site-Specific MCE _R -level PGA	0.09 g
Risk Category	I, II and III
Seismic Design Category, SDC	С

Zone 3 - Factor of Safety against Liquefaction Simplified Procedure - Youd et al 2001

WARNING: IT IS A VIOLATION THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001

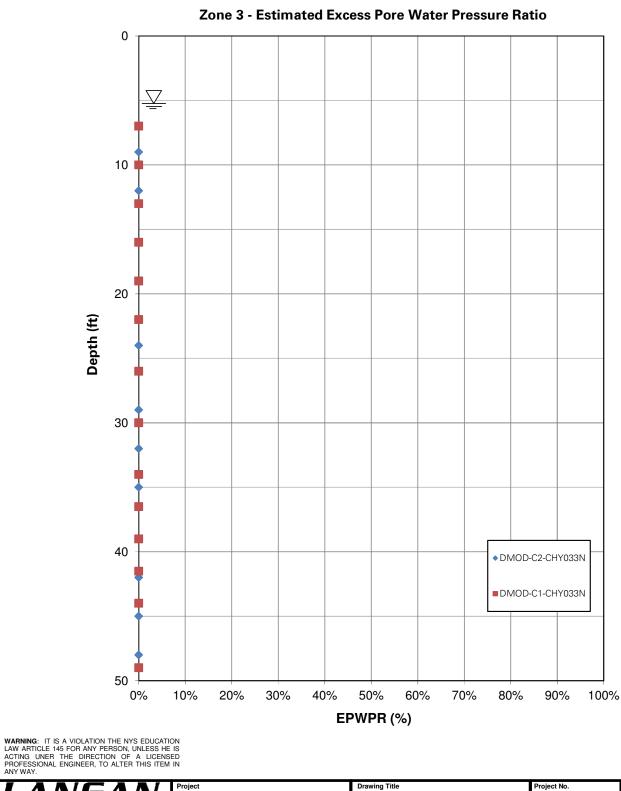
T: 212.479.5400 F: 212.479.5444 www.langan.com

1: 212.479.9400 F: 212.479.5444 www.langan.com Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C. S.A. Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C. Langan Engineering and Environmental Services, Inc. Langan CT, Inc. Langan International LLC Collectively known as Langan

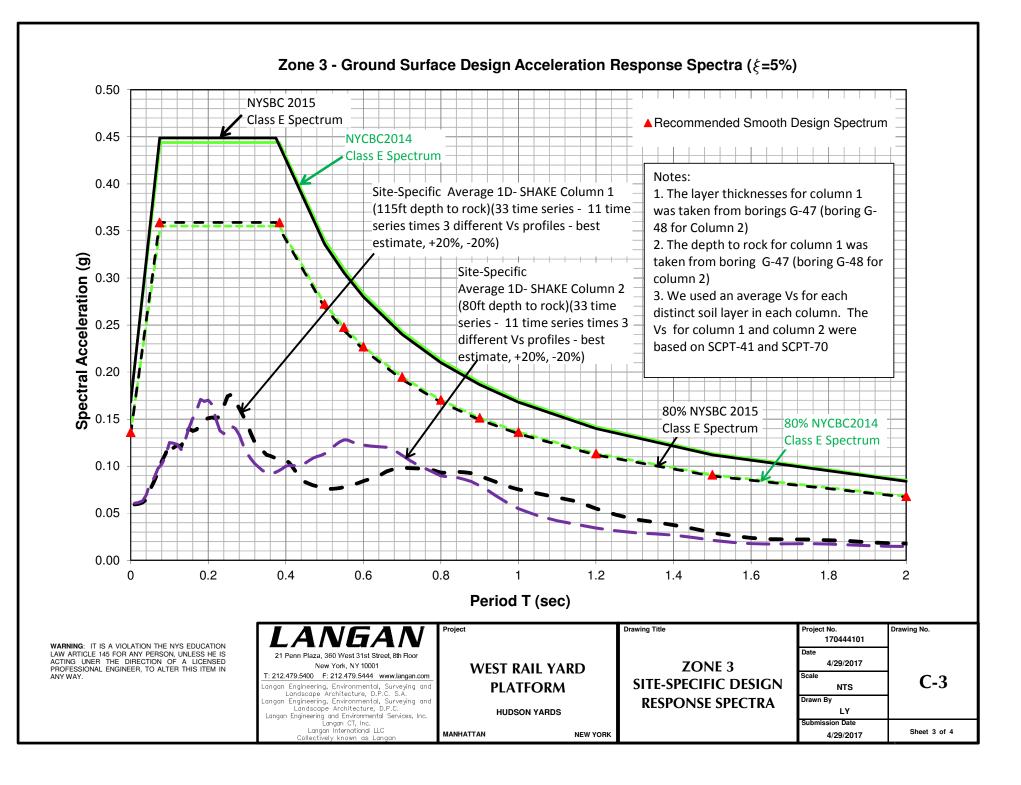
WEST RAIL YARD PLATFORM

Project

MANHATTAN


HUDSON YARDS

NEW YORK


Drawing Title

ZONE 3
LIQUEFACTION
ASSESSMENT
(YOUD ET AL)

Project No.	Drawing No.
170444101	
Date	
4/29/2017	
Scale	C-1
NTS	C-1
Drawn By	
LY	
Submission Date	
4/29/2017	Sheet 1 of 4

Drawing No. 170444101 Date 21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001 4/29/2017 **WEST RAIL YARD** T: 212.479.5400 F: 212.479.5444 www.langan.com **ZONE** 3 **C-2** IT: 212.479.9400 Fr. 212.479.9444 Www.langan.com
Langan Engineering, Environmental, Surveying and
Landscape Architecture, D.P.C. S.A.
Langan Engineering, Environmental, Surveying and
Landscape Architecture, D.P.C.
Langan Engineering and Environmental Services, Inc.
Langan (T, Inc.
Langan International LLC
Collectively known as Langan **PLATFORM** NTS **DMOD2000 EPWPR** LY Submission Date **HUDSON YARDS** Sheet 2 of 4 MANHATTAN **NEW YORK** 4/29/2017

Zone 3 - Recommended Surface Design Acceleration Response Spectrum (ξ =5%) 0.50 T (sec) Sa (g) 0.45 0.000 0.136 0.075 0.359 0.40 $-S_{DS} = 0.359 \text{ g}$ 0.384 0.359 0.500 0.273 T>0.5 0.136/T 0.35 Spectral Acceleration (g) 0.30 0.25 0.20 $S_{D1} = 0.136 g$ 0.15 0.10 0.05 0.00 1.0 0.0 0.2 0.4 0.6 8.0 1.2 1.4 1.6 1.8 2.0 Period T (sec) **Drawing Title** Drawing No. 170444101 WARNING: IT IS A VIOLATION THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN 21 Penn Plaza, 360 West 31st Street, 8th Floor **ZONE 3** 4/29/2017 New York, NY 10001 **WEST RAIL YARD RECOMMENDED** T: 212.479.5400 F: 212.479.5444 www.langan.com Scale ANY WAY. **C-4** angan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C. S.A. **PLATFORM SITE-SPECIFIC DESIGN** angan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C. Drawn By **RESPONSE SPECTRUM HUDSON YARDS** LY Langan Engineering and Environmental Services, Inc. Langan CT, Inc. ission Date Langan International LLC Sheet 4 of 4 MANHATTAN NEW YORK 4/29/2017 Collectively known as Langan

APPENDIX D ZONE 4 SITE-SPECIFIC SEISMIC STUDY

We performed a site-specific seismic analysis for Zone 4 of the platform. The key assumptions and results are summarized below.

1 Subsurface Conditions

The subsurface conditions at Zone 4 consist of fill, underlain by clay, silt, glacial till, and finally bedrock. The depth to bedrock varies from 60 to 87 feet, increasing east to west. We selected two soil columns (C1 and C2) to represent differing soil conditions and the variation in depth to bedrock of the zone. The soil layer thicknesses and shear wave velocities used for each column are listed in Table D-1.

The shear wave velocity of the rock is estimated to be about 9,000 feet per second (fps), based on cross-hole seismic testing and borehole suspension logging from nearby sites in the same rock formation.

Table D-1 – Summary of Assumed Soil Layer Thickness and Shear Wave Velocities

Column 1(C1) - Representative of west side of the zone Based on G-35 and SCPT-42			
Layer Average layer thickness (feet)		Range of measured/assumed shear wave velocities (fps)	Shear wave velocity used in model (fps)
Fill	41	440 to 670	580
Clay/Silt	32	470 to 600	540
Glacial Till	2	1,200	1,200
Bedrock	2	9,000	9,000

Column 2(C2) - Representative of the east side of the zone Based on G-35 and SCPT-43			
Layer Average layer thickness (feet)		Range of measured/assumed shear wave velocities (fps)	Shear wave velocity used in model (fps)
Fill	41	450 to 900	640
Clay/Silt	32	550 to 600	570
Glacial Till	6	1,200	1,200
Bedrock	N/A	9,000	9,000

2 Site Class

We calculated weighted-average shear-wave velocities (\overline{V}_s) between about 550 and 640 fps with an average of 590 fps. The site was preliminarily classified as Site Class E, as per 1613.5.2 of 2014 NYCBC, without consideration of soil liquefaction. The site was re-classified as Site Class F because of its potential for liquefaction using simplified methods, as described below.

3 Soil Liquefaction

Figure D-1 shows a plot of the factor of safety with depth using standard penetration test (SPT) and cone penetration test (CPT) results according to the Youd et al. (2001) procedure with the following parameters:

- An earthquake magnitude of 5.75 earthquake event, which is more conservative than the
 estimated mean deaggregation magnitude, but consistent with older studies (2008 USGS Seismic
 Hazard Maps and the 2016 NYCDOT Report);
- A PGA of 0.264 g. (In accordance with ASCE 7-10 section 21.5.3, the PGA was taken as the higher value determined from: 1) 80 percent of PGA for Site Class E (i.e. 0.8 * 0.33g); and 2) the site-specific PGA (0.107 g) determined from total-stress analyses.);
- A magnitude scaling factor (MSF) of 2.2, as per the Youd et al. 2001 recommendations.

The Youd et al. (2001) liquefaction analysis indicated potential liquefaction at depths between 8 and 18 feet. We then performed DMOD2000 effective-stress nonlinear analyses and estimated maximum excess pore water pressure ratios as high as 50 percent at depths around 30 feet, corresponding to partial liquefaction (partial soil strength loss). Partial liquefaction should be considered in the analysis of lateral pile capacity, using the estimated excess pore water pressure ratios to reduce the soil strength. The excess pore water pressure ratios estimated from DMOD2000 analyses are presented in Figure D-2 and listed in Table D-2.

Table D-2 – Summary of Estimated Excess Pore Water Pressure Ratio			ios	
	Donth (ft)	EDWD retion	Recommended	

Depth (ft)	EPWP ratios	Recommended Design EPWPR
6 to 20	0% to 30%	30%
20 to 41	0% to 50%	50%
below 41	0%	0%

We estimated about 0.1 to 0.3 inches of seismic-induced settlement for free-field conditions after the MCE_{B} -level event.

4 Design Acceleration Response Spectrum

The design spectrum recommendations based on the SHAKE2000 total-stress analyses are listed in Table D-3. The plot of the SHAKE2000 design spectra, and 80 percent of the Site Class E design spectrum (minimum allowed per ASCE 7-10) are presented in Figure D-3. The red triangles show our recommended design acceleration-response spectrum, which follows the 80% Site Class E line.

Table D-3 – Recommended Design Smooth Site-Specific spectrum, SA(g) for 5 percent damping

Period T (seconds)	Recommended Design Acceleration (g)
0.00	0.136
0.075	0.359
0.384	0.359
0.500	0.273
T>0.5	0.136/T

The recommended design spectrum satisfies the 2014 NYCBC, 2015 NYSBC and ASCE 7-10 requirements. A plot of the recommended design response spectrum containing a table with the spectral ordinates is presented in Figure D-4. The short-period and 1 second period design accelerations obtained from the recommended design spectrum are as follows:

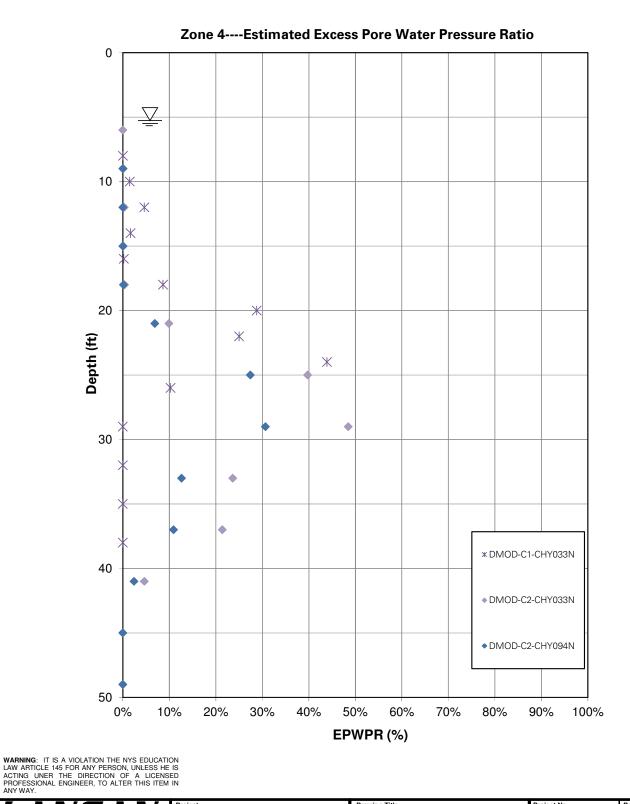
- SDS = 0.359 g at a period of 0.2 seconds
- SD1 = 0.136 g at a period of 1.0 second

5 Seismic Design Category

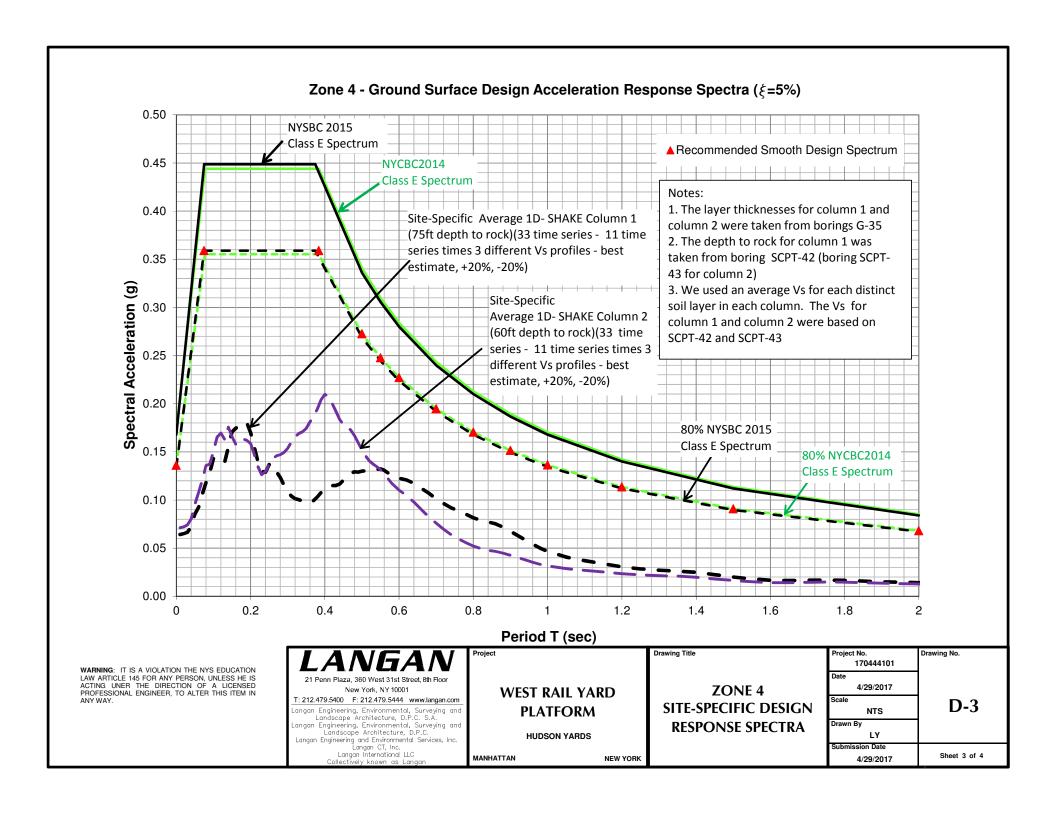
For Risk Category I, II and III, the recommended design spectral accelerations obtained from our site-specific analysis result in a Seismic Design Category C, regardless of the structure's fundamental period of vibration. The results of the site-specific seismic study are listed in Table D-4 below.

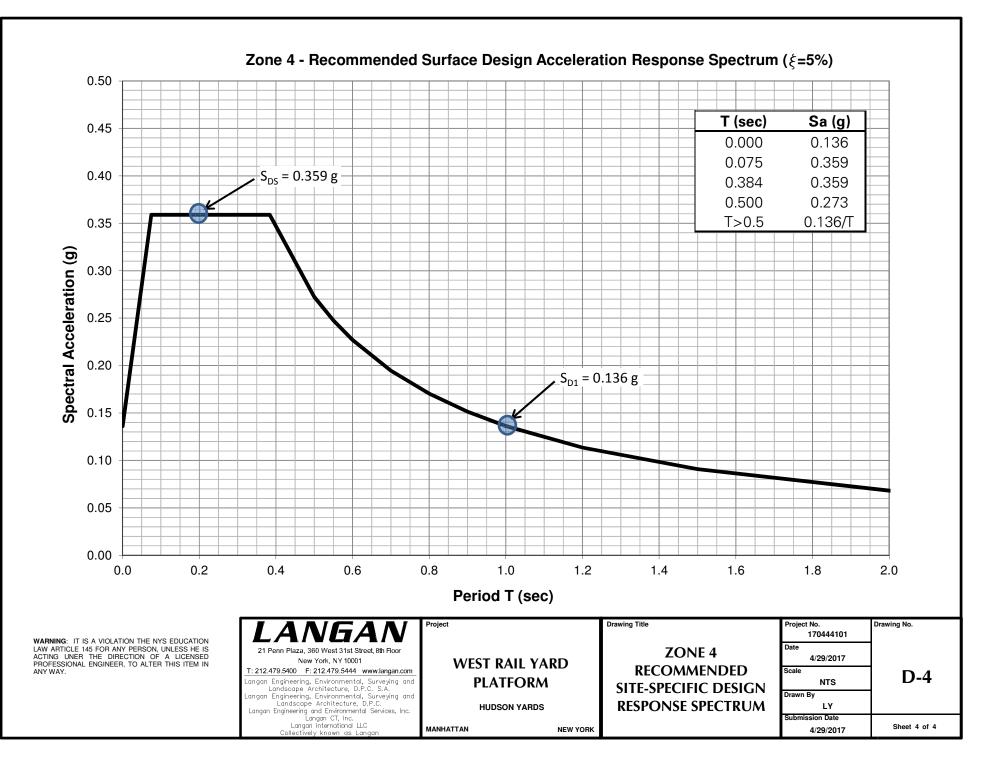
Table D-4 – Recommended Seismic Design Parameters – Site-Specific Seismic Study

Design Parameter	Design Value
Site Class	Е
Spectral Acceleration at short periods, S _{DS}	0.359 g
Spectral Acceleration at 1-sec period, S _{D1}	0.136 g
Site-Specific MCE _R -level PGA	0.107 g
Risk Category	I, II and III
Seismic Design Category, SDC	С


Zone 4 - Factor of Safety against Liquefaction Simplified Procedure - Youd et al 2001 0 PGA=0.264 g M=5.75 MSF=2.2 10 20 Depth (ft) 30 ▲ G-35 40 ◆ CPT-36 Minimum Recommended Factor of Safety 1.0 50 0 **Factor of Safety** WARNING: IT IS A VIOLATION THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY. Project Drawing Title Project No. Drawing No. 170444101 21 Penn Plaza, 360 West 31st Street, 8th Floor Date **ZONE 4** New York, NY 10001 4/29/2017 **WEST RAIL YARD** T: 212,479.5400 F: 212,479.5444 www.langan.com **LIQUEFACTION** I. Z.I. A. 195000 F. 212.415.3044 Www.langan.com Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P. C. S.A. Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P. C. Langan Engineering and Environmental Services, Inc. Langan (T, Inc. Langan International LLC Collectively known as Langan **D-1 PLATFORM** NTS **ASSESSMENT** (YOUD ET AL) LY Submission Date **HUDSON YARDS**

MANHATTAN


NEW YORK


Sheet 1 of 4

4/29/2017

Project Drawing Title Project No. Drawing No. 170444101 Date 21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001 4/29/2017 **WEST RAIL YARD** T: 212.479.5400 F: 212.479.5444 www.langan.com **ZONE 4 D-2** IT: 212.479.9400 Fr. 212.479.9444 Www.langan.com
Langan Engineering, Environmental, Surveying and
Landscape Architecture, D.P.C. S.A.
Langan Engineering, Environmental, Surveying and
Landscape Architecture, D.P.C.
Langan Engineering and Environmental Services, Inc.
Langan (T, Inc.
Langan International LLC
Collectively known as Langan **PLATFORM** NTS **DMOD2000 EPWPR** LY Submission Date **HUDSON YARDS** Sheet 2 of 4 MANHATTAN **NEW YORK** 4/29/2017

APPENDIX E ZONE 5 SITE-SPECIFIC SEISMIC STUDY

We performed a site-specific seismic analysis for Zone 5 of the platform. The key assumptions and results are summarized below.

1 Subsurface Conditions

The subsurface conditions at Zone 5 consist of fill, underlain by clay, silty sand, glacial till, and finally bedrock. The depth to bedrock varies from 33 to 54 feet, increasing east to west. We selected two soil columns (C1 and C2) to represent differing soil conditions and the variation in depth to bedrock of the zone. The soil layer thicknesses and shear wave velocities used for each column are listed in Table E-1.

The shear wave velocity of the rock is estimated to be about 9,000 feet per second (fps), based on cross-hole seismic testing and borehole suspension logging from nearby sites in the same rock formation.

Table E-1 – Summary of Assumed Soil Layer Thickness and Shear Wave Velocities

Column 1(C1) - Representative of west side of the zone Based on G-30, G-37, G-49 and SCPT-44			
			Shear wave velocity used in model (fps)
Fill	26	530 to 780	650
Clay	25	430 to 590	510
Glacial Till	2	1,200	1,200
Bedrock	N/A	9,000	9,000

Column 2(C2) - Representative of the east side of the zone Based on G-31, G-50, CPT-38 and SCPT-45			
			Shear wave velocity used in model (fps)
Fill	16	450 to 500	470
Clay/Silt	16	330 to 620	430
Silty Sand	4	330 to 620	430
Bedrock	N/A	9,000	9,000

2 Site Class

We calculated weighted-average shear-wave velocities (\overline{V}_s) between about 450 and 610 fps, with an average of 530 fps. The site was preliminarily classified as Site Class E, as per 1613.5.2 of 2014 NYCBC, without consideration of soil liquefaction. The site was re classified as Site Class F because of its potential for liquefaction using simplified methods, as described below.

3 Soil Liquefaction

Figure E-1 shows a plot of the factor of safety with depth using standard penetration test (SPT) and cone penetration test (CPT) results according to the Youd et al. (2001) procedures with the following parameters:

- An earthquake magnitude of 5.75 earthquake event, which is more conservative than the
 estimated mean deaggregation magnitude, but consistent with older studies (2008 USGS Seismic
 Hazard Maps and the 2016 NYCDOT Report);
- A PGA of 0.264 g. (In accordance with ASCE 7-10 section 21.5.3, the PGA was taken as the higher value determined from: 1) 80 percent of PGA for Site Class E (i.e. 0.8 * 0.33g); and 2) the site-specific PGA (0.12 g) determined from total-stress analyses.);
- A magnitude scaling factor (MSF) of 2.2, as per the Youd et al. 2001 recommendations.

The Youd et al. (2001) liquefaction analysis indicated potential liquefaction at depths between 10 and 35 feet. We then performed DMOD2000 effective-stress nonlinear analyses and estimated maximum excess pore water pressure ratios as high as 45 percent at depths around 15 feet, corresponding to partial liquefaction (partial soil strength loss). Partial liquefaction should be considered in the analysis of lateral pile capacity, using the estimated excess pore water pressure ratios to reduce the soil strength. The excess pore water pressure ratios estimated from DMOD2000 analyses are presented in Figure E-2 and listed in Table E-2.

Tal	ole E-2 – Summ	ary of Estimated	Excess Po	re Water	Pressure	Ratios

Depth (ft)	EPWP ratios	Recommended Design EPWPR
6 to 10	0% to 20%	20%
10 to 20	0% to 45%	45%
below 20	0% to 10%	0%

We estimated about 0.1 to 0.3 inches of seismic-induced settlement for free-field conditions after the MCE_B-level event.

4 Design Acceleration Response Spectrum

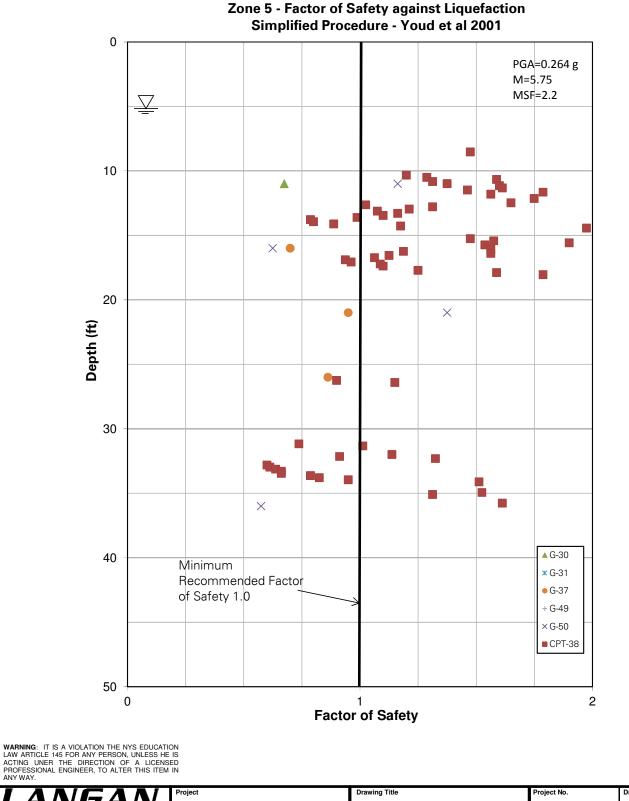
The design spectrum recommendations based on the SHAKE2000 total-stress analyses are listed in Table E-3. The plot of the SHAKE2000 design spectra, and 80 percent of the Site Class E design spectrum (minimum allowed per the 2014 ASCE 7-10) are presented in Figure E-3. The red triangles show our recommended design acceleration-response spectrum, which follows the 80% Site Class E line.

Table E-3 – Recommended Design Smooth Site-Specific spectrum, SA(g) for 5 percent damping

Period T (seconds)	Recommended Design Acceleration (g)
0.00	0.136
0.075	0.359
0.384	0.359
0.500	0.273
T>0.5	0.136/T

The recommended design spectrum satisfies the 2014 NYCBC, 2015 NYSBC and ASCE 7-10 requirements. A plot of the recommended design response spectrum containing a table with the spectral ordinates is presented on Figure E-4. The short-period and 1-second-period design accelerations obtained from the recommended design spectrum are as follows:

- SDS = 0.359 g at a period of 0.2 seconds
- SD1 = 0.136 g at a period of 1.0 second



5 Seismic Design Category

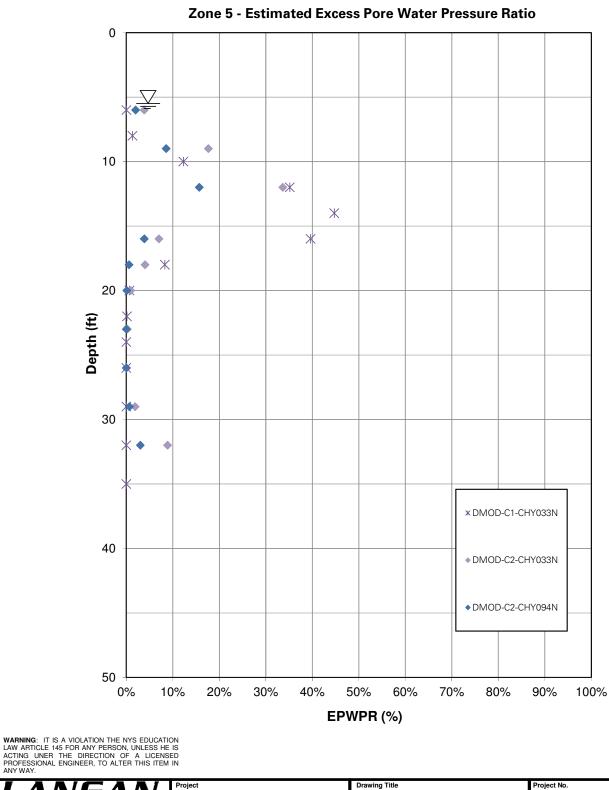
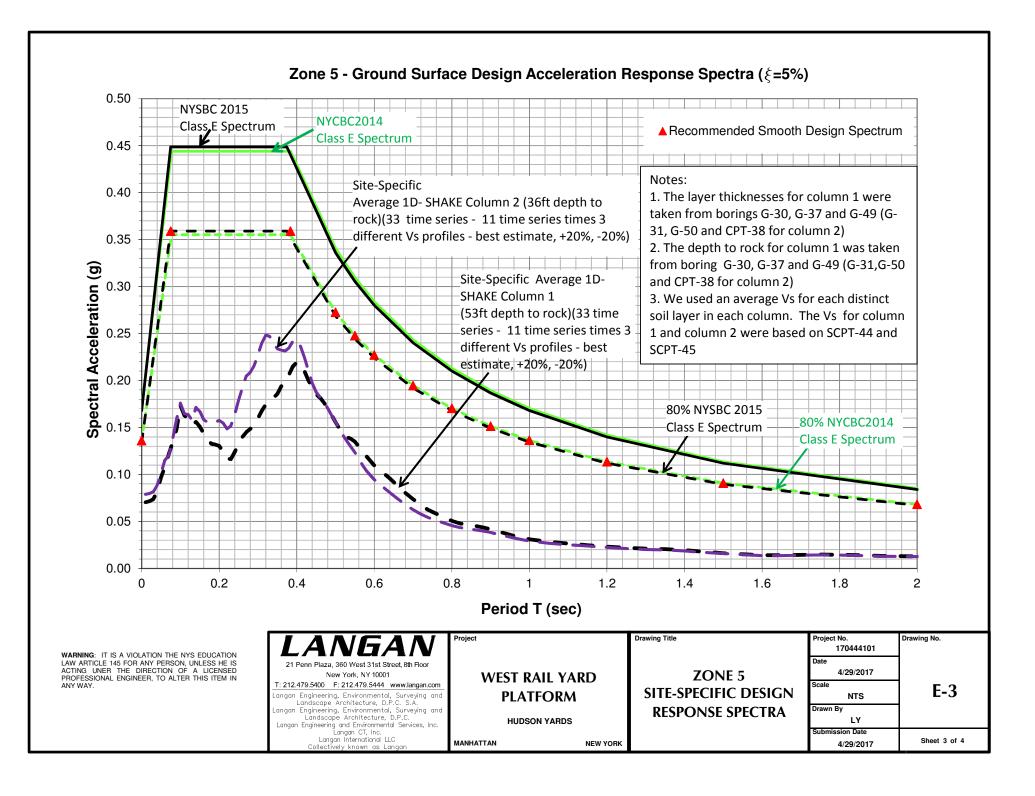
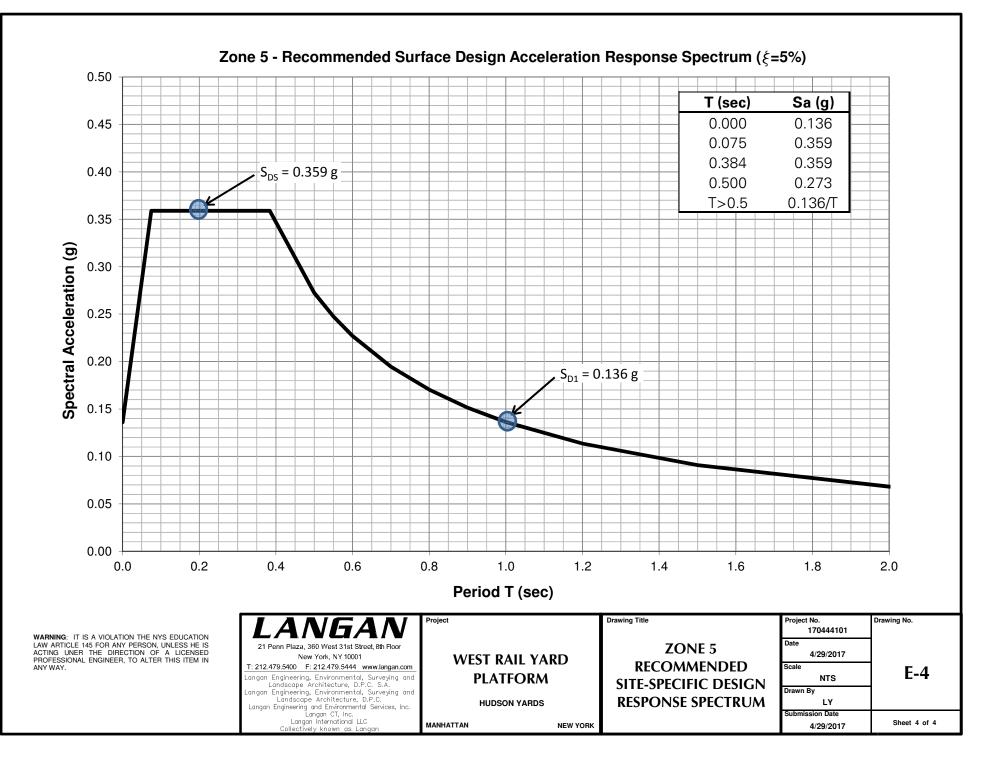

For Risk Category I, II and III, the recommended design spectral accelerations obtained from our site-specific analysis result in a Seismic Design Category C, regardless of the structure's fundamental period of vibration. The results of the site-specific seismic study are listed in Table E-4.

Table E-4 – Recommended Seismic Design Parameters – Site-Specific Seismic Study


Design Parameter	Design Value
Site Class	Е
Spectral Acceleration at short periods, S _{DS}	0.359 g
Spectral Acceleration at 1-sec period, S _{D1}	0.136 g
Site-Specific MCE _R -level PGA	0.12 g
Risk Category	I, II and III
Seismic Design Category, SDC	С



Drawing No. 170444101 21 Penn Plaza, 360 West 31st Street, 8th Floor Date **ZONE 5** New York, NY 10001 4/29/2017 **WEST RAIL YARD** T: 212,479.5400 F: 212,479.5444 www.langan.com **LIQUEFACTION** I. Z.I. A. 195000 F. 212.415.3044 Www.langan.com
Langan Engineering, Environmental, Surveying and
Landscape Architecture, D.P. C. S.A.
Langan Engineering, Environmental, Surveying and
Landscape Architecture, D.P. C.
Langan Engineering and Environmental Services, Inc.
Langan (T, Inc.
Langan International LLC
Collectively known as Langan E-1 **PLATFORM** NTS **ASSESSMENT** (YOUD ET AL) LY Submission Date **HUDSON YARDS** Sheet 1 of 4 MANHATTAN **NEW YORK** 4/29/2017

Drawing No. 170444101 Date 21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001 4/29/2017 **WEST RAIL YARD** T: 212.479.5400 F: 212.479.5444 www.langan.com **ZONE 5 E-2** IT: 212.479.9400 Fr. 212.479.9444 Www.langan.com
Langan Engineering, Environmental, Surveying and
Landscape Architecture, D.P.C. S.A.
Langan Engineering, Environmental, Surveying and
Landscape Architecture, D.P.C.
Langan Engineering and Environmental Services, Inc.
Langan (T, Inc.
Langan International LLC
Collectively known as Langan **PLATFORM** NTS **DMOD2000 EPWPR** LY Submission Date **HUDSON YARDS** Sheet 2 of 4 MANHATTAN **NEW YORK** 4/29/2017

APPENDIX F ZONE 6 SITE-SPECIFIC SEISMIC STUDY

We performed a site-specific seismic analysis for Zone 6 of the platform. The key assumptions and results are summarized below.

1 Subsurface Conditions

The subsurface conditions at Zone 6 consist of fill, underlain by clay, glacial till, and finally bedrock. The depth to bedrock varies from 26 to 34 feet east to west. We selected two soil columns (C1 and C2) to represent differing soil conditions and the variation in depth to bedrock of the zone. The soil layer thicknesses and shear wave velocities used for each column are listed in Table F-1.

The shear wave velocity of the rock is estimated to be about 9,000 feet per second (fps), based on cross-hole seismic testing and borehole suspension logging from nearby sites in the same rock formation.

Table F-1 - Summary of Assumed Soil Layer Thickness and Shear Wave Velocities

Column 1(C1) - Representative of west side of the zone Based on G-39, G-51 and SCPT-46			
		Shear wave velocity used in model (fps)	
Fill	26	440 to 490	440
Clay/Silt	25	440 to 490	470
Glacial Till	2	1,470	1,470
Bedrock	N/A	9,000	9,000

Column 2(C2) - Representative of the east side of the zone Based on G-52 and SCPT-46			
		Shear wave velocity used in model (fps)	
Fill	16	440 to 490	440
Clay	16	440 to 490	470
Glacial Till	4	1,470	1,470
Bedrock	N/A	9,000	9,000

2 Site Class

We calculated weighted-average shear-wave velocities (\overline{V}_s) about 490 fps. The site was preliminarily classified as Site Class E, as per 1613.5.2 of 2014 NYCBC, without consideration of soil liquefaction. The site was re-classified as Site class F because of its potential for liquefaction using simplified methods, as described below.

3 Soil Liquefaction

Figure F-1 shows a plot of the factor of safety with depth using standard penetration test (SPT) and cone penetration test (CPT) results according to the Youd et al. (2001) procedure with the following parameters:

- An earthquake magnitude of 5.75 earthquake event, which is more conservative than the estimated mean deaggregation magnitude, but consistent with older studies (2008 USGS Seismic Hazard Maps and the 2016 NYCDOT Report);
- A PGA of 0.264 g. (In accordance with ASCE 7-10 section 21.5.3, the PGA was taken as the higher value determined from: 1) 80 percent of PGA for Site Class E (i.e. 0.8 * 0.33g); and 2) the site-specific PGA (0.16 g) determined from total-stress analyses.);
- A magnitude scaling factor (MSF) of 2.2, as per the Youd et al. 2001 recommendations.

The Youd et al. (2001) liquefaction analysis indicated potential liquefaction at depths between 10 and 20 feet. We then performed DMOD2000 effective-stress nonlinear analyses and estimated maximum excess pore water pressure ratios as high as 50 percent at depths around 15 to 20 feet, corresponding to partial liquefaction (partial soil strength loss). Partial liquefaction should be considered in the analysis of lateral pile capacity, using the estimated excess pore water pressure ratios to reduce the soil strength. The excess pore water pressure ratios estimated from DMOD2000 analyses are presented in Figure F-2 and listed in Table F-2.

Table F-2 – Summ	ary of Estimated Excess	Pore Water Pressure Ratio	os
		Pasammandad	

Depth (ft)	EPWP ratios	Recommended Design EPWPR
6 to 15	0% to 40%	40%
15 to 25	0% to 50%	50%
below 25	0%	0%

We estimated about 0.1 to 0.5 inches of seismic-induced settlement for free-field conditions after the MCE_B-level event.

4 Design Acceleration Response Spectrum

The design spectrum recommendations based on the SHAKE2000 total-stress analyses are listed in Table F-3. The plot of the SHAKE2000 design spectra, and 80 percent of the Site Class E design spectrum (minimum allowed per ASCE 7-10) are presented in Figure F-3. The red triangles show our recommended design acceleration-response spectrum.

Table F-3 – Recommended Design Smooth Site-Specific spectrum, SA(g) for 5 percent damping

Period T (seconds)	Recommended Design Acceleration (g)
0.00	0.136
0.075	0.409
0.384	0.409
0.500	0.273
T>0.5	0.136/T

The recommended design spectrum satisfies the 2014 NYCBC, 2015 NYSBC and ASCE 7-10 requirements. A plot of the recommended design response spectrum containing a table with the spectral ordinates is presented in Figure F-4. The short-period and 1 second period design accelerations obtained from the recommended design spectrum are as follows:

- SDS = 0.409 g at a period of 0.2 seconds
- SD1 = 0.136 g at a period of 1.0 second

5 Seismic Design Category

For Risk Category I, II and III, the recommended design spectral accelerations obtained from our site-specific analysis result in a Seismic Design Category, regardless of the structure's fundamental period of vibration. The results of the site-specific seismic study are listed in Table F-4.

Table F-4 – Recommended Seismic Design Parameters – Site-Specific Seismic Study

Design Parameter	Design Value
Site Class	Е
Spectral Acceleration at short periods, S _{DS}	0.409 g
Spectral Acceleration at 1-sec period, S _{D1}	0.136 g
Site-Specific MCE _R -level PGA	0.16 g
Risk Category	I, II and III
Seismic Design Category, SDC	С

Zone 6 - Factor of Safety against Liquefaction Simplified Procedure - Youd et al 2001 0 PGA=0.264 g M=5.75 MSF=2.2 10 Ж Ж 20 Depth (ft) Ж 30 Minimum Recommended Factor 40 of Safety 1.0 ▲ G-39 **x** G-51 G-52 50 0 2 **Factor of Safety**

WARNING: IT IS A VIOLATION THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001

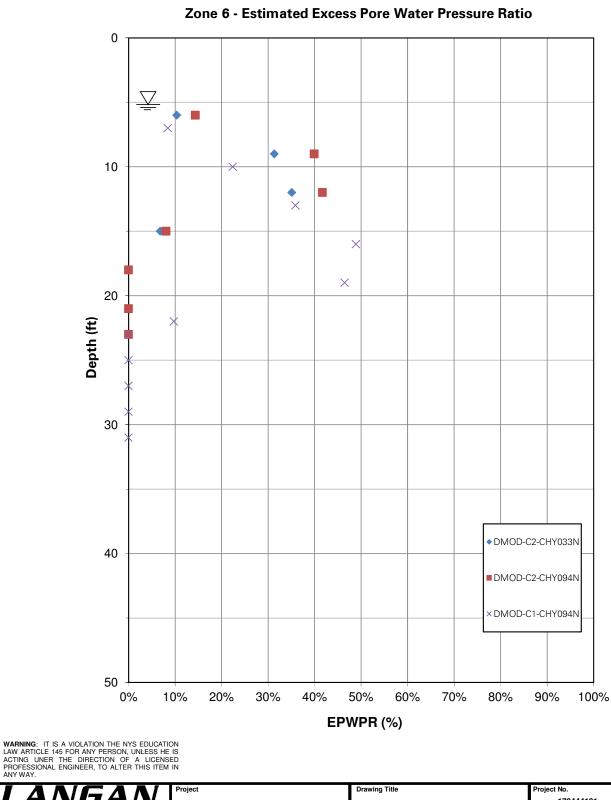
T: 212,479.5400 F: 212,479.5444 www.langan.com

IT: 212.479.9400 Fr. 212.479.9444 Www.langan.com
Langan Engineering, Environmental, Surveying and
Landscape Architecture, D.P.C. S.A.
Langan Engineering, Environmental, Surveying and
Landscape Architecture, D.P.C.
Langan Engineering and Environmental Services, Inc.
Langan (T, Inc.
Langan International LLC
Collectively known as Langan

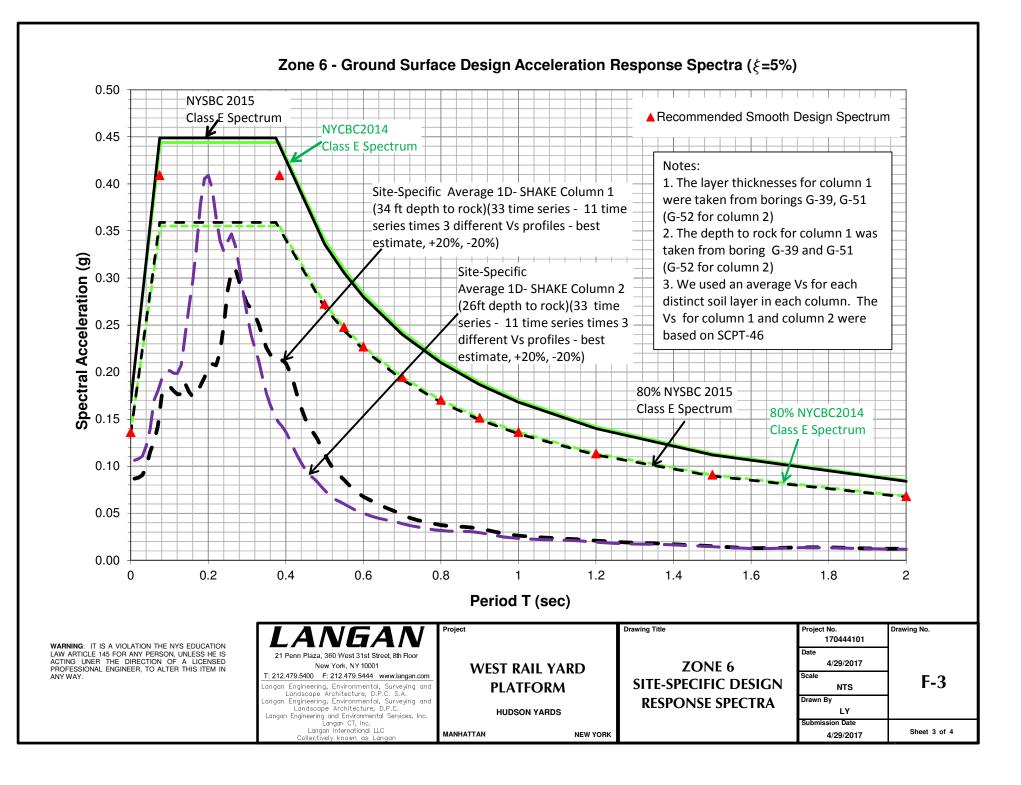
WEST RAIL YARD PLATFORM

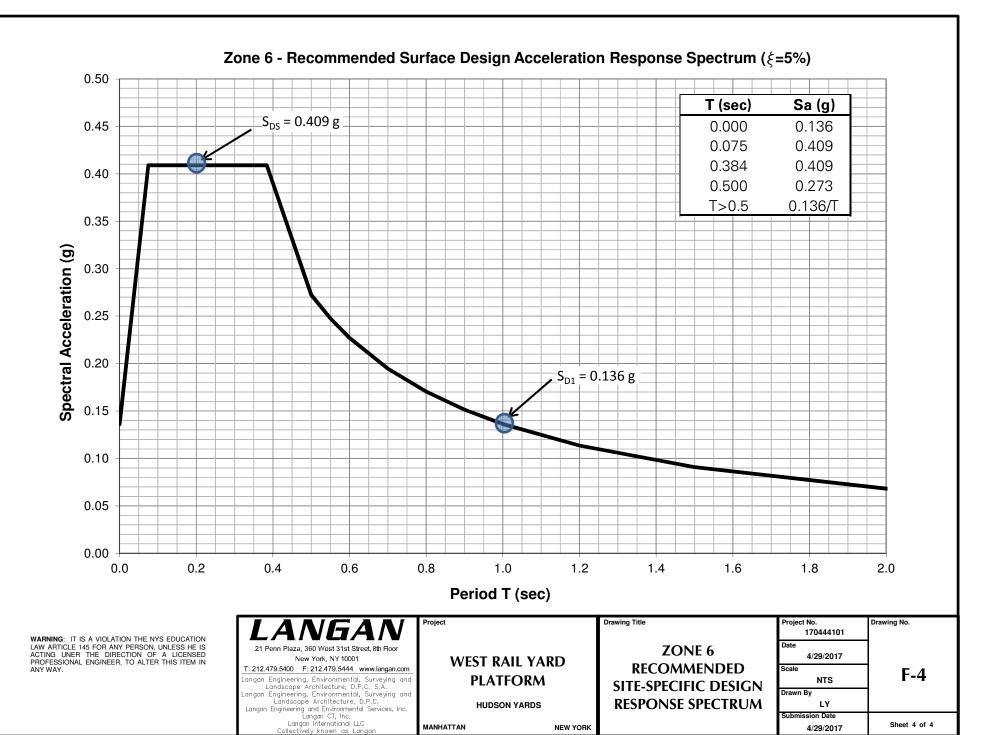
Project

MANHATTAN


HUDSON YARDS

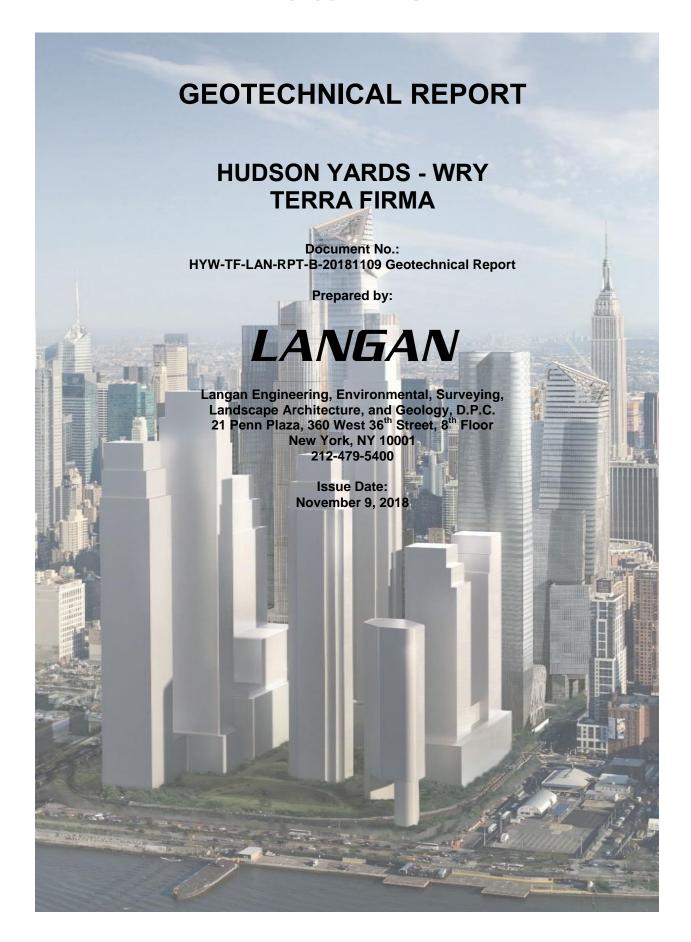
ZONE 6 LIQUEFACTION ASSESSMENT (YOUD ET AL)


Drawing Title


Project No.	Drawing No.
170444101	
Date	
4/29/2017	
Scale	F-1
NTS	L-1
Drawn By	
LY	
Submission Date	
4/29/2017	Sheet 1 of 4

NEW YORK

Drawing No. 170444101 Date 21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001 4/29/2017 **WEST RAIL YARD** T: 212.479.5400 F: 212.479.5444 www.langan.com **ZONE 6** 1. a.1.4.19.3.4W Pri. 212.419.3444 www.langan.com
Langan Engineering, Environmental, Surveying and
Landscape Architecture, D.P.C. S.A.
Langan Engineering, Environmental, Surveying and
Landscape Architecture, D.P.C.
Langan Engineering and Environmental Services, Inc.
Langan CT, Inc.
Langan International LLC
Collectively known as Langan F-2 **PLATFORM** NTS **DMOD2000 EPWPR** LY Submission Date **HUDSON YARDS** Sheet 2 of 4 MANHATTAN **NEW YORK** 4/29/2017



Appendix J2

Geotechnical Report - Terra Firma

1 2 3		INTRODUCTION	. 1
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Ancillary Structures LIRR Emergency Facilities Building High Line (City of New York) Amtrak Gateway Tunnel Eleventh Avenue Viaduct Twelfth Avenue MTA No. 7 Line Extension Utilities	. 2 . 2 . 2 . 2
4		ADJACENT CONSTRUCTION ACTIVITY	. 3
		East Rail Yard Development	
5		PROPOSED DEVELOPMENT	. 4
	5.2 5.3	Tower 5 Tower 6 Terra Firma Platform LIRR Building C	. 4 . 4
6 7		SITE DEVELOPMENT HISTORYLOCAL GEOLOGY	
	7.1 7.2	Bedrock GeologySurficial Geology	
8 9		FEMA FLOOD ZONE	
	9.1 9.1. 9.2 9.2. 9.2. 9.2.	Test Caisson Borings (2017) 1 Borings 2 Laboratory Testing Proposed New York Sports and Convention Center (2004) 1 Borings 2 Cone Penetration Testing	. 6 <i>6</i> <i>7</i> <i>7</i>
	9.1 9.1. 9.2 9.2. 9.2. 9.2. 9.3	Test Caisson Borings (2017) 1 Borings 2 Laboratory Testing Proposed New York Sports and Convention Center (2004) 1 Borings 2 Cone Penetration Testing 3 Laboratory Testing Borings by Others	. 6 <i>6</i> <i>7</i> <i>7</i>
9	9.1 9.1 9.2 9.2 9.2 9.2 9.3 10.1 10.2 10.3 10.3 10 10.4	Test Caisson Borings (2017) 1 Borings	. 6 6 7 7 8 8 9 9 9 9 9 10 10 10
9	9.1 9.1 9.2 9.2 9.2 9.2 9.3 10.1 10.2 10.3 10.3 10.4 10.5	Test Caisson Borings (2017) 1 Borings. 2 Laboratory Testing Proposed New York Sports and Convention Center (2004) 1 Borings. 2 Cone Penetration Testing 3 Laboratory Testing Borings by Others SUBSURFACE CONDITIONS Uncontrolled Fill [Class 7] Organic Clay and Clay and Silt [Classes 6, 4c, 5b] 2.1 Organic Clay 2.2 Silt and Clay Sand/Till [Classes 6, 3, 5] 3.1 Sand 3.2 Glacial Till. Bedrock [Classes 1a to 1d]	.6 .677889999 .

	LIRR Building C	
13.1 Drille	SIGN RECOMMENDATIONS	14
	ed Caissons	1
13.1.1	Caisson Load Tests	
13.1.2	Group Effects	
13.1.3	Caisson and Mini-Caisson Drilling	
13.1.4	Reinforcing Steel Splices	
13.1.5	Centralizers	
13.1.6	Concrete Placement	
13.1.7	Foundation Settlement	
13.1.8	Minimum Clearances (Amtrak and MTA Tunnels)	1
13.1.9	Plumbness Monitoring	1
13.1.10	Bond Breaker	1
	r Slabs	
	w Grade Walls	
13.4 Perr	manent Groundwater Control	1 ^r
COI	NSTRUCTION RECOMMENDATIONS	18
14.1 Exc	avations	1
	porary Excavation Support	
	porary Construction Dewatering	
	Subgrades	
14.5 Fill N	Materials, Placement, and Compaction	2
14.6 Res	trictive Declaration Soil Management	2
4.7 Mon	itoring	2
	construction Conditions Documentation	
4.9 Spe	cial Inspections	2
CON	NSTRUCTION DOCUMENTS	2 [,]
OW	NER AND CONTRACTOR RESPONSIBILITIES	22
1 184	ITATIONS	22
LIIVI	ERENCES	

LIST OF FIGURES

Figure 1 –	Site Location Map	
Figure 2 –	Existing Conditions Plan	
Figure 3 –	Historical Site Map (W. Bridges, 1811)	
Figure 4 –	Historical Site Map (Perris, 1859)	
Figure 5 –	Historical Site Map (Viele, 1865)	
Figure 6 –	Historical Site Map (Bromley, 1879)	
Figure 7 –	Historical Site Map (Robinson, 1885)	
Figure 8 –	Historical Site Map (Bromley, 1897)	
Figure 9 –	Bedrock Geology Map	
Figure 10 –	Engineering Geology Map	
Figure 11 –	FEMA Preliminary Flood Insurance Rate Map	
Figure 12 –	Boring and CPT Location Plan	
Figure 13 –	Subsurface Profile A	
Figure 14 –	Seismic Analysis Plan	
Figure 15 –	Design Spectral Response	

LIST OF APPENDICES

Appendix A –	2004 and 2017 Langan Boring Logs
Appendix B –	Cone Penetration Testing Report
Appendix C –	Laboratory Testing Results
Appendix D –	Historical Boring Data by Others
Appendix E –	Axial Load Test Technical Memorandum
Appendix F –	Lateral Load Test Technical Memorandum
Appendix G –	Site Specific Seismic Study

1 Introduction

This report presents the results of our geotechnical engineering study and provides recommendations for the design and construction of structures within the terra firma area of the West Rail Yard of Hudson Yards. All services were performed in general accordance with our 5 May 2017 proposal. Environmental conditions at the site will be discussed under separate cover.

Our understanding of the project is based on our review of the project documents, discussions with the design team, and our experience throughout Hudson Yards and the surrounding area. Architectural information was provided by the project architect (Kohn Pederson Fox Associates, PC – KPF), and structural information was provided by the project structural engineer (Mueser Rutledge Consulting Engineers – MRCE).

All elevations are referenced to the North American Vertical Datum of 1988 (NAVD88). Typical datum conversions are presented in Table 1. The historical drawings and data referenced in this report reference multiple datums; caution should be exercised in comparing this information.

Table 1: Typical Elevation Conversions from NAVD88

Datum	Conversion
National Geodetic Vertical Datum of 1929 (NGVD29)	NAVD88 + 1.076 ft
Borough President of Manhattan Datum (BPMD)	NAVD88 - 1.676 ft
Pennsylvania Railroad Tunnel Datum (PENN)	NAVD88 + 298.351 ft
New York City Transit Datum (NYCT)	NAVD88 + 98.423 ft

2 Site Description

The project is on the Far West Side of Manhattan within the western half of the Metropolitan Transportation Authority (MTA) – Long Island Rail Road (LIRR) West Side Yards. The West Rail Yard (WRY) site is divided into "terra firma" (Block 676, Lot 1) and "platform" (Block 676, Lot 5) parcels. This report focuses solely on the terra firma site. Terra firma measures about 147,000 square feet and is bound by the LIRR South Access Road and the new platform parcel on the north, West 30th Street on the south, the Eleventh Avenue viaduct on the east, and Twelfth Avenue (New York State Rout 9A/Westside Highway) on the west. The site location is shown in Figure 1.

The terra firma site is occupied by several LIRR support facilities at the east end of the site, a laydown area for ongoing construction within Hudson Yards near the center of the site, and a Vehicle Processing Center (VPC) near the west end of the site. Surface cover predominantly consists of asphalt and concrete pavements. Numerous structures are located within and adjacent to the site as discussed herein.

Surface grade within the site varies from about el 7 ft at the west to about el 15 ft near the southeast corner of the site and generally slopes gently down to the west. Grade on the streets fronting the site generally slopes down to the west and south. West 30th Street slopes down from a high point of about el 19 ft at the intersection with Twelfth Avenue. The Eleventh Avenue viaduct ramps up from about el 19 ft to about el 24 ft near the northeast corner of the site. Twelfth Avenue is relatively flat, varying from about el 5.5 to 6.5 ft along the site.

3 EXISTING STRUCTURES AND UTILITIES

The following sections briefly describe existing structures in the area of the terra firma site. The approximate locations of the existing structures are shown in Figure 2.

3.1 Ancillary Structures

Several ancillary structures are within the site including temporary buildings, office trailers and metal storage containers. The central part of the site is currently used as a staging and storage area for the ongoing Hudson Yards East Rail Yard construction. There are several guard booths and Conex boxes in the VPC at the west end of the site.

3.2 LIRR Emergency Facilities Building

The LIRR Emergency Facilities building is near the northeast corner of the site. This building houses fire pumps, emergency generators, and electrical switchgear associated with the rail yard. A water storage tank is near the northwest corner of the building.

3.3 High Line (City of New York)

The High Line Park elevated rail line traverses along the south and west sides of the site. The structure parallels West 30th Street then arcs north, near the west end of the site. The Highline is a steel-frame structure that served as a freight rail line and was recently converted into a public park. The structure is supported by concrete piers bearing on rock along the eastern third of the site and timber friction piles with reinforced concrete pile caps for the remainder of the site. Historical drawings indicate the top of the pier and pile caps are at about el 3.5 to 5 ft.

The Highline slopes down from the east, with the top of deck varying from about 22 to 25 feet above grade. The Highline will be incorporated into the proposed redevelopment and must be protected during construction. Design and construction near the Highline will be subject to review by the New York State Historic Preservation Office (SHPO) and NYC Parks/Friends of the Highline.

3.4 Amtrak Gateway Tunnel

Amtrak has proposed a new multi-track rail tunnel as part of its Gateway project. The new tunnel will extend from Penn Station to New Jersey. The tunnel's alignment runs northeast-southwest beneath Hudson Yards. The first two segments of the tunnel were constructed beneath the ERY between the "Terminal West" area of Penn Station to the west side of Eleventh Avenue. The third segment of the tunnel is proposed to run from Eleventh Avenue to West 30th Street, beneath the terra firma site, and will be constructed using cut-and-cover construction. Segment 3 is expected to be constructed between 2019 and 2021. Future construction of Segment 4 contemplates mined tunnels running from bulkheads at the western end of Segment 3 to a ventilation shaft to be constructed to the southwest. Construction within terra firma will require coordination with the anticipated Amtrak construction.

3.5 Eleventh Avenue Viaduct

The Eleventh Avenue viaduct borders the east side of the site. Elevations range from about el 19 ft at West 30th Street to about el 24 ft at the northern site boundary, and the viaduct crowns at about el 34 ft north of the site. The viaduct generally consists of a steel-frame, a reinforced concrete deck, concrete piers supported on piles and an earthen fill abutment (foundations unknown) at the south end. The viaduct was reconstructed during development of the West Side Yards in the 1980s and the abutment was underpinned via jet grouting during construction of Segment 2 of the Gateway tunnel.

The viaduct and abutment will remain and must be protected during construction.

3.6 Twelfth Avenue

Twelfth Avenue (New York State Route 9A/Westside Highway) borders the site on the west at elevations similar to the rail yard. In the vicinity of the site, Twelfth Avenue is an eight-lane, divided highway. There is a concrete security wall on the site perimeter along Twelfth Avenue.

3.7 MTA No. 7 Line Extension

The MTA No. 7 Line is below Eleventh Avenue, and consists of two running tunnels (CC1 and CC2) and a cross passage (No. 3) next to terra firma.. The tunnels slope down from north to south at an inclination of about 0.5 percent. Invert elevations adjacent to the site vary from about el -104.5 to -106 ft and crown elevations vary from about el -84.5 to -86 ft. The No. 7 Line is about 17 to 18 feet east of the of terra firma, and cross passage No. 3 is about 7 feet south of terra firma.

The running tunnels were bored by a tunnel boring machine (TBM). The MTA No. 7 Line will remain and be must protected during construction. Construction within 200 feet of the No. 7 Line requires NYCT approval to obtain NYC DOB permits.

3.8 Utilities

A large number of documented and undocumented utilities exist within and adjacent to the site. Many of the utilities will likely require relocation to accommodate construction of foundations for the terra firma structures.

4 Adjacent Construction Activity

4.1 East Rail Yard Development

The East Rail Yard (ERY) redevelopment project is currently under construction. The ERY construction includes completion of the platform over the rail yard, landscaped outdoor spaces, several commercial and residential towers, a retail podium, and a cultural building referred to as the Culture Shed.

4.2 West Rail Yard Platform

The proposed WRY redevelopment includes construction of a platform over the WRY (north of terra firma) to support five high-rise towers and public space. A brief description of the proposed structures is as follows:

- <u>Site 1</u>: Located in the northwest part of the platform, Site 1 includes Tower 1A (59-stories) and Tower 1B (67-stories), with a connecting podium. The commercial space will occupy the podium level and the towers will be residential. LIRR facilities and parking areas will occupy the platform level.
- <u>Site 2</u>: Located in the northeast part of the platform, Site 2 includes Tower 2 (46-stories). The commercial space will occupy the lower 18 floors with residential above. Retail space, a commercial lobby, a loading dock, parking, and utility areas will the platform level.
- <u>Site 3</u>: Located in the south-central portion of the platform, Site 3 includes Tower 3 (57-stories) above a podium. The building will be residential with a retail component at the platform level. Parking space will occupy the platform level.
- <u>Site 4</u>: Located in the southeast corner of the platform, Site 4 includes Tower 4 (64-stories) above a podium. Retail space will occupy the platform and "lobby" level with residential above.
- Areas outboard of buildings will include a public plaza with landscaped areas and streets. A
 platform level will be located below the plaza and will house parking, utility space, and LIRR
 support facilities; a lawn area will be located on the far west side of the platform level.

The proposed platform is a composite-concrete-deck extending from West 33rd Street to the terra firma parcel, and between Eleventh and Twelfth Avenues. The top of the platform will be at about el 28.5 to 32.5 ft, and will be supported by columns extending to ground level in the service corridors between tracks. The WRY platform is expected to be constructed between 2019 and 2021. Construction within terra firma will require coordination with the anticipated platform construction.

5 Proposed Development

Our understanding of the proposed development is based on discussions with the design team and review of the preliminary design plans. Loads for the buildings have not been developed as of the time of this report.

5.1 Tower 5

Tower 5 will be on the west side of terra firma and will consist of a high-rise residential building spanning over the Highline. The tower will be supported by a core northeast of the Highline and two mega columns southwest of the Highline. A cellar is limited to the core area northeast of the Highline. Maintenance space will occupy the ground and platform levels, and a residential lobby will occupy the plaza level. The full tower footprint will span over the Highline above the plaza level.

Tower 5 will be designed in accordance with the 2014 New York City Building Code (NYCBC). The design team has not been selected.

5.2 Tower 6

Tower 6 will be on the east side of the site between the Highline and LIRR South Access Road and will consist of a high-rise building with residential, retail, and school spaces. The building will have a single cellar level for use as parking and utility space. Retail space, a school, maintenance facilities, and parking will occupy the ground level and extend under the Highline to provide frontage along West 30th Street. A portion of the school and additional parking will occupy the platform level. Portions of the school, retail space, and a residential lobby will occupy the plaza level. The tower will contain residential units.

Tower 6 will be constructed over, and will be partially supported by the Amtrak Gateway tunnel Segment 3 (to be constructed).

Tower 6 will be designed in accordance with the NYCBC. The design team has not been selected.

5.3 Terra Firma Platform

The proposed development includes construction of a two-level platform over part of terra firma outside of the towers, north of the Highline. Utility, HVAC, maintenance facilities will occupy the platform level. Public space and a school playground will occupy the upper, plaza level.

The terra firma platform will be designed in accordance with the NYCBC.

5.4 LIRR Building C

A two-story LIRR support building ("Building C") will be constructed below the platform and between towers 5 and 6. Building C will have a single cellar level.

The LIRR building will be designed in accordance with the 2015 New York State Building Code (NYSBC) with applicable Uniform Code supplements through 2017.

6 Site Development History

The site lies outboard of the original Manhattan shoreline and has undergone numerous stages of development. The area was filled during the mid-nineteenth century and early twentieth century, progressively moving the shoreline westward to its current position, west of Twelfth Avenue. The shoreline was extended westward in stages, by placing miscellaneous fill into the river, often directly on soft river deposits of silt and clay. Numerous piers and bulkheads were present in the site footprint as

illustrated in Figures 3 through 8. Remnant bulkhead structures and foundations may be present below grade across a large area of the site and should be anticipated during construction.

The site predominantly served as rail, vehicle and storage yards since the mid-1800s.

7 LOCAL GEOLOGY

7.1 Bedrock Geology

Bedrock in the vicinity of the site generally consists of granite, schist, and gneiss. Bedrock is overlain by glacial and fluvial soil, as well as extensive fill. The original topography of Manhattan typically mimicked the contours of the underlying bedrock; although the current topography has been altered by urban development.

According to Baskerville (1994), bedrock stratigraphy in the vicinity of the site is part of the Hartland Formation, with rock of the Lower Cambrian (about 500 to 520 million years ago) to Middle Ordovician (about 461 to 472 million years ago) age and intrusive rock presumably of the Silurian age (about 416 to 444 million years ago), consisting of granite and megacrystalline pegmatite. The geologic map for the site vicinity is included as Figure 9. Generalized descriptions of rocks mapped in the vicinity of the site are:

Hartland Formation – Interbedded units of (1) gray, fine-grained quartz-feldspar granulite containing minor biotite and garnet; (2) fine-to-coarse grained, gray-to-tan weathering, quartz-feldspar-muscovite-biotite-garnet schist (mica schist); (3) dark greenish-black quartz-biotite-hornblende amphibolite. Intrusions of granite and pegmatite are common. Metamorphism has resulted in foliation – a distinct planar alignment of mineral grains – within rocks of the Hartland Formation. This grain alignment is commonly referred to as schistosity in the more platy schistose rock or compositional banding in gneissic rocks. Foliation is typically oriented either northwest or southeast and dips steeply within Manhattan as discussed by Baskerville, but may be altered locally as a result of folding.

<u>Granite and Pegmatite</u> – Gray-white-pink medium- to coarse-grained, biotite-muscovite-microcline-quartz granite and megacrystalline pegmatite in dikes less than 3 feet thick and sills greater than 3 feet thick. Accessory minerals include tourmaline, pyrite, garnet, and epidote. A large sill of intrusive granite is mapped north of the site from West 35th Street to West 40th Street; however, historical boring data indicates that this granite sill extends farther south than mapped. Boundaries between the intrusive granite and Hartland formation rocks are not well-defined as evidenced by intermittent contacts and inclusions observed in rock cores throughout the area including in the West Side Yards and Penn Station.

7.2 Surficial Geology

The Hudson River is west of the site and historically traversed the site prior to historic filling. The Hudson River formed mainly during glaciation about 2.5 million to 12,000 years ago. Southward-advancing ice sheets scoured the Hudson River Valley, deepening an existing river channel and removing surficial sediments and weathered rock. As the glaciers melted, till (a mixture of boulders, gravel, sand, silt and clay) and outwash sands were deposited on top of the scoured bedrock. A subsequent period of erosion removed much of the outwash sands and till from the Hudson River Valley. In the last 10,000 years, fluvial deposits of sand, silt and clay have covered the remaining glacial deposits. A gradual rise in sea level has resulted in a decrease in the velocity of the Hudson River. Because of this change in velocity, the more recent alluvial deposits consist primarily of silt and clay, while the older alluvial deposits consist primarily of fine sand and silt. The historical shoreline and surface water drainage pathways are shown in Figure 10.

8 FEMA Flood Zone

The Federal Emergency Management Agency (FEMA) Primary Flood Insurance Rate Map (PFIRM), plate 3604970009G, shows the site is partially within Zone AE and shaded Zone X. The Zone AE designation corresponds to "Special Flood Hazard Areas" subject to inundation by 1% annual chance flood (i.e. the 100-year flood or base flood). The shaded Zone X designation corresponds to areas subject to inundation by 0.2% annual chance flood. The FEMA base flood elevation varies from el 11 to 12 ft within terra firma. An excerpt of the PFIRM is attached as Figure 11.

Any structures located below the base flood elevation must be floodproofed in accordance with the NYCBC, NYSBC, ASCE 24, and all other agencies having jurisdiction. At a minimum, 1 foot of free board must be provided above the controlling base flood elevation for NYCBC job filings. Two feet of freeboard must be provided for filings made under the NYSBC in accordance with the 2016 Uniform Code Supplement (Section 1612.4.1). We understand that Related has elected to use a design flood of el 15 ft (3+ feet of freeboard).

We understand LIRR is designing a floodwall to protect the West Rail Yard. We recommend that LIRR be consulted to determine any special floodproofing requirements for Building C.

9 Subsurface Data

Subsurface data for the site was derived from numerous investigations performed within and adjacent to the site. This information includes borings and cone penetration testing (CPT) data as well as laboratory testing of soils and rock. The data includes studies performed by Langan and several other entities. The approximate locations of the borings and CPTs are shown in Figure 12. The following sections provide a brief overview of the data included in this study.

9.1 Test Caisson Borings (2017)

A geotechnical subsurface investigation was performed within terra firma before caisson load tests. This investigation included three geotechnical test borings and laboratory testing of collected samples.

9.1.1 Borings

The test caisson borings (identified as LB-1 through LB-3) were drilled by Craig Geotechnical Drilling Co., Inc. from 23 October to 3 November 2017 with a CME 75 truck-mounted drill rig. The borings were advanced to about 60 to 170 feet below grade.

Each boring was cleared of utilities using a vacuum truck. The borings were advanced through overburden using mud-rotary drilling techniques with tri-cone roller bits and drilling fluid consisting of a mixture of bentonite and water. Temporary flush-joint steel casing was installed through the soils, as required, to stabilize the boreholes and prevent fluid loss during drilling.

The Standard Penetration Test (SPT)¹ was performed in general accordance with ASTM D1586. SPT N-values² and visual soil classifications were recorded by Langan's engineers. Soils were sampled using a standard 2-inch outer-diameter split-spoon sampler. Undisturbed soil samples were obtained using 3-inch outer-diameter Shelby tubes in general accordance with ASTM D1587. Rock coring was performed in all borings, in accordance with ASTM D2113, using a double-wall core barrel to assist in determining bedrock depth, type, and quality.

¹ The Standard Penetration Test is a measure of soil density and consistency. The testing involves driving a 2-inch outer-diameter split-spoon sampler a distance of 2 feet, using a 140-lb hammer free falling from a height of 30 inches.

N-value – The number of blows required to drive a 2-inch diameter split-spoon sampler 12 inches after an initial "seating" penetration of 6 inches, using a 140-pound hammer free falling from a height of 30 inches.

Rock core recovery (REC)¹ and rock-quality designation (RQD)² for each core run were logged by our inspecting engineers. All recovered soil and rock samples were visually classified in the field. Soil and rock classifications, SPT N-values, and other field observations were recorded on the boring logs included in Appendix A.

9.1.2 Laboratory Testing

A laboratory testing program was performed to evaluate the general engineering index properties of select soil samples, as well as strength and properties as part of the test caisson project. The laboratory test results are included in Appendix C. The tests included:

- Natural Water Content (21 tests) [ASTM D 2216]
- Liquid and Plastic (Atterberg) limits (21 tests) [ASTM D 4318]
- Organic Content (21 tests) [ASTM D 2974]
- Unconsolidated Undrained (UU) Triaxial Test (12 tests) [ASTM D 2850]

9.2 Proposed New York Sports and Convention Center (2004)

A geotechnical subsurface investigation was performed within the WRY for the proposed New York Sports and Convention Center (NYSCC) in 2004. This investigation included 29 geotechnical test borings and 24 cone penetration tests (CPT) in the WRY, with 14 test borings and five CPTs within terra firma. A laboratory test program was also conducted as part of the project.

9.2.1 Borings

The NYSCC borings (identified as G-#) were drilled within and adjacent to the WRY by Warren George Inc. from 11 October to 17 December 2004. The borings on the tracks were performed with two Acker 2D high-rail, truck-mounted drill rigs. Borings outside of the tracks were performed with an Acker 11 truck-mounted drill rig, a CME 55 truck-mounted drill rig, or a DK-50 track-mounted drill rig. The borings were advanced to about 53 to 160 feet below grade.

Each boring was cleared of utilities by hand or using standard drilling techniques with minimal water and no down-pressure on the drill string. The borings were advanced through overburden using mud-rotary drilling techniques with tri-cone roller bits and drilling fluid consisting of a mixture of polymer additive and water. Temporary flush-joint steel casing was installed through the soils, as required, to stabilize the boreholes and prevent fluid loss during drilling.

The SPT was performed in general accordance with ASTM D1586. SPT N-values and visual soil classifications were recorded by Langan's engineers. Soils were sampled using a standard 2-inch outer-diameter split-spoon sampler. Undisturbed soil samples were obtained using 3-inch outer-diameter Shelby tubes in general accordance with ASTM D1587. Rock coring was performed in all borings, in accordance with ASTM D2113 using a double-wall core barrel to assist in determining bedrock depth, type, and quality.

The REC and RQD values for each core run were logged by our inspecting engineers. All recovered soil and rock samples were visually classified in the field. Soil and rock classifications, SPT N-values, and other field observations were recorded on the boring logs included in Appendix A.

¹ Rock core recovery (REC) is defined as the length of all core pieces recovered divided by the total core run length.

² Rock Quality Designation (RQD) is defined as the sum of all recovered sound rock core pieces measuring 4 inches or more in length (for type NX, NQ or PQ cores) divided by the total core run length. RQD is a relative indicator of rock quality.

9.2.2 Cone Penetration Testing

Cone penetration testing (CPT) within terra firma included five seismic CPTs (identified as SCPT-#). All cone-penetration testing was performed in accordance with ASTM D3441, by ConeTec, Inc. from 11 October to 19 November 2004. All of the test locations were pre-drilled to depths of about 10 feet to clear for utilities. Where obstructions were encountered in the fill, the driller returned to the CPT location and performed additional pre-drilling through the fill to allow the CPT to proceed. The CPTs were pushed to refusal, encountered at from about 40 to 82 feet below grade.

Cone-penetration testing consists of pushing an instrumented stainless steel cone through soil overburden using hydraulic pressure while continuously collecting data. The CPT cone measures penetration tip resistance, side friction, and pore water pressure at 5 cm (about 2 inch) intervals as well as shear-wave velocity; a total of 86 seismic tests were performed at about 1 meter (about 3.3 feet) intervals. The seismic test involves generating vibrations at the ground surface and recording the shear wave's amplitude and travel time with a geophone mounted in the cone. A copy of the ConeTec field report is included in Appendix B.

9.2.3 Laboratory Testing

A laboratory testing program was performed to evaluate the general engineering index properties of select soil samples, as well as strength and compressibility properties of cohesive soils and bedrock as part of the NYSCC project. The full laboratory test results for the WRY (platform and terra firma) are included in Appendix C. The testing included:

- Mechanical Grain Size (9 tests) [ASTM D 1140, D 422]
- Natural Water Content (92 tests) [ASTM D 2216]
- Liquid and Plastic (Atterberg) limits (51 tests) [ASTM D 4318]
- Organic Content (35 tests) [ASTM D 2974]
- Unconsolidated Undrained (UU) Triaxial Test (10 tests) [ASTM D 2850]
- Consolidated Undrained (CU) Triaxial Test (2 tests) [ASTM D 4767]
- Unconfined Compressive Strength of Rock (13 tests) [ASTM D 2938]
- Consolidation Test (4 tests) [ASTM D 2435]

9.3 Borings by Others

Numerous investigations were performed by others within and adjacent to the WRY; these investigations are summarized in Table 2. This information was used to supplement our data from NYSCC and the test caisson study. In general, the reported subsurface conditions correlate well with our 2017 and 2004 studies, particularly stratigraphic changes and top of rock elevations. In some instances, the historical data lacks engineering data (e.g. N-value, REC, RQD, etc) and only documents subsurface stratigraphy. Copies of the historical boring data by others are included in Appendix D.

Table 2: Historical Borings by Others

Project	Company	Year
Various Projects	NYC Department of Design and Construction (DDC)	Various
North River Water Pollution Control Project	City of New York Department of Public Works	1968
MTA West Side Storage Yard	Mueser, Rutledge, Johnston, & DeSimone Consulting Engineers	1980-1981
MABSTOA Garage	Mueser, Rutledge, Johnston, & DeSimone Woodward Clyde Consultants	1982
Westway Project	Mueser, Rutledge, Johnston, & DeSimone Woodward Clyde Consultants	1980-1986
Amtrak North Access Tunnel	Parsons Brinckerhoff	1986-1987
Pier 36 Contingency Plan	City of New York Department of General Services	1994
No. 7 Subway	Parsons Brinckerhoff Quade & Douglas, Inc.	2003-2007
Trans-Hudson Expressway (ARC Tunnel)	NJ Transit	2008
Amtrak Gateway Segment 3	Trans-Hudson Partnership	2017

10 SUBSURFACE CONDITIONS

The general subsurface stratigraphy at terra firma consists of uncontrolled fill, underlain by consecutive layers of clay and silt, sand, glacial till, and bedrock. A brief description of each layer is presented below in order of increasing depth. A subsurface profile is attached as Figure 13.

10.1 Uncontrolled Fill [Class 7]¹

Fill is present beneath the entire site. The fill generally consists of sand with varying amounts of gravel, silt, boulders, brick, wood, and other miscellaneous debris. The thickness of the fill varies from about 13 to 40 feet, generally increasing in depth from east to west. The fill varies significantly with respect to content and density from one location to the next. SPT N-values varied from about 1 to more than 100 blows per foot (bpf); however, in many cases the higher recorded N-values were attributed the presence of oversized materials (e.g., cobbles, boulders, timber, and other construction debris) and are generally not considered to be a representative indicator of in situ density. Blow counts generally decrease with depth as the transition into the softer organic clay was approached.

The fill is categorized as Class 7 (Uncontrolled Fill) in accordance with the NYCBC.

10.2 Organic Clay and Clay and Silt [Classes 6, 4c, 5b]

A stratum of organic clay and clay and silt underlies the fill throughout the site. This stratum is the historical river bottom deposit. The thickness of the silt and clay varied from about 10 to 90 feet, increasing from east to west. The top of the clay and silt layer varies from about el -5 to -35 ft.

10.2.1 Organic Clay

The black-gray organic clay has variable concentrations of silt and trace-amounts of fine sand and organic matter, and varies from zero to 40 feet thick. The organic clay was observed primarily on the west side of the site. The split spoon sampler typically penetrated this stratum under the weight of the drill rods and hammer (WOH).

¹ Numbers in brackets indicate classification of soil and rock materials in accordance with the New York City Building Code (2014).

Unified Soil Classification System (USCS) descriptions for the organic clay layer include CH (highly plastic clay) and OH (organic clay and silt of high plasticity). The organic clay layer is generally categorized as NYCBC Class 6 (Soft Clay).

10.2.2 Silt and Clay

The organic clay was underlain by gray silt and clay with some shells, trace fine sand, and trace organics. The thickness of the silt and clay stratum varied from about 10 to 80 feet, increasing in thickness from east to west. N-values in this stratum ranged from WOH to 21 blows per foot. Values in excess of 10 blows per foot are likely attributed to inclusions of debris near the interface with the fill, or wood or sand lenses within the silt-clay layer.

USCS descriptions for the silt and clay include CH (high plasticity clay) CL (low plasticity clay), MH (high plasticity silt), and ML (low plasticity silt). The silt and clay layer is generally categorized as NYCBC Class 6 (Soft Clay), Class 4c (Medium Clay) and Class 5b (Medium Silt).

10.3 Sand/Till [Classes 6, 3, 5]

Sand and glacial till was encountered above bedrock at some locations. The thickness of the sand and till varied from zero to 35 feet. The top of the sand/till layer varies from about el -24 to -88 ft.

10.3.1 Sand

Where encountered, the sand was typically comprised of grey fine sand with varying amounts of silt and was up to about 30 feet thick. N-values in the sand ranged from WOH to 27 blows per foot.

USCS classifications for the sand include SP (poorly-graded sand) and SM (silty sand). The sand layer is generally categorized as NYCBC Class 6 (Loose Sand) to Class 3a (Dense Sand).

10.3.2 Glacial Till

Where encountered, the glacial till was typically comprised of brown, red, and grey silt with variable concentrations of coarse to fine sand, gravel, clay with frequent cobbles and boulders. The thickness of the till varied from about 2 to 8 feet. N-values in the glacial till varied were more than 100 blows per foot. The high SPT N-values were likely caused by the presence of gravel, cobbles, and boulders. The glacial till appears to be more prevalent on the west side of the site.

USCS classifications for the glacial till include SM (silty sand), SC (clayey sand), GM (silty sandy gravel), and ML (low plasticity silt). The glacial till layer falls within several soil classes per the NYCBC because of the constituent variability with respect to location and depth throughout the site, but is generally NYCBC Class 3a (Dense Sand) to Class 5a (Dense Silt).

10.4 Bedrock [Classes 1a to 1d]

Bedrock was encountered from about el -22 to -131 ft; the depth to bedrock generally increases from east to west. A layer of decomposed rock was encountered at the bedrock surface in some locations. Bedrock generally consists of dark gray mica schist, gneissic schist and granulite with intrusions of light gray to pink quartz- and feldspar-rich granite and pegmatite. Granite intrusions were observed to vary from about 1 to 20 feet thick. Rock core recovery varied from about 33 to 100 percent. Rock quality designations (RQD) varied from 17 to 100 percent.

Bedrock within the site is generally categorized as NYCBC Class 1a (Hard Rock) and 1b (Medium Hard Rock). Zones containing increased weathering and fracturing were observed sporadically near the surface and within the rock mass, and are classified as NYCBC Class 1c (Intermediate Rock). Highly weathered, highly fractured zones were reported in several borings at the surface and were also observed within the rock mass. Clay gouge was observed in fractures in some of the more highly

fractured zones. The highly weathered, highly fractured zones are categorized as NYCBC Class 1d (Soft/Decomposed Rock).

10.5 Groundwater

Groundwater levels were determined from monitoring wells installed throughout the site. The measured groundwater levels varied from as high as about el 3.9 ft to as low as el -1.5 ft, but are generally expected to vary from about el 0 to 2 ft. Groundwater is expected to be tidally influenced along the west side of the site because of the proximity to the Hudson River. In addition, groundwater is likely to fluctuate with seasonal changes and precipitation events. Zones of perched water may be present at some locations given the heterogeneous nature of the fill.

11 Index Load Tests

Design phase axial and lateral load tests were performed in January 2018 on test caissons in the east, center and west areas of terra firma. Three axial and three lateral tests were completed (one in each zone). The purpose of the tests was to determine caisson design parameters including rock socket allowable peripheral side shear and end bearing, and p-y springs for lateral analysis.

Our evaluation of the axial load tests is summarized in our technical memorandum dated 4 April 2018, included as Appendix E. The main conclusions from the axial tests were that an allowable peripheral side shear of 300 psi in compression is justifiable (higher than the NYCBC presumptive value of 200 psi for bedrock) and that end bearing should be ignored because the bottoms of the sockets will likely be difficult to clean.

Our evaluation of the lateral load tests is summarized in our technical memorandum dated 17 July 2018, included as Appendix F. The main conclusions from the lateral tests were that the lateral caisson response was primarily controlled by the historical fill (thickness and density) and the caissons are not sensitive to the underlying clay or depth to bedrock. The results of the load tests were used to calibrate software models for caisson design.

12 Seismic Design Parameters

Seismic design parameters presented herein are in accordance with the 2014 New York City Building Code (NYCBC) and 2015 New York State Building Code (NYSBC).

12.1 Seismic Evaluation

The site was initially evaluated using the general procedures outlined in the 2014 NYCBC and the 2015 NYSBC. Based on the general procedures the site was initially classified as Site Class E, but was assigned to Site Class F because of the potential for liquefaction. The Site Class F designation requires a site-specific seismic study. A site-specific seismic study was subsequently performed to: 1) further evaluate the potential for liquefaction; 2) evaluate the potential excess pore pressure development during seismic events; and 3) to develop appropriate response spectra and determine the corresponding seismic design category for the site. The study is presented as Appendix G.

Site-specific total and effective stress analyses were performed using the pertinent boring and CPT data for towers 5 and 6 shown in Figure 14. These analyses indicate the site's design spectrum falls below the 80 percent of Site Class E envelope (minimum spectrum permitted by code) for both zones.

We understand the proposed structures at terra firma are classified as NYCBC Structural Occupancy/Risk Category III. As such, the recommended design spectral accelerations obtained from our response spectra result in Seismic Design Category C in both zones. Seismic design parameters are presented in Table 3. The recommended design response spectra are presented in Figure 15.

Although a site-specific study was not performed for Building C, the results at towers 5 and 6 both yielded the code minimum design response spectrum; therefore, we also recommend the same spectrum for Building C.

Effective stress analyses suggest that excess pore pressure development is not likely to trigger full liquefaction; however, significant softening may occur in fill soils located below the groundwater table. The recommended excess pore pressures for design range from 40 percent at Tower 6 to 65 percent at Tower 5, as discussed in the site-specific seismic study (Appendix G). As such, we recommend that the foundations be designed to accommodate reduced bearing and lateral resistance by corresponding reductions in shear strength.

Table 3: Seismic Design Parameters

Parameter	Design Value
Site Class	E
Spectral Acceleration at short periods, SDS	0.359 g
Spectral Acceleration at 1-sec period, SD1	0.136 g
Risk Category	III
Seismic Design Category, SDC	С

12.2 Design and Construction Considerations

12.2.1 Tower 5 and 6

The following bullets briefly summarize significant design and construction considerations for towers 5 and 6.

- The design and construction of towers 5 and 6 is subject to the requirements of the NYCBC.
- In addition to LIRR, the tower design and construction will be subject to review and approval of Amtrak (Gateway Tunnel), MTACC/NYCT (No. 7 Line subway), NYCDOT (Eleventh Avenue viaducts), and Friends of the Highline (Highline).
- The site is within the mapped FEMA flood hazard area. The FEMA base flood elevation varies from el 11 to 12 ft. Areas of Tower 5 and 6 below design flood level (project chosen el 15 ft) must be floodproofed in accordance with the NYCBC and ASCE 24.
- Groundwater generally varies from about el -1.5 to 2 ft. Temporary dewatering will be necessary for construction of the cellars and installation of utilities, pile caps, tie-beams, etc.
- The subsurface conditions within the site are relatively poor and necessitate a deep foundation system for much of the proposed structure. Drilled caissons will generally be required to support the towers given the anticipated high axial and lateral loads. Lightly loaded retail structures below the Highline at Tower 6 may be supported by drilled mini-caissons.
- Segment 3 of the Amtrak Gateway tunnel will pass below Tower 6 and portions of Tower 6 are expected to bear directly atop the Gateway tunnel. The overbuild loads on the tunnel roof must not exceed the established allowable bearing pressures dictated by Amtrak. We understand that the tunnel will not accommodate lateral loads from Tower 6. Foundations outboard of the tunnel will be subject to Amtrak's project-specific requirements with respect transfer of loads, influence lines, and construction means and methods.
- Pre-production axial load tests indicate that an allowable peripheral side shear of 300 psi can be used for design of the caissons.
- The potential for excess pore pressure development during seismic events will reduce the lateral capacity of caissons at the site, with greater softening potential at Tower 5 (refer to Appendix G).

- Tie-beams between adjacent caissons are required because the site classifies as Seismic Design Category C. Excavations for tie-beams may require utility relocations, and support and protection of adjacent structures such as the Highline and the Eleventh Avenue viaduct abutment.
- Excavation will extend below groundwater and temporary construction dewatering will be required. Support of excavation systems should consider the need to mitigate groundwater pumping and reduce the potential for affecting groundwater and stress conditions in areas outside of the excavation. Therefore, we recommend a continuous wall system such as interlocking sheet piling, secant walls, or soil-mix walls, etc. to provide groundwater cutoff.
- Protection of adjacent structures will be necessary during construction, particularly the Highline, Gateway Tunnel and the Eleventh Avenue abutment. A detailed monitoring program is necessary to evaluate the performance of the SOE, adjacent structures, the ground, and existing tunnels during tower construction. The monitoring program will be subject to review and approval of Amtrak, MTACC/NYCT, LIRR, NYCDOT, and Friends of the Highline.
- Means and methods to construct caissons must mitigate potential for soil loss and disturbance.
- The rail yard north of the site will remain active during tower construction and will require close coordination with LIRR.
- Floor slabs and walls of permanent structures below the design flood elevation must be designed to resist hydrostatic pressures.
- Ground anchors may be required where sufficient dead load is not present to accommodate hydrostatic forces from either static groundwater or design flood conditions.

12.2.2 LIRR Building C

The following bullets briefly summarize significant design and construction considerations for the LIRR Building C.

- Design of LIRR Building C is subject to the requirements of the NYSBC with all applicable Uniform Code supplements.
- Drilled caissons, mini-caissons or driven piles are considered feasible for support the LIRR support buildings; however, we understand that a combination of caissons and mini-caissons are anticipated. Shallow foundations are not considered suitable given the poor soils and potential for seismically induced settlement.
- The design flood elevation for the LIRR support buildings should be as dictated by LIRR. We
 recommend that LIRR be consulted early in the design process to determine appropriate design
 flood elevations. Structures located below design flood level will need to be floodproofed in
 accordance with the NYSBC and ASCE 24.
- Excavation will extend below the groundwater table and temporary construction dewatering will
 be required. The support of excavation system should consider the need to mitigate groundwater
 pumping and reduce the potential for affecting groundwater and stress conditions in areas outside
 of the excavation. Therefore, we recommend a continuous wall system such as interlocking
 sheet piling, secant walls, or soil-mix walls, etc to provide groundwater cutoff.
- Floor slabs and walls of permanent structures below the design flood elevation must be designed to resist hydrostatic pressures.
- Ground anchors may be required where sufficient dead load is not present to accommodate hydrostatic forces from either static groundwater or design flood conditions.

13 Design Recommendations

13.1 Drilled Caissons

We recommend that Tower 5, Tower 6, and Building C be supported by drilled caissons. Lightly loaded parts of Tower 6 (under the Highline) and Building C can be supported by smaller diameter mini-caissons. Note that NYSBC terminology varies from the NYCBC and that the NYSBC describes caissons as "socketed drilled shafts" and mini-caissons as "micropiles". We will use the NYCBC nomenclature of "caissons" and "mini-caissons" herein.

Caissons consist of a permanent steel casing drilled through soil to bedrock, with an uncased socket extending into bedrock. The casing and rock socket are filled with steel reinforcing and concrete. Steel reinforcing may consist of rolled steel sections, built-up plate steel shapes, and/or rebar cages; however, we expect that use of rebar cages will be preferable because of the difficulty splicing core beams (time and space requirements). Caissons develop axial load capacity through a combination of peripheral shear resistance between the concrete and rock, and end-bearing on the rock. We recommend that the caisson rock sockets be proportioned assuming an allowable peripheral bond stress of 300 pounds per square inch (psi) for compression and 100 psi for uplift. We recommend that end bearing be ignored because obtaining a suitably clean bottom will be difficult at the anticipated depths (as observed in the test caissons). The recommended design values assume rock meeting NYCBC Class 1c or better for rock socket sidewalls. All rock sockets must be inspected to verify the quality of the bedrock before installing reinforcing steel and concreting. We recommend that verification be performed through video inspection with a down-the-hole camera or by drilling large diameter cores (minimum 85 mm) at the center axis of the caisson in conjunction with borehole geophysical logging (acoustic and/or optical televiewer).

Preliminary plans by MRCE indicate caissons and mini-caissons varying from 9-5/8 to 24-inch in diameter, with service loads up to about 980 kips, will support LIRR Building C. Caisson service loads and diameters for towers 5 and 6 have not been developed.

Caissons should be designed to accommodate the combined effects from axial loading and bending. Short caissons may be prone to develop a plastic hinge at the soil-rock interface. The shear capacity of such elements should be evaluated and where required, additional shear reinforcing should be provided or the casing should be seated deeper into rock. The effects of excess pore water pressure during seismic loading should be considered when evaluating the lateral capacity of the caissons by corresponding reductions in shear strength.

13.1.1 Caisson Load Tests

13.1.1.1 Axial Load Tests

As discussed prior, three pre-production axial load tests were performed to evaluate the potential for increasing the peripheral side shear in excess of the presumptive values identified in the NYCBC. Additional axial load tests will be required to meet the requirements of the NYCBC and substantiate the recommended 300-psi peripheral shear. We estimate that at least three additional tests will be required assuming that caissons can land within about 76,000 square feet of the site area. We recommend that the tests be distributed such that at least one test be performed within the footprint of each tower.

13.1.1.2 Lateral Load Tests

Although pre-production lateral load tests were perform as part of the design additional lateral load tests will be required for production caissons per the NYCBC. At least two lateral load tests are required for each caisson diameter and to satisfy NYCBC requirements. Given the variable subsurface conditions, load tests should be performed in areas containing the "poorest" conditions unless additional load tests are performed to evaluate each area of differing subsurface conditions throughout the site. Where caissons of the same diameter contain differing quantities of reinforcement or have differing concrete

strength, the test caissons should use the least amount of reinforcement and lowest compressive strength of concrete to provide a lower bound envelope of the lateral capacity unless additional load tests are performed for each caisson material configuration. Lateral load tests must be performed in accordance with ASTM D3966.

13.1.2 Group Effects

The caissons should have a minimum center-to-center spacing of at least 2.5 diameters to prevent axial group effects. If the minimum center-to-center spacing of caissons is less than 2.5 diameters, analysis must be performed to determine if the axial capacity is governed by the caisson group or individual caissons.

Lateral group effects should be considered where caisson center to center spacing is less than six diameters.

13.1.3 Caisson and Mini-Caisson Drilling

Caisson installation methods must prevent loss of ground and minimize vibrations. Drilling of the caissons through soil can be performed using rotary or auger drilling techniques. Given the potential for borehole collapse within loose silty soils and bottom heave in soft clays, we recommend that temporary casing and a positive head of drilling fluid be maintained during drilling. Where required a mineral or polymer slurry should be provided to improve stability. In addition, we recommend the drill stem be kept a minimum of 1 foot inside the casing while drilling through overburden soils to minimize the potential for bottom heave or running-sand conditions. A concrete plug may be necessary to seal the casing to rock in areas with steeply sloping or fractured rock.

A down-the-hole hammer will be required to efficiently drill the rock socket. Caissons should be flushed using water or compressed air (or other approved methods) after completing rock socket drilling to remove all debris from the bottom of the rock socket. Thorough cleaning of the bottom of the rock socket is critical for caissons designed with end-bearing. As discussed above, because of the difficulty in achieving a clean bottom at the anticipated socket depths over 100 feet we recommend neglecting end bearing in the design.

Obstructions, such as remnant foundations or bulkheads, and debris in the historical fill, should be anticipated throughout the site. The Contractor must consider the need for penetrating or bypassing such obstructions. Means to bypass the obstructions may include pre-drilling using oversized cased boreholes and then backfilling. We recommend that careful drilling techniques be employed to avoid disturbance of these materials. Pre-drilling activities to clear potential obstructions must be evaluated relative to possible loss of lateral resistance. We recommend that the contractor be precluded from performing pre-drilling in open holes below the groundwater. All pre-drilling areas should be backfilled and compacted with an approved material satisfactory to the geotechnical engineer. Where possible, pre-drilling should be performed by advancing oversized casing with the hole cleaned out and backfilled with Controlled Low Strength Material (CLSM) prior to withdrawal of the casing.

13.1.4 Reinforcing Steel Splices

Deformed bar and threaded bar cages can be spliced using staggered mechanical couplers or conventional lap splices. We recommend that only mechanical couplers capable of developing full capacity of the bars be used for tension elements.

The splice connection between core beams must be capable of achieving the necessary stress and moment transfer at the splice depth. Splices should be milled to bear and should utilize either complete joint penetration (CJP) or partial joint penetration (PJP) welds as necessary. Bolted connections may also be considered, but such mechanical connections could inhibit constructability because the splice can require significant area within the caisson section, thus potentially limiting concrete flow or installation of concrete tremie tubes.

13.1.5 Centralizers

All reinforcing steel must be centered within the caisson or mini-caisson. Where rebar cages are implemented, centralizers should be spaced no more than 10 feet on center. Steel core beams should be provided with at least one centralizer at the base. The tops of core beams should be aligned at the top of the casing using either a template or by manual wedges.

13.1.6 Concrete Placement

Concrete should be placed as soon as possible following cleaning, and within 72 hours of inspecting the rock socket. If placement is delayed the socket must be reinspected. Concrete must be placed using tremie methods, and must be performed in a continuous operation. Concrete must consist of a flowable mixture and must remain workable throughout the duration of the pour. We recommend self-consolidating concretes.

13.1.7 Foundation Settlement

Caissons and mini-caisson settlement will generally be about equal to elastic shortening.

13.1.8 Minimum Clearances (Amtrak and MTA Tunnels)

Coordination with Amtrak and the MTA will be required to determine the minimum allowable clear distances (lateral and vertical) between caissons or mini-caissons and tunnels. Lateral clearances to the No. 7 Line subway are not expected to govern as the tunnels are greater than 10 feet beyond the east property line.

Finite element method (FEM) analyses will be necessary to demonstrate that the caissons do not negatively impact the tunnels and justify the vertical location of rock socket bond zones relative to the existing tunnels.

The bond zones for caissons adjacent to the Gateway tunnel must be located below a theoretic influence line starting at the tunnel invert and projecting outward 10 feet, upward vertically 10 feet, and then upward at an inclination of 1V:1H. Caissons adjacent to the No. 7 Line should be assumed to have bond zones starting at a minimum depth of 3 feet below the top of rock.

The locations and extents of the existing tunnels must be verified in the field by the contractor's licensed surveyor before drilling.

13.1.9 Plumbness Monitoring

We recommend that all caissons and mini-caissons located less than 25 feet from existing tunnels be monitored during construction to ensure the caissons are installed plumb. Standard construction tolerances dictate that the caissons deviate no more than 2 percent from vertical alignment. Where required, casings should be survey monitored prior to initial penetration to ensure proper vertical alignment. Thereafter, plumbness of the caissons should be measured incrementally during the drilling process using borehole geophysical methods suitable for determining azimuth and inclination (e.g. gyroscopic methods).

13.1.10 Bond Breaker

Bond breakers may be necessary to prevent shedding loads onto the Gateway tunnel. The specific requirements for bond breakers should be determined by Amtrak, and should be evaluated based on the actual caisson layout and loading. Bond breakers may not be necessary in areas where caissons bear well above tunnels founded in rock (e.g. No. 7 Line). Justification for eliminating such bond breakers is generally demonstrated through a finite element method analysis.

While several methods are available to provide a bond breaker, we recommend that the specific means and methods be proposed by the Contractor. Conceptually, a bond breaker can be provided by: 1) drilling a temporarily cased oversized borehole to the intended top of rock socket; 2) installing a smaller bituminous coated permanent casing inside the temporary casing; 3) grouting the annulus, and removal of the temporary casing, and; 4) drilling the final rock socket from within the remaining permanent casing. Alternatively, bond breakers can be accomplished by hanging a bituminous coated pipe (isolation casing) within a portion of the rock socket. Often the isolation casing is supported from the reinforcing cage or core beam.

13.2 Floor Slabs

Floor slabs and sump pits should be designed as structural pressure slabs assuming hydrostatic uplift corresponding to the design flood elevation. Where possible, pressure slabs should be keyed into walls and should be cast with integral water-stops at all joints (PVC "dumbbells" and post-construction grouting tubes). Pressure slabs should be waterproofed as per the recommendations presented herein and those of the project waterproofing consultant.

13.3 Below Grade Walls

Any permanent below grade walls will be subjected to lateral pressures from soil, groundwater (hydrostatic), and surcharge loads. Restrained walls (walls that are braced against moving/rotating, such as basement walls) should be designed for at-rest earth pressure. The soil parameters shown in Table 4 should be used for the design of lateral earth pressure loads on restrained below grade walls.

Table 4: Below Grade Wall Soil Design Parameters (Restrained Walls)

rabio il zolo il orado trail con zoolgii i aramotolo (iltochamica trailo)			
Parameter	Recommended Value		
Wall Backfill:	Fill		
Typical Soil Unit Weight:	120 pcf		
Friction Angle:	30 Degrees		
Coefficient of At-Rest Earth Pressure:	0.50		
Design Water Level	Towers 5 and 6: Project Design Elevation, el 15 ft Building C: As directed by LIRR		

13.4 Permanent Groundwater Control

We recommend that all walls and slabs of the towers below the design flood elevation be completely encapsulated using a membrane type waterproofing system, such as those manufactured by Grace Construction Products (GCP) Applied Technologies, Inc., Carlisle Coatings and Waterproofing, Inc., Sika Corporation, or Laurenco Systems, Inc. The use of bentonite waterproofing or negative-side crystalline waterproofing is not recommended as a means of primary waterproofing.

Horizontal waterproofing membranes should be installed on a minimum 2-inch-thick lean concrete mud slab placed over an approved subgrade to provide a smooth and uniform application surface. Vertically applied waterproofing membranes should extend up to the design flood elevation. Substrate preparation should be per the manufacturer's recommendation.

Quality control is critical to a successful waterproofing project. The waterproofing installation should be inspected daily, especially during placement of reinforcement for the floor slabs and perimeter walls. Any holes or tears should be repaired in accordance with the manufacturer's recommendations and utility penetrations should be carefully sealed. All seams, including separations between wall and slab membranes should be checked for tightness. We recommend that the waterproofing manufacturer inspect the waterproofing operations during construction and approve all work before placing concrete.

14 Construction Recommendations

14.1 Excavations

Excavations will extend to about 15 to 20 feet below existing site grades for construction of the proposed cellars, with localized deeper pits. Additionally, we anticipate that excavation through soil will be required for utility relocations, and construction of pile caps and grade beams. Excavations in soil can be accomplished with conventional earthmoving equipment (i.e., track-hoes, etc). Obstructions such as remnant foundations, timber cribbing/bulkheads, abandoned and live utilities, rubble, and boulders should be anticipated when excavating or installing deep foundations through soils. Larger equipment may be required to remove obstructions. Means and methods for the removal of obstructions must be coordinated against the design to mitigate the potential for reducing axial or lateral capacity of foundation elements.

Temporary excavation support should be installed as per the recommendations presented herein. Smaller excavations (e.g. utilities, etc.) may be benched or sloped in accordance with applicable OSHA standards where appropriate, or use trench boxes or other temporary excavation support.

Care must be exercised if pre-excavating to clear potential obstructions at caisson locations to avoid disturbance that can reduce lateral resistance of soils and ultimately reduce caisson lateral capacity. We recommend that the contractor be precluded from performing pre-excavation in open holes below groundwater. All areas of pre-excavation should be backfilled and compacted with an approved material satisfactory to the geotechnical engineer. Where possible, pre-excavation should be performed by advancing oversized casing with the hole cleaned out and backfilled with CLSM.

14.2 Temporary Excavation Support

Temporary excavation support will be required for the excavation of the core at Tower 5 and the cellars at Tower 6 and Building C. The excavation will extend below the groundwater table and the excavation support should be designed as an interlocking system extending into the clay to provide groundwater cutoff, and reduce groundwater pumping and draw down outside of the excavation limits.

We anticipate that the excavation support system will be a combination of interlocking steel sheet piling with internal bracing at Building C and Tower 5 and a secant pile wall tied into the Gateway Tunnel excavation support system at Tower 6.

Temporary excavation support may be needed for utility relocations and construction of pile caps and tiebeams. The contractor or responsible subcontractor should design temporary construction support of excavation in accordance with all OSHA, local, state and federal safety regulations.

We recommend that support of excavation be designed assuming the soil parameters provided in Table 5and the following minimum loading conditions:

- Braced Excavations Free draining or dewatered walls should be designed using a uniform
 pressure distribution of 28H psf, where H is the total height of the wall. Walls that are not free
 draining or are not dewatered should also be designed using a uniform pressure of 28H psf,
 where H is the total height of the wall plus a triangular hydrostatic pressure of 62.4 psf per foot
 below the groundwater table (el 2 ft).
- Lateral pressures from surface loads should assume vehicular loading. Surface surcharges should be added as an inverted triangle having a maximum pressure at the ground surface equal to one-half of the vertical surface load (minimum 600 psf for construction equipment). Lateral surcharge pressure can be reduced to zero at a depth of 15 feet below ground surface.
- Lateral pressures from adjacent structures should be determined using elastic methods and should be added to the above loads.

 Temporary construction loads such as cranes and other equipment are not considered herein and must be assessed on a case-by-case basis.

Table 5: Soil and Groundwater Design Parameters (SOE)

Material	Parameter	Recommended Value
Groundwater	Elevation	el 2.0 ft
	Moist Unit Weight	120 pcf
Fill	Friction Angle:	30 degrees
	Cohesion:	0 psf
	Moist Unit Weight	105 pcf
Silty Clay	Friction Angle:	0 degrees
	Cohesion:	500 psf
	Moist Unit Weight	125 pcf
Sand/Till	Friction Angle:	36 degrees
	Cohesion:	0 psf

14.3 Temporary Construction Dewatering

The basement excavations will extend below groundwater, which was generally observed between el 2 to -1 ft; therefore, temporary construction dewatering will be required in all excavations below el 2 ft. We anticipate that dewatering can be accomplished with a well-point dewatering system or a deep well system. The use of sumps and trench drains may be possible in localized areas provided that necessary draw-down is limited to less than about 4 feet.

Given the porous nature of the existing fill soils and underlying native sand soils and proximity to the Hudson River, significant flow rates should be expected. The contractor's dewatering system should be adequate for maintaining a dry subgrade during normal operating conditions. The sheet pile excavation support system should be driven into the clay to help reduce lateral water flow beneath and into the base of the excavation. Joint sealer should be applied to the joints during driving to reduce the potential for water flow through the joints.

Localized excavations for utility relocation and tie-beams may be below the static groundwater level; therefore, temporary construction dewatering may be required. Controlling the groundwater will be critical in order to allow for subgrade preparation. We expect that groundwater should be controllable with sump pumps during foundation work.

All groundwater discharged from the site into NYC sewers will require temporary dewatering permits from the NYCDEP. Treatment may be required where the discharge does not meet water quality standards dictated by the regulatory agencies having jurisdiction.

14.4 Soil Subgrades

Floor slab, pile cap, and grade beam subgrades should be level and clear of debris, standing or frozen water, and other deleterious materials. Soils should be excavated with care to avoid disturbance that may reduce axial or lateral resistance. We recommend that the final 12 inches of excavation be performed with flat bladed buckets in open areas and by hand in confined areas. Subgrades should be protected from the effects of frost, precipitation, groundwater and surface water run-off and construction until concrete is cast. As such, we recommend that the Contractor limit the area of exposed subgrade to

prevent deterioration of the bearing conditions; however, excavations should be made large enough to allow passage of a compactor.

Areas disturbed by excavation and other areas found to be unacceptable should be re-compacted, or stabilized as necessary, using geogrid or geotextiles in conjunction with compacted structural fill or gravel. CLSM or lean concrete may also be used. The subgrade following placement of fill and compaction should be firm and unyielding under the weight of heavy equipment without evidence of rutting, pumping, or heaving. Vibratory compaction shall not be performed on soils that are not within 2 percent of optimum moisture content. Compaction should be discontinued in the event that soils are observed to "pump or heave" because of wet conditions.

After compaction, subgrades should be capped with crushed stone fill. This material will help protect the subgrade from degradation and can be used to assist in conveyance of water during dewatering activities. A mud slab may also be cast to provide protection and may be required to provide a suitable substrate for waterproofing in building areas.

14.5 Fill Materials, Placement, and Compaction

Structural fill is expected under slabs and around foundation walls, tie-beams and pile caps. Additional fill should be limited to utility trenches, minor earthwork, or roadway reconstruction. Structural fill should consist of a well-graded durable granular material having a maximum particle size of 4 inches in any dimension, and no more than 10 percent fines passing the No. 200 sieve. All fill should be free of trash, debris, roots, vegetation, peat, or other deleterious materials and should be approved by the geotechnical engineer before placement. Lean concrete or controlled low-strength material (CLSM) may be substituted for structural fill.

Fill should be placed in uniform loose lifts not exceeding 12 inches in open areas that can be compacted using heavy compaction equipment, and 6 inches in confined areas where hand operated equipment is required. All fill should be compacted to at least 95 percent of the soil's maximum dry density as determined by ASTM D1557. The water content at the time of compaction should be within a 2 percent of the optimum value determined by ASTM D1557. Areas which cannot be densified by compaction and areas containing appreciable amounts of deleterious debris (i.e. wood, organics, etc.) should be removed as directed by the inspecting Geotechnical Engineer and replaced with structural fill, CLSM, or lean concrete. All fill placement and compaction work must be performed in the presence of the inspecting Geotechnical Engineer.

Fill should not be placed on subgrades not inspected and approved by the geotechnical engineer. All fill must meet the requirements of the approved Remedial Action Work Plan (see below).

14.6 Restrictive Declaration Soil Management

The site is being developed under the oversight of the New York City Office of Environmental Remediation (NYCOER) pursuant to a restrictive declaration (RD). The restrictive declaration includes requirements for hazardous materials testing, air emissions control, and noise attenuation. Soil management (excavation, staging, transport, disposal and importing) must follow all requirements of the NYCOER-approved Remedial Action Work Plan (RAWP).

14.7 Monitoring

We recommend that a detailed monitoring program be developed and incorporated into the Contract Documents. Monitoring should include means to measure both structural movement and vibrations. The type and locations of specific monitoring equipment, threshold values, and durations should be developed based on review of the anticipated construction means and methods in conjunction with proximity to existing structures and utilities. The purpose of performing monitoring is to provide reasonable feedback to the contractor and engineer as to performance of the contractor with respect to protecting existing structures and utilities, and to assess any necessary changes to means and methods of construction.

Specific requirements for monitoring are likely to be imposed by governing agencies including NYCDOT, MTACC/NYCT, Amtrak, Friends of the Highline. Critical structures which are likely to require monitoring include:

- 1. the Highline,
- 2. the Eleventh Avenue viaduct,
- 3. the Gateway Tunnel, and
- 4. the MTA No. 7 Line subway.

We recommend that a dialog be established with all governing agencies before construction to determine specific monitoring requirements.

The monitoring program would likely include optical surveying, seismographs (vibration monitoring), and crack gauges. We recommend that a plan be developed after discussion with the governing agencies and further development of design drawings. Given the expected duration for foundation construction, remote sensors capable of relaying data in real-time via wireless communications should be used. The monitoring plan should address means and methods for measuring ground and structural deformation, and vibration levels. We recommend that all monitoring be performed by a third-party consultant independent of the contractor; however, the contractor should reserve the right to perform additional monitoring. Monitoring should be performed throughout drilling, excavation and construction.

14.8 Preconstruction Conditions Documentation

We recommend that preconstruction conditions documentation be performed on any structures to remain, about one month prior to the start of construction. Each agency will likely require documentation of their facilities. This would most likely include Highline, Eleventh Avenue viaduct, Amtrak Gateway tunnel, and MTA No. 7 Line Extension structures. The purpose of these observations is to provide photographic and video documentation representative of general existing conditions and identify obvious visual deficiencies. The preconditions observations should also identify areas requiring specific monitoring during construction. Structural integrity is not addressed in such documentation. This baseline information is often critical in the event of future damage claims resulting from construction activities.

14.9 Special Inspections

Excavation and foundation work are subject to various Special Inspections as per the requirements outlined in Chapter 17 of the NYCBC and the Rules of the City of New York and any requirements of the LIRR. Construction activities that require geotechnical quality control inspections include installation of the caisson foundations, driven piles, mini-caissons, excavation, subgrades, and excavation support systems, backfilling, and compaction. This work must be performed under the inspection of a qualified geotechnical engineer. The inspecting engineer should be familiar with the subsurface conditions, as well as the proposed and existing construction onsite. We recommend that all inspectors meet the minimum requisite qualifications outlined in 1RCNY 101-06.

15 Construction Documents

Technical specifications and design drawings should incorporate the recommendations contained herein to ensure that subsurface conditions and other geotechnical issues at the site are adequately addressed in the construction documents.

We recommend that the language in foundation and earthwork specifications emphasize the potential for encountering buried obstructions during excavation and groundwater control with the intent of mitigating change-of-conditions claims arising during construction. All excavation should be assumed to be unclassified such that the contractor is responsible for providing the necessary performance of the foundation system regardless of conditions encountered.

16 Owner and Contractor Responsibilities

The Contractor is responsible for construction quality control, which includes satisfactorily constructing the foundation system and any associated temporary works to achieve the design intent while not adversely impacting or causing loss of support to neighboring property, structures, utilities, roadways, etc. Construction activities that can alter the existing ground conditions such as excavation, fill placement, foundation construction, ground improvement, pile driving/drilling, dewatering, etc. can also induce stresses, vibrations, and movements in nearby structures and utilities, and disturb occupants. Contractors are solely responsible to ensure that their activities will not adversely affect the structures and utilities, and will not disturb occupants. Contractors must also take all necessary measures to protect the existing structures, utilities, etc during construction. By using this report, the Owner agrees that Langan will not be held responsible for any damage to adjacent structures, utilities, etc.

The preparation and use of this report is based on the condition that the project construction contract between the Owner and their Contractor(s) will include: 1) Langan being added to the Project Wrap and/or Contractor's General Liability insurance as an additional insured, and 2) language specifically stating the Foundation Contractor will defend, indemnify, and hold harmless the Owner and Langan against all claims related to disturbance or damage to adjacent structures, utilities, etc or properties.

17 LIMITATIONS

The conclusions and recommendations provided in this report are based on subsurface conditions inferred from a limited number of borings and in situ testing performed within and adjacent to the proposed expansion, and historic records and information provided by others.

Information on subsurface strata and groundwater levels shown on the logs represents conditions encountered only at the locations indicated and at the time of investigation. If different conditions are encountered, they should immediately be brought to our attention for evaluation as they may affect our recommendations.

This report has been prepared to assist the Owner in developing the site. The information in this report cannot be relied upon by engineers or contractors without specific permission or for adjacent properties that are beyond the limits of that which is the specific subject of this report.

Environmental issues (such as potentially contaminated soil and groundwater) are outside the scope of this study.

18 References

Baskerville, C.A. (1994) "Bedrock and Engineering Geology Maps of New York County, and parts of Kings and Queens Counties, New York, and parts of Bergen and Hudson Counties, New Jersey". I-MAP 2306, Sheets 1&2, USGS.

Bridges, W. & Maverick, P. (1811) "This map of the city of New York and island of Manhattan, as laid out by the commissioners appointed by the legislature, April 3d, 1807 is respectfully dedicated to the mayor, aldermen and commonalty thereof." [New York: s.n] [Map] Retrieved from the Library of Congress.

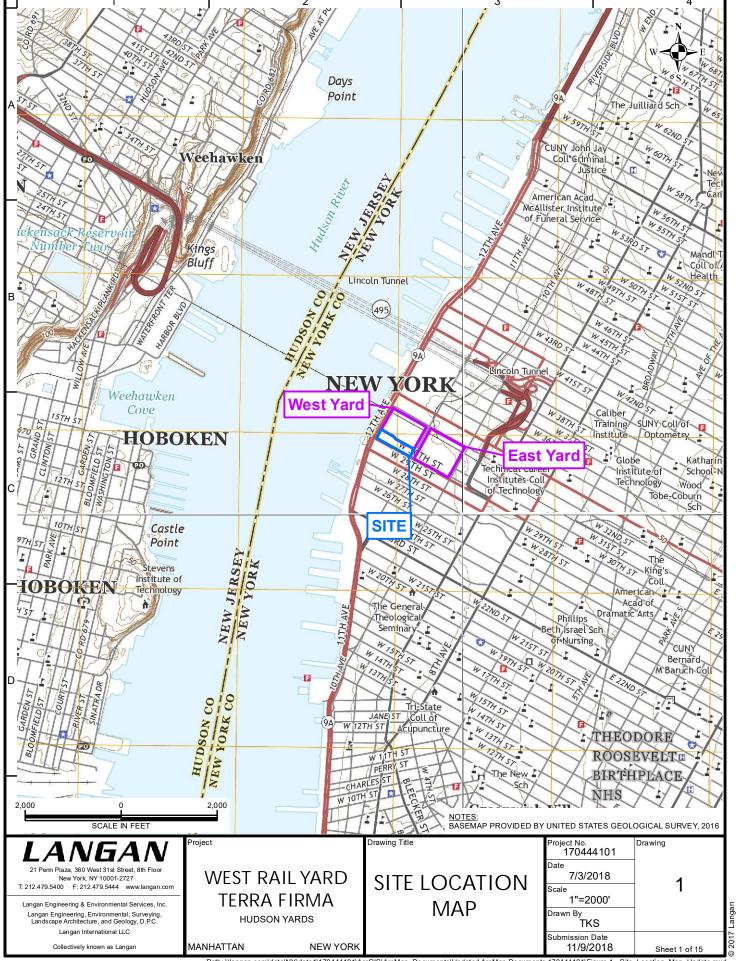
Bromley, G. W. & Robinson, E. (1879) "Outline and Index Map of New York City, New York" From actual surveys and official records by G.W. Bromley & Co., civil engineers. Published by Geo. W. Bromley & E. Robinson. 82 & 84 Nassau St., New York. 1879. Entered 1879, by G.W. Bromley & Co., Washington. Engraved by A.H. Mueller, Walnut St., Philadelphia. Printed by F. Bourquin, S. Sixth St., Philadelphia

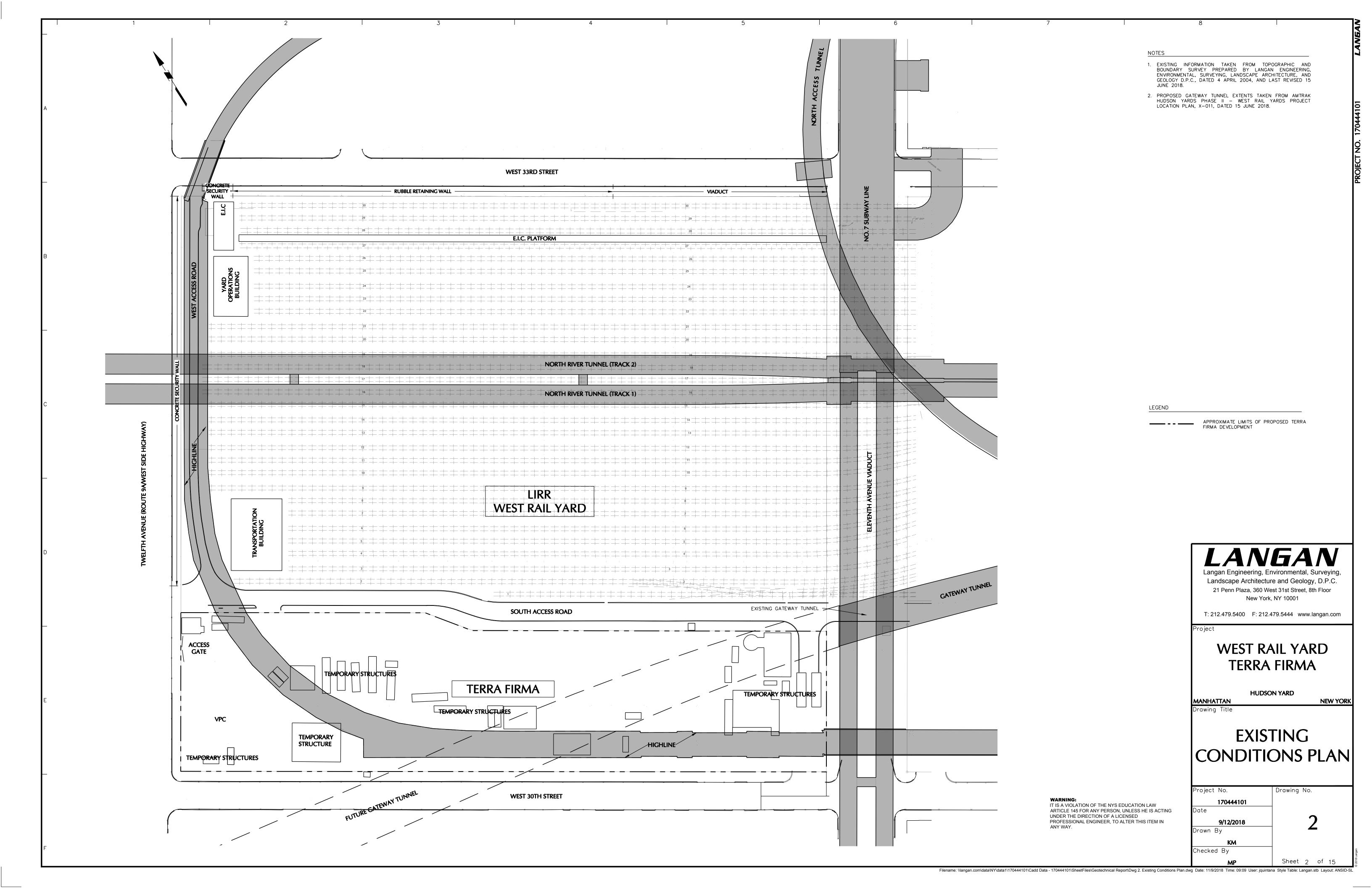
Perris, William (1865) "Map of the City of New York" Lionel Pincus and Princess Firyal Map Division, The New York Public Library. (1857 - 1862). Volume 6 Index Map

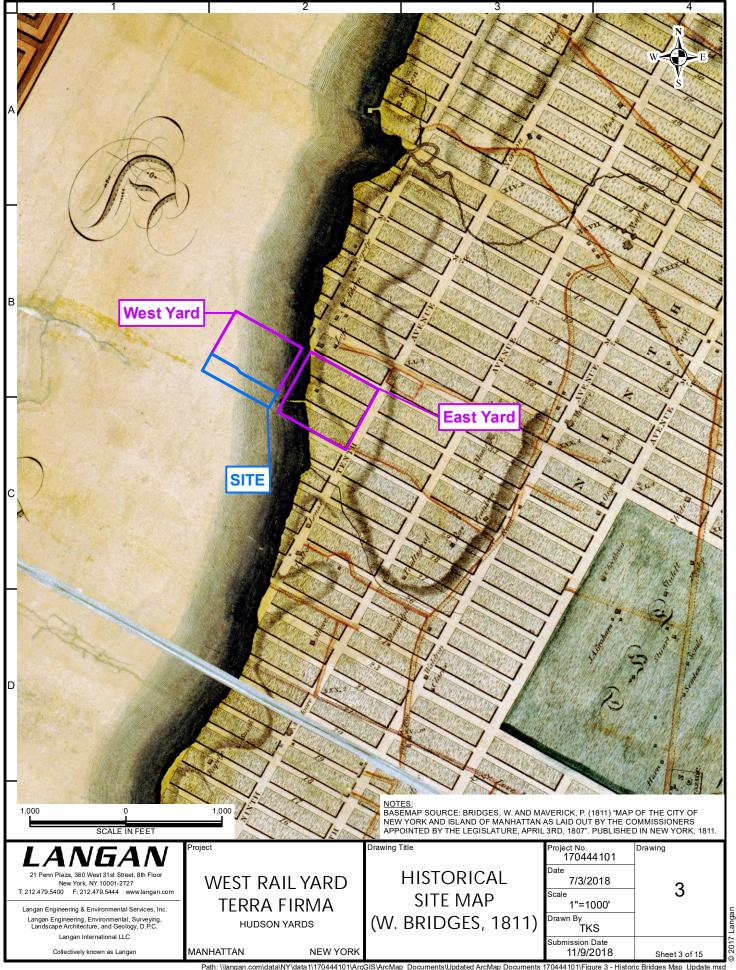
Robinson, E. (1885), Lionel Pincus and Princess Firyal Map Division, The New York Public Library. "Outline & Index Map of New York City. Index I"

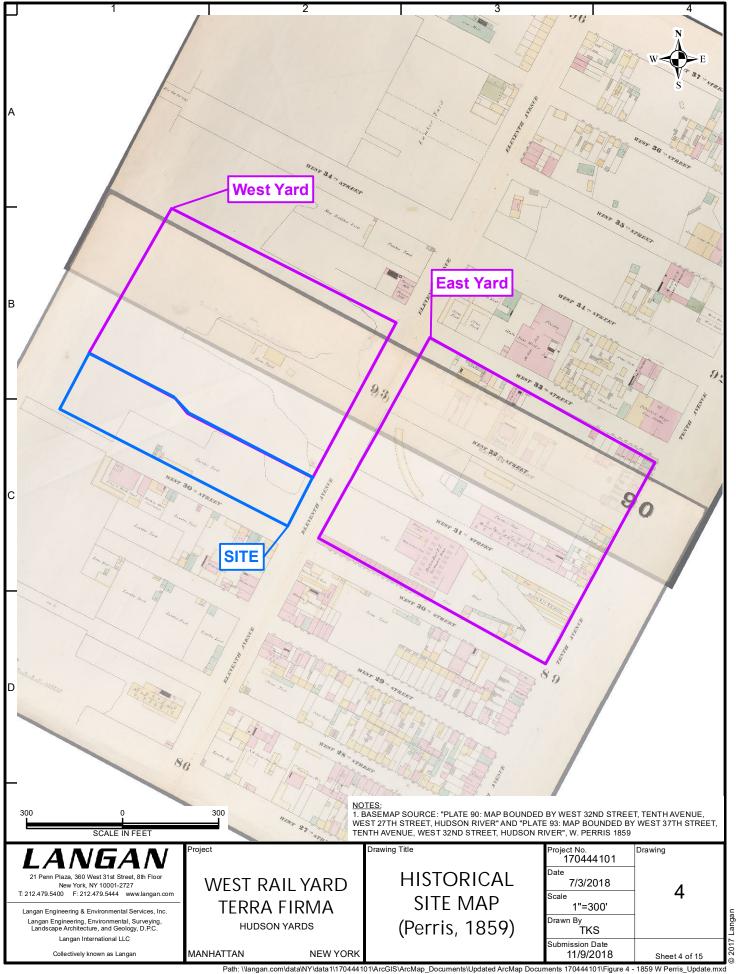
Bromley, G.W. & Bromley, W.S. (1897), Lionel Pincus and Princess Firyal Map Division, The New York Public Library. "Outline and Index Map of Atlas of New York City: Manhattan Island"

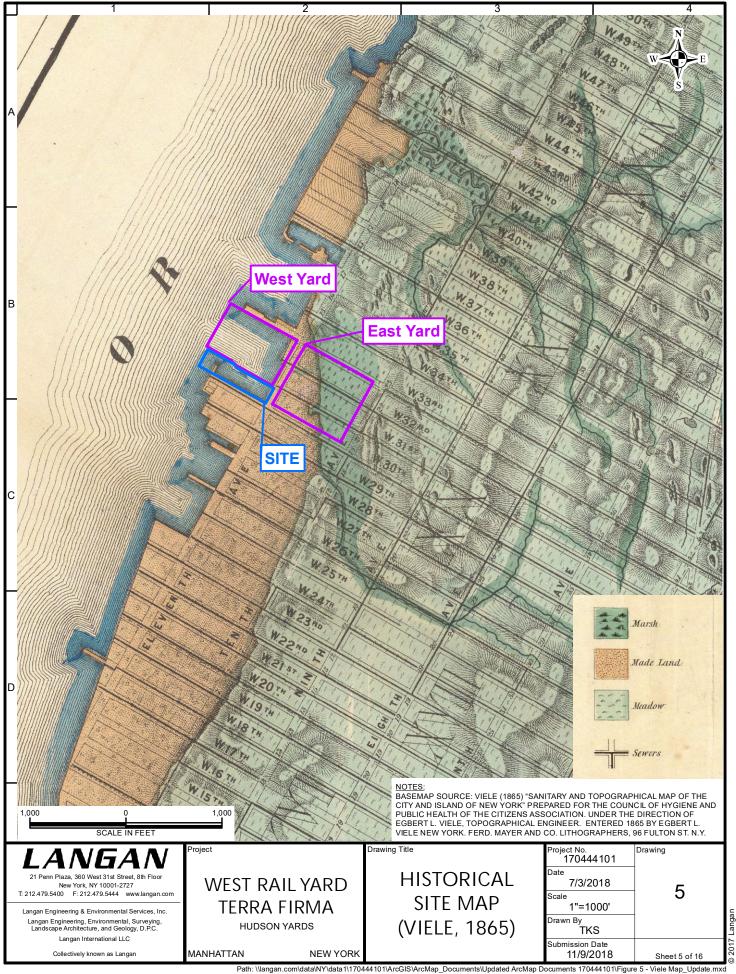
Viele (1865) "Sanitary & Topographical Map of the City and Island of New York" Prepared for the Council of Hygiene and Public Health of the Citizens Association. Under the direction of Egbert L. Viele, Topographical Engineer. Entered 1865 by Egbert L. Viele New York. Ferd. Mayer & Co. Lithographers, 96 Fulton St. N.Y.

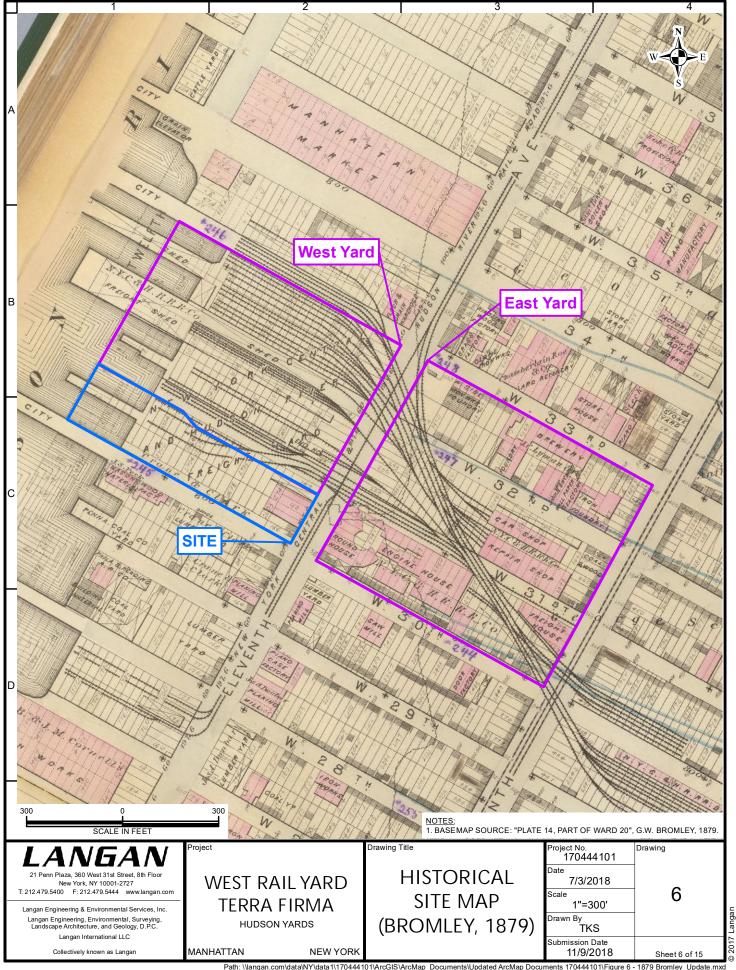

\langan.com\data\NY\data1\170444101\Office Data\Reports\Geotechnical\Geotechnical Engineering Study\Terra Firma\HYW-TF-LAN-RPT-B-20181109-Geotechnical_Report.docx

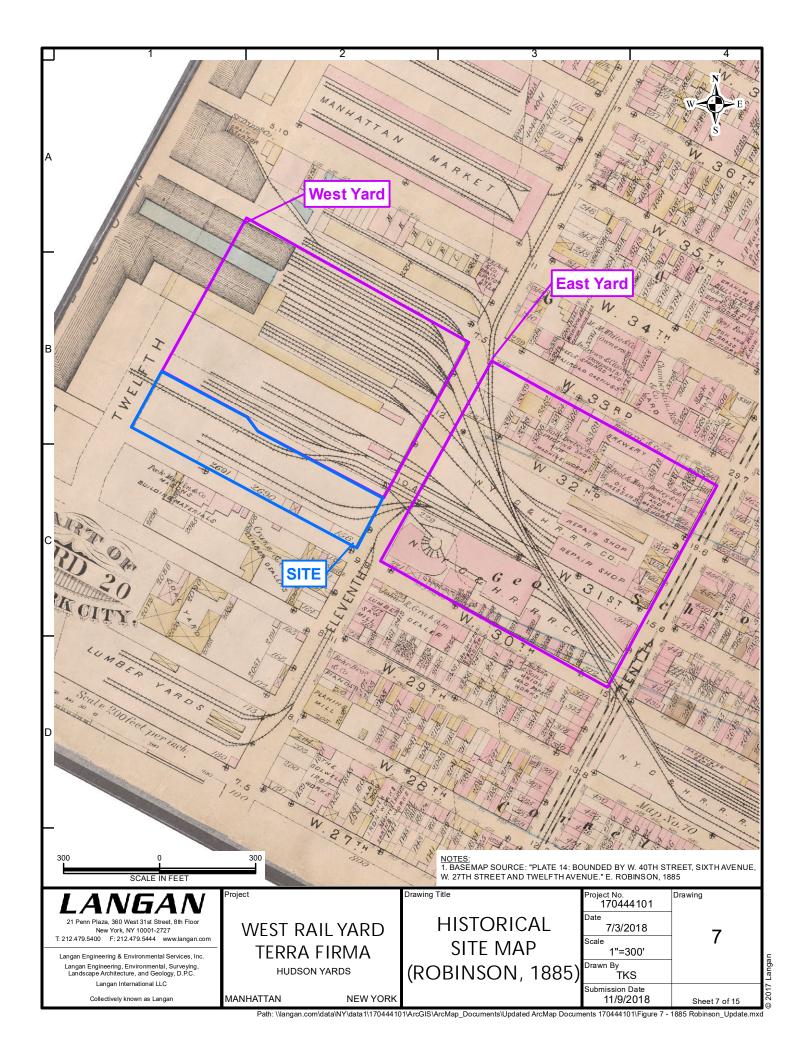


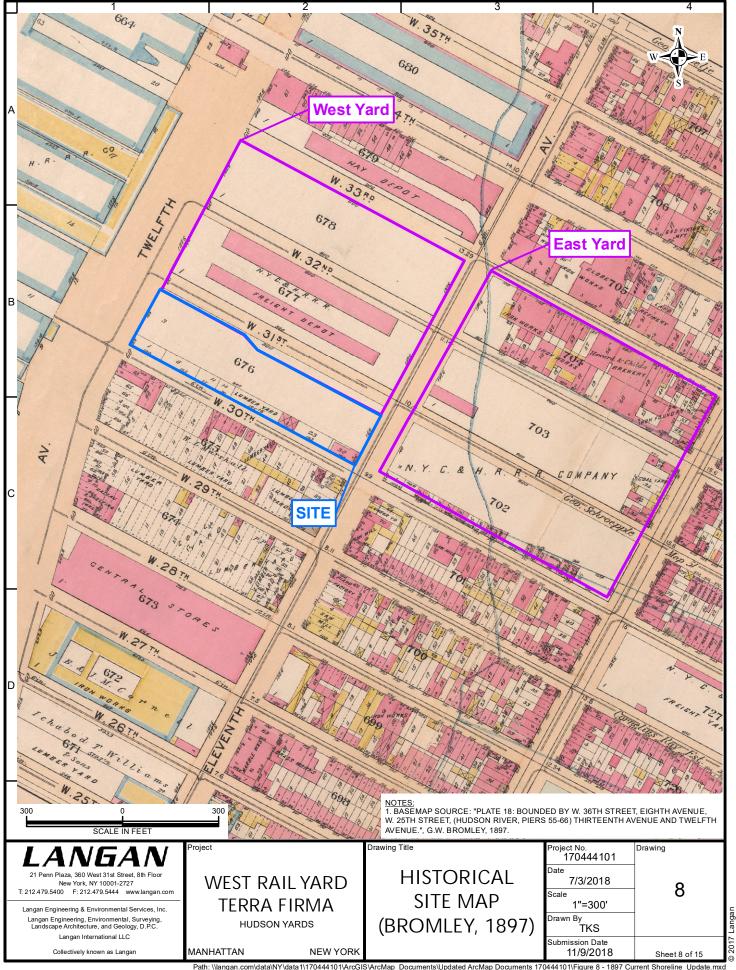

End of Report

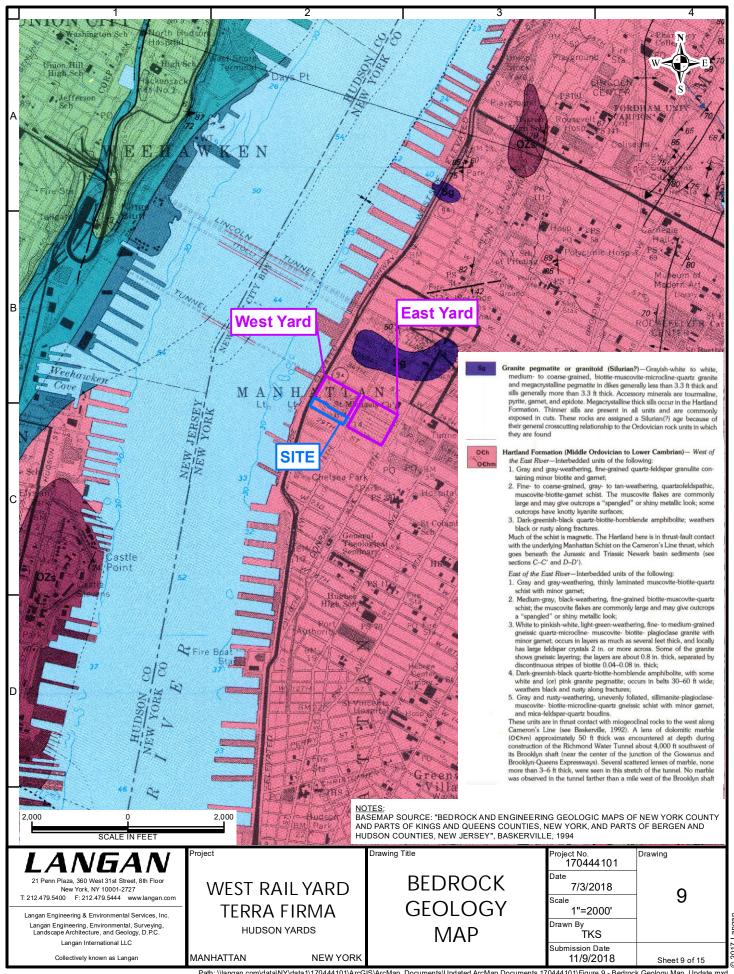


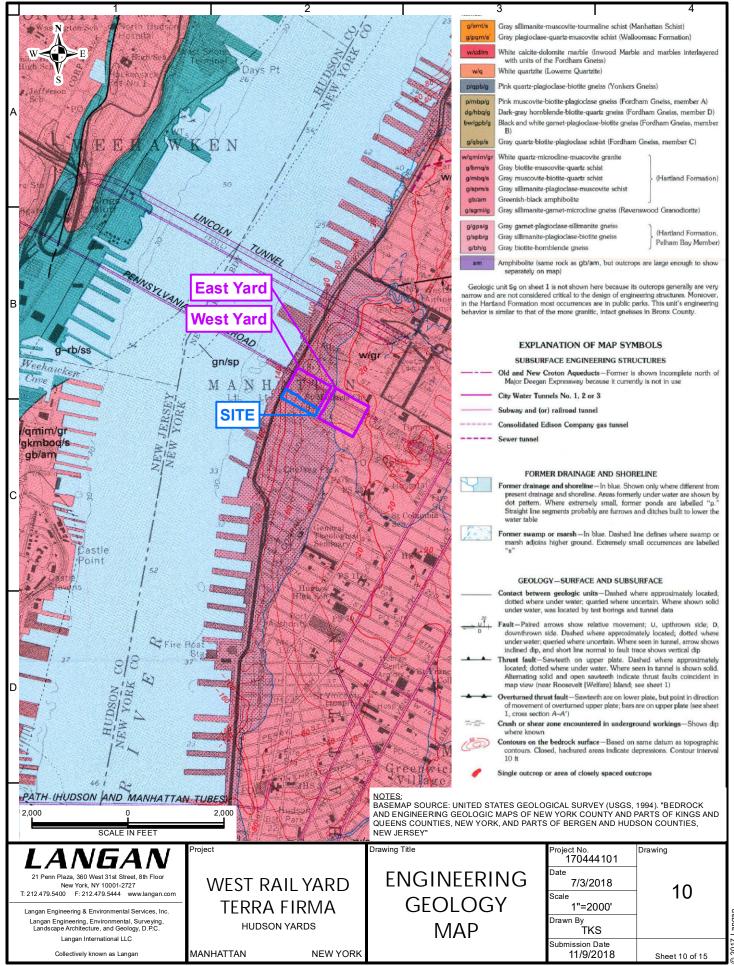

FIGURES

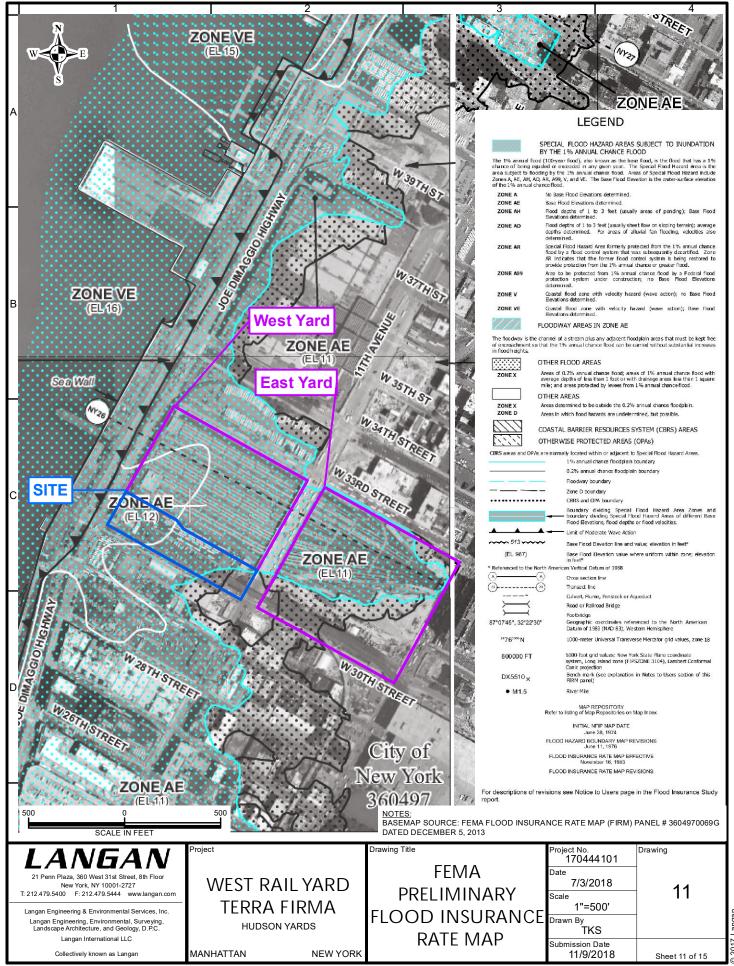


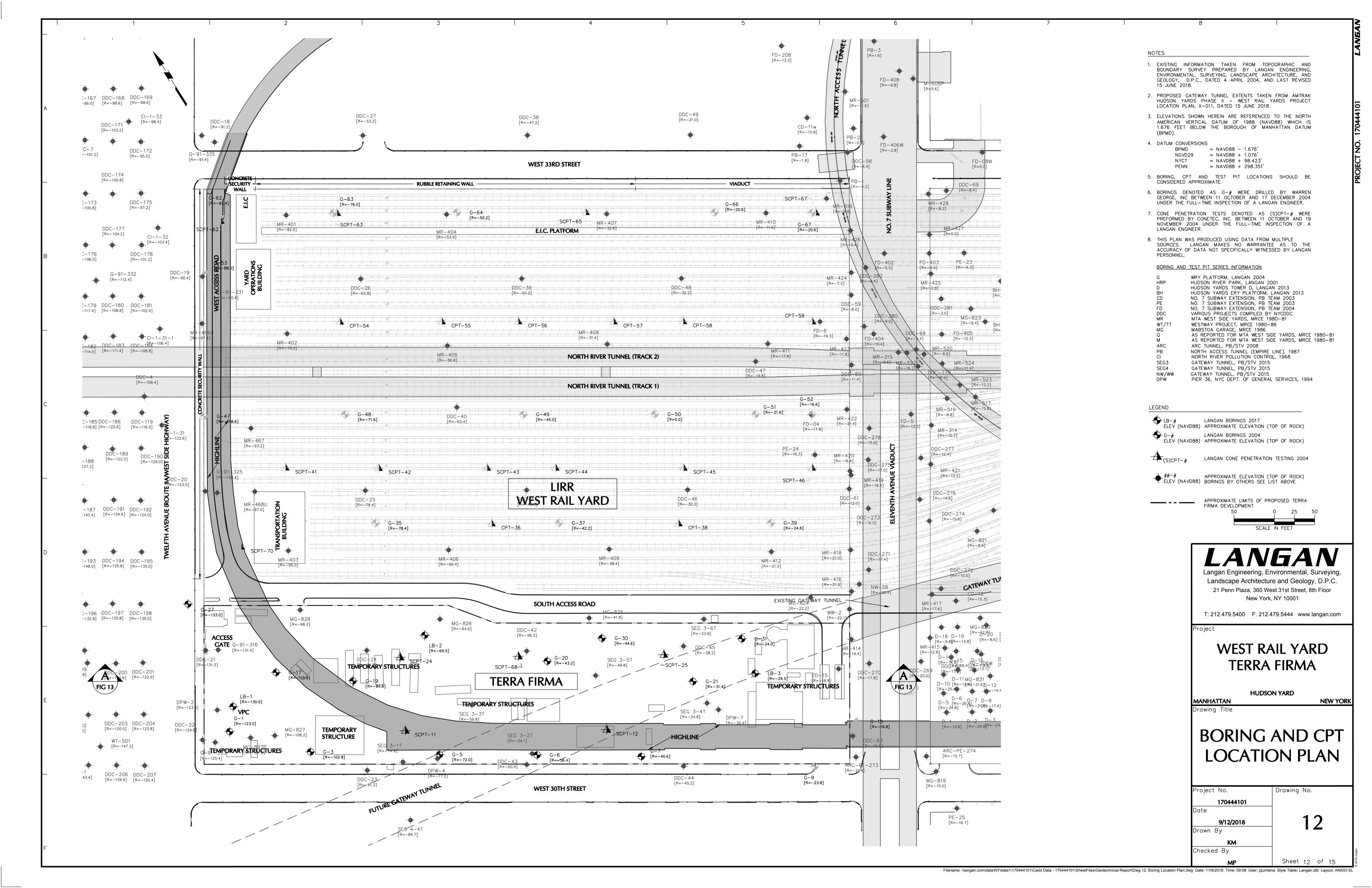


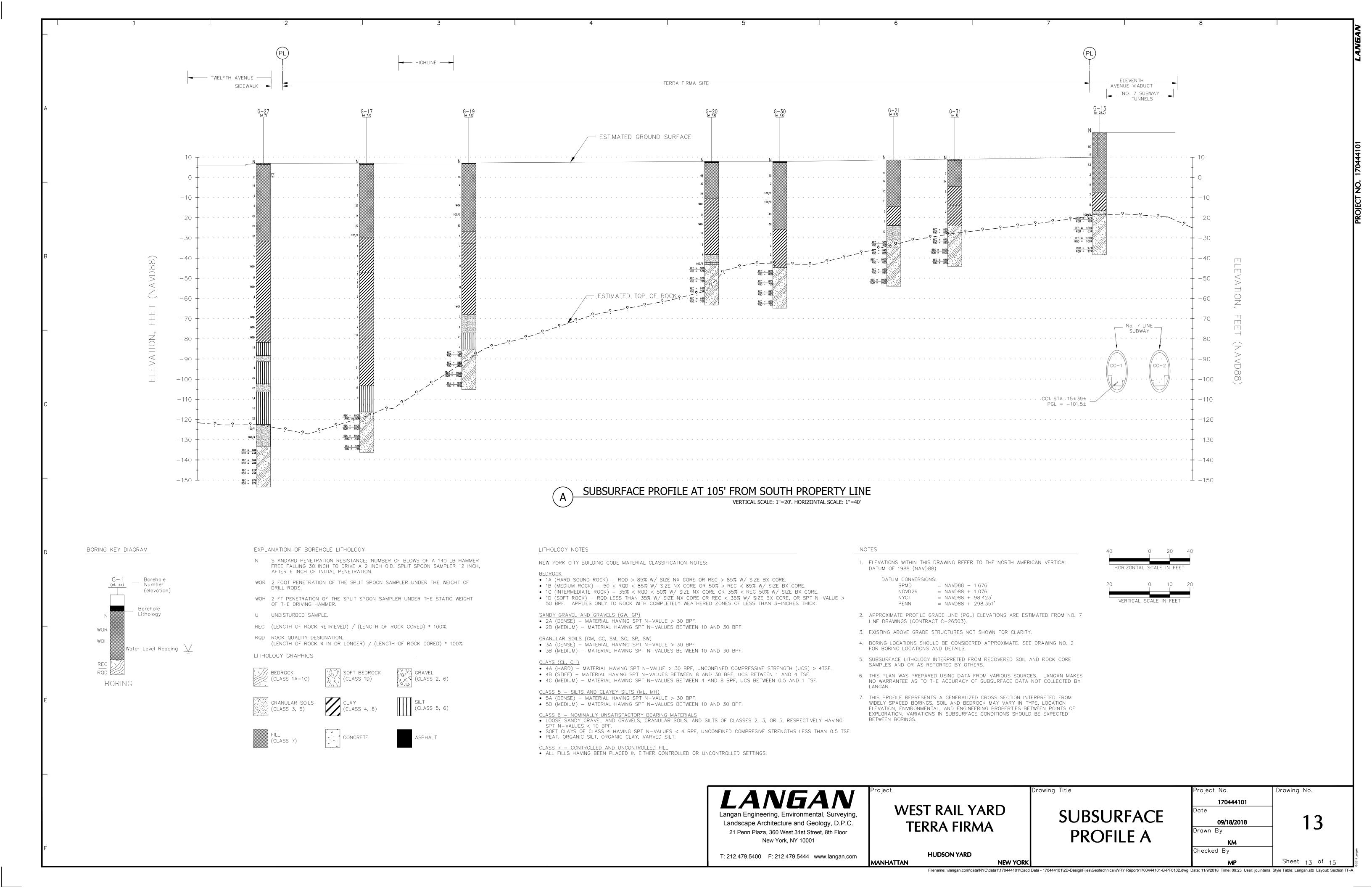


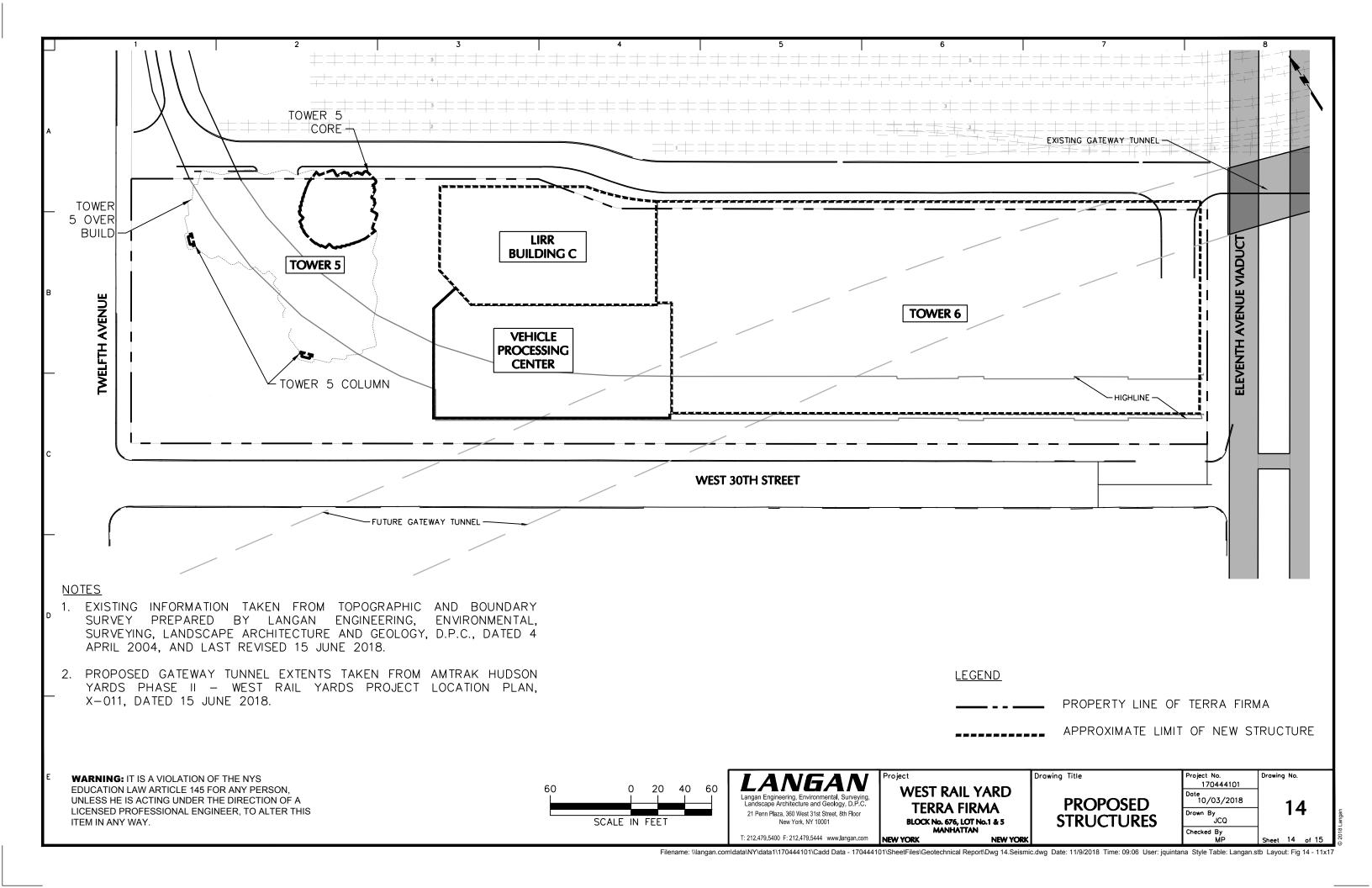












Recommended Surface Design Acceleration Response Spectrum (ξ =5%) 0.50 T(Sec) Sa(g) 0.45 0.000 0.136 0.075 0.359 $S_{DS} = 0.359 g$ 0.384 0.359 0.40 0.500 0.273 T>0.5 0.136/T0.35 **Spectral Acceleration (g)**0.30 0.25 0.20 0.15 $S_{D1} = 0.136g$ 0.10 0.05 0.00 1.0 1.2 0.0 0.2 0.6 8.0 1.4 1.6 1.8 0.4 2.0 Period T (sec)

WARNING: IT IS A VIOLATION THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

LANGAN

21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001

T: 212.479.5400 F: 212.479.5444 www.langan.com
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C. S.A.
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C.
Langan Engineering and Environmental Services, Inc.
Langan CT, Inc.

Langan International LLC Collectively known as Langan

WEST RAIL YARD TERRA FIRMA

Project

HUDSON YARDS

MANHATTAN NEW YORK

Drawing Title

RECOMMENDED SITE-SPECIFIC DESIGN RESPONSE SPECTRUM

Project No. 170444103	Drawing No.
Date	
11/9/2018	
Scale	15
NTS	15
Drawn By	
LY	
Submission Date	
11/9/2018	Sheet 15 of 15

APPENDIX A 2004 and 2017 Langan Boring Logs

	NG/	1/V		Log						G	-1		_		Shee	t	1	of	7
Project	Hudson Yards - WRY						t No.			170	44410 ⁻	1							
Location	on LIRR West Side Yard, Manhattan, NY							Elevation and Datum Approx. 6.9 NAVD88											
Drilling Company							Starte	d							Finished	d			
Warren George, Inc. Drilling Equipment							letion	Dept	th	1	1/3/04		R	ock	Depth		11	/15/04	
Size and Type	Acker-11 Truck Rig				-					Dist	150 ft urbed			Un	ıdisturbe	ed		130 ft Core	
Casing Diame	3 7/8" Tri-Cone Roller	bit	Casi	ng Depth (ft)	N	lumb	er of S	Samp	oles	Firs		24	1		mpletio		2	24 HR.	5
	3"/4" Flush Joint Stee	Weight (lbs)		128			Level	` '		\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>				Ţ				<u>Ā</u>	
Casing Hamm		300	<u> </u>	Orop (in) 30	٦,	'I IIII I I	y Fore	illal		orry	Tirro								
Sampler Ham	2" O.D. Split Spoon / 3	Weight (lbs)	[Orop (in)	_ Fi	ield l	Engine	eer											
	Automatic	140		30	Ē				N		Shah mple D	ata							
SYMBOL (ft)	s	ample Description			Coring (min)	D S	epth cale	Number	Туре	Recov.	Penetr. resist BL/6in		-Valu lows/		(Dri		Rema	arks epth of Cas Resistance	sing,
+6.9	6" Concrete				Š	╁	0 -	Ž	-	8	 	10 2	20 30	40				in south	
+6.4	6.4							corner of about 41'								f NYDS gas station, ' north of 30th Street and about 27' east of			
	Dark brown, SAND, [NYCBC Class 7]	some gravel, brick (Fill	l)			2 -									qu (t	12th Avenue fence qu (tsf) estimated from Poo Penetrometer			
							3 -										ger to		
							5								Plas	itic gr	id pie	ces at 4'	
							6											g rollerbit down pre	
							7 -												
							8 -												
	S-1: Brown coarse	to fine SAND, some sil	lt son	ne			10 -				8				Spin	1 4" ca	asing	to 10'	
	coarse to fine grave [NYCBC Class 7]	I, concrete fragments (F	Fill)				11 -	S-1	SS	12	54 48			102			Ū		
							12 -				62								
						Ē	13 -												
						E	14												
		oarse to fine SAND, sor	me sil	t,		E	15				20				1				
	[NYCBC Class 7]	lium to fine gravel (Fill)				E	16	S-2	SS	7	19 16		35	1					
							17	_			11				Rolle	erbit t	to 20'		
						E	18												
							19 -												
						Ė	20 —	1				$ \ /$							

Log of Boring G-1 Sheet 7 of Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 6.9 NAVD88 Sample Data Remarks Elev Depth Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -13.1 20 S-3: Brown-dark brown, coarse to fine SAND, some silt, SS trace coarse to fine gravel, concrete, brick, root S-3 fragments (Fill) 7 21 [NYCBC Class 7] 2 22 Drilling mud additive (revert) mixed with water 23 Roller bit to 25' 24 25 S-4: Dark brown-black, fine to medium SAND, some silt, some fine gravel, trace shell fragments (Fill) [NYCBC Class 7] 13 26 11 27 Spin 4" casing to 30' Casing breaks inside hole 28 Missed sample 30 ft to 32 ft due to casing problem (break 29 and retrieval) 30 Rollerbit to 35' 31 32 33 35 SS S-5: Dark brown-black, medium to fine SAND, some fine gravel, trace clay, trace silt (Fill) [NYCBC Class 7] S-5 36 2 3 37 Rollerbit to 40' 38 39 -33.1 q.,=0.5 tsf SS S-6: Dark grey, CLAY (CH), trace silt, trace shell fragments ` 3 [NYCBC Class 4c] 22 3 Rollerbit to 45' 43

Log of Boring G-1 Sheet of 7 Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 6.9 NAVD88 Sample Data Remarks Depth Scale Elev Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) 10 20 30 40 -38. 45 S-7: Dark grey, CLAY (CH), trace silt, trace shell Shelby tube sample attempted 2 SS 45' to 47' (No recovery) [NYCBC Class 4c] S-7 46 2 Take split spoon sample at 3 same depth 2nd attempt for shelby tube 47' 48 49 50 q.,=0.25 tsf S-8: Dark grey, CLAY (CH), some silt, trace fine gravel, trace shell fragments [NYCBC Class 4c] 13 3 52 Rollerbit to 55' 53 54 55 SS q.,=0.25 tsf S-9: Dark grey, CLAY (CH), trace silt, trace shell fragments
[NYCBC Class 4c] 24 56 2 19 58 59 60 q.,=0.4 tsf S-10: Dark grey, CLAY (CH), some shell fragments [NYCBC Class 4c] 4 61 3 62 63 64 S-11: Dark grey, CLAY (CL), some shell fragments, trace 2 [NYCBC Class 4c] 66 3 67 Rollerbit to 70' 68 69

ILANGAN.COMIDATAINYIDATA1/170444101

Log of Boring G-1 Sheet 7 of Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 6.9 NAVD88 Sample Data MATERIAL SYMBOL Remarks Depth Scale Elev Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) 10 20 30 40 -63.1 70 S-12: Dark grey, CLAY (CL), trace shell fragments q.,=0.15 tsf SS [NYCBC Class 4c] 3 23 3 3 72 Rollerbit to 75' 73 q_u=0.25 tsf S-13: Dark grey, silty CLAY (CL), trace shell fragments WOR [NYCBC Class 4c] 12 2 Rollerbit to 80' 78 79 80 S-14: Dark grey, silty CLAY (CL), trace shell fragments [NYCBC Class 4c] 24 2 82 Rollerbit to 85' 83 85 S-15: Dark grey, silty CLAY (CL), trace fine sand, trace WOR shell fragments WOR [NYCBC Class 6] 86 1 87 Rollerbit to 90' 88 89 -83.1 S-16: Grey, clayey SILT (ML), some fine sand, trace shell fragments 3 [NYCBC Class 5b] 24 6 92 Rollerbit to 95' 93

Log of Boring G-1 Sheet 7 of Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 6.9 NAVD88 Sample Data Coring (min) Remarks Elev Depth N-Value (Blows/ft) Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale 10 20 30 40 -88. 95 S-17: Grey, fine SAND (SM), some silt, trace shell SS S-17 3 [NYCBC Class 3b] 20 96 10 13 97 Rollerbit to 100' 98 99 100 Spin 3" casing to 100' S-18: Gray fine SAND (SM), some silt, trace shell fragments 3/28/2017 1:18:31 PM 6 [NYCBC Class 3b] 24 12 14 102 Rollerbit to 105' 103 NLANGAN.COMIDATAINYIDATA1/170444101/ENGINEERING DATAIGEOTECHNICAL/GINTJETS STADIUM LOGS\LANGAN BORINGS.GPJ 104 105 S-19: Grey, fine SAND (SM), some silt, trace fine gravel, 3 trace shell fragments 3 [NYCBC Class 6] 9 106 7 Rollerbit to 110' 108 109 110 S-20:NO RECOVERY. WOR GRAVEL IN SPOON TIP. WOR S-20 WOR WOR 112 Rollerbit to 115' 113 114 S-21: Grey, fine SAND (SM), some silt, trace rock 6 fragments S-21 8 [NYCBC Class 3b] 116 15 117 Rollerbit to 120' 118 119

Log of Boring G-1 Sheet of 7 Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 6.9 NAVD88 Sample Data Remarks Depth Flev Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale 10 20 30 40 113. 120 S-22: Dark grey-grey, fine SAND (SM), some silt, trace wood fragments, trace fine gravel S-22 SS 7 [NYCBC Class 3b] 7 121 10 12 122 Rollerbit to 125' 123 124 125 Rig chattering and hard drilling 124' to 125' (Boulder) -S-23 SS 0 100/0' 3/28/2017 1:18:32 PM Spin 3" casing to 125' Drill through boulder and spin S-24: Grey-brown, medium to fine SAND (SM), some silt, SS casing to 128' S-24 some fine gravel, trace rock fragments (Glacial Till) ∞ 22 [NYCBC Class 3a] Top of rock at 130' 100/1 128 **-ANGAN BORINGS.GPJ** 129 123. 130 131 C-1: Grey-black, mica SCHIST, rough, moderately weathered to highly weathered, moderately to highly fractured, fine to medium grained, strong rock, very 8 132 REC=60"/60" =100% closely to widely spaced fractures. 7 [NYCBC Class 1b] **NX CORE BARRE** RQD=44"/60" 5 6 Clay coated fracture 134' to 135' 6 135 6 136 C-2: Grey, mica SCHIST, rough, moderately weathered to highly weathered, moderately to highly fractured, fine to 8 medium grained, strong rock, very closely fractured. 137 REC=60"/60" =100% **%09=** [NYCBC Class 1b] 8 137' to 138.9' white granitic pegmatite zone with highly NX CORE BARREI 138 fractured joints RQD=36"/60" 7 139 7 7 C-3: Grey-black, mica SCHIST, rough, moderately weathered to highly weathered, moderately to highly 8 REC=60"/60" =100% RQD=35"/60" =58% fractured, fine to medium grained, strong rock, very NX CORE BARREI closely to widely spaced fractures. 8 [NYCBC Class 1b] 143 8 7

Log of Boring G-1 Sheet of 7 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 6.9 NAVD88 Sample Data Coring (min) Remarks Depth Scale Elev N-Value (Blows/ft) Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) 10 20 30 40 138. C-3 7 146 C-4: Grey-white, mica SCHIST, rough moderately to highly fractured, fine to medium grained, strong rock, 8 REC=42"/48" =88% RQD=24"/48" =50% closely to widely spaced fractures. [NYCBC Class 1b] 8 148 7 149 8 150 Borehole backfilled with End of boring at 150' cuttings and surface patched "ILANGAN, COMIDATAINYDATA1/170444101/ENGINEERING DATA/GEOTECHNICAL/GINTJETS STADIUM LOGS\LANGAN BORINGS.GPJ ... 3/28/2017 1:18:32 PM .. upon completion 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

Log of Boring G-15 Sheet of 3 Project Project No. Hudson Yards - WRY 170444101 Elevation and Datum Location LIRR West Side Yard, Manhattan, NY Approx. 22.2 NAVD88 Drilling Company Date Started Date Finished 10/22/04 10/25/04 Warren George, Inc. **Drilling Equipment** Completion Depth Rock Depth DK-50 Track Rig 61 ft 41 ft Size and Type of Bit Disturbed Undisturbed Core Number of Samples 3 7/8" Tri-Cone Rollerbit 8 0 4 Casing Diameter (in) Casing Depth (ft) Completion 24 HR. First Water Level (ft.) 3"/4" Flush Joint Steel \mathbf{V} Casing Hammer Donut Drilling Foreman Weight (lbs) Drop (in) 300 Robert Ware Sampler 2" O.D. Split Spoon Field Engineer Report: Log - LANGAN Weight (lbs) Drop (in) Sampler Hammer 140 30 Donut Juan Pinzon Sample Data MATERIAL SYMBOL Coring (min. Remarks N-Value Elev Depth Recov. (in) Penetr. resist BL/6in Number Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale (Blows/ft) +22. Boring located on 11th Avenue 3" Concrete Slab +22.0 sidewalk, about 67' north of 1:18:38 PM 30th Street Drill to 6' with rollerbit and water with no down pressure 3 qu (tsf) estimated from Pocket Penetrometer Install 4" casing to 4' 5 6 SS S-1: Dark brown, medium to fine SAND, some fine gravel, 15 trace brick (Fill) 23 [NYCBC Class 7] S-1 7 27 36 8 Rollerbit to 10' Install 4" casing to 9' Clean to 10' 9 Mix revert 10 SS S-2: Brick fragments, some silty sand (Fill) 4 [NYCBC Class 7] 5 S-2 က 6 12 Rollerbit to 15' 13 14 SS S-3: Brown, medium to fine SAND, some silt, trace rock 10 fragments (Fill) 8 [NYCBC Class 7] 16 9 6 17 Rollerbit to 20' Install 4" casing to 14' Clean to 20' 18 19

Log of Boring G-15 Sheet of 3 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 22.2 NAVD88 Sample Data Remarks Flev Depth Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale +2.2 10 20 30 40 20 S-4: Brown-grey, medium to fine silty SAND, trace fine gravel, trace brick fragments (Fill) SS S-4 [NYCBC Class 7] 16 21 2 1 22 Push 4" casing to 19' Rollerbit to 25 23 24 25 S-5: Grey, medium to fine SAND, some silt, some fine SS gravel, trace brick (Fill) 5 S-5 [NYCBC Class 7] 26 2 9 27 Rollerbit to 30' 28 29 30 SS S-6: Dark grey, silty CLAY (CH), trace fine sand, trace shell fragments S-6 [NYCBC Class 4c] 9 31 3 3 32 Rollerbit to 35' 33 35 SS S-7: Dark grey, silty CLAY (CH), trace fine sand, trace 4 WC=59.1, LL=64, PL=26 shell fragments [NYCBC Class 4c] S-7 24 36 Organic Content = 4.4% (burnoff) 5 37 Rollerbit to 40' 38 -16.8 39 S-8: Very dense, brown, medium to fine silty SAND (SM), some clay, some fine gravel [NYCBC Class 3a] Spoon refusal/bouncing at 41' SS S-8 12 100/0" Push 3" casing to 29', spin to 100/0" 2.5 =20% REC=55"/60" =92% C-1: Grey, fractured mica SCHIST, Hard, slightly NX CORE BARREI 5 weathered joints, some iron stained joints, foliation dip: RQD=42"/60" 40-60 degrees 43 [NYCBC Class 1b] 4

"ILANGAN.COM/DATA\NY\DATA1\170444101\ENGINEERING DATA\GEOTECHNICAL\GINT\.

Log of Boring G-15 Sheet 3 of Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 22.2 NAVD88 Sample Data Coring (min) Remarks Depth Scale Elev N-Value (Blows/ft) Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) 10 20 30 40 -22.8 45 Granitic PEGMATITE from 45' to 46' 5 3.5 46 5 REC=60"/60" =100% C-2: Grey, fractured mica SCHIST, hard, slightly weathered joints **=**63% 4 **NX CORE BARREI** [NYCBC Class 1b] 48 RQD=38"/60" PEGMATITE from 46' to 46.3' and 49' to 49.8' 5.5 49 5.5 50 4.5 5 52 C-3: Grey, slightly fractured mica SCHIST, hard, slightly weathered joints, foliation dip: 30-60 degrees REC=60"/60" =100% RQD=60"/60" =100% 5 **NX CORE BARREI** [NYCBC Class 1a] 53 C-3 5.5 5 55 5.5 56 5 C-4: Grey, sound mica SCHIST, hard, mechanical **%**26= REC=58"/60" =97% fractures along foliation, foliation dip: 50-60 degrees [NYCBC Class 1a] 5.5 **NX CORE BARRE** RQD=58"/60" 5.5 59 5 60 5 -38.8 61 Borehole backfilled with End of boring at 61' cuttings and surface patched upon completion 62 63 64 66 67 68 69

Log of Boring G-17 Sheet of 6 Project Project No. Hudson Yards - WRY 170444101 Elevation and Datum Location LIRR West Side Yard, Manhattan, NY Approx. 7.1 NAVD88 Drilling Company Date Started Date Finished 10/27/04 Warren George, Inc. 11/2/04 Drilling Equipment Completion Depth Rock Depth Acker-11 Truck Rig 143 ft 123 ft Size and Type of Bit Disturbed Undisturbed Core Number of Samples 3 7/8" Tri-Cone Rollerbit 23 4 Casing Diameter (in) Casing Depth (ft) Completion 24 HR. First Water Level (ft.) 3"/4" Flush Joint Steel \mathbf{V} 123 Casing Hammer Donut Drilling Foreman Weight (lbs) Drop (in) 300 Corry Tirro Sampler 2" O.D. Split Spoon / 3" Shelby Tube Field Engineer Report: Log - LANGAN Drop (in) Weight (lbs) Sampler Hammer 140 30 Donut S. Daripally / Nipam Shah Sample Data MATERIAL SYMBOL Remarks Elev Depth N-Value Recov. (in) Penetr. resist BL/6in Number Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale (Blows/ft) +7. Boring located in northeast 9" Concrete corner of NYDS gas station, +6.4 about 95' east of 12th Avenue and 130' north of 30th Street 3 qu (tsf) estimated from Pocket Black, fine to coarse SAND and GRAVEL, some cobbles, Penetrometer trace brick, dry (Fill) [NYCBC Class 7] Rollerbit to 6' with water and no down pressure 5 6 Drive 4" casing to 10' Rollerbit to 10 SS S-1: Black, medium to fine silty SAND, some rock fragments (Fill) S-1 [NYCBC Class 7] 9 5 12 Rollerbit to 15' 13 14 SS S-2: Black, GRAVEL, brick fragments, some medium to 5 fine sand (Fill) 3 [NYCBC Class 7] 9 8 17 Drive 4" casing to 15' Rollerbit to 20' 18 19

Log of Boring G-17 Sheet 6 of Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.1 NAVD88 Sample Data Remarks Elev Depth Scale N-Value (Blows/ft) Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) 10 20 30 40 -12.9 20 S-3: Black GRAVEL, some coarse to fine sand, trace wood, trace brick (Fill) SS 8 S-3 [NYCBC Class 7] 21 ∞ 27 19 15 22 Drive 4" casing to 20' Rollerbit to 25 23 24 25 S-4: Black GRAVEL, some coarse to fine sand, some silt, SS trace fine gravel (Fill) 5 [NYCBC Class 7] 26 2 8 27 Drive 4" casing to 25' Rollerbit to 30 28 29 Rig chatter at 29' 30 S-5: Black medium to fine SAND, some silt, rock 15 fragments, trace wood (Fill) 11 S-5 [NYCBC Class 7] ω 31 11 7 32 Drive 4" casing to 30' Rollerbit to 35 33 S-6: No recovery SS | 0 100/2" 100/2 36 Hard drilling - (1.5' boulder) -29 37 38 39 SS S-7: Black-grey, organic silty CLAY (OH), trace fine sand, trace wood 2 [NYCBC Class 4c] 24 42 Drive 4" casing to 40' Rollerbit to 45' 43

LANGAN Log of Boring G-17 Sheet of 6 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.1 NAVD88 Sample Data Remarks Elev Depth Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale 10 20 30 40 -37.9 45 S-8: Dark grey, organic silty CLAY (OH), some shell q.,=0.5 tsf 2 SS S-8 [NYCBC Class 4c] 9 46 Add revert to wash 3 Rollerbit to 50' 48 49 50 q.,=0.4 tsf S-9: Dark grey, organic silty CLAY (OH), some shell fragments [NYCBC Class 4c] 24 52 Rollerbit to 52' 7 24 53 q_u=0.75 tsf S-10: Dark grey, CLAY (CL), some shell fragments, trace [NYCBC Class 4c] 24 55 5 56 Rollerbit to 56' 58 $q_u=0.5 tsf$ S-11: Dark grey, silty CLAY (CL), trace fine sand, trace SS shell fragments [NYCBC Class 4c] 24 3 60 Shelby tube attempted at 60', S-12: Dark grey, organic silty CLAY (CL), trace fine sand, 2 no recovery trace shell fragments 3 Take spoon instead [NYCBC Class 4c] 9 2 3 62 Rollerbit to 65' 63 64 q_u=1 tsf SS S-13: Dark grey, silty CLAY (CH), trace shell fragments [NYCBC Class 6] 24 66 67 Rollerbit to 70' 68

69

Log of Boring G-17 Sheet of 6 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.1 NAVD88 Sample Data MATERIAL SYMBOL Remarks Depth Scale Elev Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) 10 20 30 40 -62.9 70 S-14: Dark grey, silty CLAY (CL), some shell fragments q.,=1.25 tsf SS [NYCBC Class 4c] 3 15 72 Rollerbit to 75' 73 q_u=0.75 tsf S-15: Dark grey, silty CLAY (CL), some shell fragments WOH [NYCBC Class 4c] 24 3 Rollerbit to 80' 78 79 80 S-16: Dark grey, silty CLAY (CH), some f sand, trace shell WOH fragements
[NYCBC Class 6] WOH 24 2 3 WC=27.1, LL=27, PL=14 8 83 q.,=0.25 tsf S-17: Dark grey, silty CLAY (CL), some fine sand, trace shell fragments S-17 5 [NYCBC Class 4b] 24 85 9 16 86 Rollerbit to 90' 87 88 89 q_u=0.25 tsf S-18: Dark grey, silty CLAY (CL), some fine sand, trace shell fragments
[NYCBC Class 4c] 3 24 11 92 Rollerbit to 95' 93

Log of Boring G-17 Sheet of 6 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.1 NAVD88 Sample Data MATERIAL SYMBOL Remarks Elev Depth Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale 10 20 30 40 -87.9 95 S-19: Dark grey, silty CLAY (CL), some fine sand, trace q.,=0.25 tsf SS shell fragments S-19 3 [NYCBC Class 4c] 24 96 9 97 Rollerbit to 100' 98 99 100 S-20: Dark grey, silty CLAY (CL), some fine sand, trace shell fragements [NYCBC Class 4b] 13 16 102 Rollerbit to 105' 103 104 105 q_u =0.6 tsf S-21: Dark grey, silty CLAY (CL), some fine sand, trace WOR shell fragments
[NYCBC Class 4c] WOR 24 106 6 6 Rollerbit to 110 108 109 LANGAN.COMIDATAINYIDATA1/170444101/ENGINEERING DATA/GEOTECHNICAL/GI SS S-22: Dark grey, clayey SILT (ML), trace fine sand, wood fragments S-22 5 [NYCBC Class 5b] 24 10 - 112 Rollerbit to 115' 113 114 S-23: Dark grey, clayey SILT (ML), some fine sand, wood fragments 3 [NYCBC Class 6] 24 8 117 118 119

Rig chatter at 119'

Log of Boring G-17 Sheet of 6 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.1 NAVD88 Sample Data Remarks Flev Depth N-Value (Blows/ft) Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale 112.9 10 20 30 40 120 121 122 og - LANGAN 123 Spin 3" casing to 123' 7 124 REC=60"/60" =100% C-1: Greyish black, mica SCHIST, pegmatite from 6 123'-124', slightly weathered, slightly fractured, close to NX2 CORE BARRE wide fracture spacing, strong rock, medium to fine grained 125 RQD=54"/60" [NYCBC Class 1a] 7 5 126 7 127 8 128 8 129 C-2: Grey, granitic PEGMATITE, slightly weathered, slightly fractured, very wide fracture spacing, very strong REC=60"/60" =100% RQD=60"/60" =100% 9 **NX2 CORE BARREI** rock, fine to medium grained, iron-oxide straining at 129' 130 [NYCBC Class 1a] C-2 8 131 3 132 Core barrel jammed at 132.25' 9 133 8 C-3: Grey, granitic PEGMATITE, slightly weathered except lightly weathered at 135'-137', slightly fractured except highly fractured 135'-137', close to very close REC=60"/60" =100% 9 **NX2 CORE BARREI** 135 RQD=37"/60" fracture spacing, strong rock, fine to medium grained, chloride staining at 134'-137' 10 136 [NYCBC Class 1b] 10 137 10 \\LANGAN.COM\DATA\\NY\DATA\\\170444101\\ENGINEERING DA 138 12 139 C-4: Grey, granitic PEGMATITE, moderately weathered RQD=47"/60" =78% REC=59"/60" =98% except highly weathered at 137'-138', moderately fractured, close to wide fracture spacing, very strong rock, 12 **NX2 CORE BARRE** fine grained, chloride staining at 138' and 142' 15 [NYCBC Class 1b] Core barrel jammed at 141.75' 14 135. 143 Borehole backfilled with End of boring at 143' cuttings and surface patched upon completion

Log of Boring G-19 Sheet of 5 Project Project No. Hudson Yards - WRY 170444101 Elevation and Datum Location LIRR West Side Yard, Manhattan, NY Approx. 7.2 NAVD88 Drilling Company Date Started Date Finished 11/8/04 Warren George, Inc. 11/10/04 **Drilling Equipment** Completion Depth Rock Depth CME 55 Truck Rig 112 ft 92 ft Size and Type of Bit Disturbed Undisturbed Core Number of Samples 3 7/8" Tri-Cone Rollerbit 16 4 Casing Diameter (in) Casing Depth (ft) Completion 24 HR. First Water Level (ft.) 3"/4" Flush Joint Steel \mathbf{V} Casing Hammer Donut Drilling Foreman Weight (lbs) Drop (in) 300 Robert Ware Sampler 2" O.D. Split Spoon / 3" Shelby Tube Field Engineer Weight (lbs) Drop (in) Sampler Hammer 140 30 Donut Stuart Knoop Sample Data MATERIAL SYMBOL Coring (min. Remarks N-Value Elev Depth Recov. (in) Penetr. resist BL/6in Number Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale (Blows/ft) +7. Boring located in Greyhound, 5" Asphalt +6. about 14' east of operations 1:18:50 PM building and 12' south of trench drain "Use rollerbit with water and no down pressure to drill to 2' 3 Hard material at 2', hand auger to 2.5" Cobble obstruction at 2.5', rollerbit through Hand auger to concrete 5 obstruction at 4.5' Rollerbit through obstruction, use no pressure to 6' 6 SS S-1: Dark brown, fine to coarse GRAVEL, some wood fragments, trace ceramics (Fill) [NYCBC Class 7] S-1 13 6 8 Rollerbit to 10' 9 10 SS S-2: Grey-brown, clayey SILT, some fine gravel, trace brick fragments (Fill) 2 S-2 [NYCBC Class 7] 6 2 2 12 Rollerbit to 15' 13 14 SS S-3: Dark brown, sandy SILT, some clay, trace gravel [NYCBC Class 7] S-3 16 WOH 17 Rollerbit to 20' 18 19

Log of Boring G-19 Sheet 5 of Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.2 NAVD88 Sample Data Remarks Elev Depth N-Value (Blows/ft) Recov. (in) Penetr. resist BL/6in Sample Description (ft) (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Scale 10 20 30 40 -12.8 20 S-4: Dark grey, silty CLAY, trace fine gravel (Fill) [NYCBC Class 7] WOH SS S-4 21 9 WOH 20 22 Rollerbit to 25' 23 24 25 S-5: No recovery SS | Z 11 100/0" 100/0 Cobble at 25.5' 26 27 Rollerbit through cobble 28 Spin 4" casing to 30' Rollerbit to 30 29 30 SS S-6: Grey-brown, fine to coarse SAND, some fine gravel, 31 some mica, rock fragements (Fill) 82 S-6 [NYCBC Class 7] 31 11 21 32 Rollerbit to 35' Hard drilling 30-34' 33 Spin 4" casing to 35' 35 S-7: Dark grey, CLAY (OH), some organics, trace silt, trace shell fragments SS WC=57.7, LL=77, PL=28 WOH [NYCBC Class 4c] S-7 22 36 Organic Content = 5.9.% 2 (burnoff) 3 37 Spin 4" casing to 40' Rollerbit to 40' 38 39 SS S-8: Dark grey, CLAY (CH), trace silt, trace shell 3 fragments ` 3 [NYCBC Class 4b] 24 2 Rollerbit to 45' 43

G-19 Log of Boring Sheet of 5 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.2 NAVD88 Sample Data Remarks Depth Scale Elev Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) -37.8 10 20 30 40 S-9: Dark grey, organic CLAY (CH), trace silt, trace shell SS S-9 [NYCBC Class 6] 24 46 2 1 Rollerbit to 50' 48 49 50 52 Rollerbit to 55' 53 54 55 S-10: Dark grey, organic CLAY (CH), trace silt, trace shell WOH fragments
[NYCBC Class 6] 24 Rollerbit to 60' 58 59 60 WC=43.3, LL=43, PL=19 61 62 Rollerbit to 65' 63 64 S-11: Dark grey, organic clayey SILT (ML) with clay lenses, trace shell fragments [NYCBC Class 6] 24 2 67 Rollerbit to 70' 68 69

₽

NGAN.COMIDATAINYIDATA1/170444101/ENGINEERING DATA/GEOTECHNICAL/GINTJETS STADIUM LOGSILANGAN BORINGS.GPJ

Log of Boring G-19 Sheet of 5 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.2 NAVD88 Sample Data MATERIAL SYMBOL Remarks Depth N-Value (Blows/ft) Flev Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -62.8 10 20 30 40 70 S-12: Dark grey, organic CLAY (CL), some silt, trace shell WOR S-12 WOR [NYCBC Class 6] 19 WOH WOH 72 Rollerbit to 75' 73 S-13: Dark grey, silty fine SAND (SM), trace clay, shell WOH fragments, wood, silty clay lenses WOH [NYCBC Class 6] 24 Rollerbit to 80' 78 79 80 S-14: Dark grey, silty fine SAND (SM), trace clay, trace shell fragments [NYCBC Class 6] 24 81 2 9 82 Rollerbit to 85' 83 85 SS S-15: Dark grey, clayey SILT (ML), trace fine sand, wood fragments, shell fragments 10 [NYCBC Class 5b] 86 18 87 Rollerbit to 90' 88 89 Push 3" casing to 90'WC=42.1 S-16: Dark grey, silty CLAY (CH), trace fine sand, trace WOH , LL=52 , PL=20 wood and shell fragments 3 23 [NYCBC Class 4c] 100/5" -84. 92 =43% 5 NX CORE BARREL C-1: Grey-white, quartz-muscovite-feldspar SCHIST with ~5" layers (apophasies) of brown-black 93 REC=42"/60" 7QD=26"/60" biotite-chlorite-garnet schist (~20%), qtz schist is hard, 5 biotite schist is medium hard - foliation at 60 degrees, fractures are generally fresh, with oxide [NYCBC Class 1c] 5

"ILANGAN.COM/DATA\NY\DATA1\170444101\ENGINEERING DATA\GEOTECHNI(

Log of Boring G-19 Sheet 5 of Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum Approx. 7.2 NAVD88 LIRR West Side Yard, Manhattan, NY Sample Data Coring (min) Remarks Flev Depth N-Value (Blows/ft) Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -87.8 10 20 30 40 95 5 96 ပ် 4 97 Diffuse granitic texture 5 97'-97.5 98 =83% C-2: Green-black biotite-chlorite-garnet SCHIST, medium REC=53"/60" =88% 5 hard NX CORE BARRE [NYCBC Class 1b] 99 RQD=50"/60" 99'-100' Grey-white quartz-muscovite-feldspar SCHIST 5 (as above) 100 Green-black biotite-chlorite-garnet SCHIST, foliation at 6 ~60 degrees, parallel foliation 4 102 5 103 =100% REC=60"/60" =100% C-3: Green-black biotite-chlorite-garnet SCHIST, with 2" 6 grey-white schist lenses (as above) NX CORE BARRE [NYCBC Class 1a] 104 RQD=60"/60" 4 105 4 106 6 C-4: Green-black biotite-chlorite-garnet SCHIST [NYCBC Class 1a] 3 108 **%**26= REC=58"/60" =97% Grey-white quarts-muscovite-feldspar SCHIST seam from 3 108-109' **NX CORE BARREI** 109 RQD=58"/60" 3 110 3 4 112 Borehole backfilled with End of boring at 112' cuttings and surface patched upon completion 113 114 115 116 118 119

		/VU/	<u>1/V</u>		Log		Boring			G-20			Sheet	1	of	4				
	Project	Hudson Yards - WRY				Pro	oject No.		1	7044410	1									
	Location			Elevation and Datum																
	Drilling Compa	LIRR West Side Yard, any		Approx. 7.9 NAVD88 Date Started Date Finished																
	Drilling Equipn	Warren George, Inc.	11/15/04 11/16/04 Completion Depth Rock Depth																	
		CME 55 Truck Rig					impletion	Бері	.11	71 f	t		·		51 ft					
	Size and Type	of Bit 3 7/8" Tri-Cone Roller	Number of Samples Disturbed 8							Undisturbed Core 2 4										
	Casing Diame	ter (in) 3"/4" Flush Joint Steel	Water Level (ft.)							mpletion		24 HR.								
	Casing Hamm	^e Donut	Drilling Foreman																	
2	Sampler	2" O.D. Split Spoon / 3				Robert Ware Field Engineer														
	Sampler Hami	mer Donut	Weight (lbs)	40 Drop (in	⁾ 30		1			art Knoor										
- 601	SYMBOL (tt)	Si	ample Description			Coring (min)	Depth	per				alue vs/ft)	(Drilling	arks	na					
epoil.	11 MAN (ft) +7.9					Corin	Scale — 0 —	Number	Type	(in) Penetr. resist BL/6in	10 20	,			epth of Casin Resistance,					
۲ : <u>۲</u>	+7.2	8" Asphalt											parking,	, about	in Greyho 115' north	n of				
0.00							- 1 -						12th Av		d 450' eas	t of				
-							2 -						au (tsf)	estima	ted from F	Pocket				
728/20							= =						Penetro							
							3 -													
פֿט							4 -						1		nd water w	ith no				
Ž Ž							5 -						down pr	ressure	to 6'					
פאאנ																				
N LAIN		S-1: Brown-grey, me	edium to fine SAND,	some coarse			6 -		Ħ	22	1									
2		gravel, trace concrete [NYCBC Class 7]	te tragments (Fili)				7 -	S-1	SS	ო 36 30		66	<u> </u>							
200							8 -		ШШ	31										
000							- 0						Spin 4" Rollerbi	casing t to 10'	to 10'					
							9 -													
5		0.00.0000000000000000000000000000000000	alliana ta fira a OAND				10 -					$ \cdot $								
3		gravel, trace brick fr	edium to fine SAND, t agments - stained, p	etroleum odor						22 25										
2 2		(Fill) [NYCBC Class 7]					- 11 -	S-2	SS	9 17		42	Petroleu	um odo	ı					
בו בו							12 -		4	12	-		Spin/pu	sh 4" c	asing to 1	5'				
מ מ							13 -						Rollerbi	t to 15'						
							13													
							14 -													
		C. 2. Cray block alo									-									
1,0444		wood, trace brick fra	iyey SILT, trace fine o agments (Fill)	gravei, trace				8	SS	3 16		/								
1		[NYCBC Class 7]					- 16 -	S-3	SS	က 7	23									
NY (C							17 -	-	甲	5	/		Rollerbi	t to 20'						
7							18 -							l	41 1					
≦ 3.	-10.6						10						Wash c ∼18'	nange	to dark gre	еу				
ZGAIZ.							19 -													
ξ							⊢ -	1			1/1		1							

Log of Boring G-20 Sheet of 4 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.9 NAVD88 Sample Data MATERIAL SYMBOL Remarks Depth Scale Elev Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) 10 20 30 40 -12.1 20 S-4: Dark grey, organic CLAY (OH) [NYCBC Class 6] q_u=0.25 tsf WOH WOH SS S-4 8 21 WOH 1 22 Push 4" casing to 20' Rollerbit to 25 23 24 25 26 27 Rollerbit to 30' 28 29 30 S-5: Dark grey, organic silty CLAY (OH), some shell WOH fragments
[NYCBC Class 6] 22 31 WOH WOH 32 Rollerbit to 35' 33 35 36 37 Push 4" casing to 40' Rollerbit to 40' 38 39 q_u=0.25 tsf S-6: Dark grey, organic silty CLAY (OH), trace shell SS WOH fragments - strong organic odor [NYCBC Class 6] 24 2 Rollerbit to 45' 43

Log of Boring G-20 Sheet of 4 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.9 NAVD88 Sample Data MATERIAL SYMBOL Remarks Depth Flev Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -37. 10 20 30 40 S-7A: Dark grey, organic silty CLAY (OH), trace shell q.,=0.5 tsf SS [NYCBC Class 6] S-7 24 46 Organic Content = 1.6.% 3 S-7B: Dark grey, medium to fine SAND (SM), some silt, (burnoff) trace shell fragments 3 [NYCBC Class 6] Rollerbit to 50' 48 49 -42. 50 Spin 3" casing to 51' S-8: Weathered rock (mica schist) S-8 SS 6 100/6 100/6 [NYCBC Class 3a] 1:18:56 PM 6 52 C-1: Grey-black biotite SCHIST, moderately hard to hard, =21% REC=54"/60" =90% 3 very slightly weathered, m grained, close fractures dipping **NX CORE BARRE** ~70 degrees sub-parallel to foliation 53 RQD=34"/60" [NYCBC Class 1b] 5 6 Bluish grey muscovite-quartz SCHIST (meta-granite), hard, m grained, close fractures dip ~10 degrees, foliation 54 ~60 degrees 6 55 Dark grey biotite-muscovite-quartz SCHIST, hard to very 6 hard, very slightly weathered, transitional between biotite schist and harder meta-granite, 1" quartz veins 56 (leucosomes), foliation is 0-70 degrees and folded around 6 harder lenses REC=58"/60" =97% 7 **NX CORE BARREI** RQD=47"/60" C-2: Green chlorite SCHIST, soft to moderately hard, very 10 slightly weathered, fractures parallel, foliation at ~70 59 [NYCBC Class 1b] 6 60 Dark grey biotite-quartz-muscovite SCHIST (as above), 6 4 62 REC=56"/60" =93% =75% 7 NX CORE BARREI C-3: Bluish grey quartz-muscovite SCHIST (as above), 63 very hard RQD=45"/60" [NÝCBC Class 1b] 7 64 6 8 C-4: Dark grey biotite-muscovite-quartz SCHIST, hard, 8 interlayered with cm-scale grey black biotite SCHIST, REC=57"/60" =95% **%0**/= moderately hard and 2" very hard quartz rich layers **NX CORE BARREL** [NYCBC Class 1b] 5 RQD=42"/60" 68 69 6

G-20 Log of Boring Sheet of 4 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.9 NAVD88 Sample Data Coring (min) MATERIAL SYMBOL Remarks Depth Scale Elev (ft) N-Value (Blows/ft) Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) -62. 10 20 30 40 70 C-4 5 -63. 71 Borehole backfilled with End of boring at 71' cuttings and surface patched upon completion 72 "ILANGAN. COMIDATA'NYIDATA1170444101/ENGINEERING DATA/GEOTECHNICAL/GINTJETS STADIUM LOGS/LANGAN BORINGS.GPJ ... 3/28/2017 1:18:57 PM ... Report. Log - LANGAN 73 74 75 76 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

Log of Boring G-21 Sheet of 3 Project Project No. Hudson Yards - WRY 170444101 Elevation and Datum Location LIRR West Side Yard, Manhattan, NY Approx. 8.7 NAVD88 Drilling Company Date Started Date Finished 11/11/04 Warren George, Inc. 11/15/04 Drilling Equipment Completion Depth Rock Depth CME 55 Truck Rig 63 ft 42 ft Size and Type of Bit Disturbed Undisturbed Core Number of Samples 3 7/8" Tri-Cone Rollerbit 5 0 Casing Diameter (in) Casing Depth (ft) Completion 24 HR. First Water Level (ft.) 3"/4" Flush Joint Steel \mathbf{V} Casing Hammer Donut Drilling Foreman Weight (lbs) Drop (in) 300 Robert Ware Sampler 2" O.D. Split Spoon Field Engineer Weight (lbs) Drop (in) Sampler Hammer 140 30 Donut Stuart Knoop Sample Data MATERIAL SYMBOL Coring (min. Remarks Elev Depth N-Value Recov. (in)
Penetr. resist
BL/6in Number Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale (Blows/ft) +8. Boring located in Greyhound, about 89' west of NYCT fence and 117' north of 30th Street 3 .COM/DATA/NY/DATA1/170444101/ENGINEERING DATA/GEOTECHNICAL/GINT/JETS STADIUM LOGS/LANGAN BORINGS.GPJ Use rollerbit and water with no down pressure to drill to 6' 5 6 SS S-1: Dark grey, coarse to fine SAND, some coarse gravel, trace brick fragments (Fill) [NYCBC Class 7] 8 S-1 9 12 8 Drive 4" casing to 10' Rollerbit to 10' 9 SS S-2: Brown, sandy SILT, trace coarse gravel, trace brick fragments (Fill) S-2 [NYCBC Class 7] 8 12 Drive 4" casing to 15' Rollerbit to 15' 13 14 SS S-3: No recovery 0 8 17 Push 4" casing to 20' Rollerbit to 20' 18 19

/LANGAN.COM/DATA/NY/DATA1/170444101/ENGINEERING DATA/GEOTECHNICAL/GINT/JETS

Log of Boring G-21 Sheet of 3 Project Project No. 170444101 Hudson Yards - WRY Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 8.7 NAVD88 Sample Data Remarks Flev Depth N-Value (Blows/ft) Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -11. 10 20 30 40 20 S-4: Tan-grey, mottled brown and orange, silty fine SAND, trace fine gravel (Fill) SS 5 S-4 [NYCBC Class 7] 21 4 6 8 22 Push 4" casing to 25' Rollerbit to 25 23 Dark grey wash at ~23' 24 25 SS S-5: Dark grey, organic silty CLAY (CH-OH), trace shell 3 fragments 2 S-5 [NYCBC Class 4c] 20 26 3 27 Rollerbit to 27' 28 29 30 SS WC=53, LL=57, PL=22 S-6: Dark grey, organic silty CLAY (CH-OH), trace shell 2 fragments
[NYCBC Class 4c] 3 S-6 24 31 "Organic Content = 4.6.% (burnoff) LL = 41 after burnoff (change 32 of ~28%)" Rollerbit to 35' 33 35 S-7: Dark grey, fine SAND (SM), some silt, trace rock WOH fragments S-7 [NYCBC Class 3b] 36 100/3" -28 37 Rollerbit to 40' 38 Hard drilling to 40' (very slow) Weathered Rock 39 -31.3 No recovery from 40' to 42' 2 REC=24"/48" =50% =35% C-1: No recovery - some dark gray medium to fine sand in 3 core barrel RQD=17"/48" [NYCBC Class 1d] 5 43 -35. Core barrel clogged at 44' 4

//LANGAN.COM/DATA/NY/DATA1/170444101/ENGINEERING DATA/GEOTECHNICAL/GINT\

Log of Boring G-21 Sheet 3 of Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 8.7 NAVD88 Sample Data Remarks Depth Scale Elev Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) -36. 10 20 30 40 C-2: Grey-black, biotite-quartz-garnet SCHIST, REC=45"/48" =94% -85 3 moderately weathered, hard, 40-60 degree foliation, NX CORE BARREL fractures parallel foliation, fresh fracture surfaces 46 RQD=41"/48" [NYCBC Class 1a] 5 3" quartz vein at 46.5' 3 48 3 49 REC=60"/60" =100% C-3: Grey-black, biotite-quartz-garnet SCHIST, hard, 4 foliation at ~60 degrees, fractures parallel to foliation, **NX CORE BARREI** fresh fractures 50 RQD=50"/60" [NYCBC Class 1b] 3 4 52 4 53 5 Quartz vein from 53.4' to 54.8', very hard C-4: Grey-black, biotite-quartz-garnet SCHIST (as above) REC=56"/60" =93% RQD=53"/60" =88% 4 [NYCBC Class 1a] **NX CORE BARREI** 55 5 56 5 5 58 4 REC=60"/60" =100% C-5: Grey-black, biotite-quartz-garnet SCHIST (as above) RQD=60"/60" =100% [NYCBC Class 1a] **NX CORE BARREI** 60 4 61 4 62 3 63 Borehole backfilled with End of boring at 63' cuttings and surface patched upon completion 64 65 66 68

69

LAIVUAIV	Log		Boring		(3-27			Sheet	1 0	of	7	
Project Hudeon Varde, WPV		Pr	oject No.		4-	704444	24						
Hudson Yards - WRY Location		Ele	evation a	nd Da		7044410	וע						
LIRR West Side Yard, Manhattan, NY		Approx. 7 NAVD88											
Drilling Company Warren George, Inc.		Date Started 11/2/04					Date Finished 11/5/04						
Drilling Equipment		Co	mpletion	Dep	th	, _, 0		Rock Depth					
CME 55 Truck Rig Size and Type of Bit		160 ft Disturbed						Undisturbed Core					
3 7/8" Tri-Cone Rollerbit		Number of Samples 25						2 4					
Casing Diameter (in) 3"/4" Flush Joint Steel Casing Depth (ft) 140			Water Level (ft.) □ □ 6 □ ■ □							24 HF	(. 		
Casing Hamme Donut Weight (lbs) 300 Drop (in) 30			illing Fore	emar		ort Mor	•						
Sampler 2" O.D. Split Spoon / 3" Shelby Tube Sampler Hammer Weight (lbs) Drop (in)				Robert Ware Field Engineer									
Sampler Hammer Donut Weight (lbs) 140	Ļ	ı	1		art Knoo								
Elev. (ft) sample Description		Couing (min) Sample Data						alue Remarks					
		Coring	Scale	Number	Type	(in) Penetr. resist	(Blov	vs/ft) 30 40	(Drilling Fluid Fluid Loss, Dril	i, Depth of ling Resist	ance, e	tc.)	
8" Concrete slab			0 -						Boring local sidewalk ab				
10.3				}					30th Street			.	
			- :										
			- 2 -						qu (tsf) esti Penetromet		om Po	cket	
			- 3 -						Use 4 7/8"		o drill		
			Ė , :						concrete sla	ab			
			- 4 -						Use rollerbi down press				
			5 -						, accord				
	<u> </u>		. :										
S-1: Grey-brown-black, silty fine SAND, some fine to coarse gravel, trace clay, wood fragments, (Fill)			6 -			4							
[NYCBC Class 7]	,		7 -	S-1	SS	= 6 5	11 •						
			:		SS	12							
			- 8 - -				$ \cdot $		Push 4" cas Rollerbit to	sing to 10)'		
			9 -						T tollor bit to				
			. :										
S-2: Grey-brown-black, silty fine SAND, me lense (~5"), trace fine to coarse gravel, bricl	dium sand		10 -		SS	2	1						
fragments (Fill)	yiass		- 11 -	S-2	SS	=	19						
[NÝCBC Class 7]			<u> </u>	-		19							
			- 12 -				7 /		Rollerbit to	15'			
			- 13 -										
			<u> </u>										
			<u> </u>										
S-3: Grey-brown-black, fine SAND, some si	lt trace		15	1	$\vdash \vdash$	-	4 /						
coarse gravel, (Fill)	ii, ii ace			_	l 🛮	5 2							
[NYCBČ Class 7]			<u> </u>	S-3	SS	3	5 🕇						
			17 -	_	耳	4	4		Rollerbit to	17'			
				1					1 Control Die 10				
			_ 18 <u>_</u>	1									
			- - 19 -	1									
			E :]									

Log of Boring G-27 Sheet 7 of Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum Approx. 7 NAVD88 LIRR West Side Yard, Manhattan, NY Sample Data Remarks Elev Depth N-Value (Blows/ft) Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale 10 20 30 40 -13.0 20 S-4: Grey-brown-black, fine SAND, some silt, trace coarse gravel, (Fill) [NYCBC Class 7] 2 SS S-4 21 3 2 22 Rollerbit to 25' 23 24 25 S-5: Brown-grey, fine to medium SAND, some fine to SS 10 coarse gravel, trace silt, trace brick (Fill) S-5 [NYCBC Class 7] 26 9 14 15 27 Rollerbit to 30' 28 29 30 SS S-6: Grey-brown, mottled pink, fine to medium SAND, 20 some fine gravel, trace brick (Fill) [NYCBC Class 7] 10 S-6 31 Organic Content = 1.2% 15 (burnoff) 24 32 Rollerbit to 35' 33 35 SS S-7: Dense, grey-brown, gravelly fine to medium SAND, 27 trace brick (Fill) 28 [NYCBC Class 7] S-7 36 37 6 37 Push 4" casing to 20' Rollerbit to 40 38 -31. 39 q_u =0.6 tsf SS S-8: Dark grey, CLAY (CL), trace silt, trace fine sand [NYCBC Class 6] WOH 24 2 "Rollerbit to 45' Very soft drilling" 43

Log of Boring G-27 Sheet of 7 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7 NAVD88 Sample Data Remarks Depth Scale Elev Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) -38.0 10 20 30 40 45 WC=42.3, LL=49, PL=22 7 SIGNO 20 46 Organic Content = 4.2% (burnoff) Rollerbit to 50' 48 49 50 q_u=0.75 tsf S-9: Dark grey, CLAY (CL), trace silt, trace fine sand [NYCBC Class 6] WOH 24 WOH 52 Rollerbit to 55' 53 54 55 q_u =0.5 tsf WC=50, LL=21, PL=29 5 56 Organic Content = 4.1% (burnoff) Rollerbit to 60' 58 59 60 S-10: Dark grey, CLAY (CL), trace silt, trace fine sand [NYCBC Class 6] $q_{\mbox{\tiny u}} = 0.5 \; tsf$ WC=41.9 , LL=49 , PL=23 WOH 61 WOH 62 Rollerbit to 65' 63 64 q_u=0.75 tsf SS S-11: Dark grey, CLAY (CL), trace silt, trace fine sand WOH [NYCBC Class 4c] 2 24 66 3 67 Rollerbit to 70' 68 69

LANGAN.COM/DATA\NY\DATA1\170444101\ENGINEERI

Log of Boring G-27 Sheet of 7 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7 NAVD88 Sample Data MATERIAL SYMBOL Remarks Flev Depth Scale N-Value (Blows/ft) Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) -63.0 10 20 30 40 70 S-12: Dark grey, CLAY (CH), trace silt, trace fine sand, WC=46.9, LL=57, PL=24 trace shell fragments SS [NYCBC Class 6] 24 2 3 72 Rollerbit to 75' 73 q.,=0.5 tsf S-13: Dark grey, CLAY (CH), trace silt, trace fine sand, trace shell fragments WOH [NYCBC Class 6] 24 WOH WOH Rollerbit to 80' 78 79 80 q_u =0.5 tsf S-14: Dark grey, CLAY (CH), trace silt, trace fine sand, trace shell fragments WOH [NYCBC Class 6] 24 81 WOH WOH 82 Rollerbit to 85' 83 85 S-15: Dark grey, CLAY (CL), some silt, trace fine sand, trace wood, trace shell fragments $\,$ q.,=0.25 tsf WC=36.3, LL=37, PL=18 WOH [NYCBC Class 6] 86 Organic Content = 2.9% WOH (burnoff) 87 Rollerbit to 90' 88 -81. 89 S-16: Dark grey, sandy SILT (ML), some clay, trace shell fragments 3 [NYCBC Class 5b] 24 15 92 Rollerbit to 95' 93

Log of Boring G-27 Sheet 7 of Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7 NAVD88 Sample Data Remarks Flev Depth N-Value (Blows/ft) Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -88.0 10 20 30 40 95 S-17: Dark grey, silty fine SAND (SM), trace clay, trace shell fragments SS 0 S-17 [NYCBC Class 3b] 24 96 97 Rollerbit to 100' LANGAN.COM/DATAN/YDATA1/170444101/ENGINEERING DATA/GEOTECHNICAL/GINT/JETS STADIUM LOGS/LANGAN BORINGS.GPJ ... 3/28/2017 1:19:09 PM ... Report. Log - LANGAN -91.0 98 99 100 S-18: Dark grey, sandy SILT (ML), some clay, clay lenses, WOH trace shell fragments [NYCBC Class 6] 24 3 102 Rollerbit to 105' 103 104 105 S-19: Dark grey, sandy SILT (ML), trace clay, trace rock WOH fragments (schist), trace shell fragments 11 [NYCBC Class 3b] 106 24 26 15 16 107 Rollerbit to 110' 108 109 SS S-20: Dark grey, silty fine SAND (SM) 10 [NYCBC Class 3b] S-20 12 15 19 - 112 Rollerbit to 115' 106.0 113 114 S-21: Dark grey, SILT (ML), some fine sand, trace clay 6 [NYCBC Class 5b] S-21 6 48 8 Rollerbit to 120' 118 119

DATA\NY\DATA1\170444101\ENGINEERING DATA\GEOTECHNICAL\GINT\JETS STADIUM LOGS\LANGAN BORINGS.GFJ .

Log of Boring G-27 Sheet of 7 Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7 NAVD88 Sample Data Remarks Flev Depth N-Value (Blows/ft) Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -113.0 10 20 30 40 120 S-22: Dark grey, clayey SILT (ML), trace fine sand, trace S-22 SS 8 [NYCBČ Class 5b] 15 121 8 11 122 Rollerbit to 125' 3/28/2017 1:19:10 PM ... Report: Log - LANGAN 123 124 125 WC=43.6, LL=64, PL=27 S-23: Dark grey, silty CLAY (CH), trace fine sand, trace 10 wood [NYCBC Class 4b] 24 126 Organic Content = 9.1% 12 (burnoff) 13 127 Rollerbit to 130' 128 129 130 S-24: Dark orange, fine to medium SAND (SM), some silt, 17 9 trace fine gravel, trace rock fragments (Glacial Till) ŝ 73 100/1" [NYCBC Class 3a] 131 100/1" 132 Spin 3" casing to 132' Softer material encountered 133 Spin 3" casing to 135' 134 S-25: Red-orange, mottled grey, fine SAND (SM), some silt, some mica, trace fine gravel (Glacial Till) -S-25SS 4 100/4" 100/4" [NYCBC Class 3a] 136 "Rollerbit to 140' Very slow drilling" 137 138 139 133.0 1 C-1: White-grey, quartz-muscovite SCHIST, fresh, hard, REC=36"/60" =60% =43% 6 foliation dipping at ~60 degrees, orange staining on NQ CORE BARREI fracture surfaces RQD=26"/60" [NYCBC Class 1c] 4 143 4

"LANGAN. COM/DATA\NY/DATA1\170444101\ENGINEERING DATA\GEOTECHNICAL\GINT\JETS STADIUM

Log of Boring G-27 Sheet of 7 Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum Approx. 7 NAVD88 LIRR West Side Yard, Manhattan, NY Sample Data Coring (min) Remarks Flev Depth Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale 138.0 10 20 30 40 145 White-grey, quartz muscovite SCHIST (as above) 8 146 REC=54"/60" =90% '=48% 7 NQ CORE BARREI C-2: Black-grey, biotite-muscovite SCHIST, accessory garnet, fresh, moderately hard, fresh fracture surfaces, RQD=29"/60" fractures parallel foliation at ~60 degrees, interlayed with 2 quartz-muscovite schist 148 [NYCBC Class 1c] 3 149 2 150 2 C-3: White-grey, quartz-muscovite SCHIST, accessory REC=49"/60" =82% =45% 7 biotite and garnet, interlayed with 2" biotite-muscovite NQ CORE BARREI schist, fresh, hard, foliation at ~60 degrees, fractures are fresh, occur within biotite schist and are parallel to 152 RQD=27"/60" 5 [NYCBC Class 1c] 153 17 154 7 155 5 156 %26= C-4: White-grey, quartz-muscovite SCHIST, accessory REC=58"/60" =97% 3 biotite and garnet, interlayed with 2" biotite-muscovite NQ CORE BARRE schist, fresh, hard, foliation at ~60 degrees, fractures are RQD=58"/60" fresh, occur within biotite schist and are parallel to 6 foliation [NYCBC Class 1a] 158 8 159 6 160 Borehole backfilled with End of boring at 160' cuttings and surface patched upon completion 161 162 163 164 165 166 167 168 169

Log of Boring G-3 Sheet of 6 Project Project No. Hudson Yards - WRY 170444101 Elevation and Datum Location LIRR West Side Yard, Manhattan, NY Approx. 7.1 NAVD88 Drilling Company Date Started Date Finished 11/15/04 Warren George, Inc. 11/18/04 **Drilling Equipment** Completion Depth Rock Depth Acker-11 Truck Rig 132 ft 110 ft Size and Type of Bit Disturbed Undisturbed Core Number of Samples 18 3 7/8" Tri-Cone Rollerbit 4 Casing Diameter (in) Casing Depth (ft) Completion 24 HR. First Water Level (ft.) 3"/4" Flush Joint Steel \mathbf{V} Casing Hammer Donut Drilling Foreman Weight (lbs) Drop (in) 300 Corry Tirro Sampler 2" O.D. Split Spoon / 3" Shelby Tube Field Engineer Report: Log - LANGAN Drop (in) Weight (lbs) Sampler Hammer 140 30 Automatic Nipam Shah Sample Data MATERIAL SYMBOL Coring (min. Remarks N-Value Elev Depth Recov. (in) Penetr. resist BL/6in Number Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale (Blows/ft) +7. Boring located in southeast 6" Concrete +6. corner of NYDS gas station, about 30' north of 30th Street and 12' west of wash building gu (tsf) estimated from Pocket Penetrometer 3 Hand auger to a depth of 5' Slowly drill to 10' without pressure using water Hand augering was very hard 5 between 4' and 6' Drive 4" casing to a depth of 9 10 S-1: Dark brown, fine to coarse SAND and GRAVEL, SS Drive 4" casing to a depth of some cobbles, some brick, dry (Fill) S-1 [NYCBC Class 7] Strong organic odor. ω 7 12 Rollerbit to 15' 13 14 Drilling mud additive mixed SS S-2: Dark brown, coarse to fine SAND, some coarse to fine gravel, some silt, trace brick fragments, wood (Fill) with water 3 [NYCBC Class 7] 9 17 Rollerbit to 20' 18 19

Log of Boring G-3 Sheet 6 of Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.1 NAVD88 Sample Data Remarks Elev Depth Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale 10 20 30 40 -12.9 20 S-3: Dark brown-black, medium to fine SAND, some rock fragments, some silt, strong organic odor (Fill) SS S-3 [NYCBC Class 7] 2 21 2 3 22 Rollerbit to 25' 444101/ENGINEERING DATA/GEOTECHNICAL/GINTJETS STADIUM LOGS\LANGAN BORINGS.GPJ ... 3/28/2017 1:19:17 PM ... Report: Log - LANGAN 23 24 25 Drive 4" casing to a depth of S-4: Black, organic clayey SILT (OH), some fine sand, SS WOH trace fine gravel, trace coal fragments [NYCBC Class 6] 18 26 2 27 Rollerbit to 30' 28 29 30 PUSH 24 31 32 Rollerbit to 35' 33 35 PUSH ∞ 36 37 Rollerbit to 40' 38 39 -32.9 q_u=0.35 tsf SS S-5: Black, organic silty CLAY (OH), some shell WOH fragments, trace fine sand, trace coal fragments [NYCBC Class 6] 24 2 Rollerbit to 45' 43

LANGAN Log of Boring G-3 Sheet of 6 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.1 NAVD88 Sample Data MATERIAL SYMBOL Remarks Elev Depth Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale 10 20 30 40 -37.9 S-6: Dark grey, CLAY (CH), some shell fragments, trace q_u =0.2 tsf WOH SS S-6 [NYCBC Class 6] 24 46 2 Rollerbit to 50' 48 49 50 q_u=0.25 tsf S-7: Dark grey, CLAY (CH), trace silt, shell fragments [NYCBC Class 4c] SS 24 52 Rollerbit to 55' 53 54 55 SS q_u=0.25 tsf S-8: Dark grey, silty CLAY (CH), some shell fragments, WOR trace rock fragments WOR S-8 [NYCBC Class 6] 20 56 WOR WOR Rollerbit to 60' 58 59 60 SS q.,=0.3 tsf S-9: Dark grey, silty CLAY (CH), some shell fragments [NYCBC Class 6] 24 61 2 62 Rollerbit to 65' 63 64 q_u=0.45 tsf S-10: Dark grey, CLAY (CH), trace silt, trace shell WOR fragments WOR [NYCBC Class 6] WOR WOR 67 Rollerbit to 70' 68

69

Log of Boring G-3 Sheet of 6 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.1 NAVD88 Sample Data Coring (min) MATERIAL SYMBOL Remarks Elev Depth Scale Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) 10 20 30 40 -62.9 70 S-11: Dark grey, CLAY (CH), trace silt, trace shell q.,=0.19 tsf fragments, trace rock fragments S-11 SS [NYCBC Class 6] 24 2 2 72 Rollerbit to 75' 73 q_u=0.2 tsf S-12: Dark grey, CLAY (CH), trace silt, trace shell WOR fragments WOR [NYCBC Class 6] 24 WOR WOR Rollerbit to 80' 78 79 80 q_u=0.27 tsf S-13: Dark grey, CLAY & SILT (CH-MH), trace sand, WOR trace shell fragments WOR [NYCBC Class 6] 24 81 WOR WOR 82 Rollerbit to 85' 83 \LANGAN.COM\DATA\NY\DATA1\170444101\ENGINEERING DATA\GEOTECHNICAL\GI S-14: Dark grey, clayey SILT (MH), some fine sand, some WOR shells, trace fine gravel WOR [NYCBC Class 6] 86 10 87 Rollerbit to 90' 88 89 q_u=0.28 tsf S-15: Dark grey, clayey SILT (MH), trace fine sand, trace WOR shell fragments WOR [NYCBC Class 6] 9 5 92 Rollerbit to 95' 93

Log of Boring G-3 Sheet of 6 Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.1 NAVD88 Sample Data Remarks Depth N-Value (Blows/ft) Flev Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -87.9 10 20 30 40 95 S-16: Dark gray, clayey SILT (MH), trace shell fragments q.,=0.25 tsf WOR [NYCBC Class 6] S-16 WOR SS 24 96 WOR WOR 97 Rollerbit to 100' AIDATAINYIDATA1/170444101/ENGINEERING DATAIGEOTECHNICALIGINTJETS STADIUM LOGS\LANGAN BORINGS.GPJ ... 3/28/2017 1:19:18 PM ... Report: Log - LANGAN 98 99 100 q.,=0.5 tsf SS S-17: Dark grey, clayey SILT (MH), some fine sand, trace WOH shell fragments [NYCBC Class 5b] 24 14 18 102 Rollerbit to 105' 103 104 105 S-18: Dark grey, clayey SILT (MH), some fine sand, some WOR wood chips with organic matter 2 [NYCBC Class 6] 24 106 6 7 107 Rollerbit to 110' Rig chatter between 109' and 108 109 Top of bedrock at 110' Spin 3" casing to a depth of 102. 110 110' Rollerbit to 112' 112 Core barrel blocked between C-1: Gray-black-green, mica SCHIST, highly weathered, 8 115' and 117' highly fractured strong rock, fine to medium grained, close to wide fracture spacing. 113 =33% Loss of recovery possibly due REC=39"/60" =65% [NYCBC Class 1d] 8 Fracture zone:114 to 115 to drilling out bottom 2' run. **NX CORE BARREI** (Highly weathered/ Pegmatic content on entire run RQD=20"/60" decomposed rock) 5 7 115 Core barrel blocked between 7 115' and 117' 116 Loss of recovery possibly due to drilling out bottom 2'. (Highly 8 weathered/ decomposed rock) C-2: Gray-black-green, mica SCHIST, highly weathered, =48% REC=53"/60" =88% 8 highly fractured strong rock, fine to medium grained, close NX CORE BARREL to wide fracture spacing. 118 7QD=29"/60" [NYCBC Class 1c] C-2 Fracture zone:118.3' to 119' 119 Pegmatic content on entire run 8

»ILANGAN.COM/DATA\NY/DATA\1/170444101\ENGINEERING DATA\GEOTECHNICAL\GINT\JETS STADIUM LOGS\LANGAN BORINGS.

Log of Boring G-3 Sheet 6 of Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.1 NAVD88 Sample Data Coring (min) Remarks Depth Scale Elev Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) 112.9 10 20 30 40 120 7 121 7 122 C-3: Gray-black-green, mica SCHIST, highly weathered, highly fractured strong rock, fine to medium grained, close to wide fracture spacing. 9 123 %09= REC=53"/60" =88% [NYCBC Class 1b] 9 Fracture zone:124' to 125' **NX CORE BARRE** 124 Pegmatic content on entire run RQD=36"/60" 10 125 Core barrel jammed at 125' 9 Drive 3" casing to a depth of 126 8 C-4: Gray-black-green, mica SCHIST, highly weathered, 9 highly fractured strong rock, fine to medium grained, close to wide fracture spacing. 128 REC=54"/60" =90% RQD=48"/60" =80% [NYCBC Class 1b] 9 129 8 130 8 131 8 132 Borehole backfilled with End of boring at 132' cuttings and surface patched upon completion 133 134 135 136 137 138 139 140 143

	IVE	1/V	Log	of Boring	ı	(3-30			Sheet 1	of	4
Project				Project N								
_	Hudson Yards - WRY			170444101								
Location				Elevation	and Da	atum						
	LIRR West Side Yard,	, Manhattan, NY		<u></u>		A	prox. 7.	9 <u>N</u> AV				
Drilling Compa	ny			Date Star	ted					Finished		
	Warren George, Inc.						10/28/04	.		1	0/29/04	
Drilling Equipm				Completion	on Dep	th			Rock	Depth		
	CME 55 Truck Rig						72.5 f	t I			52.5 ft	
Size and Type				N		. D	sturbed		Un	disturbed	Core	
	3 7/8" Tri-Cone Rollerl	bit		Number of	of Samp	oles		8		2		4
Casing Diamet			Casing Depth (ft)	Water Le	vel (ft)		rst			mpletion	24 HR.	
	3"/4" Flush Joint Steel		34		. ,		$\overline{\Delta}$			<u>Z</u>	$ar{ar{ar{\Lambda}}}$	
Casing Hamme	Donut	Weight (lbs) 300	Drop (in) 30	Drilling F	oremar							
Sampler		2" Chalby Tuba				Rob	ert Ware	•				
Camalan Hama	2" O.D. Split Spoon / 3	Weight (lbs)	Drop (in)	Field Eng	ineer							
Sampler Hamn	ner Donut	140	30				Pinzon					
٦- ا				Ē			Sample D			Don	aorko	
Elev. (ft) Sample Description			Coring (min) Debth Scale Number Type			Recov. (in) Penetr. (Blows/ft BL/6in 10 20 30						
		- 1-12 = 2301.lb (101)		io Scale	_ j	Type Recov.	≘ Pen BĽ	10 20		Fluid Loss, Drilling Resistance, etc.		
+7.9	Asphalt Pavement			0	 _	+		10 20	30 40	Boring locate	d in Grevho	ound.
+7.4	. opnaci avomont			 	#					about 500' ea	st of 12th	
XXXX				- 1	4					Avenue and 1	70' north o	of 30t
XXXX				l E	3					Street		
XXXX				- 2	\exists						-416 -	
XXXX					#					qu (tsf) estim Penetrometer		OCK
XXXX					#					renetionietei		
XXXX				3	7							
XXXX				F	7							
XXXX				- 4	\exists					Rollerbit with	water and	no
XXXX				l E	3					pressure to 6		
XXXX				- 5	4							
XXXX					4							
XXXX					7							
XXXX	S-1: Black, medium	SAND, some rock frag	ments and	6	\exists	SS	1	1				
XXXX	gravel, trace brick fra	agments (Fill)		l E	3_	ΙĦ	8					
XXXX	[NYCBC Class 7]			- 7	S-1	ls ∏ ₹	t 12	20 +				
XXXX					‡	ΙĦ		/				
XXXX				 8	1	H.	8	4 /		Install casing	to O'	
XXXX					7			1 1/1		I IIstali Casiriy	10 9	
XXXX				l E	3			/				
XXXX				9	3			I				
XXXX					#							
XXXX	S-2: Black. medium	to fine SAND, some cla	ay, trace gravel	10	+	\Box	2	1/				
XXXX	and brick fragmets ((Fill)	,, <u> </u>		7	I ∄	1	I				
XXXX	[NYCBC Class 7]	•		- 11		ls∃ s	o '2	K				
XXXX				ı E	7 57	ΙĦ	1					
xxxxxi l					_		- 1		1 1	1		
XXXXX I				12	1	SS	1	1 /		Landall 1	4- 44!	
>>>> 				12	1		1	1		Install casing	to 14'	
				E	1		1	-		Install casing Rollerbit to 15	to 14' 5'	
				12			1	-		Install casing Rollerbit to 15	to 14' 5'	
				E			1	-		Install casing Rollerbit to 15	to 14' 5'	
				E	1		1			Rollerbit to 15	5'	
				13	1		1			Install casing Rollerbit to 15 Hard drilling	5'	
	O O Disale	As fine CAND	for many control	13						Rollerbit to 15	5'	
	S-3: Black, medium	to fine SAND and rock	fragments,	13				-		Rollerbit to 15	5'	
	trace brick fragment	to fine SAND and rock s (Fill)	fragments,	13		SS			00/2"	Rollerbit to 15	5' 4' to 14.5'	
	S-3: Black, medium trace brick fragment [NYCBC Class 7]	to fine SAND and rock 's (Fill)	fragments,	13					00/2"	Rollerbit to 15 Hard drilling 2 Rollerbit to 20	5' 4' to 14.5')'	
	trace brick fragment	to fine SAND and rock 's (Fill)	fragments,	13 14 15 15 16					00/2"	Rollerbit to 15 Hard drilling 7 Rollerbit to 20 Hard drilling 7	5' 4' to 14.5')'	ost
	trace brick fragment	to fine SAND and rock 's (Fill)	fragments,	13					00/2"	Rollerbit to 15 Hard drilling 2 Rollerbit to 20 Hard drilling 2 water	5' 4' to 14.5' 6' to 17', lo	ost
	trace brick fragment	to fine SAND and rock s (Fill)	fragments,	13 14 15 15 16					00/2"	Rollerbit to 15 Hard drilling 2 Rollerbit to 20 Hard drilling 2 water Install casing	5' 4' to 14.5' 6' to 17', lo to 19'	
	trace brick fragment	to fine SAND and rock 's (Fill)	fragments,	13 - 14 - 15 - 16 - 17					00/2"	Rollerbit to 15 Hard drilling 2 Rollerbit to 20 Hard drilling 2 water Install casing Casing bent (rollerbit), pull	5' 4' to 14.5' 6' to 17', lo to 19' cannot adv out casing	ance
	trace brick fragment	to fine SAND and rock 's (Fill)	fragments,	13 14 15 15 16					00/2"	Rollerbit to 15 Hard drilling 1 Rollerbit to 20 Hard drilling 2 water Install casing Casing bent (rollerbit), pull Rock frag ins	o' 14' to 14.5' 16' to 17', lo to 19' cannot adv out casing ide casing's	ance
	trace brick fragment	to fine SAND and rock s (Fill)	fragments,	- 13 - 14 - 15 - 16 - 17 - 17					00/2"	Rollerbit to 15 Hard drilling ' Rollerbit to 20 Hard drilling ' water Install casing Casing bent (rollerbit), pull Rock frag ins Spin casing to	o' 14' to 14.5' 16' to 17', lo to 19' cannot adv out casing ide casing's	ance
	trace brick fragment	to fine SAND and rock s (Fill)	fragments,	13 - 14 - 15 - 16 - 17					00/2"	Rollerbit to 15 Hard drilling 1 Rollerbit to 20 Hard drilling 2 water Install casing Casing bent (rollerbit), pull Rock frag ins	o' 14' to 14.5' 16' to 17', lo to 19' cannot adv out casing ide casing's	ance

Log of Boring G-30 Sheet of 4 Project Project No. 170444101 Hudson Yards - WRY Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.9 NAVD88 Sample Data Coring (min) Remarks Depth Scale Elev Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) 10 20 30 40 100/0 -12.1 -S-4 SS Rollerbit to 25' 0 100/0" S-4: No Recovery Hard drilling 20' to 21' and 24' to 24.5' 21 Spin casing to 24' Clean to 25' 22 23 24 25 S-5: Gravel, trace brick fragments (Fill) [NYCBC Class 7] 33 S-5 26 2 10 23 27 Rollerbit to 30' Hard drilling 27' to 29' Spin casing to 29' Clean to 30' 28 29 30 S-6: Gravel, some brown, medium sand, trace clay (Fill) [NYCBC Class 7] 19 S-6 31 36 17 14 32 Rollerbit to 35' Wash water color change ~33' 33 -25.6 35 S-7: Grey, silty CLAY (CL), some shell frag [NYCBC Class 4c] SS q.,=0.5 tsf 3 S-7 24 36 3 2 37 Spin casing to 34' Rollerbit to 40' 38 39 WC=51.5, LL=52, PL=19 Grey, silty CLAY (CH) 42 Rollerbit to 45' 43

Log of Boring G-30 Sheet of 4 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum Approx. 7.9 NAVD88 LIRR West Side Yard, Manhattan, NY Sample Data MATERIAL SYMBOL Remarks Flev Depth Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -37. 10 20 30 40 S-8: Grey, silty CLAY (CL), some shell frag [NYCBC Class 6] q.,=0.75 tsf S-8 SS 24 46 Rollerbit to 50' 48 49 50 Rollerbit to 55' Grey, silty CLAY (CL-ML) Rollerbit refusal @ 52.5' Spin 3in casing to 52' 9 Clean to 52.5'WC=23.7, LL=22 , PL=16 52 53 C-1A: Light grey, QUARTZITE REC=50"/60" =83% 2 C-1B: Grey, sound, mica SCHIST, hard, weathered at transition between quartzite and schist, Foliation dip: RQD=50"/60" 5 50-60 degrees 2 55 [NYCBC Class 1b] 1.5 56 57 C-2: Grey, slightly fractured, mica SCHIST, hard, weathered from 57.5' to 58.5', Foliation dip: 60 degrees 58 [NYCBC Class 1b] REC=52"/60" =87% =75% 1.5 59 **NX CORE BARREI** RQD=45"/60" 1.5 60 1 61 No recovery zone from 61.5' to 63.5', possible weathered 62 1 1 63 C-3: Grey, sound, mica SCHIST, hard [NYCBC Class 1a] REC=53"/60" =88% 1.5 RQD=53"/60" C-3 1.5 1.5 66 67 C-4: Grey, slightly fractured, mica SCHIST, hard, CORE BARREL weathered from 71.5' to 72.5', Foliation dip: 40-60 1.5 68 ,09/ EC=51"/60" [NYCBC Class 1b] QD=44"/ 1.5 69

G-30 Log of Boring Sheet of 4 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.9 NAVD88 Sample Data Coring (min) Remarks Elev (ft) Depth Scale N-Value (Blows/ft) Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) -62. 10 20 30 40 1.5 (see above) 2 72 Borehole backfilled with cuttings and surface patched End of boring at 72.5' NLANGAN. COMIDATAINYIDATA1/170444101/ENGINEERING DATAIGEOTECHNICAL/GINTJETS STADIUM LOGS!LANGAN BORINGS. GPJ ... 3/28/2017 1:19:23 PM ... Report: Log - LANGAN upon completion 73 74 75 76 78 79 80 81 82 83 85 86 87 88 89 91 92 93 94

Log of Boring G-31 Sheet of 3 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 9 NAVD88 Drilling Company Date Started Date Finished 10/26/04 10/27/04 Warren George, Inc. Drilling Equipment Completion Depth Rock Depth DK-50 Track Rig 53 ft 33 ft Size and Type of Bit Disturbed Undisturbed Core Number of Samples 3 7/8" Tri-Cone Rollerbit 4 Casing Diameter (in) Casing Depth (ft) Completion 24 HR. First Water Level (ft.) 3"/4" Flush Joint Steel \mathbf{V} 31 Casing Hammer Donut Drilling Foreman Weight (lbs) Drop (in) 300 Robert Ware Sampler 2" O.D. Split Spoon / 3" Shelby Tube Field Engineer Report: Log - LANGAN Drop (in) Weight (lbs) Sampler Hammer 140 30 Donut Juan Pinzon Sample Data MATERIAL SYMBOL Remarks Elev Depth N-Value Recov. (in) Penetr. resist BL/6in Number Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale (Blows/ft) +9.0 Boring located in Greyhound, 8" Concrete Slab about 140' west of 11th +8. Avenue and 170' north of 30th gu (tsf) estimated from Pocket Penetrometer 3 Drill through concrete slab Rollerbit to 6' with water and no pressure 5 6 Install casing to 9' SS S-1: Brown, coarse to medium SAND, some fine gravel Rollerbit to 10' and brick fragments (Fill) [NYCBC Class 7] S-1 4 8 9 SS Mix Revert S-2: Gravel, some brown medium to fine sand, trace brick Rollerbit to 15ft fragments (Fill) 19 S-2 [NYCBC Class 7] 4 5 3 12 13 14 q.,=0.25 tsf SS S-3: Black, silty CLAY (CH-OH), some organics, wood 6 Install casing to 19ft [NYCBC Class 4c] Rollerbit to 20ft 4 17 18 19

Log of Boring G-31 Sheet of 3 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum Approx. 9 NAVD88 LIRR West Side Yard, Manhattan, NY Sample Data Remarks Flev Depth Scale Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) -11.0 10 20 30 40 20 Rollerbit to 25 ftWC=66.2, Dark grey-black, silty CLAY (CH-OH), some organics LL=83, PL=30 [NYCBC Class 4c] ISION <u>۱</u>-1 24 21 22 Organic Content = 5.7% (burnoff) 23 24 25 q_u=0.5 tsf Rollerbit to 30ft S-4: Grey, silty CLAY (CL), some shell frag [NYCBC Class 6] SS 24 26 27 28 29 30 No recovery No Recovery Tube's tip bent 31 32 Rollerbit to 35ft Rollerbit refusal @ 33ft Install casing to 31ft 33 Clean to 33ft 4.5 Rock Coring
Run #1 (33ft-38ft) C-1: Grey, slightly fractured MICA SCHIST, hard, slightly REC=55"/60" =92% 5.5 weathered, iron stained joints Foliation dip: 50 - 70 degrees. 35 RQD=51"/60" [NYCBC Class 1a] 5.5 36 5 37 5.5 38 Run #2 (38ft-43ft) C-2: Grey, slightly fractured MICA SCHIST, hard, slightly 2.5 Increase RPM (from previous weathered, iron stained joints, some quartz from 40' to 41' and from 42.5' to 43' Run) 39 =85% REC=58"/60" =97% Foliation dip: 40-60 degrees 1.5 [NYCBC Class 1a] **NX CORE BARRE** RQD=51"/60" 2.5 3 3 43 C-3: Grey slightly fractured MICA SCHIST, hard, slightly weathered, iron stained joint Run #3 (43ft-48ft) 6-3 [NYCBC Class 1a] Barrel stopped moving @

3

43.5ft (Drilled for 50 min @

43.5ft, change bit and continue

"ILANGAN.COMIDATAINYDATA1/170444101/ENGINEERING DATA\GEOTECHNICAL\GINTJETS STADIUM LOGS\LANGAN BORINGS.GPJ .

Log of Boring G-31 Sheet 3 of 3 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 9 NAVD88 Sample Data Coring (min) Remarks Depth Scale Elev Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) -36.0 10 20 30 40 =100% coring @ 43.5ft) REC=60"/60" =100% 3 NX CORE BARREL 46 RQD=60"/60" 2.5 3.5 Run #4 (48ft-53ft) C-4: Grey, slightly fractured MICA SCHIST, hard, slightly 2.5 weathered, iron stained joints Foliation dip: 50-60 degrees. 49 =87% REC=56"/60" =93% [NYCBC Class 1a] 3 **NX CORE BARREI** 50 RQD=52"/60" 3 2 52 2 53 Borehole backfilled with End of boring at 53' cuttings and surface patched upon completion 54 55 56 58 59 60 61 62 63 64 66 67 68 69

Log of Boring G-5 Sheet of 5 Project Project No. Hudson Yards - WRY 170444101 Elevation and Datum Location LIRR West Side Yard, Manhattan, NY Approx. 7.9 NAVD88 Drilling Company Date Started Date Finished 10/14/04 10/21/04 Warren George, Inc. Drilling Equipment Completion Depth Rock Depth 100 ft CME 75 Truck Rig 80 ft Size and Type of Bit Disturbed Undisturbed Core Number of Samples 3 7/8" Tri-Cone Rollerbit 15 4 Casing Diameter (in) Casing Depth (ft) Completion 24 HR. First Water Level (ft.) 3"/4" Flush Joint Steel \mathbf{V} Casing Hammer Donut Drilling Foreman Weight (lbs) Drop (in) 30 300 Corry Tirro Sampler 2" O.D. Split Spoon / 3" Shelby Tube Field Engineer Drop (in) Weight (lbs) Sampler Hammer 140 30 Automatic Stephen Morse / Nipam Shah Sample Data MATERIAL SYMBOL Coring (min. Remarks N-Value Elev Depth Recov. (in) Penetr. resist BL/6in Number Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale (Blows/ft) +7.9 Boring located in NYDS 6" Asphalt +7 parking area, about 300' east of 12th Avenue and 27' north of 30th Street 3 qu (tsf) estimated from Pocket Penetrometer Drill to 6' using rollerbit and water with no down pressure 5 6 SS S-1: Brown-black, GRAVEL and SILT (Fill) [NYCBC Class 7] 3 S-1 3 8 Push and drive 4" casing to 9' 9 Rollerbit to 10' SS S-2: Brown-black, GRAVEL and SILT (Fill) 4 [NYCBC Class 7] S-2 2 3 2 12 Drive 4" casing to 14' Rollerbit to 15' 13 14 SS S-3: Brown-black, GRAVEL and SILT, some brick 6 fragments (Fill) 4 [NYCBC Class 7] က 5 17 Install 4" casing to 19' Rollerbit to 20' 18 19

Log of Boring G-5 Sheet 5 of Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.9 NAVD88 Sample Data Remarks Elev Depth N-Value (Blows/ft) Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale 10 20 30 40 -12.1 20 S-4: Brown-black, GRAVEL and SILT, some cobbles (Fill) [NYCBC Class 7] SS 8 S-4 2 21 5 22 Install 4" casing to 24' Rollerbit to 25' 23 24 25 S-5: Brown-grey, GRAVEL and SILT, some rock fragments (FILL) S-5 [NYCBC Class 7] 26 27 Spin 4" casing to 30' Rollerbit to 30' 28 29 30 SS S-6: Brown, coarse to fine SAND, some silt, some fine 4 gravel (Fill) [NYCBC Class 7] 31 9 12 8 5 32 Add revert to drilling fluid 33 Rollerbit to 35' 34 35 SS S-7: Brown, coarse to fine SAND, some silt, some fine gravel (Fill) [NYCBC Class 7] 6 S-7 12 36 37 Rollerbit to 40' Reddish brown wash 38 39 SS S-8: No recovery 3 2 Rollerbit to 45' -35. 43

Log of Boring G-5 Sheet of 5 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.9 NAVD88 Sample Data MATERIAL SYMBOL Remarks Flev Depth Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -37. 10 20 30 40 45 q.,=0.05 tsf S-9: Grey, organic CLAY (OH), some silt, some shell fragments, trace fine gravel 2 S-9 SS [NYCBC Class 4c] 15 46 3 Rollerbit to 47' Grey, organic silty CLAY (OH), trace fine sand 7 5 48 49 $q_u=0.1 tsf$ S-10: Grey, organic silty CLAY (OH), some shell fragments, trace fine sand SS [NYCBC Class 6] 50 3 Rollerbit to 51' No recovery 52 53 Rollerbit to 55' 54 55 No recovery 56 q_{..}=0.17 tsf S-11: Grey, organic silty CLAY (OH), some fine sand, some shell fragments, roots SS [NYCBC Class 6] 58 24 2 59 Rollerbit to 60' ANGAN.COMIDATAINYIDATA111704441011ENGINEERING DATAIGEOTECHNICAL\ SS S-12: Grey, clayey SILT (ML), some fine sand, some shell fragments, trace fine gravel 6 [NYCBC Class 5b] 61 4 5 5 62 Rollerbit to 65' 63 64 q.,=0.14 tsf S-13: Grey, silty CLAY (CL), some fine sand, trace fine No recovery for Shelby tube gravel, trace shell fragments 5 [NYCBC Class 4c] taken at 65', drive spoon 2 66 67 Rollerbit to 70' 68 69

Log of Boring G-5 Sheet of 5 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.9 NAVD88 Sample Data Remarks Flev Depth Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -62. 10 20 30 40 q.,=0.13 tsf S-14: Dark grey, clayey SILT (ML), some fine sand, trace SS fine gravel, trace shell fragments [NYCBC Class 6] 24 2 3 72 Rollerbit to 75' 3/28/2017 1:20:17 PM ... Report: Log - LANGAN 73 S-15: Dark grey, clayey SILT (ML), some fine sand, trace fine gravel, trace shell fragments [NYCBC Class 6] 9 Hole caved in 5 Spin 3" casing to 75' Rollerbit to 80' 78 -ANGAN BORINGS.GPJ.. 79 -72. 80 Rock encountered at 80' 5 81 C-1: Grey, mica SCHIST, moderately weathered, sound, REC=54"/60" =90% RQD=45"/60" =75% wide fracture spacing, strong rock, medium grained, slightly to moderately weathered 5 **NX CORE BARREI** [NYCBC Class 1b] 7 5 highly weathered PEGMATITE between 83'-84' 4 85 3 86 C-2: Grey, mica SCHIST, slightly weathered, sound, wide fracture spacing, strong rock, fine grained, slightly REC=56"/60" =93% RQD=55"/60" =92% 5 NX CORE BARREI weathered foliation, moderately weathered at 87.8' 87 [NYCBC Class 1a] C-5 5 88 5 89 5 5 REC=60"/60" =100% C-3: Grey, mica SCHIST, highly weathered, moderately RQD=50"/60" =83% 4 fractured, close to wide fracture spacing, strong rock, NX CORE BARREL medium grained, iron-oide staining 92.5'-94' [NYCBC Class 1b] 3 93 5 5

Log of Boring G-5 Sheet of 5 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 7.9 NAVD88 Sample Data Coring (min) Remarks Depth Scale Elev N-Value (Blows/ft) Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) -87. 10 20 30 40 95 5 96 =100% C-4: Grey, mica SCHIST, moderately weathered, slightly fractured, close to wide fracture spacing, strong, medium grained, iron-oxide staining at 96'-99' REC=60"/60" =100% 5 **NX CORE BARREI** 97 RQD=60"/60" [NYCBC Class 1a] 5 98 5 99 4 100 Borehole backfilled with End of boring at 100' "ILANGAN, COMIDATAINYDATA1/170444101/ENGINEERING DATA\GEOTECHNICAL\GINTJETS STADIUM LOGS\LANGAN BORINGS, GPJ ... 3/28/2017 1:20:17 PM ... cuttings and surface patched upon completion 101 102 103 104 105 106 107 108 109 110 112 113 114 115 116 118 119

Log of Boring G-7 Sheet of 3 Project Project No. Hudson Yards - WRY 170444101 Elevation and Datum Location LIRR West Side Yard, Manhattan, NY Approx. 9.4 NAVD88 Drilling Company Date Started Date Finished 10/12/04 10/13/04 Warren George, Inc. **Drilling Equipment** Completion Depth Rock Depth 70 ft Acker-11 Truck Rig 50 ft Size and Type of Bit Disturbed Undisturbed Core Number of Samples 3 7/8" Tri-Cone Rollerbit 9 4 Casing Diameter (in) Casing Depth (ft) Completion 24 HR. First Water Level (ft.) 3"/4" Flush Joint Steel \mathbf{V} Casing Hammer Donut Drilling Foreman Weight (lbs) Drop (in) 300 Corey Tirro Sampler 2" O.D. Split Spoon / 3" Shelby Tube Field Engineer Drop (in) Weight (lbs) Sampler Hammer 140 30 Donut Juan Pinzon / Clay Patterson Sample Data MATERIAL SYMBOL Coring (min. Remarks N-Value Elev Depth Recov. (in) Penetr. resist BL/6in Number Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale (Blows/ft) +9. Boring located in NYDS 8" Asphalt parking area, about 280' west +8 of 11th Avenue and 25' north of 30th Street qu (tsf) estimated from Pocket Penetrometer 3 Rollerbit with no pressure to 6' Push casing to 4' Clean to 6' 5 6 SS S-1: Fine GRAVEL, brick fragments, some medium sand 10 [NYCBC Class 7] S-1 17 5 8 Hammer 4" casing to 9' Rollerbit to 10' Add Revert 9 10 SS S-2: Brown, medium silty SAND, trace gravel (Fill) 2 [NYCBC Class 7] S-2 ω 2 1 12 Rollerbit to 15' Rig chatter 13 Hole caves in when trying to take sample, hammer 4" casing to 14' 14 Redrill to 15' SS S-3: Brown, medium silty SAND, trace fine gravel, rock 6 fragments (Fill) 3 [NYCBC Class 7] S-3 16 2 17 Rollerbit to 20' 18 19

G-7 Log of Boring Sheet of 3 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 9.4 NAVD88 Sample Data Remarks Elev Depth Scale Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) 10 20 30 40 -10.6 20 S-4: Brown, medium SAND, some fine gravel, some silt SS 6 S-4 [NYCBC Class 7] 6 21 9 22 Rollerbit to 25' Rig chatter 23 24 25 S-5: Brown-tan, coarse to medium SAND, rock fragments, some fine gravel (Fill) S-5 22 [NYCBC Class 7] 26 က 16 25 27 Install casing to 24' 28 Rollerbit to 30' 29 -20.6 30 S-6: Grey, organic silty CLAY (OH), trace shell fragments [NYCBC Class 4c] SS q_u=0.25 tsf 3 S-6 31 2 3 4 32 Install casing to 29' 33 Rollerbit to 35' 34 Casing drops 6" Install casing to 34' Redrill to 35' 35 SS S-7: Grey, organic silty CLAY (OH), trace shell fragments q_u=0.5 tsf [NYCBC Class 4c] S-7 19 36 3 3 37 Rollerbit to 37 No recovery 38 39 Rollerbit to 40' SS S-8: No recovery 11 12 13 42 Rollerbit to 45' 43

End of boring at 70'

Log of Boring **G-7** Sheet of 3 Project Project No. 170444101 Hudson Yards - WRY Location Elevation and Datum Approx. 9.4 NAVD88 LIRR West Side Yard, Manhattan, NY Sample Data MATERIAL SYMBOL Remarks Elev Depth N-Value (Blows/ft) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -35.6 10 20 30 40 S-9: Grey, organic silty CLAY (OH), some fine sand [NYCBC Class 6] WOH WC=36.1, LL=33, PL=16 S-10 WOH SS 20 46 Organic Content = 3.4% 2 (burnoff) 2 Rollerbit to 50' 48 Hard drilling 48' - 50' 49 100/0" S-11 SS 0 100/0" Spoon bouncing at 50' 5 Spin 3" casing to 50' C-1: Black-white banded mica SCHIST, slightly fractured, REC=51"/60" =85% **%0**/= 5 partially weathered [NYCBC Class 1b] **NX CORE BARRE** 52 RQD=42"/60" 4 53 5 54 4 C-2: Black-white banded mica SCHIST, slightly fractured, partially weathered [NYCBC Class 1b] 5 56 **%**22= REC=51"/60" =85% 4 **NX CORE BARREI** RQD=46"/60" 3 6 C-3: Black-white banded mica SCHIST, one break, no 6 weathering [NYCBC Class 1a] 61 REC=53"/60" =88% RQD=53"/60" =88% 6 NX CORE BARREI 62 4 63 5 64 6 C-4: Black-white banded mica SCHIST, no fractures 5 [NYCBC Class 1a] 66 REC=56"/60" =93% =93% 6 NX CORE BARREL RQD=56"/60" 6 68 Borehole backfilled with 6 cuttings and surface patched upon completion 69

10

Log of Boring G-9 Sheet of 3 Project Project No. Hudson Yards - WRY 170444101 Elevation and Datum Location LIRR West Side Yard, Manhattan, NY Approx. 15.1 NAVD88 Drilling Company Date Started Date Finished 10/13/04 Warren George, Inc. 10/13/04 **Drilling Equipment** Completion Depth Rock Depth DK-50 Track Rig 59 ft 39 ft Size and Type of Bit Disturbed Undisturbed Core Number of Samples 3 7/8" Tri-Cone Rollerbit 8 0 4 Casing Diameter (in) Casing Depth (ft) Completion 24 HR. First Water Level (ft.) 3"/4" Flush Joint Steel \mathbf{V} Casing Hammer Donut Drilling Foreman Weight (lbs) Drop (in) 300 Robert Ware Sampler 2" O.D. Split Spoon Field Engineer Report: Log - LANGAN Weight (lbs) Drop (in) Sampler Hammer 140 30 Donut Clay Patterson Sample Data MATERIAL SYMBOL Coring (min. Remarks Elev Depth N-Value Recov. (in) Penetr. resist BL/6in Number Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale (Blows/ft) +15 10 20 30 40 6" Concrete Slab +14 1:21:34 PM Rollerbit through concrete Drill to 6' with water and no pressure on drill head Brown-black, medium to fine SAND, trace silt, trace brick, trace mica (Fill) Cuttings indicate Fill (sand and [NYCBC Class 7] 3 gravel) .COM/DATA/NY/DATA1/170444101/ENGINEERING DATA/GEOTECHNICAL/GINT/JETS STADIUM LOGS/LANGAN BORINGS.GPJ qu (tsf) obtained from Pocket Penetrometer 5 Install 4" casing to 5' SS 0 100/0" 7 8 S-2 SS 0 100/3" Rollerbit to 8' Lose of water at 8' Refusal at 8' - take sample 9 Rollerbit to 10', hard drilling, S-3: Black-white-brown, coarse to medium SAND, trace - S-3 SS= 4 100/5" 100/5" cuttings indicate cobble brick (Fill) [NYCBC Class 7] 11 Install 4" casing to 10' Rollerbit to 10' 12 Rollerbit to 15' Hard drilling from 12' to 15' 13 14 S-4 SS 4 100/4" S-4: Black-white-brown, coarse to medium SAND, trace 100/4" brick (Fill) [NYCBC Class 7] 16 17 Rollerbit to 20' Hard drilling from 15' to 18' 18 19

Log of Boring G-9 Sheet of 3 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 15.1 NAVD88 Sample Data Remarks Elev Depth Scale N-Value (Blows/ft) Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) 10 20 30 40 20 S-5: Brown, coarse to fine SAND, some fine gravel, trace SS 21 S-5 [NYCBC Class 7] 4 21 29 31 22 Rollerbit to 25' 23 Cannot advance 4" casing past 10', spin 3" casing to 25' 24 25 S-6: Brown, coarse to medium SAND, some fine gravel, trace silt (Fill) S-6 [NYCBC Class 7] 26 ∞ 27 26 27 Spin 3" casing to 30' Rollerbit to 30' 28 29 30 S-7: Grey, organic CLAY (OH), trace medium to fine sand [NYCBC Class 4b] SS 14 S-7 15 31 3 32 Spin 3" casing to 35' Rollerbit to 35' 33 35 SS S-8: No recovery 36 0 5 37 Rollerbit to 39' Refusal at 39' Spin 3" casing to 39' 38 -23.9 39 C-1: Black and white banded mica SCHIST, partially REC=55"/60" =92% 5 weathered, slightly fractured [NYCBC Class 1b] **NX CORE BARREI** RQD=48"/60" 5 6 5 6

"LANGAN.COM/DATA\NY/DATA1\170444101\ENGINEERING DATA\GEOTECHNICAL\GINTJETS STADIUM

Log of Boring G-9 Sheet of 3 3 Project Project No. Hudson Yards - WRY 170444101 Location Elevation and Datum LIRR West Side Yard, Manhattan, NY Approx. 15.1 NAVD88 Sample Data Coring (min) Remarks Depth Scale Elev N-Value (Blows/ft) Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) 10 20 30 40 -29.9 C-2: Black and white banded mica SCHIST, slightly 7 weathered, slightly fractured REC=57"/60" =95% [NYCBC Class 1a] 46 **NX CORE BARREI** 7 RQD=54"/60" 6 48 6 49 6 50 C-3: Black and white banded mica SCHIST, slightly REC=57"/60" =95% RQD=53"/60" =88% 5 weathered, slightly fractured [NYCBC Class 1a] 5 52 6 53 7 55 REC=60"/60" =100% C-4: Black and white banded mica SCHIST, slightly 7 weathered, slightly fractured NX CORE BARREI [NYCBC Class 1a] 56 RQD=54"/60" 6 5 58 5 59 Borehole backfilled with End of boring at 59' cuttings and surface patched upon completion 60 61 62 63 64 66 67 68 69

Log of Boring LB-1 Sheet of 8 Proiect Project No. Platform Test Caissons 170444101 Location Elevation and Datum Hudson Yards - West Rail Yard, Manhattan, NY Approx. 7 feet NAVD 88 **Drilling Company** Date Started Date Finished Craig Geotechnical Drilling Co., Inc 10/23/17 10/27/17 Rock Depth Drilling Equipment Completion Depth CME75 Truck Rig 177 ft 137 ft Size and Type of Bit Disturbed Undisturbed Core Number of Samples 3-7/8 inch Tricone Roller Bit 40 Casing Diameter (in) 24 HR. Casing Depth (ft) First Completion Water Level (ft.) 9 25 Casing Hammer Automatic Drilling Foreman Weight (lbs) Drop (in) 30 140 Eric Delmeier Sampler 2-inch-diameter split spoon; Shelby Tube; Macrocore Field Engineer Sampler Hammer Weight (lbs) Drop (in) 30 Automatic Thomas Androutselis Sample Data Remarks MATERIAL Elev Depth Number Recov. (in)
Penetr. resist BL/6in (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Sample Description (ft) Scale +7. 10 20 30 40 Clear for utilities for the About 6 inches asphalt +6. upper 8.0ft. with vacuum truck on 10/20/17 Started Drilling at 10/23/2017 12:00 PM 2 Push casing to 2.0ft., Drive casing to 5.0ft. (~100 blows) 3 Drive casing to 10.0ft. (~160 Brown to black silty fine SAND, some fine gravel, blows) trace brick (from vacuum cuttings) [FILL] [NYC BC Class 7] 5 6 Drill to 8.0ft. without taking samples, Brown and black wash A\NY\DATA1\170444101\ENGINEERING DATA\GEOTECHNICAL\GINTLOGS\170444101 8 PID reading=0 SS 12 Brown to black silty fine SAND, trace fine gravel (wet) [FILL] [NYC BC Class 7] 10 PID reading=0 5 SS S-2 15 Brown to black silty fine SAND, trace fine gravel (wet) 9 [FILL] [NYC BC Class 7] 12 12 Drive casing to 15.0ft. (~250 13 14 Drill to 15.0ft., Brown and 31 black wash, Light rig chatter SS . 26 16 Gray fine GRAVEL, some silty fine sand (wet) [FILL] 35 [NYC BC Class 7] 23 17 Drive casing to 20.0ft. (~83 blows) 18 Change in drilling at around 18.0ft., from light rig chatter to smooth drilling, probably 19 start of clay layer

Log of Boring LB-1 Sheet of 8 Project Project No. 170444101 Platform Test Caissons Location Elevation and Datum Hudson Yards - West Rail Yard, Manhattan, NY Approx. 7 feet NAVD 88 Sample Data Remarks N-Value (Blows/ft) Elev Depth Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -13.0 10 20 30 40 20 Drill to 20.0ft., Black wash, WOH Smooth drilling WOH SS S-4 24 21 Black high-plasticity CLAY with organics and lenses of olive greyish brown silt (wet) [CHJ [NYC BC Class 6] WOH WOH 22 Push casing to 25.0ft 23 24 25 Drill to 25.0ft., Black wash, WOH Smooth drilling WOH SS 24 Black high-plasticity CLAY with organics and lenses of WOH olive greyish brown silt (wet) [CH] [NYC BC Class 6] WOH 27 Push a Shelby tube at 27.0ft. 7 24 28 Black high-plasticity CLAY with organics and lenses of olive greyish brown silt (wet) [CH] [NYC BC Class 6] 29 WOH WOH S-6 SS 24 30 Black high-plasticity CLAY with organics and lenses of WOH olive greyish brown silt (wet) [CH] [NYC BC Class 6] WOH 31 32 33 34 35 Drill to 35.0ft., Black wash, WOH Smooth drilling WOH S-7 36 Black high-plasticity CLAY with organics and lenses of WOH olive greyish brown silt (wet) [CH] [NYC BC Class 6] WOH 37 Push a Shelby tube at 37.0ft. **U-2** 38 20 Black high-plasticity CLAY with organics and lenses of olive greyish brown silt (wet) [CH] [NYC BC Class 6] 39 WOH WOH SS 24 Black high-plasticity CLAY with organics and lenses of WOH olive greyish brown silt, trace shells (wet) [CH] [NYC WOH BC Class 6] Stopped Drilling for the day at 10/23/2017 2:42 PM 42 43

LB-1 Log of Boring Sheet of 8 Project Project No. Platform Test Caissons 170444101 Elevation and Datum Location Hudson Yards - West Rail Yard, Manhattan, NY Approx. 7 feet NAVD 88 Sample Data Remarks N-Value (Blows/ft) Elev Depth Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -38.0 10 20 30 40 45 Drill to 45.0ft., Gray wash, WOR Smooth drilling WOR S-9 SS 24 46 Dark gray low-plasticity CLAY and lenses of fine sand, trace shells (wet) [CL] [NYC BC Class 6] WOR WOR Push a Shelby tube at 47.0ft. U-3 24 48 Dark gray low-plasticity CLAY and lenses of fine sand (wet) [CL] [NYC BC Class 6] 49 WOR WOR SS | 50 24 Dark gray low-plasticity CLAY and lenses of fine sand (wet) [CL] [NYC BC Class 6] WOR WOR 52 53 Drill to 55.0ft., Gray wash, Smooth drilling 54 55 WOR 24 56 Dark gray low-plasticity CLAY and lenses of fine sand WOR (wet) [CL] [NYC BC Class 6] WOR Push a Shelby tube at 57.0ft. 24 58 Dark gray low-plasticity CLAY and lenses of fine sand, some shells (wet) [CL] [NYC BC Class 6] 59 WOR WOR 24 Dark gray low-plasticity CLAY and lenses of fine sand, trace shells (wet) [CL] [NYC BC Class 6] WOR WOR 61 62 Drill to 65.0ft., Gray wash, Smooth drilling 63 64 WOR WOR Dark gray low-plasticity CLAY and lenses of fine sand, WOR trace shells (wet) [CL] [NYC BC Class 6] WOR 67 68 69

LB-1 Log of Boring Sheet of 8 Project Project No. Platform Test Caissons 170444101 Location Elevation and Datum Hudson Yards - West Rail Yard, Manhattan, NY Approx. 7 feet NAVD 88 Sample Data Remarks N-Value (Blows/ft) Elev Depth Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -63.0 10 20 30 40 70 Drill to 70.0ft., Gray wash, WOH Smooth drilling WOH S-14 24 Dark gray low-plasticity CLAY and lenses of fine sand, trace shells (wet) [CL] [NYC BC Class 6] WOH WOH Push a Shelby tube at 72.0ft. U-5 24 73 Dark gray low-plasticity CLAY and lenses of fine sand, trace shells (wet) [CL] [NYC BC Class 6] WOH WOH SS 75 24 Dark gray low-plasticity CLAY and lenses of fine sand, WOH trace shells (wet) [CL] [NYC BC Class 6] WOH Drill to 80.0ft., Gray wash, Smooth drilling 78 79 80 WOH WOH Dark gray low-plasticity CLAY and lenses of fine sand WOH (wet) [CL] [NYC BC Class 6] WOH 82 Drill to 85.0ft., Gray wash, Smooth drilling 83 84 85 WOH WOH 86 Dark gray low-plasticity CLAY and lenses of fine sand (wet) [CL] [NYC BC Class 6] WOH WOH 87 Push a Shelby tube at 87.0ft. 9-0 88 22 Dark gray low-plasticity CLAY and lenses of fine sand (wet) [CL] [NYC BC Class 6] 89 WOH S-18 WOH Dark gray low-plasticity CLAY and lenses of fine sand WOH (wet) [CL] [NYC BC Class 6] WOH 92 93

Log of Boring LB-1 Sheet of 8 Project Project No. Platform Test Caissons 170444101 Location Elevation and Datum Hudson Yards - West Rail Yard, Manhattan, NY Approx. 7 feet NAVD 88 Sample Data Remarks Elev N-Value (Blows/ft) Depth Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale 10 20 30 40 -88.0 95 Drill to 95.0ft., Gray wash, WOH Smooth drilling S-19 WOH 18 96 Dark gray low-plasticity CLAY and lenses of fine sand, WOH trace shells, trace wood (wet) [CL] [NYC BC Class 6] 2 97 Drill to 100.0ft., Gray wash, Smooth drilling 98 99 100 WOH 22 Dark gray low-plasticity CLAY and lenses of fine sand, trace shells, trace wood (wet) [CL] [NYC BC Class 6] 3 102 Drill to 105.0ft., Gray wash, Smooth drilling . S-21 at 103 104 105 WOH 24 106 Dark gray low-plasticity CLAY and lenses of fine sand (wet) [CL] [NYC BC Class 6] 5 107 Drill to 110.0ft., Gray wash, Smooth drilling 108 109 110 24 Dark gray low-plasticity CLAY and lenses of fine sand (wet) [CL] [NYC BC Class 6] 3 112 Drill to 115.0ft., Gray wash, Smooth drilling 113 114 WOR WOR Dark gray low-plasticity CLAY and lenses of fine sand (wet) [CL] [NYC BC Class 6] WOR WOR 117 118 119

LB-1 Log of Boring Sheet of 8 Project Project No. Platform Test Caissons 170444101 Location Elevation and Datum Hudson Yards - West Rail Yard, Manhattan, NY Approx. 7 feet NAVD 88 Sample Data Remarks N-Value (Blows/ft) Elev Depth Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale 113.0 10 20 30 40 120 Drill to 120.0ft., Gray wash, WOR Smooth drilling WOR SS S-24 24 121 Dark gray low-plasticity CLAY and lenses of fine sand WOR (wet) [CL] [NYC BC Class 6] WOR 122 Drill to 125.0ft., Gray wash, Smooth drilling 123 124 125 WOH 24 126 Dark gray low-plasticity CLAY and lenses of fine sand, some wood (wet) [CL] [NYC BC Class 6] 8 127 Drill to 129.0ft., Gray wash, Smooth drilling, At around 129 ft heavy rig chatter 128 129 COM/DATA/NY/DATA/1/10444101/ENGINEERING DATA/GEOTECHNICAL/GINTLOGS/170444101 ENTERPRISE.GPJ Dark reddish brown SILT, some fine sand [ML] 30 50/2 2 [completely decomposed rock] [NYC BC Class 1D] 50/2 (wet) 131 132 133 Drill to 135.0ft., Brown wash, Heavy rig chatter 134 135 Gray and dark brown SILT, some fine sand 45 7 [completely decomposed rock] [ML] [NYC BC Class 60 1D] (wet) 136 50/1 130 (137 Start coring rock @137ft, C-1 4:54 at 137ft 138 Gray fine to coarse grained muscovite-biotite-garnet REC=56"/60" =93% 2:19 gneissic SCHIST, slightly weathered, close to moderate fracture spacing, fractures steeply dipping to 139 RQD=37"/60" NX Core shallow dipping [NYC BC Class 1B] 7 3:07 140 3:47 2:51 142 C-2 at 142ft =73% REC=56"/60" =93% 2:45 143 Gray fine to coarse grained muscovite-biotite-garnet RQD=44"/60" NX Core C-2 2:26 SCHIST, slightly weathered, close to moderate fracture spacing, fractures steeply dipping to shallow dipping [NYC BC Class 1B] 2:22

LB-1 Log of Boring Sheet of 8 Project Project No. Platform Test Caissons 170444101 Elevation and Datum Location Hudson Yards - West Rail Yard, Manhattan, NY Approx. 7 feet NAVD 88 Sample Data Remarks N-Value (Blows/ft) Elev Depth Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -138.0 10 20 30 40 145 2:05 146 2:34 140.0 147 C-3 at 147ft 2:25 148 Gray fine to coarse grained muscovite-biotite-garnet REC=60"/60" =100% RQD=18"/60" =30% SCHIST, moderately weathered, very close to close fracture spacing, fractures near vertical to near 2:48 149 NX Core horizontal, dark greenish and black C-3 2:36 quartz-biotite-hornblende amphibolite from 148' to 150', granulite intrusion at around 150' [NYC BC Class 150 1D] 3:03 151 2.44 145.0 152 C-4 at 152ft 3:05 153 REC=45"/60" =75% RQD=26"/60" =43% 3:12 Gray fine to coarse grained muscovite-biotite-garnet 154 SCHIST, slightly weathered, close to moderate NX Core fracture spacing, fractures steeply dipping to shallow dipping [NYC BC Class 1C] 0.4 4 4:01 155 4:06 COMIDATAINY/DATA1/170444101/ENGINEERING DATA/GEOTECHNICAL/GINTLOGS/170444101 ENTERPRISE 156 4:08 157 C-5 at 157ft 4:02 158 REC=20"/60" =33% RQD=10"/60" =17% 4:10 159 Gray fine to coarse grained muscovite-biotite-garnet C-5 4:25 SCHIST, moderately weathered, close fracture spacing, fractures near vertical to near horizontal [NYC 160 BC Class 1D] 4:12 161 155 (162 C-6 at 162ft 4:30 163 REC=54"/60" =90% RQD=29"/60" =48% 4:16 164 NX Core Gray fine to coarse grained muscovite-biotite-garnet SCHIST, slightly weathered, close to moderate 4:32 fracture spacing, fractures steeply dipping [NYC BC 165 Class 1C1 4:16 166 4:05 167 C-7 at 167ft EC=60"/60" =100% =20% 4:50 168 Gray fine to coarse grained muscovite-biotite-garnet RQD=42"/60" NX Core C-7 SCHIST, slightly weathered, close to moderate fracture spacing, fractures steeply dipping [NYC BC 169 Class 1B1 4:36

Log of Boring LB-1 Sheet of 8 Project Project No. Platform Test Caissons 170444101 Location Elevation and Datum Hudson Yards - West Rail Yard, Manhattan, NY Approx. 7 feet NAVD 88 Sample Data Remarks Elev Depth N-Value (Blows/ft) Recov.
(in)
Penetr.
resist
BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale 10 20 30 40 163.0 170 4:52 4:25 172 C-8 at 172ft 4:45 173 REC=58"/60" =97% RQD=46"/60" =77% 4:20 174 NX Core Gray fine to coarse grained muscovite-biotite-garnet ο Ο SCHIST, slightly weathered, close to moderate 4:25 fracture spacing, fractures shallow dipping [NYC BC 175 Class 1B] 4:39 176 4:58 -170.0 NLANGAN.COM/DATANY/DATAN170444101/ENGINEERING DATANGEOTECHNICAL\GINTLOGS\170444101_ENTERPRISE.GPJ ... 11/30/2017 1:34:48 PM 177 Bottom of boring at 177.0ft. Boring was backfilled and grouted. 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

LANGAN

			1/V			Log		Boring			LB	3-2		-	Sheet	1	of	5
Project		Platform Test Caisso	nns				Pr	oject No.			1704	14410	1					
Location		Tation Tool Galooc	7110				Ele	evation a	nd Da		110		•					
Drilling Co		Hudson Yards - Wes	st Rail Yard, Ma	ınhattan,	NY		De	ite Starte	d		App	rox. 7.	5 fee		D 88 Finished			
Drilling O		, Craig Geotechnical [Drilling					ito otario	u		10/	27/17		Date	i illiorica		11/3/17	
Drilling Ed	quipme	nt					Co	mpletion	Dept	h				Rock	Depth			
Size and		CME75 Truck Rig									Distu	117 ft		Un	disturbed		77 ft Core	
		3-7/8 inch Tricone Re	oller Bit			(4)	Nι	imber of \$	Samp	les			17			5		40
Casing D		4		(Casing Depth	(ft) 77	W	ater Leve	l (ft.)		First		9		mpletion		24 HR.	
Casing H	ammer	Automatic	Weight (lbs)	140	Drop (in)	30	Dr	illing Fore	eman	'	_				_		_	
Sampler		2-inch-diameter split	spoon; Shelby	Tube; M	lacrocore		Fie	eld Engine	eer	Er	ric D	elmei	er					
Sampler I			Weight (lbs)	140	Drop (in)	30	٦٠,	old Eligin	001	Tł	noma	as And	drouts	elis				
₫岀					<u> </u>		(uin	D	_		Sai	mple D	ata			Ren	narks	
MATERIAL SYMBOL	Elev. (ft)	Sa	ample Descrip	otion			Coring (min)	Depth Scale	Number	Туре	ecov.	Penetr. resist BL/6in	N-V (Blo	alue ws/ft)		ng Fluid, I	Depth of Cas g Resistance	
≥ "	+7.5	About 6 inches asp	halt				ပိ	_ 0 -	ž		œ	<u> </u>	10 20	30 40			ties for th	
	+7.0_	About 0 iliches asp	Jilait				1								upper	8.0ft. v	with vacu	
XXX								1 -	1						Starte	on 10/2 ed Drilli	ng at 10/2	27/201
XXX								_ 2 -	1									
XXX								= -										
								3 -										
		Black medium SAN	ND, some fine g	gravel, tr	ace brick			- 4 -							Drive	casing	to 5.0ft. (~40
\ggg		(from vacuum cutti	ings) [FILL] [N1	C BC CI	iass / j			5 -	1							olows)	casing to	, 10.01
>>>>								E	}									
>>>>								6 -	1									
								F ,	-									
>>>>								⊢ 7 -										
								8 -	-						Drill to	n 8 Off	without ta	akina
							,	-	₫_			3 4				amples		g
>>>>		Black silty fine SAI	ND, trace fine g	ravel (we	et) [FILL]	$\overline{\Delta}$	1	9 -	S-1	SS	ω		8 •					
		[NYC BC Class 7]						10 -				2						
									=			2						
XXX		Black silty fine SAI	ND, trace fine o	ravel (w	et) [FILI 1			11 -	S-2	SS	9	4	6					
\bowtie		[NYC BC Class 7]	, : : : : : : : : : : : : : : : : : : :		, LJ			F	1			7						
XXX								- 12 -										
XXX								13 -	=									
								E	=									
XXX								14 -	=									
XXX								- - 15 -	_								L 45.00	D
XXX								13	=			3			15.0ft	., Gray	to 15.0ft. wash, Sr	t וווזע nooth
		Gray silty medium	to fine SAND	some fin	e gravel			16 -	S-3	SS	ω	2 4			drillin		•	
\bowtie		(wet) [FILL] [NYC I	BC Class 7]	- JIJ IIII	- 3.4.01			<u> </u>	=			3						
\bowtie								- 17 -		T		3						
XXX		Ones called a P	to fine OAND					- - 18 -	S-4	SS	9	4	8					
\ggg		Gray silty medium (wet) [FILL] [NYC I	to fine SAND, s BC Class 7]	some fin	e gravel			F	3			4						
XXX			•					19 -	10	+		4						
XXXX								E 20 -	S-5	SS	∞	5						

LB-2 Log of Boring Sheet of 5 Project Project No. Platform Test Caissons 170444101 Location Elevation and Datum Hudson Yards - West Rail Yard, Manhattan, NY Approx. 7.5 feet NAVD 88 Sample Data Remarks Elev N-Value (Blows/ft) Depth Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -12.5 10 20 30 40 20 Greenish brown fine SAND, some silt, trace fine gravel (wet) [FILL] [NYC BC Class 7] Push casing to 20.0ft., clean SS S-5 out the hole ω 5 Drill to 15.0ft., Gray wash, 21 Smooth drilling 2 SS 3 S-6 10 22 Greenish brown fine SAND, some silt, trace fine 3 gravel, trace wood (wet) [FILL] [NYC BC Class 7] 23 24 25 Push casing to 25.0ft. Drill to 25.0, Gray wash, WOH Smooth drilling 8 Black high-plasticity CLAY with organics and lenses of olive greyish brown silt (wet) [CH] [NYC BC Class 6] WOH 27 Push a Shelby tube at 27.0ft. 7 24 28 29 WOH WOH 8-8 SS 8 30 Dark gray low-plasticity CLAY and lenses of fine sand (wet) [CL] [NYC BC Class 6] WOH WOH 31 32 33 34 35 Drill to 35.0, Gray wash, WOH Smooth drilling WOH Dark gray low-plasticity CLAY and lenses of fine sand (wet) [CL] [NYC BC Class 6] 36 WOH WOH 37 Push a Shelby tube at 37.0ft. **U-2** 38 24 39 WOH WOH Dark gray low-plasticity CLAY and lenses of fine sand WOH (wet) [CL] [NYC BC Class 6] WOH 42 43

Log of Boring LB-2 Sheet of 5 Project Project No. 170444101 Platform Test Caissons Elevation and Datum Location Hudson Yards - West Rail Yard, Manhattan, NY Approx. 7.5 feet NAVD 88 Sample Data Remarks N-Value (Blows/ft) Elev Depth Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale 10 20 30 40 -37.5 45 Drill to 45.0ft., gray wash, WOR smooth drilling WOR S-11 24 46 Dark gray low-plasticity CLAY and lenses of fine sand (wet) [CL] [NYC BC Class 6] WOR WOR Push a Shelby tube at 47.0ft. U-3 24 48 49 WOH WOH SS 50 24 Dark gray low-plasticity CLAY and lenses of fine sand (wet) [CL] [NYC BC Class 6] WOH WOH 52 Drill to 55.0ft., Gray wash, Smooth drilling 53 54 55 WOH Dark gray low-plasticity CLAY and lenses of fine sand, WOH trace shells (wet) [CL] [NYC BC Class 6] WOH Push a Shelby tube at 57.0ft. 58 No Recovery 59 WOR WOR Dark gray low-plasticity CLAY and lenses of fine sand (wet) [CL] [NYC BC Class 6] WOR WOH 61 62 Drill to 65.0ft., Gray wash, Smooth drilling 63 64 WOH WOH Dark gray low-plasticity CLAY and lenses of fine sand, WOH trace shells (wet) [CL] [NYC BC Class 6] WOH 67 Push a Shelby tube at 67.0ft. 68

WOH

24 WOH

9

Log of Boring LB-2 Sheet of 5 Project Project No. Platform Test Caissons 170444101 Elevation and Datum Location Hudson Yards - West Rail Yard, Manhattan, NY Approx. 7.5 feet NAVD 88 Sample Data MATERIAL SYMBOL Remarks N-Value (Blows/ft) Elev Depth Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -62.5 10 20 30 40 Dark gray low-plasticity CLAY and lenses of fine sand, S-16 SS WOH 24 trace shells (wet) [CL] [NYC BC Class 6] WOH -64 5 72 73 Dark reddish brown SILT, some fine sand [ML] SS 19 11 [completely decomposed rock] [NYC BC Class 1D] 50/2 -69. 1/30/2017 1:34:55 PM Start coring rock at around 4:20 77.0ft C-1 at 77ft 78 REC=54"/60" =90% RQD=50"/60" =83% 4:16 79 Gray gneissic SCHIST; slightly; moderate fracture NX Core 5 spacing; fractures shallow dipping to near horizontal 4:34 [NYC BC Class 1B] 80 4:28 81 4:49 82 C-2 at 82ft 4:25 83 REC=56"/60" =93% RQD=50"/60" =83% 4:10 Gray gneissic SCHIST; slightly; moderate fracture NX Core C-2 spacing; fractures steeply dipping to near horizontal [NYC BC Class 1B] 4:56 85 4:28 86 4:37 87 C-3 at 87ft 2:40 88 REC=53"/60" =88% 2:45 89 RQD=53"/60" NX Core Gray gneissic SCHIST; fresh; moderate to wide fracture spacing; fractures moderately dipping 3:01 [NYC BC Class 1A] 90 2:25 2:35 92 C-4 at 92ft REC=49"/60" =82% 2:02 93 Gray gneissic SCHIST; moderately to highly RQD=37"/60" 0 4 NX Core weathered (from 94'-97'); close to moderate fracture spacing; fractures near vertical to near horizontal [NYC 94 BC Class 1B1 2:20

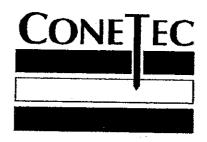
ILANGAN.COMIDATAINYDATA1/170444101/ENGINEERING DATAIGEOTECHNICAL\GINTLOGS\170444101 ENTERPRISE.GP\

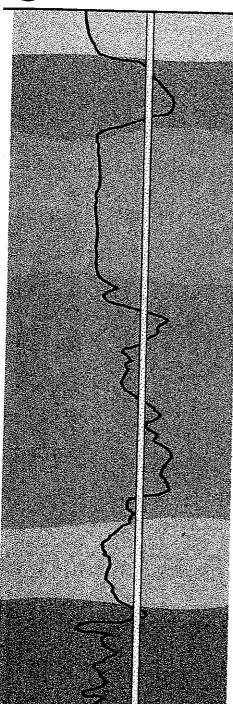
LB-2 Log of Boring Sheet of 5 Project Project No. Platform Test Caissons 170444101 Elevation and Datum Location Hudson Yards - West Rail Yard, Manhattan, NY Approx. 7.5 feet NAVD 88 Sample Data Remarks N-Value (Blows/ft) Elev Depth Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -87.5 10 20 30 40 95 1:55 96 2:02 97 C-5 at 97ft 2:05 98 =45% REC=50"/60" =83% 1:50 99 RQD=27"/60" Gray gneissic SCHIST; slightly to moderately; close NX Core C-5 fracture spacing; fractures near vertical to near horizontal [NYC BC Class 1C] 1:45 100 Push casing to 77 feet, Clean out the hole 2:03 101 2:10 102 C-6 at 102ft 2:08 103 Gray gneissic SCHIST; slightly to moderately; close to REC=45"/60" =75% RQD=36"/60" =60% moderate fracture spacing; fractures steeply dipping to 1:56 near horizontal [NYC BC Class 1B] 104 NX Core ပ္ပ 1:33 105 1:42 106 2:06 -99.5 107 C-7 at 107ft 3:20 108 Gray gneissic SCHIST; moderately; close fracture REC=40"/60" =67% RQD=16"/60" =27% 3:45 spacing; fractures steeply dipping to near horizontal [NYC BC Class 1D] 109 NX Core C-7 3:12 110 3:16 3:39 112 C-8 at 112ft 3:25 113 Gray gneissic SCHIST; fresh; close to wide fracture REC=50"/60" =83% =83% 3:45 spacing; fractures moderately dipping to near horizontal [NYC BC Class 1B] 114 RQD=50"/60" NX Core φ Ο 3:48 115 3:36 116 3:57 Bottom of boring at 11/3/2017 Boring was backfilled and 118 grouted 119

LANGAN

Log of Boring LB-3 Sheet of 3 Project Project No. Platform Test Caissons 170444101 Location Elevation and Datum Hudson Yards - West Rail Yard, Manhattan, NY Approx. 8.5 feet NAVD 88 Date Started **Drilling Company** Date Finished Craig Geotechnical Drilling 11/2/17 11/3/17 Drilling Equipment Completion Depth Rock Depth CME75 Truck Rig 68 ft 38 ft Size and Type of Bit Disturbed Undisturbed Core Number of Samples 3-7/8 inch Tricone Roller Bit 30 Casing Diameter (in) 24 HR. Casing Depth (ft) Completion Water Level (ft.) 8.5 38 Casing Hammer Automatic Weight (lbs) Drop (in) Drilling Foreman 30 140 Eric Delmeier Sampler 2-inch-diameter split spoon; Shelby Tube; Macrocore Field Engineer Sampler Hammer Weight (lbs) Drop (in) 30 Automatic Thomas Androutselis Sample Data Remarks MATERIA Elev Depth Number Recov. (in)
Penetr. resist BL/6in (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Sample Description (ft) Scale +8. 10 20 30 40 Clear for utilities for the About 6 inches asphalt +8.0 upper 8.0ft. with vacuum truck on 10/20/17 Started drilling at 11/2/2017 2 3 Push casing to 5.0ft. Drive Black medium to coarse SAND, some fine gravel, casing to 10.0ft. (~120 trace brick (from vacuum cuttings) [FILL] [NYC BC blows) Class 7] 5 6 A\NY\DATA1\170444101\ENGINEERING DATA\GEOTECHNICAL\GINTLOGS\170444101 8 Drill to 8.0ft., Gray and black SS ∇ wash, Smooth drilling. S-1 at 0 No Recovery SS S-2 9 Gray fine GRAVEL and SAND, trace silt (wet) [FILL] [NYC BC Class 7] 1 12 Push casing to 15.0ft 13 Drill to 15.0ft., Gray and black wash, Smooth drilling SS 6 13 Gray medium to coarse SAND, some gravel, trace silt (wet) [FILL] [NYC BC Class 7] 2 17 Push casing to 20.0ft 18 Change in drilling at around 18.0 ft., probably start of clay layer 19

Log of Boring LB-3 Sheet 2 of 3 Project Project No. Platform Test Caissons 170444101 Location Elevation and Datum Hudson Yards - West Rail Yard, Manhattan, NY Approx. 8.5 feet NAVD 88 Sample Data MATERIAL SYMBOL Remarks N-Value (Blows/ft) Elev Depth Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -11.5 10 20 30 40 20 Drill to 20.0ft., Gray wash, WOH Smooth drilling WOH ss S-4 16 21 Dark gray low-plasticity CLAY and lenses of fine sand WOH (wet) [CL] [NYC BC Class 6] WOH 22 Push a Shelby tube at 22.0ft. 7 24 23 Dark gray low-plasticity CLAY and lenses of fine sand (wet) [CL] [NYC BC Class 6] 24 WOH WOH S-5 SS 25 24 Dark gray low-plasticity CLAY and lenses of fine sand, WOH trace shells (wet) [CL] [NYC BC Class 6] WOH 26 Push casing to 30.0ft 27 28 Drill to 30.0ft., Gray wash, Smooth drilling 29 30 WOH S-6 24 31 Dark gray low-plasticity CLAY and lenses of fine sand, WOH trace shells (wet) [CL] [NYC BC Class 6] WOH 32 Push a Shelby tube at 32.0ft. 24 33 Dark gray low-plasticity CLAY and lenses of fine sand, trace shells (wet) [CL] [NYC BC Class 6] 34 WOH WOH SS S-7 24 35 Dark gray low-plasticity CLAY and lenses of fine sand, trace shells (wet) [CL] [NYC BC Class 6] WOH WOH 36 Push casing to 37.0ft., Drive casing to 38.0ft (~80 blows). Drill to 38.0ft., Gray wash, 37 Smooth drilling Start coring rock at around -29.5 38 38.0ft C-1 at 38ft 1:38 39 REC=57"/60" =95% 1:59 NX Core RQD=48"/60" Gray gneissic SCHIST; slightly weathered; close to 7 moderate fracture spacing; fractures near vertical to 2:59 near horizontal; pegmatite intrusions from 39.5 to 40.0ft. [NYC BC Class 1B] 3:09 42 3:41 43 C-2 at 43ft 1:50 NX Core C-2




Log of Boring LB-3 Sheet of 3 Project Project No. Platform Test Caissons 170444101 Location Elevation and Datum Hudson Yards - West Rail Yard, Manhattan, NY Approx. 8.5 feet NAVD 88 Sample Data Remarks N-Value (Blows/ft) Elev Depth Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale -36.5 10 20 30 40 REC=57"/60" =95% 3:23 46 Gray gneissic SCHIST; slightly weathered; close to NX Core RQD=53"/60" C-2 2:58 moderate fracture spacing; fractures steeply dipping [NYC BC Class 1A] 7:25 48 C-3 at 48ft 3:24 49 REC=55"/60" =92% 4:26 50 RQD=45"/60" Gray gneissic SCHIST; slightly weathered; close to C-3 NX Core moderate fracture spacing; fractures steeply dipping; pegmatite intrusions from 52.0 to 52.5 ft. [NYC BC 4:48 Class 1B] 5:36 52 7:24 53 C-4 at 53ft 3:21 REC=60"/60" =100% RQD=53"/60" =88% 6:58 55 Gray gneissic SCHIST; slightly weathered; close to NX Core moderate fracture spacing; fractures steeply dipping to shallow dipping [NYC BC Class 1A] 8:13 56 6:18 6:08 58 C-5 at 58ft 6:26 59 REC=52"/60" =87% 6:39 60 RQD=46"/60" Gray gneissic SCHIST; slightly weathered; close to NX Core C-5 7:12 moderate fracture spacing; fractures shallow dipping to near horizontal [NYC BC Class 1B] 7:25 62 7:20 63 C-6 at 63ft 6:04 64 REC=55"/60" =92% RQD=53"/60" =88% 6:32 65 NX Core Gray gneissic SCHIST; slightly weathered; close to moderate fracture spacing; fractures near horizontal 7:46 [NYC BC Class 1A] 66 6:22 67 6:53 -59.5 68 Bottom of boring at 68.0 ft. Boring was backfilled and grouted. 69

APPENDIX B 2004 CPT Report

Geotechnical and Environmental In Situ Testing Contractors

ConeTec Field Report

Presentation of CPTU

Test Results for:

Proposed Jets Stadium Manhattan, New York

Presented to:

Langan Engineering

Date:

December 7, 2004

Presented by:

ConeTec, Inc.

436 Commerce Lane, Unit C

West Berlin, NJ (856) 767-8600

TABLE OF CONTENTS

1.0 INTRODUCTION.	3
2.0 FIELD EQUIPMENT AND PROCEDURES	······· •
2.1 CONF PENETRATION TECTING	4
2.1 CONE PENETRATION TESTING	4
3.0 CONE PENETRATION TEST DATA AND INTERPRETATION	6
3.1 ANALYSIS OF DIEZOCONE DATA OFFICE ATION	8
3.1 ANALYSIS OF PIEZOCONE DATA - GENERAL 3.2 CONE PLOTS	
2.0 DATA NOCESSING	10
	10
4.0 REFERENCES	11
TABLE 1 Summary of CPT Soundings	
FIGURES	
FIGURE 1 Typical Cone Penetrometer FIGURE 2 Schematic of Shear Wave Testing Configuration Typical Dissipation Tests	
APPENDICES	
APPENDIX A CPT Plots APPENDIX B CPTSumm Data APPENDIX C Shear Wave Velocity Data APPENDIX D Dissipation Data APPENDIX E Data Disk	

2.0 FIELD EQUIPMENT AND PROCEDURES

2.1 CONE PENETRATION TESTING

The cone penetrometer tests were carried out using an integrated electronic piezo cone manufactured by ConeTec in Vancouver, Canada. The piezo cone used was a compression model cone penetrometer with a 15 cm² tip and a 225 cm² friction sleeve. The cone is designed with an equal end area friction sleeve and a tip end area ratio of 0.85. The piezo cone dimensions and the operating procedure were in accordance with ASTM Standard D-3441. A diagram of the cone penetrometer used for this project is shown as Figure 1.

Pore pressure filter elements, made of porous plastic, were saturated under a vacuum using glycerin as the saturating fluid. The pore pressure element was six millimeters thick and was located immediately behind the tip (the U_2 location) for all soundings.

The cone was advanced using a 25-ton, unitized, truck-mounted cone penetration rig with high rail capabilities. The following data were recorded onto magnetic media every five centimeters (approximately every two inches) as the cone was advanced into the ground:

- Tip Resistance (Qc)
- Sleeve Friction (Fs)
- Dynamic Pore Pressure (Ut)

The field data recorded is included on the attached diskette (appendix E).

The principal objective of this project was to profile the soils and obtain shear wave velocity measurements.

Before each sounding a complete set of analog baseline readings are taken with a multimeter and compared with the digitized value on the computer screen. This provides a check on the analog to digital conversion board.

Evaluation of the analog baselines is key to consistent readings. The baseline data should be stable and should not wander excessively during the course of a sounding. Baseline data can be used to apply corrections to the cone data where necessary. For this project, the baseline shift from sounding to sounding was small, typically less than 0.1% of full scale, and no data corrections were applied.

During seismic testing, the seismic signals were recorded using a geophone mounted in the cone as shown in Figure 1 and an up-hole digital oscilloscope. A sledge hammer hit against a beam was used for the seismic source. Normal reaction for the beam was provided by the dead weight of the rig placed upon the beam. A schematic of the shear wave testing configuration is shown in Figure 2.

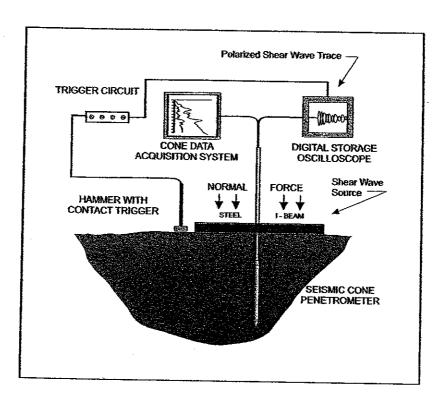


FIGURE 2 - SCHEMATIC OF SHEAR WAVE TESTING CONFIGURATION

2.2 PORE PRESSURE DISSIPATION TESTS

When cone penetration is stopped, the piezo cone essentially becomes a piezometer. While stopped, pore water pressures are automatically recorded at five-second intervals and the readings are stored in a dissipation file (.ppd). Dissipation data can then be plotted onto a dissipation curve consisting of pore water pressure (U) verses time (t). The shapes of dissipation curves are very useful in evaluating soil type, drainage and in situ static water level.

A flat curve that stabilizes quickly (i.e. less than 30 seconds) is typical of a free draining sand. In this case, the final measured pore water pressure is the static in situ water pressure.

Soils that generate excess dynamic pore water pressure during penetration will dissipate this excess pressure when penetration stops. The shape of the dissipation curve and the time of dissipation can be used to estimate C_h , the coefficient of consolidation that can in turn be used to calculate K_h , the horizontal permeability.

Figure 3 shows some idealized shapes of various pore water pressure dissipation curves. The reader is referred Robertson et. al., 1990 to reference dissipation test data analytical techniques.

3.0 CONE PENETRATION TEST DATA AND INTERPRETATION

3.1 ANALYSIS OF PIEZOCONE DATA - GENERAL

A total of 24 CPT soundings involving 1,378.10 feet of testing, were completed.

The interpretation of cone data is based on the relationship between cone bearing, Qc, sleeve friction, Fs, and penetration pore water pressure, U. The friction ratio, Rf, (sleeve friction divided by cone bearing) is a calculated parameter which is used to infer soil behavior type. Generally, saturated cohesive soils have low tip resistance, high friction ratios and generate large excess pore water pressures. Cohesionless soils have higher tip resistances, lower friction ratios and do not generate significant excess pore water pressure.

The interpretation of soils encountered on this project was carried out using correlations developed by Robertson et al., 1986. It should be noted that it is not always possible to clearly identify a soil type based on Qc, Fs and Ut. Occasionally soils will fall within different soil categories on the classification charts. In these situations, experience and judgment and an assessment of the pore pressure dissipation data should be used to infer the soil behavior type. Computer tabulations of the interpreted soil types along with certain other geotechnical parameters for each cone hole is presented in Appendix B.

Each of the parameters measured in the sounding is discussed briefly below. A detailed explanation of CPTU testing and interpretation of the results can be found in "Guidelines for Geotechnical Design Using CPT and CPTU" by P. K. Robertson and R. G. Campanella, listed in the references.

TIP RESISTANCE (Qc): The resistance to penetration, measured at the cone tip, provides an accurate profile of subsurface strata. The recorded tip resistance is a composite of the penetration resistance of the soils located five to ten cone diameters (7 to 14 inches) in front of and behind the tip. The actual resistance "sensed" by the tip depends on the soil properties and on the relative stiffness of the layers encountered. Tip resistance is often corrected for pore pressure effects when testing in soft saturated cohesive soils.

For this project the correction was made and the tip resistance shown, Q_{t} is the corrected tip resistance.

The correction used is: $Q_t = Q_c + (1-a)U$

Where:

Q_t= corrected tip resistance

Q_c = measured tip resistance

a = net area ratio for cone (0.85 for this project)

U = dynamic pore water pressure measured behind tip

3.4 SHEAR WAVE VELOCITY MEASUREMENTS

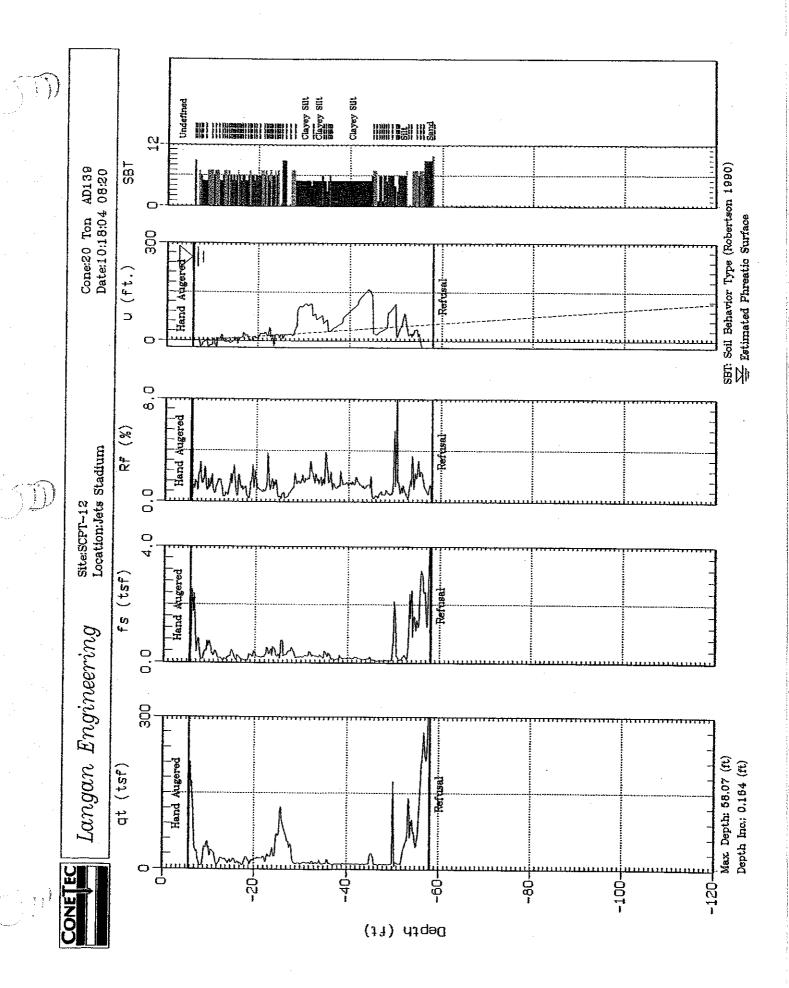
Shear wave velocity measurements were conducted in sixteen of the CPT soundings at one-meter intervals. A tabular summary of the results and shear wave velocity plots are presented in Appendix C.

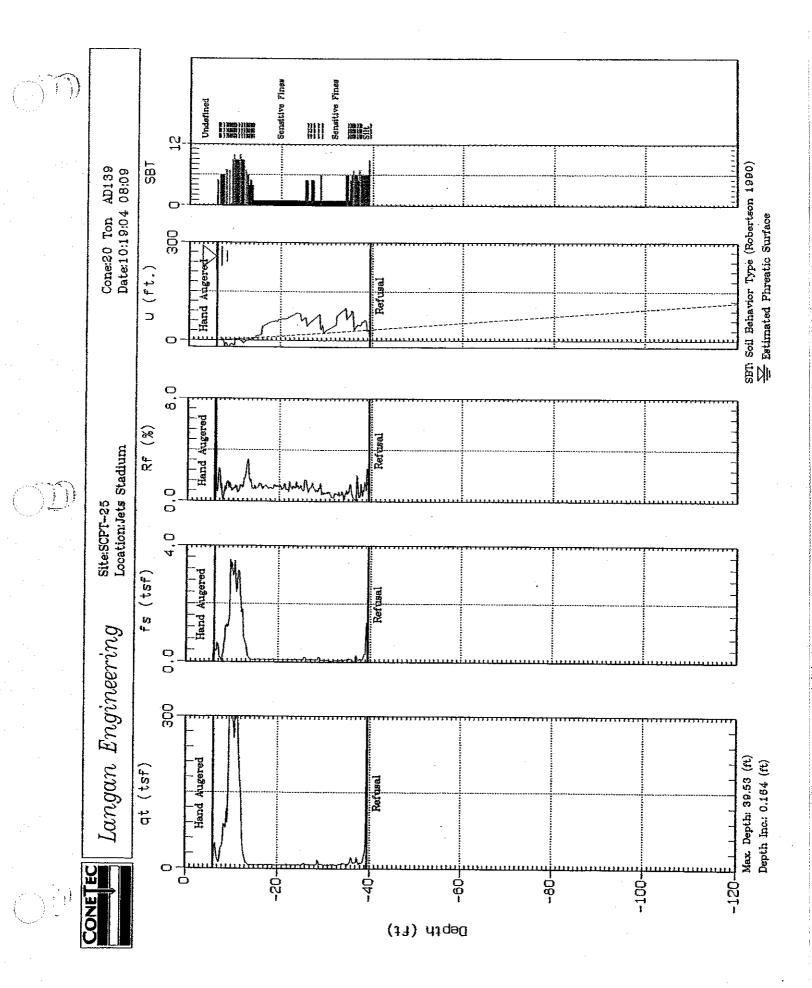
3.5 CPTSUMM DATA PROCESSING

The electronic data files were processed using the program CPTSUMM. CPTSUMM is a program developed by ConeTec to calculate common engineering parameters from CPT data. The processed data files are attached in Appendix B. The files are also included on the data disk. The calculations used are summarized in the table at the front of the Appendix. Each calculation is derived according to the referenced article. The water table used was an estimate derived from the dissipation data.

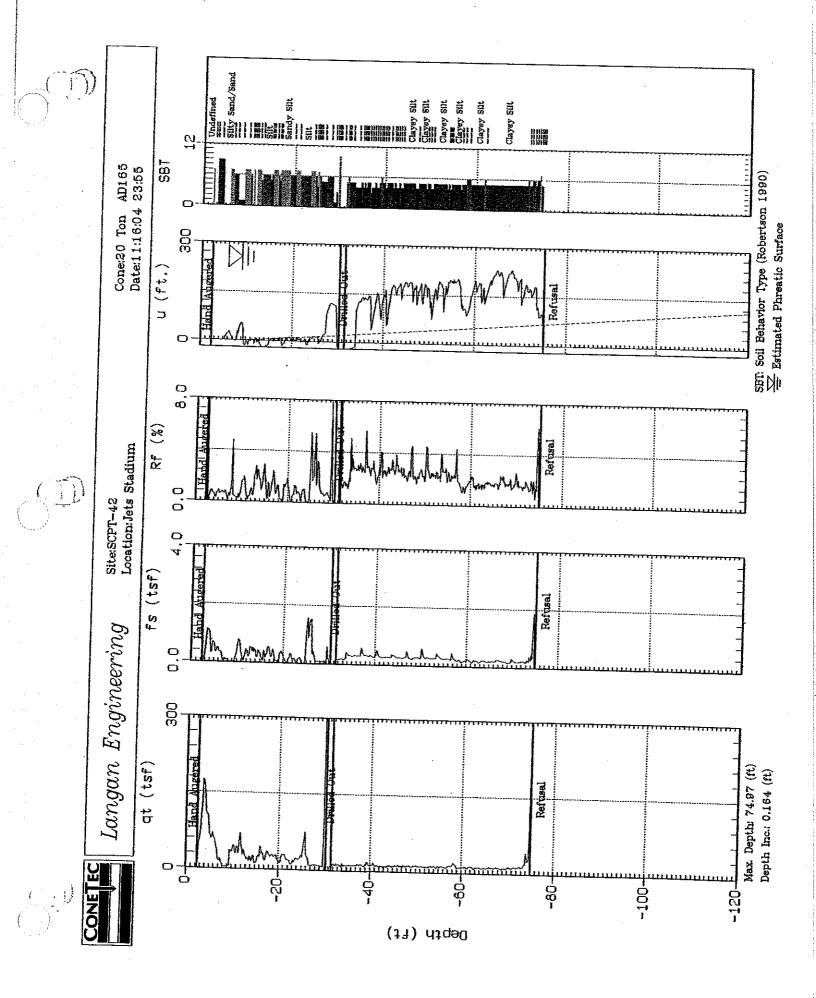
3.6 DATA DISK

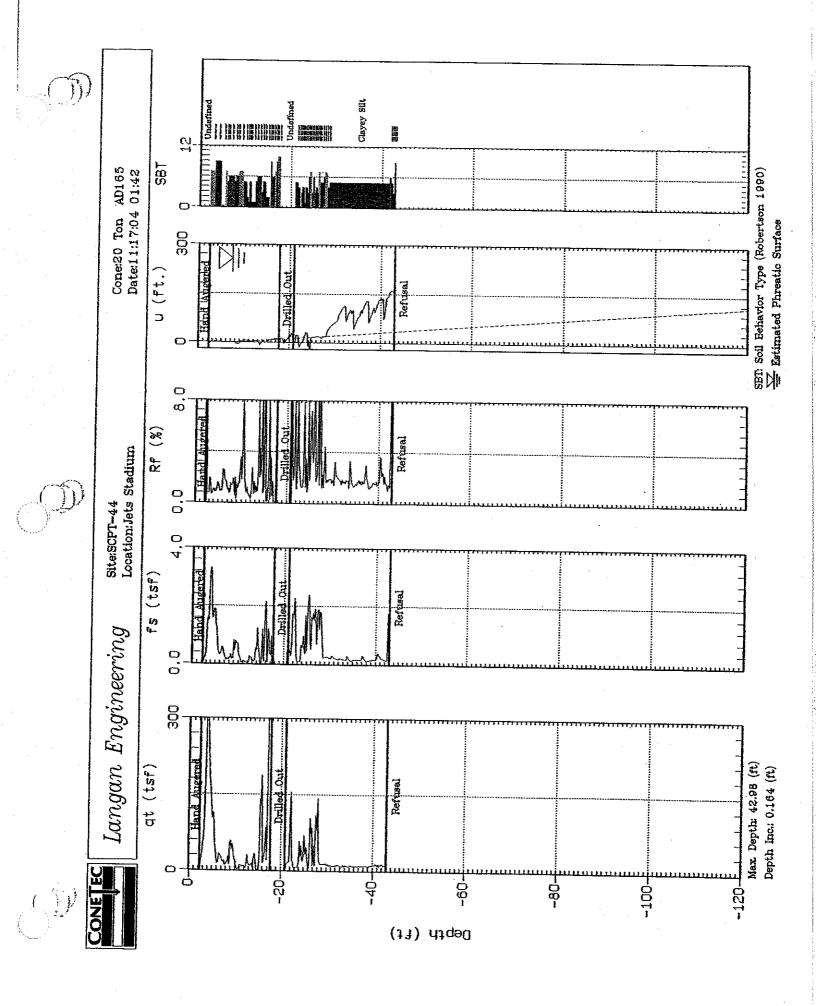
One data disk is included in Appendix E. The disk includes all of the CPT, dynamic and static pore water pressure, and CPTSUMM data.

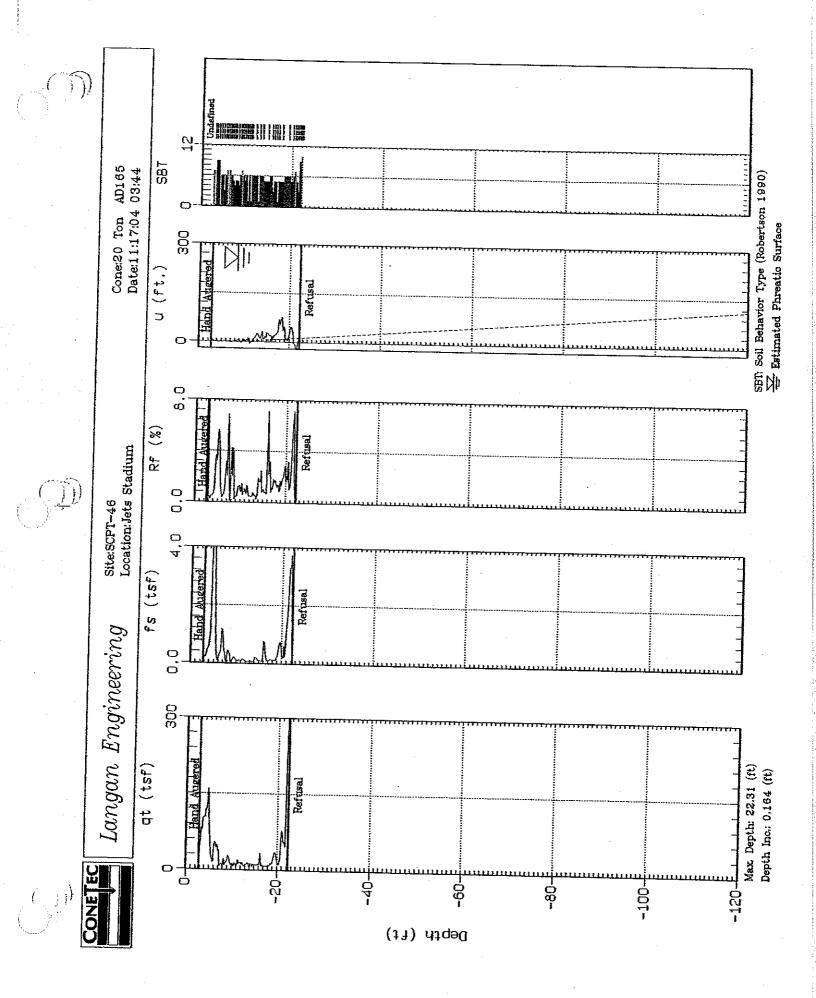

TABLE 1 - SUMMARY OF CPTU SOUNDINGS

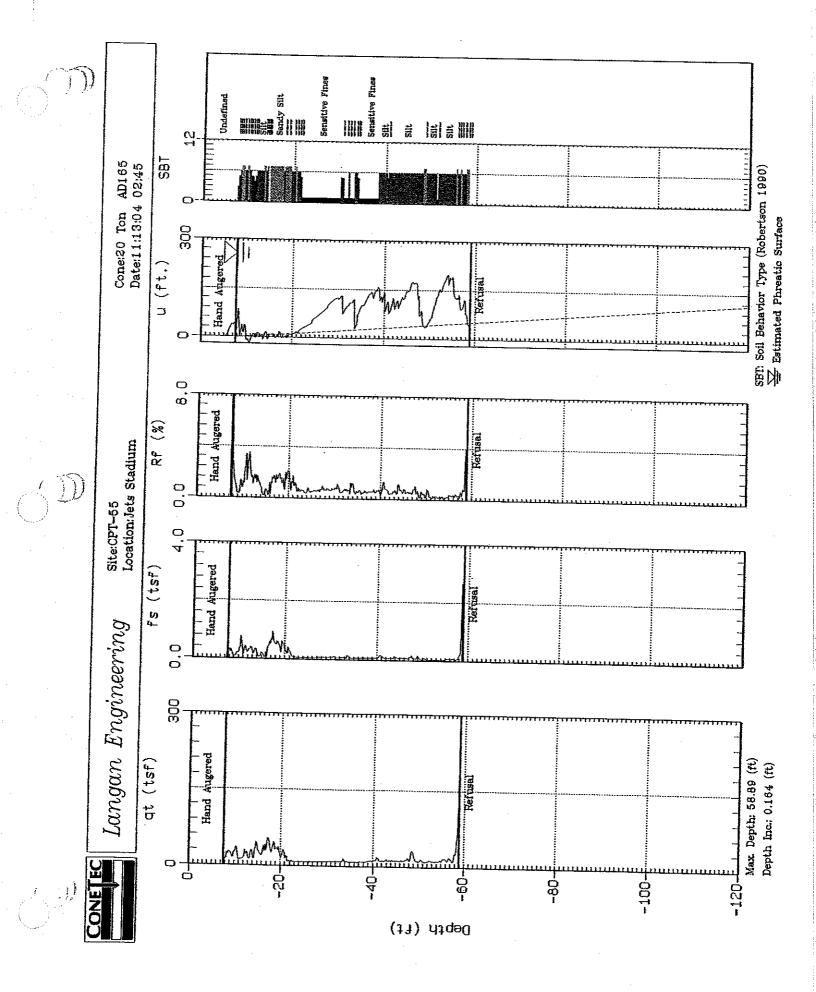

04-797

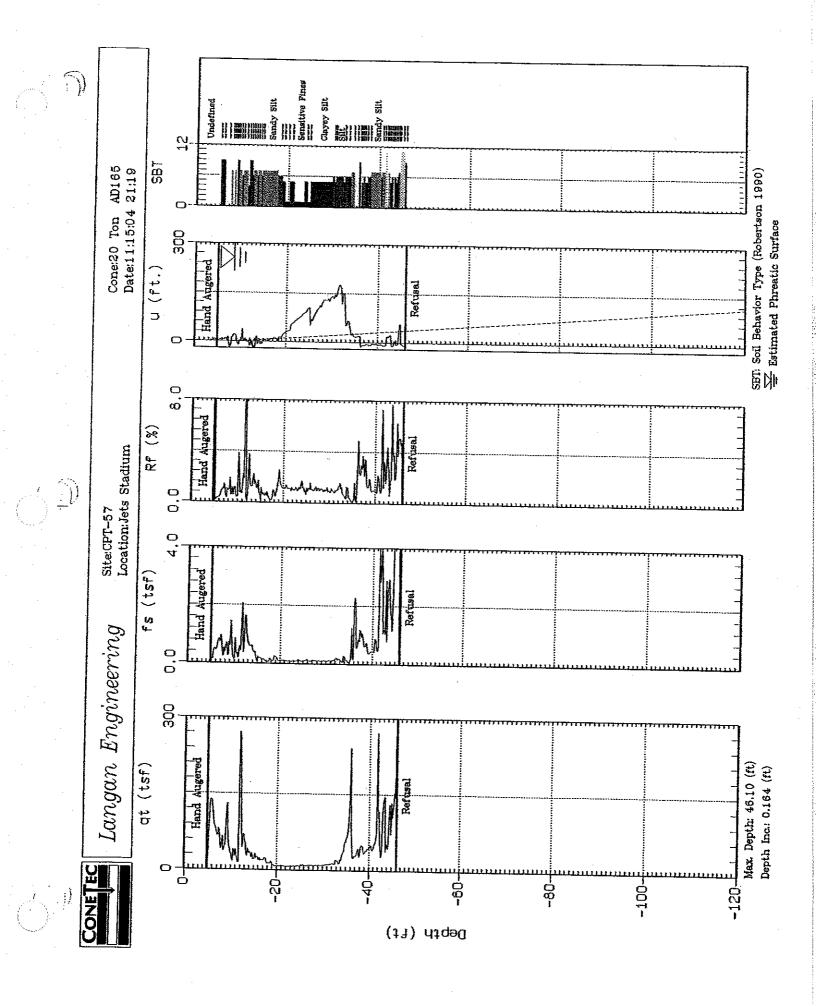

Job No.: Location: Client: Date:

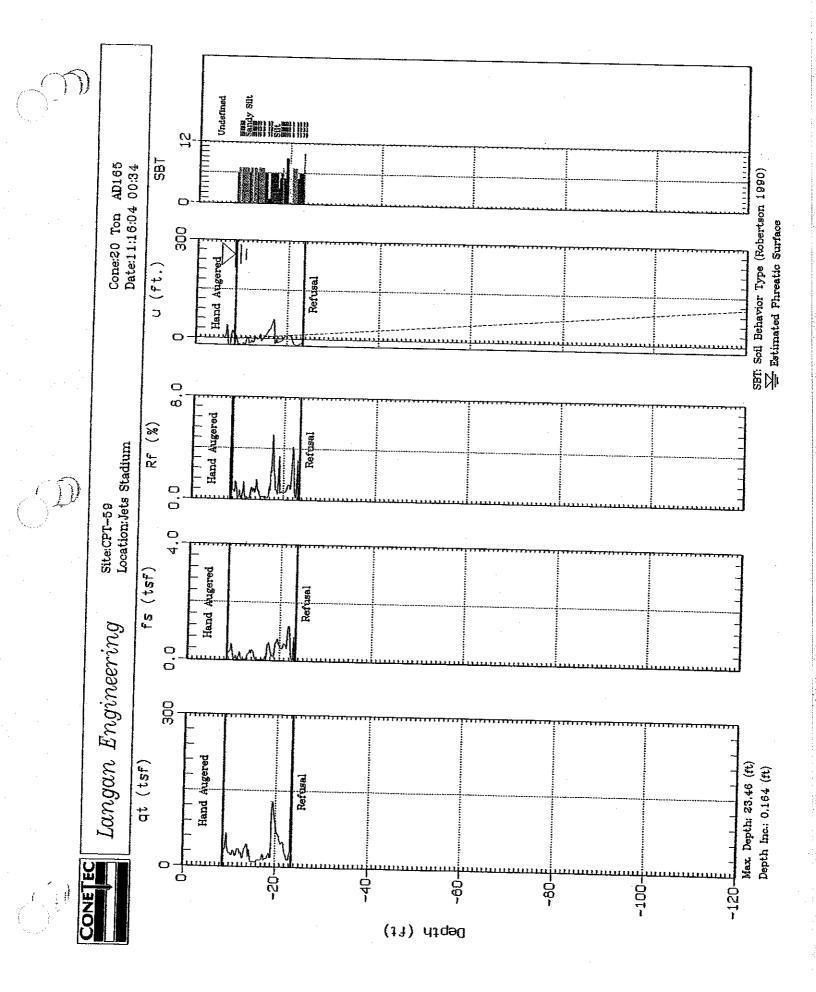

Jets Stadium – Manhattan, New York

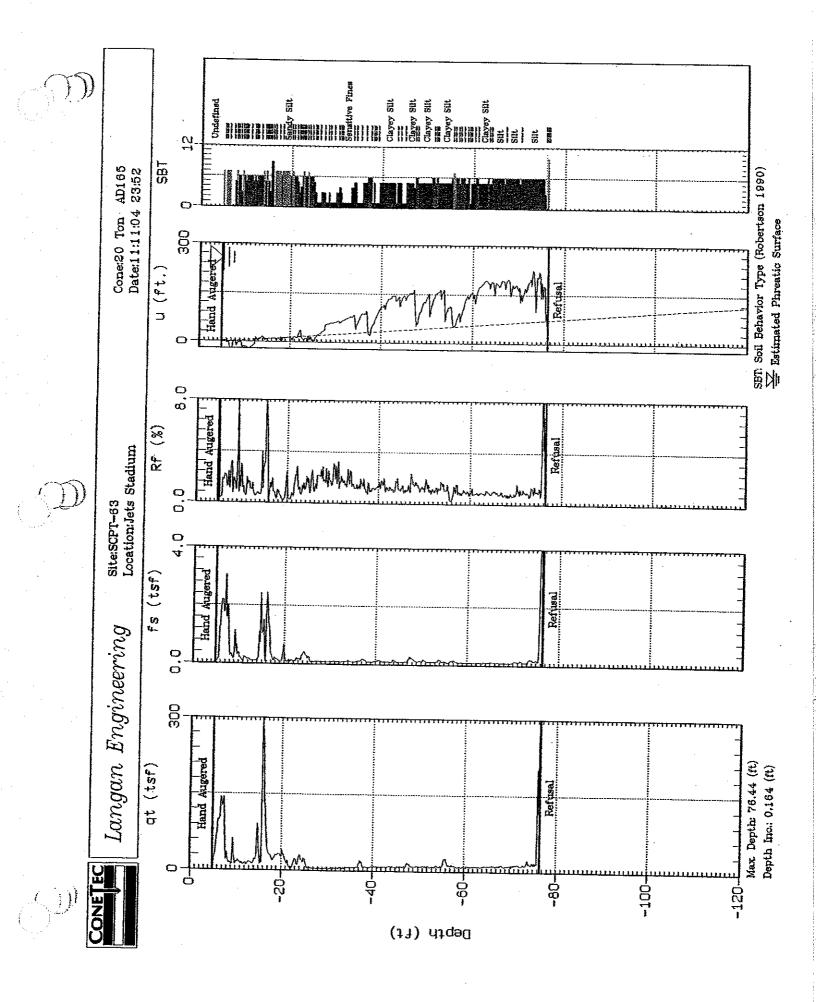

Cilent	Landan Engineering	i, New York			
Date:	October 11, 18, 19, November 11, 12, 13, 15, 16, 17, 18, 19, 2004	mber 11, 12, 13, 13	6, 16, 17, 18,	19, 2004	
Date	CPTU Sounding	File Name	Total	Seismic	Comments
			Depth (ft)	Tests	
October 11, 2004	SCPT-11	797cp11,cor	83.99	24	
October 18, 2004	SCPT-12	797cp012.cor	58.07	9	
October 18, 2004	SCPT-24	797cp024.cor	76.28	22	
October 19, 2004	SCPT-25	797cp025.cor	39,53	} =	
November 17, 2004	CPT-36	797cp36.cor	69'09	· 0	
November 18, 2004	CPT-38	797cp38.cor	36,09	0	
November 16, 2004	SCPT-41	797cp41.cor	102.85	5	
	SCPT-42	797cp42.cor	74.97	21	combined 42 & 42A
November 17, 2004	SCPT-43	797cp43.cor	58.89	1.	, ∞
November 17, 2004	SCPT-44	797cp44.cor	42,98	10	
November 17, 2004	SCPT-45	797cp45.cor	30.68	^	
November 17, 2004	SCPT-46	797cp46.cor	22.31	. w	
November 13, 2004	CPT-54	797cp54.cor	77.75	. 0	
November 13, 2004	CPT-55	797cp55.cor	58,89	0	
November 15, 2004	CPT-56	797cp56,cor	46,42	. 0	
November 15, 2004	CPT-57	797cp57.cor	46.10	0	
November 15, 2004	CPT-58	797cp58.cor	36.42	0	
November 16, 2004	CPT-59	797cp59.cor	23,46	0	
November 19, 2004	SCPT-62	797cp62.cor	95,47	50	-
November 11, 2004	SCPT-63	797cp63.cor	76,44	21	
November 12, 2004	SCPT-65	797cp65.cor	42.81	=	
November 12, 2004	SCPT-67	797cp67,cor	12.96	7	
October 19, 2004	SCPT-68	797cp068.cor	65.99	18	
November 18, 2004	SCPT-70	797cp70.cor	111,06	34	
Totals:	24 holes	24 files	1378.10	277	

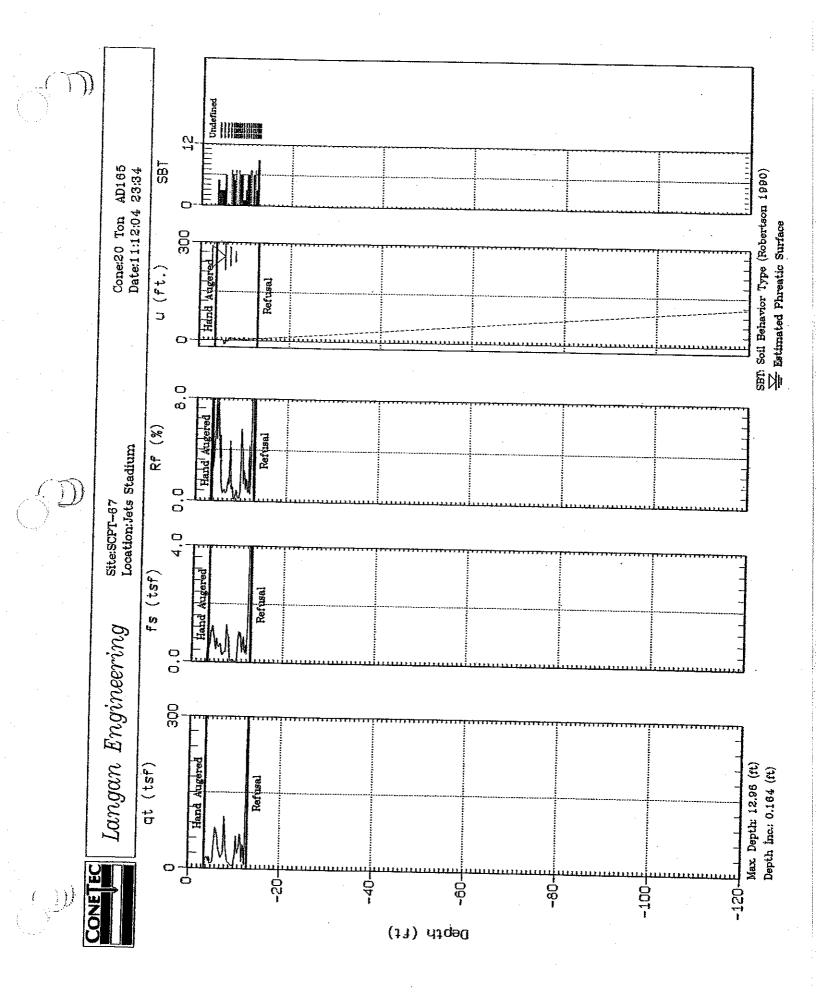


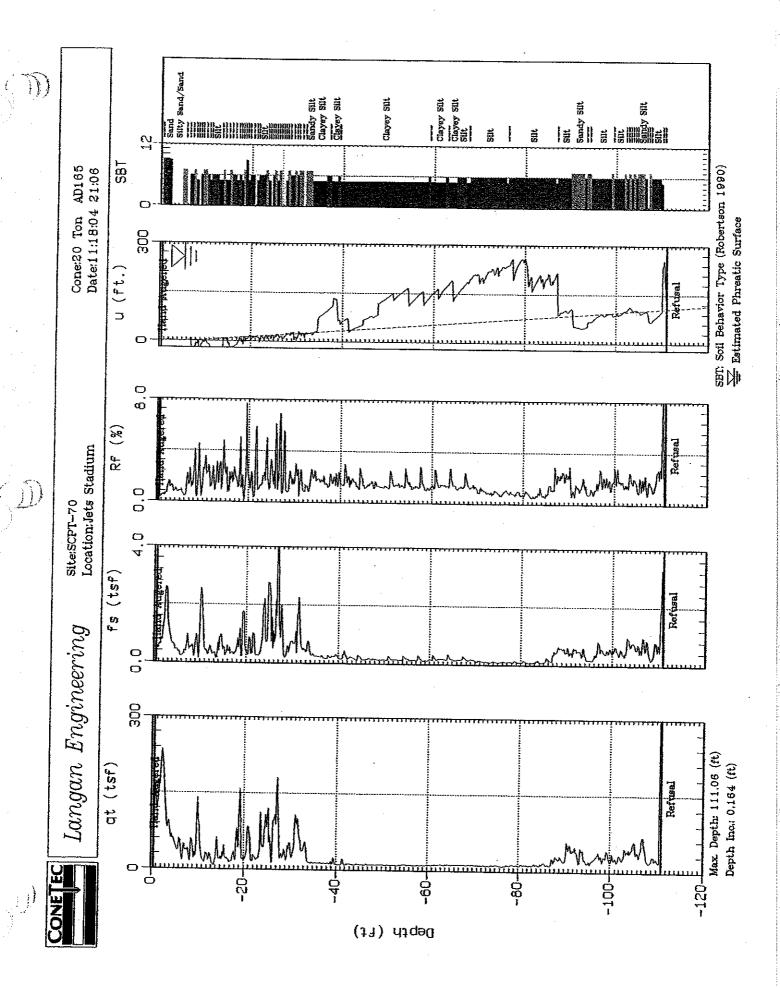


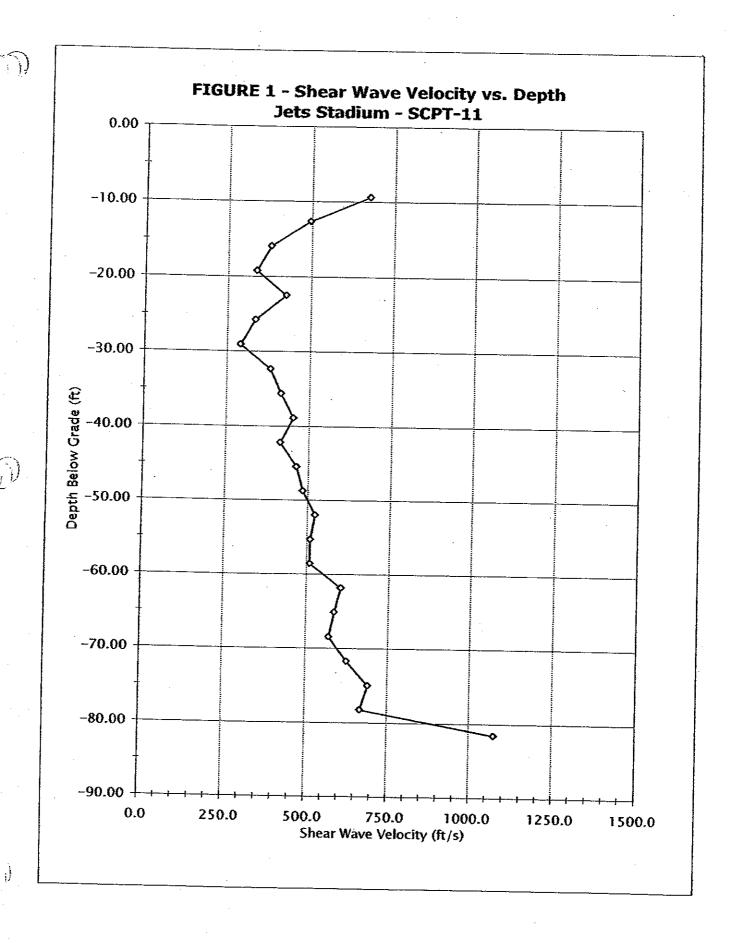


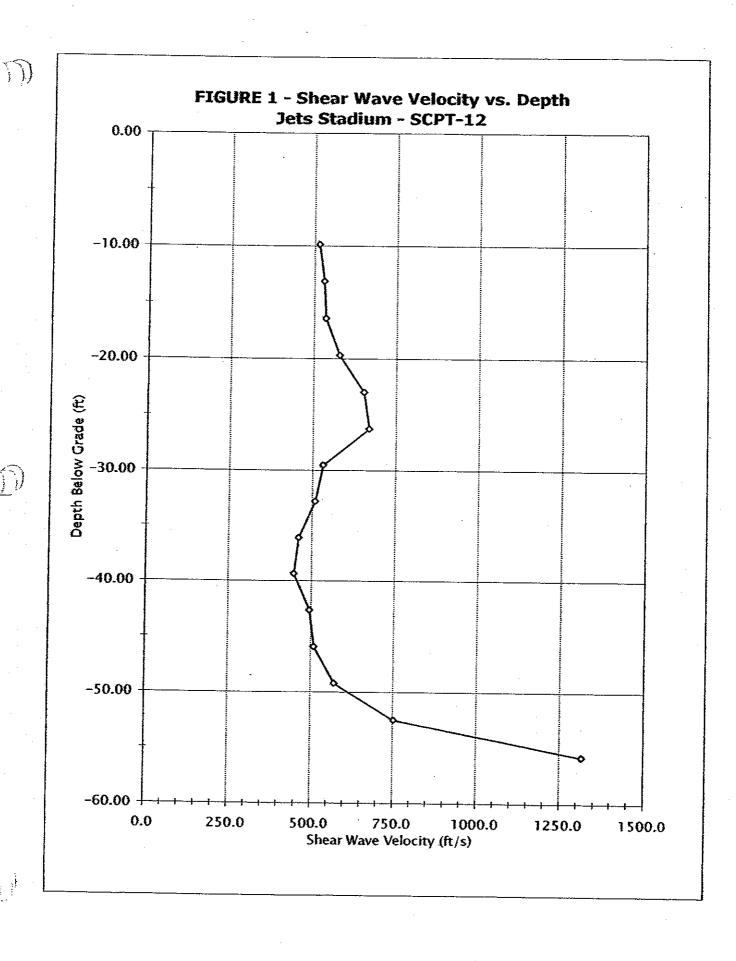


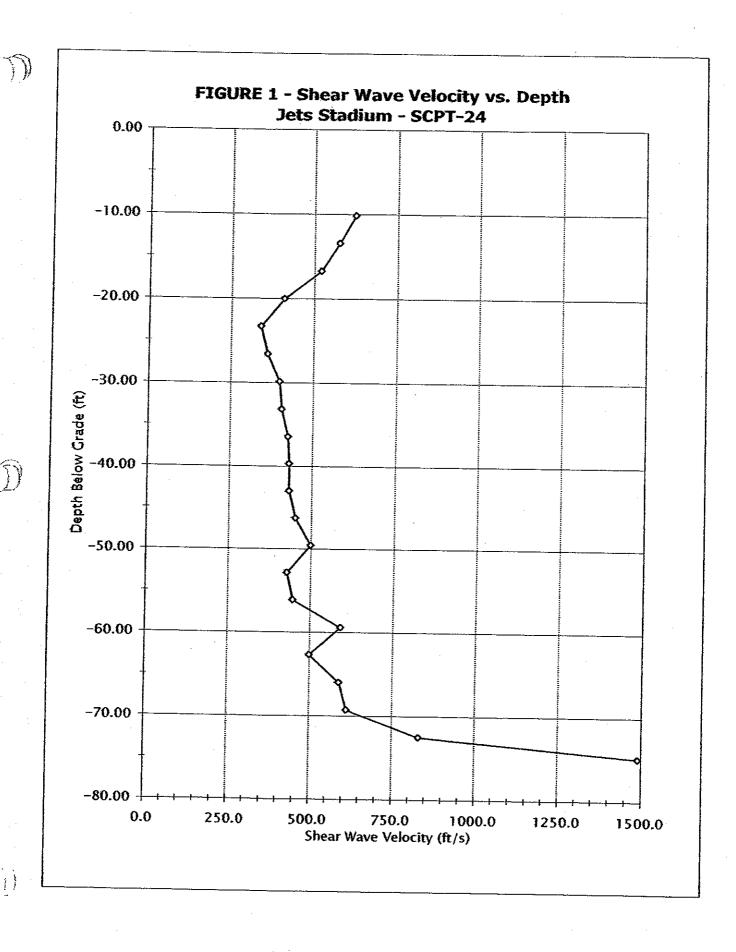


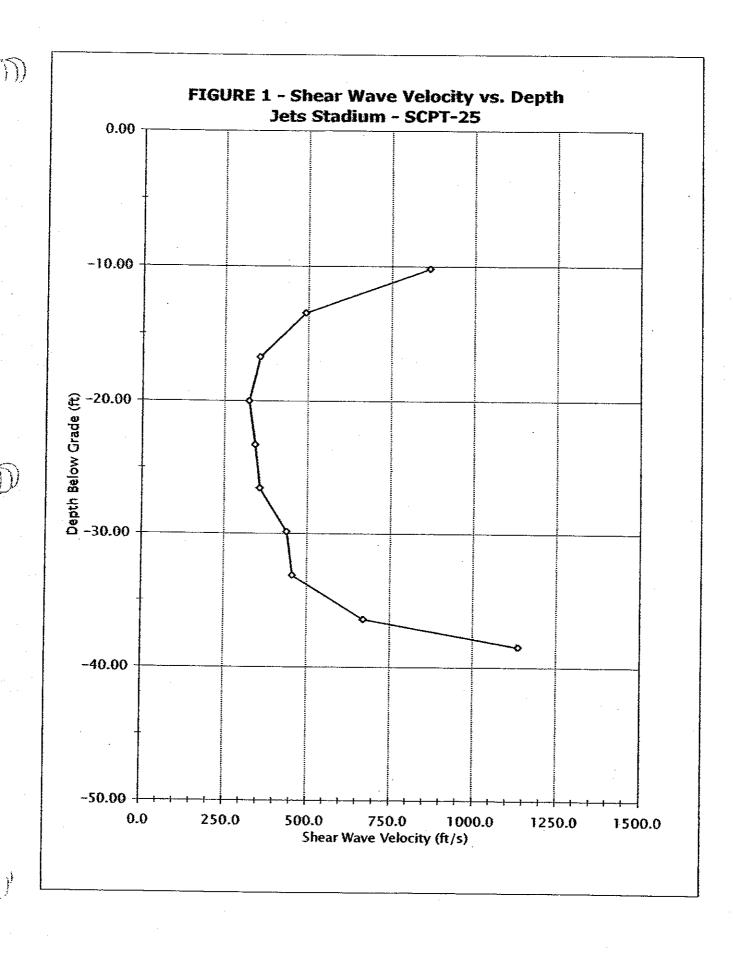


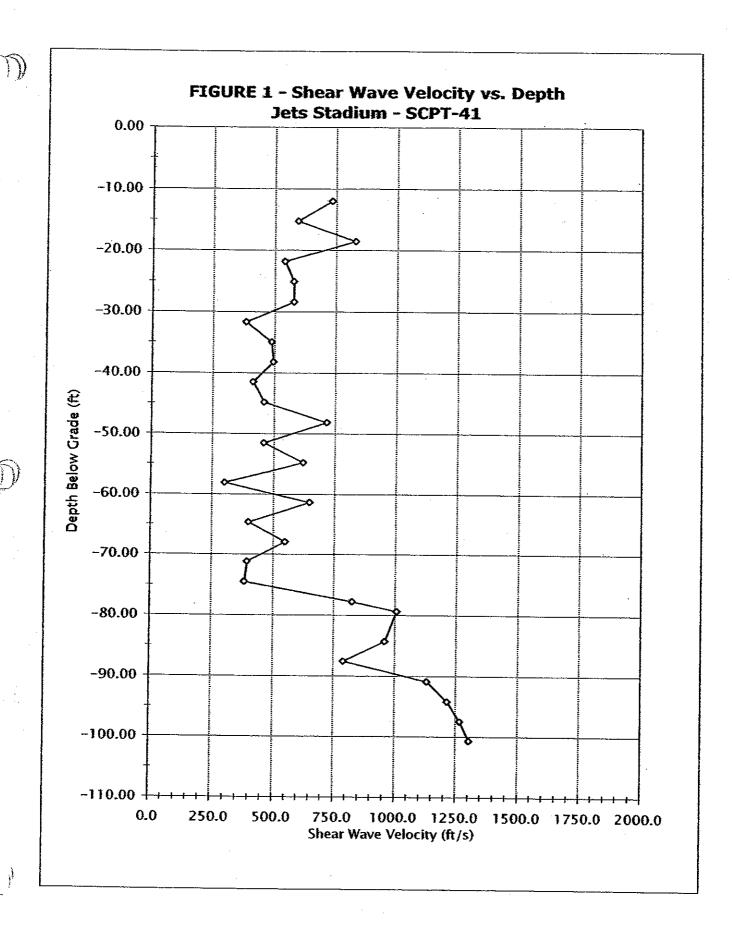


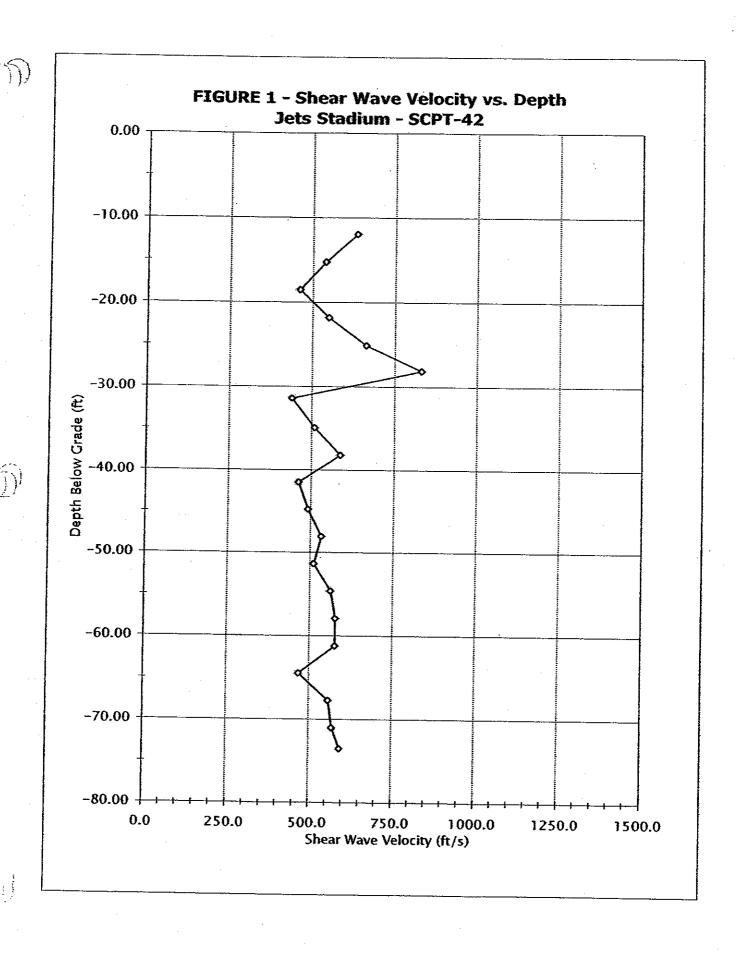


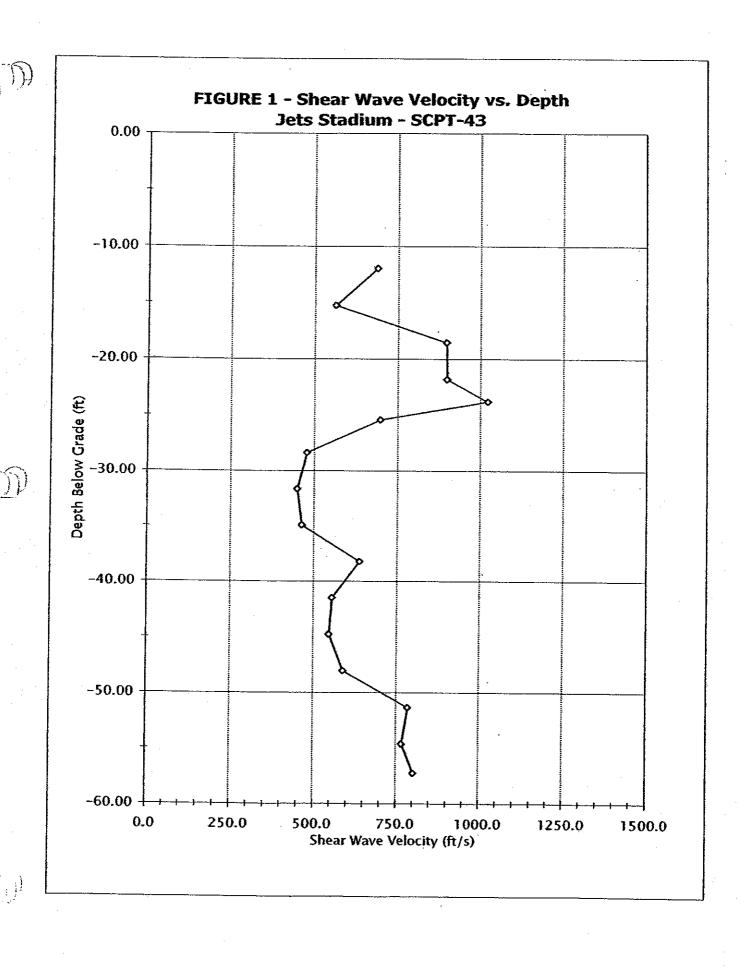


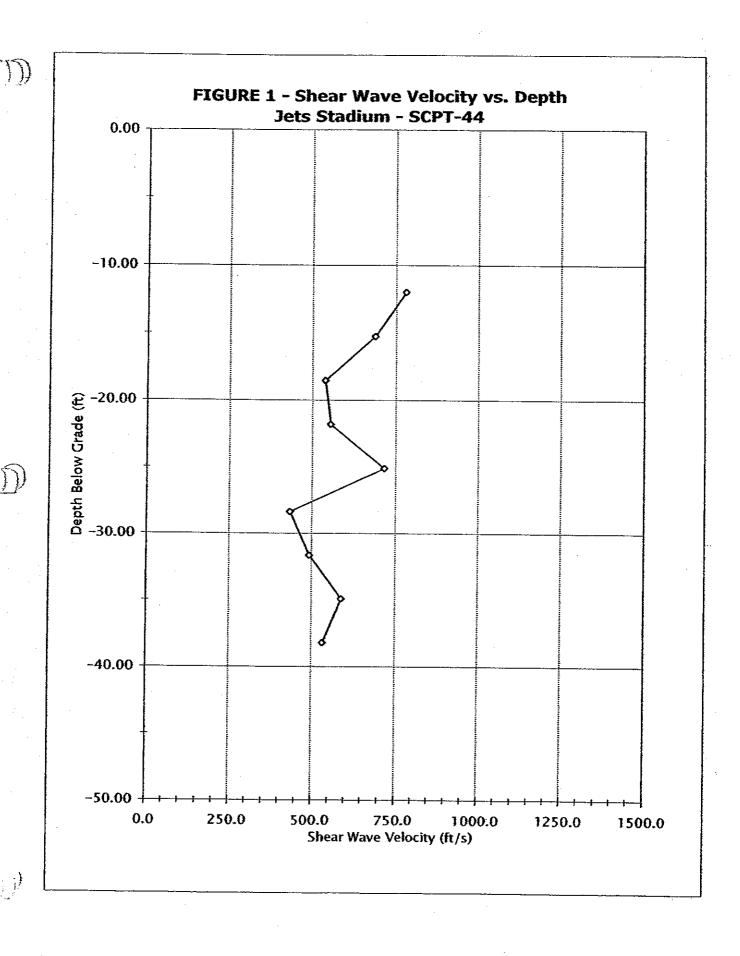


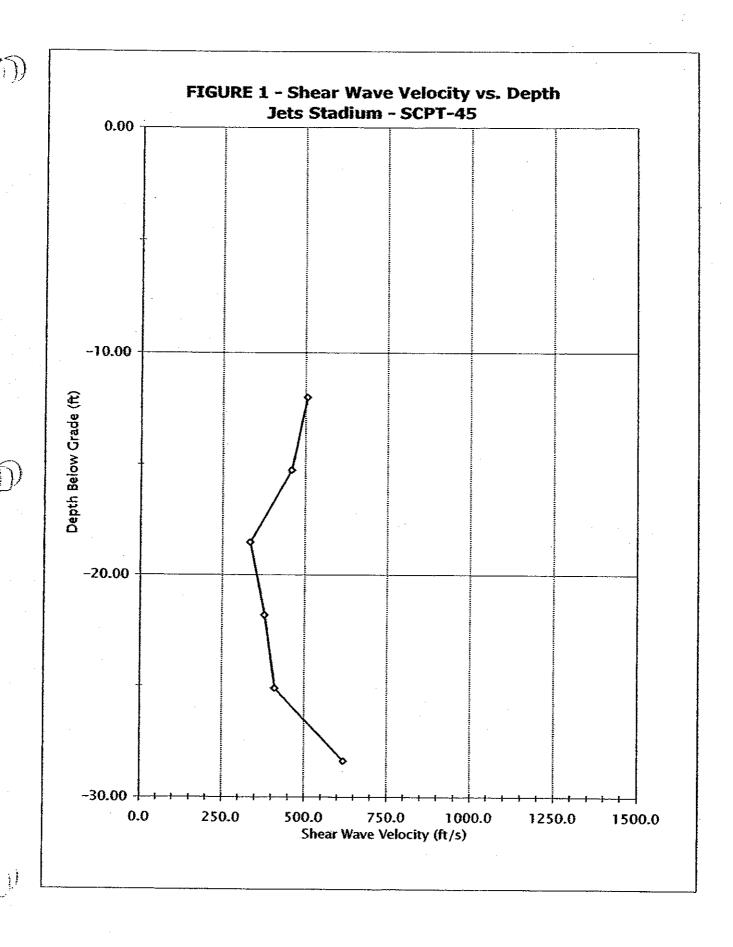


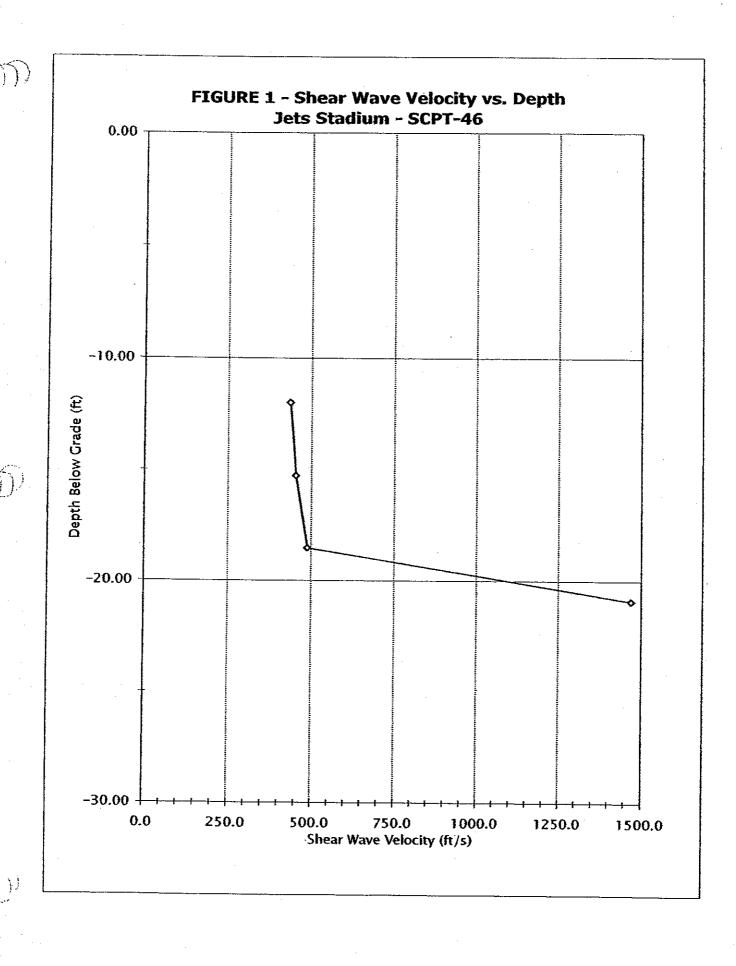


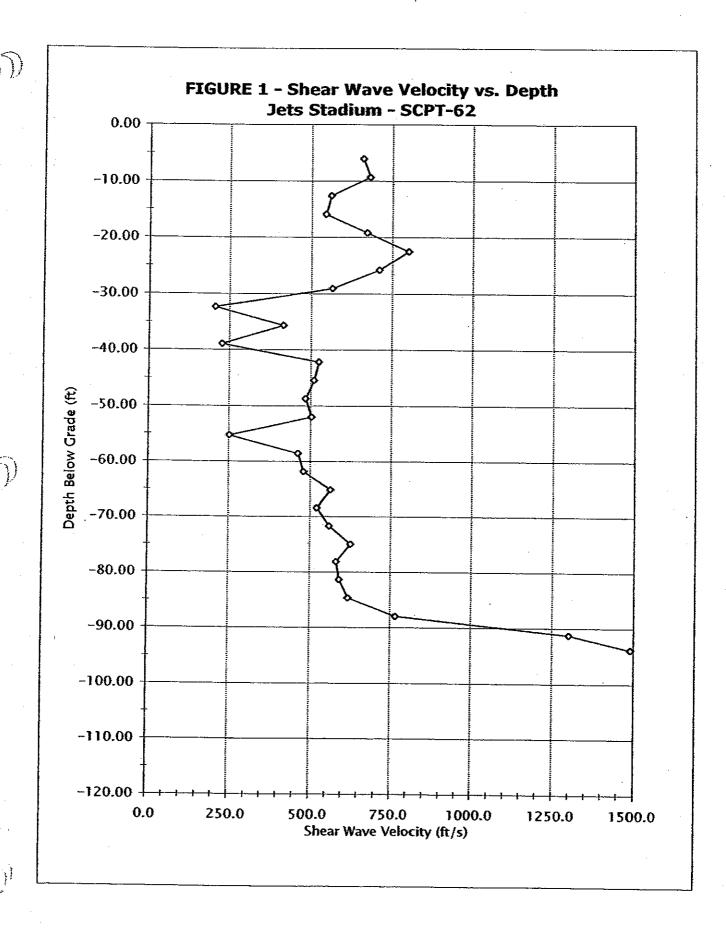


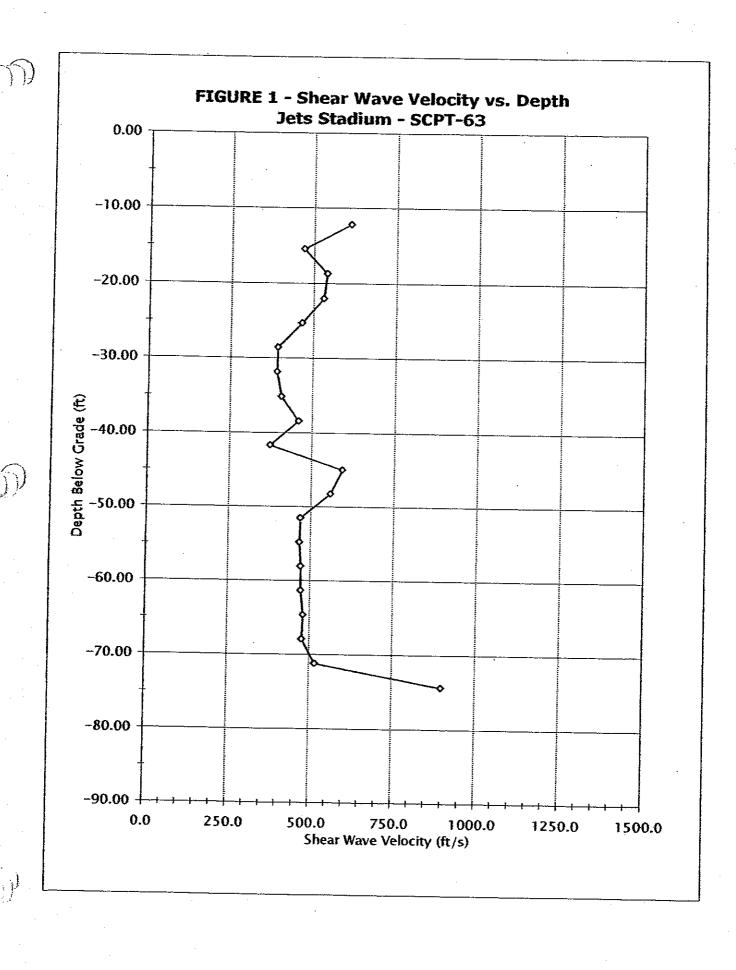


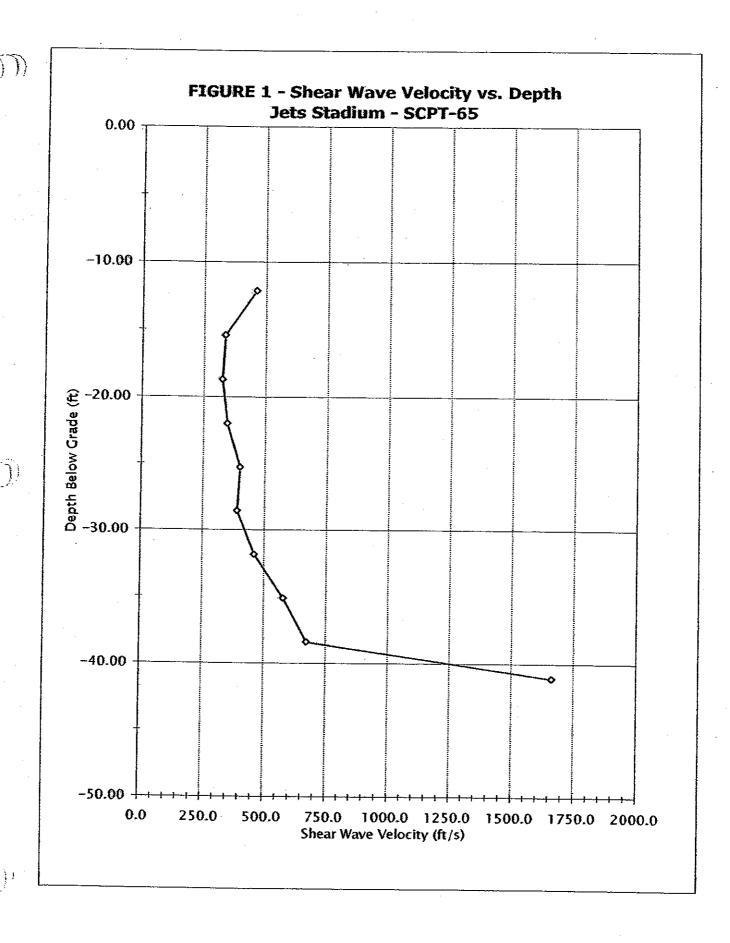


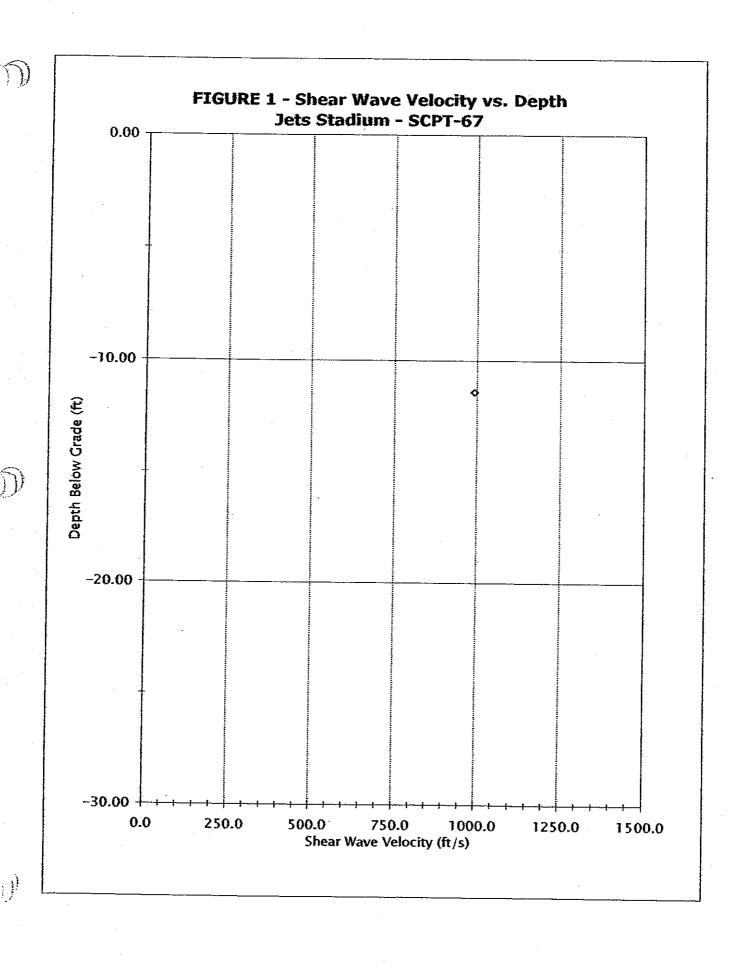












7970P012,PPD (m): 10.70 (ft): 35.10 ion: 3000.0s : 28.67 2970.0s : 78.75 55.0s Cone; 20 Ton AD139 Date: 10:18:04 08:20 Duration U-min: 28, U-max: 78, File: Depth Stadion %.0K Hole:SCPT-12 Location:Jets PORE PRESSURE DISSIPATION RECORD 2. Q (毎毎は) TIME 1.0K 100,07 0.0X 80.08 0.08 70.0 60.04 20.04 8.0 30.0-무.마 0.0 음. - - - angan Pore Pressure

C N

File: 797CP024.PPD Depth (h): 23.25 (ft): 76.28 Duration: 2160.0s U-min: 47.63 0.0s U-max: 96.81 85.0s Cone: 20 Ton AD139 Date: 10:18:04 10:53 Stadium 3.0K Hole:SCPT-24 Location:Jets PORE PRESSURE DISSIPATION RECORD 2.0K (Sec) TIME 1,0K 0.0K 120.0-100,00 8.0 8.0 110.0-90.0 -0.08 90.0G angan Pore Pressure (ft)

File: 797CP36.PPD Depth (m): 18.50 (ft): 60.70 Duration: 700.0s U-min: 30.88 0.0s U-max: 56.31 20.0s Cone:20 Ton AD165 Date:11:17:04 23:20 File: Depth Stadium 700.0 Hole:CPT-36 Location:Jets PORE PRESSURE DISSIPATION RECORD 525.0 350,0 (Sec) TIME 175.0 0.0 8.0 65.0--D. 05 P. 0. ₽.0. 35.0 30.0-55.0-45,0angan Pore Pressure

· .

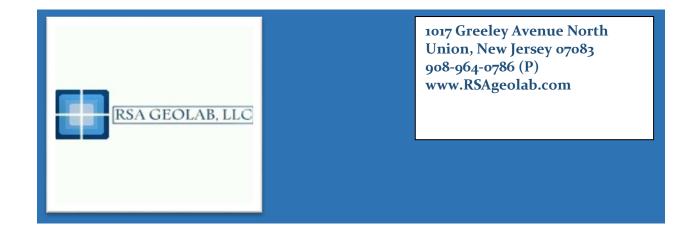
File: 7970P42.PPD Depth (m): 22.85 (ft): 74.97 Duration : 300.0s U-min: 33.98 0.0s U-max: 72.22 20.0s Cone:20 Ton AD165 Date:11:16:04 23:55 Stadica 300.0 Hole:SCPT-42 Location:Jets PORE PRESSURE DISSIPATION RECORD 200.0 TIME (Sec.) 100.0 0.0 80.0 20.02 台。日 30.0+ 60.09 90.05 angan Pore Pressure

Cone: 20 Ton AD165 Date: 11:17:04 01:42 Duration U-min: E U-max: 16 File: Depth Hole:SCPT-44 Location:Jets Stadium 8.0 PORE PRESSURE DISSIPATION RECORD 72.0 34.0 36,0 TIME 18.0 0.0 17.0 + o. at 11.0 16.0-15.0-14.0-12.0-0.6 0.8 13.0 angan Pore Pressure (ft)

File: 797CP55.PPD Depth (m): 17.95 (ft): 58.89 Duration: 300.0s U-min: 32.80 5.0s U-max: 51.86 30.0s Cone: 20 Ton AD165 Date: 11:13:04 02:45 File: Depth Location:Jate Stadium 300.0 PORE PRESSURE DISSIPATION RECORD Hole: CPT - 55 200.0 (2005) 0.000 TIME 0.0 60.0 53.0 40.04 35.0-8 30.0 45.0. Pore Pressure

50

Cone:20 Ton AD165 Date:11:15:04 22:14 Duration U-min: -7 U-max: 28 File: Depth Hole:CPT-58 Location:Jets Stadium 600.0 PORE PRESSURE DISSIPATION RECORD **400**,00 30.05 (1) (1) (1) (1) TIME 200,0 0.0 20.07 40.04 25.0-15.0u,0-0.0 -50.05--5.0angue Pore Pressure


Cone:20 Ton AD165 Date:11:12:04 01:59 Duration U-min: 13 U-max: 26 File; Depth Studien 300.0 Location: Jets PORE PRESSURE DISSIPATION RECORD Hole:SCPT-65 200,0 (009) 100.0 TIME 0.0 30.04 20.07 25.0-27.5 22.5 12.5 47.5 15.0-10.0angar Pore Pressure (ft)

File; 797CPO68.PPD Depth (M); 19.20 (ft); 62.99 Duration; 120.0s U-min; 45.10 0.0s U-max; 57.63 95.0s Cone:20 Ton AD139 Date:10:19:04 11:39 Stadium 150.0 Location:Jets PORE PRESSURE DISSIPATION RECORD Hole: \$CPT ~68 100.0 TIME 80,0 0.0 60.0 57.5 55.0--0.B 47.0 42.5 52.5 45.0-₽·0angan (44) Pore Pressure

APPENDIX C 2004 and 2017 Laboratory Data

Letter of Transmittal

Date: 11-8-17 Job No.: 869 Lab Log: 17-335

Attention: Michael Paquette

Langan Engineering

360 West 31st Street, 8th Floor

New York, NY 10001

CC: Thomas Androutselis

Re: Hudson Yards

Sample(s) ID: LB-1 27-29', LB-1 37-39', LB-1 47-49', LB-1 57-59', LB-1 72-74', LB-1 87-89'

Dear Mr. Paquette,

Please find attached results for the samples referenced above. The following lab testing was performed:

ASTM D2216 Moisture Content
 ASTM D2974 Organic Content

ASTM D4318 Atterberg Limits (w/LL on oven dried material)
 ASTM D2850 Unconsolidated Undrained Triaxial Shear (10 psi)

• Log & Photograph of tubes

Regards,

RSA Geolab, LLC

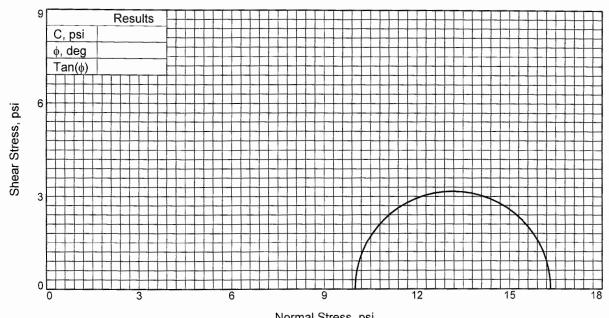
Remarks: If you have any questions, please call 908-964-0786.

Dr. Raza S. Ahmed

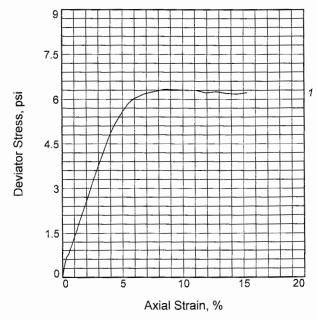
Signed:

President RSA Geolab, LLC

RSA Geolab, LLC			LOG OF UNDISTURBED SOIL SAMPLERS		
Project: Huc	dson Yard	ls	Project Number: 869		
Client: Lan	gan Engir	neering	Diameter: 2.8"		
Sample: LB-	1 27-29'		Recovery: 22.5"		
Date: 11-1	<u>_</u>		Remarks:		
Top of Sample	Inches			Type of Test	
	22				
	21		ttle (-), cmf Sand, trace f Gravel		
	20	Odorous, organ	ics (sea shells) (visual)		
	19		First Control of the		
	18				
	17		4. 与是40 美人		
	16		1.5-1		
	15		27'-25'		
	14	The second second			
	13		_		
	12				
	11				
	10			A 44 - 11 - 11 -	
	9			Atterberg	
	8			Moisture &	
	7			Organic Cont.	
	6			UU	
	5				
	4				
	3				
	2				
	1				
Bottom of Sample	0				


R	SA G	eolab, LLC	LOG OF UNDISTURBED SOIL	SAMPLERS	
Project: Hud	dson Yard	ls	Project Number: 869		
Client: Lan	gan Engir	neering	Diameter: 2.8"		
Sample: LB-	1 37-39'		Recovery: 24"		
Date: 11-1	l-17		Remarks:		
Top of Sample	Inches			Type of Test	
	22				
	21	Gray Clay & Silt little	(+), cmf Sand, trace mf Gravel		
	20	Odorous, organ	nics (sea shells) (visual)		
	19				
	18				
	17				
	16	In-	791		
	15				
	14				
	13				
	12				
	11				
	10				
	9			Atterberg	
	8			Moisture &	
	7			Organic Cont.	
	6				
	5			UU	
	4				
	3				
	2				
	1				
-	0				
Bottom of Sample					

RSA Geolab, LLC			LOG OF UNDISTURBED SOIL SAMPLERS		
Project: Hud	dson Yard	ls	Project Number: 869		
	gan Engir	neering	Diameter: 2.8"		
Sample: LB-	1 47-49'		Recovery: 26"		
Date: 11-1-17			Remarks:		
Top of Sample	Inches			Type of Test	
	22				
	21		tle (+), cmf Sand, trace mf Gravel		
	20	Odorous, organ	ics (sea shells) (visual)		
	19				
	18		A VITA		
	17		K_{i} , K_{i}		
	16		10.14		
	15	The state of the s			
	14				
	13	《 》,一、以集	A 1 Salaka and a		
	12				
	11				
	10				
	9			Atterberg	
	8			Moisture &	
	7			Organic Cont.	
	6				
	5			UU	
	4				
	3				
	2				
	1				
	0				
Bottom of Sample					


R	SA G	eolab, LLC	LOG OF UNDISTURBED SOIL	SAMPLERS		
Project: Hu	dson Yard	ls	Project Number: 869			
Client: Lan	gan Engir	neering	Diameter: 2.8"			
Sample: LB-	-1 57-59'		Recovery: 21"			
Date: 11-1	1-17		Remarks:			
Top of Sample	Inches			Type of Test		
	22					
	21		tle (+), cmf Sand, trace mf Gravel			
	20	Odorous, organ	nics (sea shells) (visual)			
	19					
	18					
	17		57-55!			
	16					
	15					
	14					
	13					
	12 11					
	10					
	9			Atterberg		
	8			Moisture &		
	7			Organic Cont.		
	6					
	5			UU		
	4					
	3					
	2					
	1					
D C	0					
Bottom of Sample						

R	SA G	eolab, LLC	LOG OF UNDISTURBED SOIL	SAMPLERS	
Project: Hud	dson Yard	ls	Project Number: 869		
Client: Lan	gan Engir	neering	Diameter: 2.8"		
Sample: LB-	-1 72-74		Recovery: 19.5"		
Date: 11-1	1-17		Remarks:		
Top of Sample	Inches			Type of Test	
	22				
	21	Dark Gray Clay & Silt l	ittle (+), cmf Sand, trace mf Gravel		
	20	Odorous, orga	anics (sea shells) (visual)		
	19				
	18				
	17		Us-1		
	16		72'-74'		
	15				
	14				
	13	A STANTANTANTAN	The state of the s		
	12	建筑			
	11				
	10				
	9			Atterberg	
	8			Moisture &	
	7			Organic Cont.	
	6				
	5			UU	
	4				
	3				
	2				
	1				
	0				
Bottom of Sample					

R	SA G	eolab, LLC	LOG OF UNDISTURBED SOIL	SAMPLERS	
Project: Hu	dson Yard	ls	Project Number: 869		
Client: Lan	gan Engir	neering	Diameter: 2.8"		
Sample: LB-	-1 87-89'		Recovery: 26"		
	1-17		Remarks:		
Top of Sample	Inches			Type of Test	
	22				
	21	Dark Gray Clay & Silt li	ttle (+), cmf Sand, trace f Gravel		
	20	Odorous, organ	nics (sea shells) (visual)		
	19	A STATE OF THE STA			
	18				
	17		K-1		
	16		84-851		
	15				
	14				
	13				
	12				
	11				
	10				
	9			Atterberg	
	8			Moisture &	
	7			Organic Cont.	
	6				
	5			UU	
	4				
	3				
	2				
	1				
	0				
Bottom of Sample					

Normal Stress, psi

Type of Test:

Unconsolidated Undrained Sample Type: ASTM D2850

Description: Dark Gray Clay & Silt little (-), cmf Sand, trace f Gravel, odorous, organics (sea shells) (visual)

Assumed Specific Gravity= 2.5

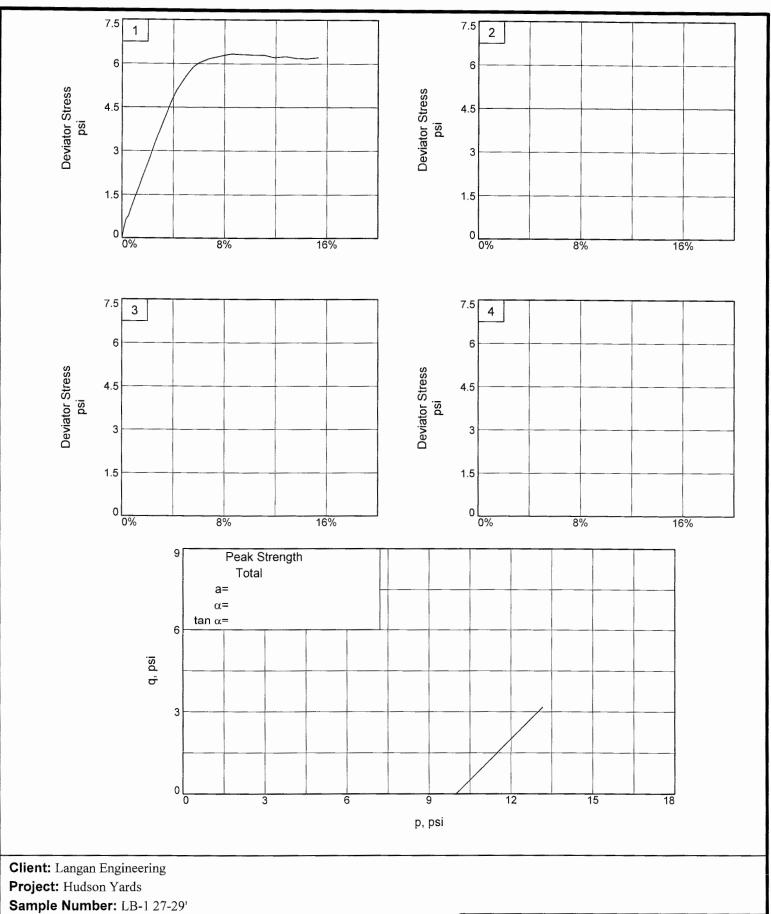
Remarks: H/D = 2.10

Sa	mple No.	1	
Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	71.3 56.7 101.9 1.7510 2.79 5.88	
At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	70.0 56.7 100.0 1.7510 2.79 5.88	
Str	ain rate, in./min.	0.050	
Ва	ck Pressure, psi	0.0	
Се	II Pressure, psi	10.0	
Fa	il. Stress, psi	6.3	
Ult	. Stress, psi		
σ ₁	Failure, psi	16.3	
σ_3	Failure, psi	10.0	

Client: Langan Engineering

Project: Hudson Yards

Sample Number: LB-1 27-29'


Date Sampled: 11-8-17 Proj. No.: 869

> TRIAXIAL SHEAR TEST REPORT RSA Geolab Union, New Jersey

Tested By: EE

Figure

Checked By: KP

Project No.: 869

Figure ____

RSA Geolab

Tested By: EE Checked By: KP

TRIAXIAL COMPRESSION TEST

Unconsolidated Undrained

11/3/2017 11:52 AM

Date:

11-8-17

Client:

Langan Engineering

Project:

Hudson Yards

Project No.:

869

Sample Number:

LB-1 27-29'

Description:

Dark Gray Clay & Silt little (-), cmf Sand, trace f Gravel, odorous, organics (sea shells) (visual)

Remarks:

H/D = 2.10

Type of Sample: ASTM D2850

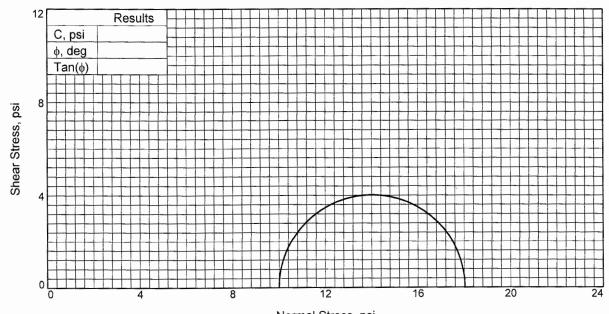
Assumed Specific Gravity=2.5 Test Method:

LL= COE uniform strain

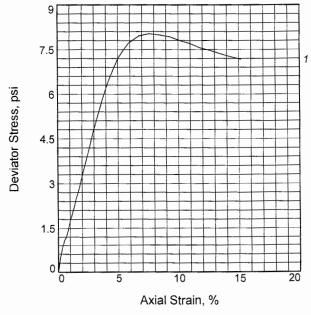
PL= PI≃

Specimen Parameter	Initial	Saturated	Final
Moisture content: Moist soil+tare, gms.	919.100		919.100
Moisture content: Dry soil+tare, gms.	536.400		536.400
Moisture content: Tare, gms.	0.000		0.000
Moisture, %	71.3	70.0	71.3
Moist specimen weight, gms.	919.1		
Diameter, in.	2.79	2.79	
Area, in.²	6.13	6.13	
Height, in.	5.88	5.88	
Net decrease in height, in.		0.00	
Wet density, pcf	97.2	96.5	
Dry density, pcf	56.7	56.7	
Void ratio	1.7510	1.7510	
Saturation, %	101.9	100.0	

Cell pressure = 10.00 psi Back pressure = 0.00 psi Strain rate, in./min. = 0.050


Fail. Stress = 6.33 psi at reading no. 23

_ RSA Geolab _


0 0.0000 4.600 0.0 0.0 10.00 10.00 10.00 10.00 0.00 10.00 10.00 10.00 0.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.07 10.33 0.33 30.03 <th></th> <th></th> <th></th> <th>te de la companya de</th> <th></th> <th></th> <th>eadings for</th> <th>(Soveline)</th> <th>Nouti</th> <th></th> <th>A design to the second</th>				te de la companya de			eadings for	(Soveline)	Nouti		A design to the second
No. No.		Def.	- consistence and consistence and Color	- CONTRACTOR STATE OF THE STATE	Carlos 2007/07-10-9688100	Deviator	Minor Princ.	Maior Princ.			
1 0.0100 6.900 2.3 0.2 0.37 10.00 10.37 1.04 10.19 0.19 2 0.0200 8.700 4.1 0.3 0.67 10.00 10.67 1.07 10.33 0.33 3 0.0300 9.300 4.7 0.5 0.76 10.00 10.76 1.08 10.38 0.38 4 0.0400 10.700 6.1 0.7 0.99 10.00 10.99 1.10 10.49 0.49 5 0.0500 12.000 7.4 0.9 1.20 10.00 11.20 1.12 10.60 0.60 6 0.0600 13.300 8.7 1.0 1.41 10.00 11.41 1.14 10.70 0.70 7 0.0700 14.500 9.9 1.2 1.60 10.00 11.60 1.16 10.80 0.80 8 0.0800 15.800 11.2 1.4 1.80 10.00 11.80 1.18 10.90 0.90 9 0.0900 17.100 12.5 1.5 2.01 10.00 12.01 1.20 11.00 1.00 110 0.1000 18.400 13.8 1.7 2.21 10.00 12.21 1.22 11.11 1.11 1 0.1250 21.500 16.9 2.1 2.70 10.00 12.70 1.27 11.35 1.35 12 0.1500 25.000 20.4 2.6 3.24 10.00 13.24 1.32 11.62 1.62 13 0.1750 28.200 23.6 3.0 3.74 10.00 13.74 1.37 11.87 1.87 14 0.2000 31.300 26.7 3.4 4.21 10.00 13.74 1.37 11.87 1.87 14 0.2000 31.300 26.7 3.4 4.21 10.00 14.21 1.42 12.10 2.10 15 0.2250 34.400 29.8 3.8 4.68 10.00 15.08 1.51 12.54 2.54 17 0.2750 39.100 32.5 4.3 5.08 10.00 15.87 1.59 12.94 2.94 17 0.2750 39.100 34.5 4.7 5.37 10.00 15.87 1.59 12.94 2.94 19 0.3250 42.700 38.1 5.5 5.87 10.00 15.87 1.59 12.94 2.94 20 0.3500 47.000 42.4 8.5 6.33 10.00 16.32 1.63 13.15 3.13 23 0.5000 47.000 42.4 8.5 6.33 10.00 16.32 1.63 13.15 3.15 24 0.5500 47.300 42.7 9.4 6.32 10.00 16.32 1.63 13.15 3.15 24 0.5500 47.300 42.7 9.4 6.32 10.00 16.31 1.62 1.62 13.10 3.10 25 0.6500 47.000 42.4 8.5 6.33 10.00 16.33 1.63 13.15 3.15 26 0.6500 47.000 43.4 11.1 6.30 10.00 16.31 1.63 13.15 3.15 29 0.8000 48.800 43.4 11.1 6.30 10.00 16.17 1.62 13.09 3.09	No.					Stress	Stress	Stress			
2 0.0200 8.700 4.1 0.3 0.67 10.00 10.67 1.07 10.33 0.33 3 0.0300 9.300 4.7 0.5 0.76 10.00 10.76 1.08 10.38 0.38 4 0.0400 10.700 6.1 0.7 0.99 10.00 10.99 1.10 10.49 0.49 5 0.0500 12.000 7.4 0.9 1.20 10.00 11.20 1.12 10.60 0.60 6 0.0600 13.300 8.7 1.0 1.41 10.00 11.41 1.14 10.70 0.70 7 0.0700 14.500 9.9 1.2 1.60 10.00 11.60 1.16 10.80 0.80 8 0.0800 15.800 11.2 1.4 1.80 10.00 11.80 11.80 10.90 0.90 9 0.0900 17.100 12.5 1.5 2.01 10.00 12.01 1.20	0	0.0000	4.600	0.0	0.0	0.00	10.00	10.00	1.00	10.00	0.00
3 0.0300 9.300 4.7 0.5 0.76 10.00 10.76 1.08 10.38 0.38 4 0.0400 10.700 6.1 0.7 0.99 10.00 10.99 1.10 10.49 0.49 5 0.0500 12.000 7.4 0.9 1.20 10.00 11.20 1.12 10.60 0.60 6 0.0600 13.300 8.7 1.0 1.41 10.00 11.41 1.14 10.70 0.70 7 0.0700 14.500 9.9 1.2 1.60 10.00 11.60 1.18 10.90 0.90 9 0.0900 17.100 12.5 1.5 2.01 10.00 12.01 1.20 11.00 1.00 10 0.1000 18.400 13.8 1.7 2.21 10.00 12.21 1.22 11.11 1.11 11 0.1250 21.500 16.9 2.1 2.70 10.00 13.24 1	1	0.0100	6.900	2.3	0.2	0.37	10.00	10.37	1.04	10.19	0.19
4 0.0400 10.700 6.1 0.7 0.99 10.00 10.99 1.10 10.49 0.49 5 0.0500 12.000 7.4 0.9 1.20 10.00 11.20 1.12 10.60 0.60 6 0.0600 13.300 8.7 1.0 1.41 10.00 11.41 1.14 10.70 0.70 7 0.0700 14.500 9.9 1.2 1.60 10.00 11.60 1.16 10.80 0.80 8 0.0800 15.800 11.2 1.4 1.80 10.00 11.80 1.18 10.90 0.90 9 0.0900 17.100 12.5 1.5 2.01 10.00 12.01 1.20 11.00 1.00 10 0.1000 18.400 13.8 1.7 2.21 10.00 12.70 1.27 11.35 1.35 12 0.1500 25.000 20.4 2.6 3.24 10.00 13.74 <td< td=""><td>2</td><td>0.0200</td><td>8.700</td><td>4.1</td><td>0.3</td><td>0.67</td><td>10.00</td><td>10.67</td><td>1.07</td><td>10.33</td><td>0.33</td></td<>	2	0.0200	8.700	4.1	0.3	0.67	10.00	10.67	1.07	10.33	0.33
5 0.0500 12.000 7.4 0.9 1.20 10.00 11.20 1.12 10.60 0.60 6 0.0600 13.300 8.7 1.0 1.41 10.00 11.41 1.14 10.70 0.70 7 0.0700 14.500 9.9 1.2 1.60 10.00 11.60 1.16 10.80 0.80 8 0.0800 15.800 11.2 1.4 1.80 10.00 11.80 1.18 10.90 0.90 9 0.0900 17.100 12.5 1.5 2.01 10.00 12.01 1.20 11.00 1.00 10 0.1000 18.400 13.8 1.7 2.21 10.00 12.71 1.22 11.11 1.11 11 0.1250 21.5000 20.4 2.6 3.24 10.00 13.74 1.37 11.87 1.87 12 0.1500 25.000 20.4 2.6 3.24 10.00 13.74	3	0.0300	9.300	4.7	0.5	0.76	10.00	10.76	1.08	10.38	0.38
6 0.0600 13.300 8.7 1.0 1.41 10.00 11.41 1.14 10.70 0.70 7 0.0700 14.500 9.9 1.2 1.60 10.00 11.60 1.16 10.80 0.80 8 0.0800 15.800 11.2 1.4 1.80 10.00 11.80 1.18 10.90 0.90 9 0.0900 17.100 12.5 1.5 2.01 10.00 12.01 1.20 11.00 1.00 10 0.1000 18.400 13.8 1.7 2.21 10.00 12.70 1.27 11.35 1.35 12 0.1500 25.000 20.4 2.6 3.24 10.00 13.24 1.32 11.62 1.62 13 0.1750 28.200 23.6 3.0 3.74 10.00 13.74 1.37 11.87 1.87 14 0.2000 31.300 26.7 3.4 4.21 10.00 14.21	4	0.0400	10.700	6.1	0.7	0.99	10.00	10.99	1.10	10.49	0.49
7 0.0700 14.500 9.9 1.2 1.60 10.00 11.60 1.16 10.80 0.80 8 0.0800 15.800 11.2 1.4 1.80 10.00 11.80 1.18 10.90 0.90 9 0.0900 17.100 12.5 1.5 2.01 10.00 12.01 1.20 11.00 1.00 10 0.1000 18.400 13.8 1.7 2.21 10.00 12.21 1.22 11.11 1.11 11 0.1250 21.500 16.9 2.1 2.70 10.00 12.70 1.27 11.35 1.35 12 0.1500 25.000 20.4 2.6 3.24 10.00 13.24 1.32 11.62 1.62 13 0.1750 28.200 23.6 3.0 3.74 10.00 13.74 1.37 11.87 1.87 14 0.2000 31.300 26.7 3.4 4.21 10.00 14.21	5	0.0500	12.000	7.4	0.9	1.20	10.00	11.20	1.12	10.60	0.60
8 0.0800 15.800 11.2 1.4 1.80 10.00 11.80 1.18 10.90 0.99 9 0.0900 17.100 12.5 1.5 2.01 10.00 12.01 1.20 11.00 1.00 10 0.1000 18.400 13.8 1.7 2.21 10.00 12.21 1.22 11.11 1.11 11 0.1250 21.500 16.9 2.1 2.70 10.00 12.70 1.27 11.35 1.35 12 0.1500 25.000 20.4 2.6 3.24 10.00 13.24 1.32 11.62 1.62 13 0.1750 28.200 23.6 3.0 3.74 10.00 13.74 1.37 11.87 1.87 14 0.2000 31.300 26.7 3.4 4.21 10.00 14.21 1.42 12.10 2.10 15 0.2250 37.100 32.5 4.3 5.08 10.00 15.08	6	0.0600	13.300	8.7	1.0	1.41	10.00	11.41	1.14	10.70	0.70
9 0.0900 17.100 12.5 1.5 2.01 10.00 12.01 1.20 11.00 1.00 10 0.1000 18.400 13.8 1.7 2.21 10.00 12.21 1.22 11.11 1.11 11 0.1250 21.500 16.9 2.1 2.70 10.00 12.70 1.27 11.35 1.35 12 0.1500 25.000 20.4 2.6 3.24 10.00 13.24 1.32 11.62 1.62 13 0.1750 28.200 23.6 3.0 3.74 10.00 13.74 1.37 11.87 1.87 14 0.2000 31.300 26.7 3.4 4.21 10.00 14.21 1.42 12.10 2.10 15 0.2250 34.400 29.8 3.8 4.68 10.00 14.68 1.47 12.34 2.34 16 0.2500 37.100 32.5 4.3 5.08 10.00 15.08 1.51 12.54 2.54 17 0.2750 39.100 34.5 4.7 5.37 10.00 15.37 1.54 12.68 2.68 18 0.3000 41.000 36.4 5.1 5.64 10.00 15.64 1.56 12.82 2.82 19 0.3250 42.700 38.1 5.5 5.87 10.00 15.87 1.59 12.94 2.94 20 0.3500 43.800 39.2 6.0 6.02 10.00 16.02 1.60 13.01 3.01 21 0.4000 45.200 40.6 6.8 6.18 10.00 16.18 1.62 13.09 3.09 22 0.4500 46.100 41.5 7.7 6.26 10.00 16.26 1.63 13.13 3.13 23 0.5000 47.000 42.4 8.5 6.33 10.00 16.32 1.63 13.15 3.15 24 0.5500 47.300 42.7 9.4 6.32 10.00 16.32 1.63 13.15 3.15 26 0.6500 48.000 43.4 11.1 6.30 10.00 16.21 1.62 13.11 3.11 28 0.7500 48.500 43.9 12.8 6.25 10.00 16.25 1.63 13.13 3.13 29 0.8000 48.500 43.9 12.8 6.25 10.00 16.19 1.62 13.09 3.09 0.8500 48.800 44.2 14.5 6.17 10.00 16.17 1.62 13.09 3.09	7	0.0700	14.500	9.9	1.2	1.60	10.00	11.60	1.16	10.80	0.80
10 0.1000 18.400 13.8 1.7 2.21 10.00 12.21 1.22 11.11 1.11 11 0.1250 21.500 16.9 2.1 2.70 10.00 12.70 1.27 11.35 1.35 12 0.1500 25.000 20.4 2.6 3.24 10.00 13.24 1.32 11.62 1.62 13 0.1750 28.200 23.6 3.0 3.74 10.00 13.74 1.37 11.87 1.87 14 0.2000 31.300 26.7 3.4 4.21 10.00 14.21 1.42 12.10 2.10 15 0.2250 34.400 29.8 3.8 4.68 10.00 14.68 1.47 12.34 2.34 16 0.2500 37.100 32.5 4.3 5.08 10.00 15.08 1.51 12.54 2.54 17 0.2750 39.100 34.5 4.7 5.37 10.00 15.64 1.56 12.82 2.82 19 0.3250 42.700 38.1	8	0.0800	15.800	11.2	1.4	1.80	10.00	11.80	1.18	10.90	0.90
11 0.1250 21.500 16.9 2.1 2.70 10.00 12.70 1.27 11.35 1.35 12 0.1500 25.000 20.4 2.6 3.24 10.00 13.24 1.32 11.62 1.62 13 0.1750 28.200 23.6 3.0 3.74 10.00 13.74 1.37 11.87 1.87 14 0.2000 31.300 26.7 3.4 4.21 10.00 14.21 1.42 12.10 2.10 15 0.2250 34.400 29.8 3.8 4.68 10.00 14.68 1.47 12.34 2.34 16 0.2500 37.100 32.5 4.3 5.08 10.00 15.08 1.51 12.54 2.54 17 0.2750 39.100 34.5 4.7 5.37 10.00 15.37 1.54 12.68 2.68 18 0.3000 41.000 36.4 5.1 5.64 10.00 15.64 1.56 12.82 2.82 19 0.3250 42.700 38.1	9	0.0900	17.100	12.5	1.5	2.01	10.00	12.01	1.20	11.00	1.00
12 0.1500 25.000 20.4 2.6 3.24 10.00 13.24 1.32 11.62 1.62 13 0.1750 28.200 23.6 3.0 3.74 10.00 13.74 1.37 11.87 1.87 14 0.2000 31.300 26.7 3.4 4.21 10.00 14.21 1.42 12.10 2.10 15 0.2250 34.400 29.8 3.8 4.68 10.00 14.68 1.47 12.34 2.34 16 0.2500 37.100 32.5 4.3 5.08 10.00 15.08 1.51 12.54 2.54 17 0.2750 39.100 34.5 4.7 5.37 10.00 15.37 1.54 12.68 2.68 18 0.3000 41.000 36.4 5.1 5.64 10.00 15.64 1.56 12.82 2.82 19 0.3250 42.700 38.1 5.5 5.87 10.00 15.87 1.59 12.94 2.94 20 0.3500 43.800 39.2	10	0.1000	18.400	13.8	1.7	2.21	10.00	12.21	1.22	11.11	1.11
13 0.1750 28.200 23.6 3.0 3.74 10.00 13.74 1.37 11.87 1.87 14 0.2000 31.300 26.7 3.4 4.21 10.00 14.21 1.42 12.10 2.10 15 0.2250 34.400 29.8 3.8 4.68 10.00 14.68 1.47 12.34 2.34 16 0.2500 37.100 32.5 4.3 5.08 10.00 15.08 1.51 12.54 2.54 17 0.2750 39.100 34.5 4.7 5.37 10.00 15.37 1.54 12.68 2.68 18 0.3000 41.000 36.4 5.1 5.64 10.00 15.64 1.56 12.82 2.82 19 0.3250 42.700 38.1 5.5 5.87 10.00 15.87 1.59 12.94 2.94 20 0.3500 43.800 39.2 6.0 6.02 10.00 16.02 1.60 13.01 3.01 21 0.4000 45.200 40.6	11	0.1250	21.500	16.9	2.1	2.70	10.00	12.70	1.27	11.35	1.35
14 0.2000 31.300 26.7 3.4 4.21 10.00 14.21 1.42 12.10 2.10 15 0.2250 34.400 29.8 3.8 4.68 10.00 14.68 1.47 12.34 2.34 16 0.2500 37.100 32.5 4.3 5.08 10.00 15.08 1.51 12.54 2.54 17 0.2750 39.100 34.5 4.7 5.37 10.00 15.37 1.54 12.68 2.68 18 0.3000 41.000 36.4 5.1 5.64 10.00 15.64 1.56 12.82 2.82 19 0.3250 42.700 38.1 5.5 5.87 10.00 15.87 1.59 12.94 2.94 20 0.3500 43.800 39.2 6.0 6.02 10.00 16.02 1.60 13.01 3.01 21 0.4000 45.200 40.6 6.8 6.18 10.00 16.18 1.62 13.09 3.09 22 0.4500 46.100 41.5	12	0.1500	25.000	20.4	2.6	3.24	10.00	13.24	1.32	11.62	1.62
15 0.2250 34.400 29.8 3.8 4.68 10.00 14.68 1.47 12.34 2.34 16 0.2500 37.100 32.5 4.3 5.08 10.00 15.08 1.51 12.54 2.54 17 0.2750 39.100 34.5 4.7 5.37 10.00 15.37 1.54 12.68 2.68 18 0.3000 41.000 36.4 5.1 5.64 10.00 15.64 1.56 12.82 2.82 19 0.3250 42.700 38.1 5.5 5.87 10.00 15.87 1.59 12.94 2.94 20 0.3500 43.800 39.2 6.0 6.02 10.00 16.02 1.60 13.01 3.01 21 0.4000 45.200 40.6 6.8 6.18 10.00 16.18 1.62 13.09 3.09 22 0.4500 46.100 41.5 7.7 6.26 10.00 16.33 1.63 13.17 3.17 24 0.5500 47.300 42.7	13	0.1750	28.200	23.6	3.0	3.74	10.00	13.74	1.37	11.87	1.87
16 0.2500 37.100 32.5 4.3 5.08 10.00 15.08 1.51 12.54 2.54 17 0.2750 39.100 34.5 4.7 5.37 10.00 15.37 1.54 12.68 2.68 18 0.3000 41.000 36.4 5.1 5.64 10.00 15.64 1.56 12.82 2.82 19 0.3250 42.700 38.1 5.5 5.87 10.00 15.87 1.59 12.94 2.94 20 0.3500 43.800 39.2 6.0 6.02 10.00 16.02 1.60 13.01 3.01 21 0.4000 45.200 40.6 6.8 6.18 10.00 16.18 1.62 13.09 3.09 22 0.4500 46.100 41.5 7.7 6.26 10.00 16.26 1.63 13.13 3.13 23 0.5000 47.300 42.4 8.5 6.33 10.00 16.32 1.63 13.16 3.16 24 0.5500 47.300 42.7	14	0.2000	31.300	26.7	3.4	4.21	10.00	14.21	1.42	12.10	2.10
17 0.2750 39.100 34.5 4.7 5.37 10.00 15.37 1.54 12.68 2.68 18 0.3000 41.000 36.4 5.1 5.64 10.00 15.64 1.56 12.82 2.82 19 0.3250 42.700 38.1 5.5 5.87 10.00 15.87 1.59 12.94 2.94 20 0.3500 43.800 39.2 6.0 6.02 10.00 16.02 1.60 13.01 3.01 21 0.4000 45.200 40.6 6.8 6.18 10.00 16.18 1.62 13.09 3.09 22 0.4500 46.100 41.5 7.7 6.26 10.00 16.26 1.63 13.13 3.13 23 0.5000 47.000 42.4 8.5 6.33 10.00 16.33 1.63 13.17 3.17 24 0.5500 47.300 42.7 9.4 6.32 10.00 16.32 1.63 13.15 3.15 25 0.6000 47.600 43.0	15	0.2250	34.400	29.8	3.8	4.68	10.00	14.68	1.47	12.34	2.34
18 0.3000 41.000 36.4 5.1 5.64 10.00 15.64 1.56 12.82 2.82 19 0.3250 42.700 38.1 5.5 5.87 10.00 15.87 1.59 12.94 2.94 20 0.3500 43.800 39.2 6.0 6.02 10.00 16.02 1.60 13.01 3.01 21 0.4000 45.200 40.6 6.8 6.18 10.00 16.18 1.62 13.09 3.09 22 0.4500 46.100 41.5 7.7 6.26 10.00 16.26 1.63 13.13 3.13 23 0.5000 47.000 42.4 8.5 6.33 10.00 16.33 1.63 13.17 3.17 24 0.5500 47.300 42.7 9.4 6.32 10.00 16.32 1.63 13.16 3.16 25 0.6000 47.600 43.0 10.2 6.30 10.00 16.30 1.63 13.15 3.15 26 0.6500 48.000 43.4 <td>16</td> <td>0.2500</td> <td>37.100</td> <td>32.5</td> <td>4.3</td> <td>5.08</td> <td>10.00</td> <td>15.08</td> <td>1.51</td> <td>12.54</td> <td>2.54</td>	16	0.2500	37.100	32.5	4.3	5.08	10.00	15.08	1.51	12.54	2.54
19 0.3250 42.700 38.1 5.5 5.87 10.00 15.87 1.59 12.94 2.94 20 0.3500 43.800 39.2 6.0 6.02 10.00 16.02 1.60 13.01 3.01 21 0.4000 45.200 40.6 6.8 6.18 10.00 16.18 1.62 13.09 3.09 22 0.4500 46.100 41.5 7.7 6.26 10.00 16.26 1.63 13.13 3.13 23 0.5000 47.000 42.4 8.5 6.33 10.00 16.33 1.63 13.17 3.17 24 0.5500 47.300 42.7 9.4 6.32 10.00 16.32 1.63 13.16 3.16 25 0.6000 47.600 43.0 10.2 6.30 10.00 16.30 1.63 13.15 3.15 26 0.6500 48.000 43.4 11.1 6.30 10.00 16.30 1.63 13.11 3.11 28 0.7500 48.500 43.9 <td>17</td> <td>0.2750</td> <td>39.100</td> <td>34.5</td> <td>4.7</td> <td>5.37</td> <td>10.00</td> <td>15.37</td> <td>1.54</td> <td>12.68</td> <td>2.68</td>	17	0.2750	39.100	34.5	4.7	5.37	10.00	15.37	1.54	12.68	2.68
20 0.3500 43.800 39.2 6.0 6.02 10.00 16.02 1.60 13.01 3.01 21 0.4000 45.200 40.6 6.8 6.18 10.00 16.18 1.62 13.09 3.09 22 0.4500 46.100 41.5 7.7 6.26 10.00 16.26 1.63 13.13 3.13 23 0.5000 47.000 42.4 8.5 6.33 10.00 16.33 1.63 13.17 3.17 24 0.5500 47.300 42.7 9.4 6.32 10.00 16.32 1.63 13.16 3.16 25 0.6000 47.600 43.0 10.2 6.30 10.00 16.30 1.63 13.15 3.15 26 0.6500 48.000 43.4 11.1 6.30 10.00 16.30 1.63 13.11 3.11 27 0.7000 47.800 43.2 11.9 6.21 10.00 16.25 1.63 13.13 3.13 28 0.7500 48.500 43.9 </td <td>18</td> <td>0.3000</td> <td>41.000</td> <td>36.4</td> <td>5.1</td> <td>5.64</td> <td>10.00</td> <td>15.64</td> <td>1.56</td> <td>12.82</td> <td>2.82</td>	18	0.3000	41.000	36.4	5.1	5.64	10.00	15.64	1.56	12.82	2.82
21 0.4000 45.200 40.6 6.8 6.18 10.00 16.18 1.62 13.09 3.09 22 0.4500 46.100 41.5 7.7 6.26 10.00 16.26 1.63 13.13 3.13 23 0.5000 47.000 42.4 8.5 6.33 10.00 16.33 1.63 13.17 3.17 24 0.5500 47.300 42.7 9.4 6.32 10.00 16.32 1.63 13.16 3.16 25 0.6000 47.600 43.0 10.2 6.30 10.00 16.30 1.63 13.15 3.15 26 0.6500 48.000 43.4 11.1 6.30 10.00 16.30 1.63 13.15 3.15 27 0.7000 47.800 43.2 11.9 6.21 10.00 16.21 1.62 13.11 3.11 28 0.7500 48.500 43.9 12.8 6.25 10.00 16.19 1.62 13.10 3.10 30 0.8500 48.800 44.2<	19	0.3250	42.700	38.1	5.5	5.87	10.00	15.87	1.59	12.94	2.94
22 0.4500 46.100 41.5 7.7 6.26 10.00 16.26 1.63 13.13 3.13 23 0.5000 47.000 42.4 8.5 6.33 10.00 16.33 1.63 13.17 3.17 24 0.5500 47.300 42.7 9.4 6.32 10.00 16.32 1.63 13.16 3.16 25 0.6000 47.600 43.0 10.2 6.30 10.00 16.30 1.63 13.15 3.15 26 0.6500 48.000 43.4 11.1 6.30 10.00 16.30 1.63 13.15 3.15 27 0.7000 47.800 43.2 11.9 6.21 10.00 16.21 1.62 13.11 3.11 28 0.7500 48.500 43.9 12.8 6.25 10.00 16.25 1.63 13.10 3.10 30 0.8500 48.800 44.2 14.5 6.17 10.00 16.17 1.62 13.09 3.09	20	0.3500	43.800	39.2	6.0	6.02	10.00	16.02	1.60	13.01	3.01
23 0.5000 47.000 42.4 8.5 6.33 10.00 16.33 1.63 13.17 3.17 24 0.5500 47.300 42.7 9.4 6.32 10.00 16.32 1.63 13.16 3.16 25 0.6000 47.600 43.0 10.2 6.30 10.00 16.30 1.63 13.15 3.15 26 0.6500 48.000 43.4 11.1 6.30 10.00 16.30 1.63 13.15 3.15 27 0.7000 47.800 43.2 11.9 6.21 10.00 16.21 1.62 13.11 3.11 28 0.7500 48.500 43.9 12.8 6.25 10.00 16.25 1.63 13.13 3.13 29 0.8000 48.500 43.9 13.6 6.19 10.00 16.19 1.62 13.10 3.10 30 0.8500 48.800 44.2 14.5 6.17 10.00 16.17 1.62 13.09 3.09	21	0.4000	45.200	40.6	6.8	6.18	10.00	16.18	1.62	13.09	3.09
24 0.5500 47.300 42.7 9.4 6.32 10.00 16.32 1.63 13.16 3.16 25 0.6000 47.600 43.0 10.2 6.30 10.00 16.30 1.63 13.15 3.15 26 0.6500 48.000 43.4 11.1 6.30 10.00 16.30 1.63 13.15 3.15 27 0.7000 47.800 43.2 11.9 6.21 10.00 16.21 1.62 13.11 3.11 28 0.7500 48.500 43.9 12.8 6.25 10.00 16.25 1.63 13.13 3.13 29 0.8000 48.500 43.9 13.6 6.19 10.00 16.19 1.62 13.10 3.10 30 0.8500 48.800 44.2 14.5 6.17 10.00 16.17 1.62 13.09 3.09	22	0.4500	46.100	41.5	7.7	6.26	10.00	16.26	1.63	13.13	3.13
25 0.6000 47.600 43.0 10.2 6.30 10.00 16.30 1.63 13.15 3.15 26 0.6500 48.000 43.4 11.1 6.30 10.00 16.30 1.63 13.15 3.15 27 0.7000 47.800 43.2 11.9 6.21 10.00 16.21 1.62 13.11 3.11 28 0.7500 48.500 43.9 12.8 6.25 10.00 16.25 1.63 13.13 3.13 29 0.8000 48.500 43.9 13.6 6.19 10.00 16.19 1.62 13.10 3.10 30 0.8500 48.800 44.2 14.5 6.17 10.00 16.17 1.62 13.09 3.09	23	0.5000	47.000	42.4	8.5	6.33	10.00	16.33	1.63	13.17	3.17
26 0.6500 48.000 43.4 11.1 6.30 10.00 16.30 1.63 13.15 3.15 27 0.7000 47.800 43.2 11.9 6.21 10.00 16.21 1.62 13.11 3.11 28 0.7500 48.500 43.9 12.8 6.25 10.00 16.25 1.63 13.13 3.13 29 0.8000 48.500 43.9 13.6 6.19 10.00 16.19 1.62 13.10 3.10 30 0.8500 48.800 44.2 14.5 6.17 10.00 16.17 1.62 13.09 3.09	24	0.5500	47.300	42.7	9.4	6.32	10.00	16.32	1.63	13.16	3.16
27 0.7000 47.800 43.2 11.9 6.21 10.00 16.21 1.62 13.11 3.11 28 0.7500 48.500 43.9 12.8 6.25 10.00 16.25 1.63 13.13 3.13 29 0.8000 48.500 43.9 13.6 6.19 10.00 16.19 1.62 13.10 3.10 30 0.8500 48.800 44.2 14.5 6.17 10.00 16.17 1.62 13.09 3.09	25	0.6000	47.600	43.0	10.2	6.30	10.00	16.30	1.63	13.15	3.15
28 0.7500 48.500 43.9 12.8 6.25 10.00 16.25 1.63 13.13 3.13 29 0.8000 48.500 43.9 13.6 6.19 10.00 16.19 1.62 13.10 3.10 30 0.8500 48.800 44.2 14.5 6.17 10.00 16.17 1.62 13.09 3.09	26	0.6500	48.000	43.4	11.1	6.30	10.00	16.30	1.63	13.15	3.15
29 0.8000 48.500 43.9 13.6 6.19 10.00 16.19 1.62 13.10 3.10 30 0.8500 48.800 44.2 14.5 6.17 10.00 16.17 1.62 13.09 3.09	27	0.7000	47.800	43.2	11.9	6.21	10.00	16.21	1.62	13.11	3.11
30 0.8500 48.800 44.2 14.5 6.17 10.00 16.17 1.62 13.09 3.09	28	0.7500	48.500	43.9	12.8	6.25	10.00	16.25	1.63	13.13	3.13
	29	0.8000	48.500	43.9	13.6	6.19	10.00	16.19	1.62	13.10	3.10
31 0.9000 49.600 45.0 15.3 6.22 10.00 16.22 1.62 13.11 3.11	30	0.8500	48.800	44.2	14.5	6.17	10.00	16.17	1.62	13.09	3.09
	31	0.9000	49.600	45.0	15.3	6.22	10.00	16.22	1.62	13.11	3.11

RSA Geolab

Normal Stress, psi

Type	of T	est:
------	------	------

Unconsolidated Undrained Sample Type: ASTM D2850

Description: Gray Clay & Silt little (+), cmf Sand, trace mf Gravel, odorous, organics (sea shells) (visual)

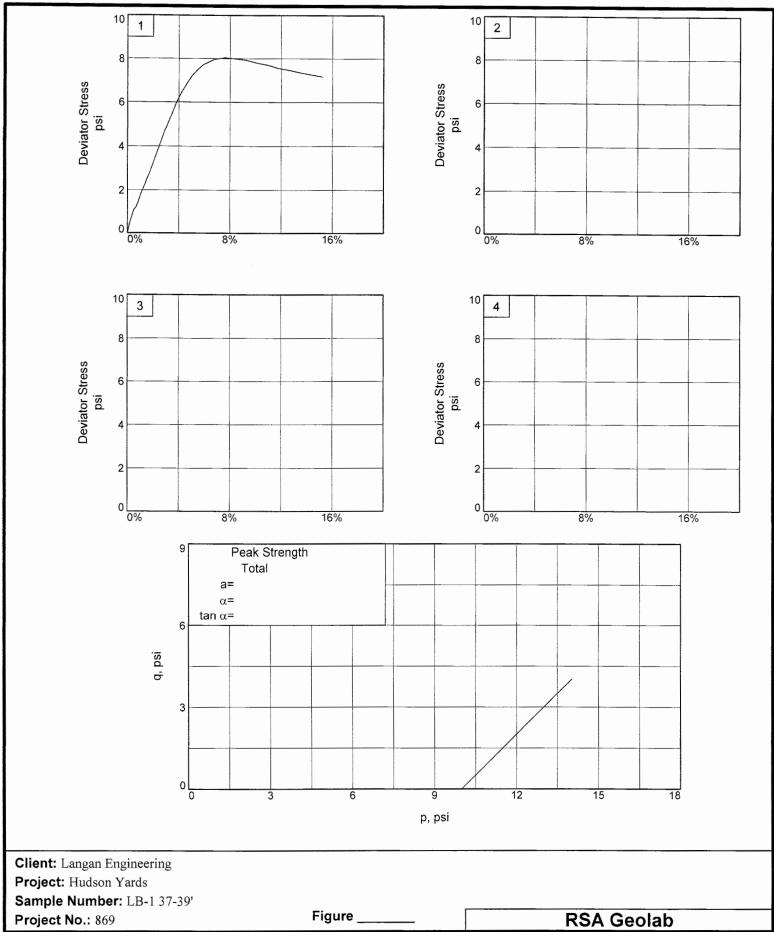
Assumed Specific Gravity= 2.5

Remarks: H/D = 2.10

Figure

Sar	nple No.	1	
Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	60.3 64.1 105.2 1.4331 2.82 5.92	
At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	57.3 64.1 100.0 1.4331 2.82 5.92	
Str	ain rate, in./min.	0.050	
Ва	ck Pressure, psi	0.0	
Ce	ll Pressure, psi	10.0	
Fai	I. Stress, psi	8.0	
Ult	. Stress, psi		
σ1	Failure, psi	18.0	
σ_3	Failure, psi	10.0	

Client: Langan Engineering


Project: Hudson Yards

Sample Number: LB-1 37-39'

Proj. No.: 869 **Date Sampled:** 11-8-17

TRIAXIAL SHEAR TEST REPORT RSA Geolab Union, New Jersey

Tested By: EE Checked By: KP

Tested By: EE

__ Checked By: KP

TRIAXIAL COMPRESSION TEST

Unconsolidated Undrained

11/3/2017 11:51 AM

Date:

11-8-17

Client:

Langan Engineering

Project:

Hudson Yards

Project No.:

869

Sample Number:

LB-1 37-39'

Description:

Gray Clay & Silt little (+), cmf Sand, trace mf Gravel, odorous, organics (sea shells) (visual)

Remarks:

H/D = 2.10

Type of Sample: Assumed Specific Gravity=2.5

ASTM D2850

LL=

PL=

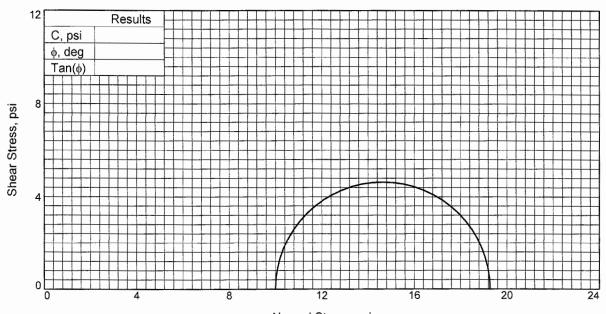
PI=

Test Method:

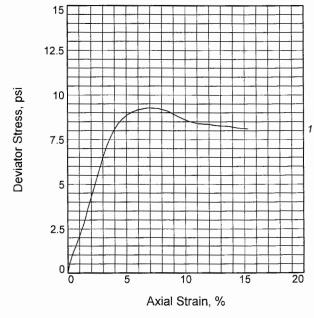
COE uniform strain

Specimen Parameter	Initial	Saturated	Final
Moisture content: Moist soil+tare, gms.	998.600		998.600
Moisture content: Dry soil+tare, gms.	622.900		622.900
Moisture content: Tare, gms.	0.000		0.000
Moisture, %	60.3	57.3	60.3
Moist specimen weight, gms.	998.6		
Diameter, in.	2.82	2.82	
Area, in.²	6.25	6.25	
Height, in.	5.92	5.92	
Net decrease in height, in.		0.00	
Wet density, pcf	102.8	100.9	
Dry density, pcf	64.1	64.1	
Void ratio	1.4331	1.4331	
Saturation, %	105.2	100.0	

Cell pressure = 10.00 psi Back pressure = 0.00 psi Strain rate, in./min. = 0.050


Fail. Stress = 8.03 psi at reading no. 22

_ RSA Geolab .


					esta est es	a eraila a sa Fai	. Gainman	Na	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
	Def.					estativals to	The state of the s		er af	
No.	Dial in.	Load Dial	Load lbs.	Strain %	Stress psi	Minor Princ. Stress psi	Stress psi	1:3 Ratio	P psi	Q psi
0	0.0000	3.200	0.0	0.0	0.00	10.00	10.00	1.00	10.00	0.00
1	0.0100	5.900	2.7	0.2	0.43	10.00	10.43	1.04	10.22	0.22
2	0.0200	8.200	5.0	0.3	0.80	10.00	10.80	1.08	10.40	0.40
3	0.0300	10.000	6.8	0.5	1.08	10.00	11.08	1.11	10.54	0.54
4	0.0400	10.800	7.6	0.7	1.21	10.00	11.21	1.12	10.60	0.60
5	0.0500	12.300	9.1	0.8	1.44	10.00	11.44	1.14	10.72	0.72
6	0.0600	14.300	11.1	1.0	1.76	10.00	11.76	1.18	10.88	0.88
7	0.0700	15.800	12.6	1.2	1.99	10.00	11.99	1.20	11.00	1.00
8	0.0800	17.400	14.2	1.4	2.24	10.00	12.24	1.22	11.12	1.12
9	0.0900	19.100	15.9	1.5	2.51	10.00	12.51	1.25	11.25	1.25
10	0.1000	20.500	17.3	1.7	2.72	10.00	12.72	1.27	11.36	1.36
11	0.1250	25.000	21.8	2.1	3.42	10.00	13.42	1.34	11.71	1.71
12	0.1500	29.300	26.1	2.5	4.07	10.00	14.07	1.41	12.04	2.04
13	0.1750	33.900	30.7	3.0	4.77	10.00	14.77	1.48	12.39	2.39
14	0.2000	37.800	34.6	3.4	5.35	10.00	15.35	1.54	12.68	2.68
15	0.2250	41.800	38.6	3.8	5.95	10.00	15.95	1.59	12.97	2.97
16	0.2500	45.200	42.0	4.2	6.44	10.00	16.44	1.64	13.22	3.22
17	0.2750	48.100	44.9	4.6	6.86	10.00	16.86	1.69	13.43	3.43
18	0.3000	50.800	47.6	5.1	7.24	10.00	17.24	1.72	13.62	3.62
19	0.3250	52.700	49.5	5.5	7.49	10.00	17.49	1.75	13.75	3.75
20	0.3500	54.400	51.2	5.9	7.71	10.00	17.71	1.77	13.86	3.86
21	0.4000	56.500	53.3	6.8	7.96	10.00	17.96	1.80	13.98	3.98
22	0.4500	57.500	54.3	7.6	8.03	10.00	18.03	1.80	14.02	4.02
23	0.5000	57.700	54.5	8.4	7.99	10.00	17.99	1.80	13.99	3.99
24	0.5500	57.800	54.6	9.3	7.93	10.00	17.93	1.79	13.97	3.97
25	0.6000	57.400	54.2	10.1	7.80	10.00	17.80	1.78	13.90	3.90
26	0.6500	57.200	54.0	11.0	7.70	10.00	17.70	1.77	13.85	3.85
27	0.7000	56.700	53.5	11.8	7.55	10.00	17.55	1.76	13.78	3.78
28	0.7500	56.600	53.4	12.7	7.47	10.00	17.47	1.75	13.73	3.73
29	0.8000	56.300	53.1	13.5	7.35	10.00	17.35	1.74	13.68	3.68
30	0.8500	56.100	52.9	14.4	7.25	10.00	17.25	1.73	13.63	3.63
31	0.9000	56.000	52.8	15.2	7.17	10.00	17.17	1.72	13.58	3.58

RSA Geolab

Normal Stress, psi

. , , , , , , , , , , , , , , , , , , ,	Type	of	Test:
---	------	----	-------

Unconsolidated Undrained Sample Type: ASTM D2850

Description: Dark Gray Clay & Silt little (+), cmf Sand, trace mf Gravel, odorous, organics (sea shells)(visual) | Project: Hudson Yards

Assumed Specific Gravity= 2.5

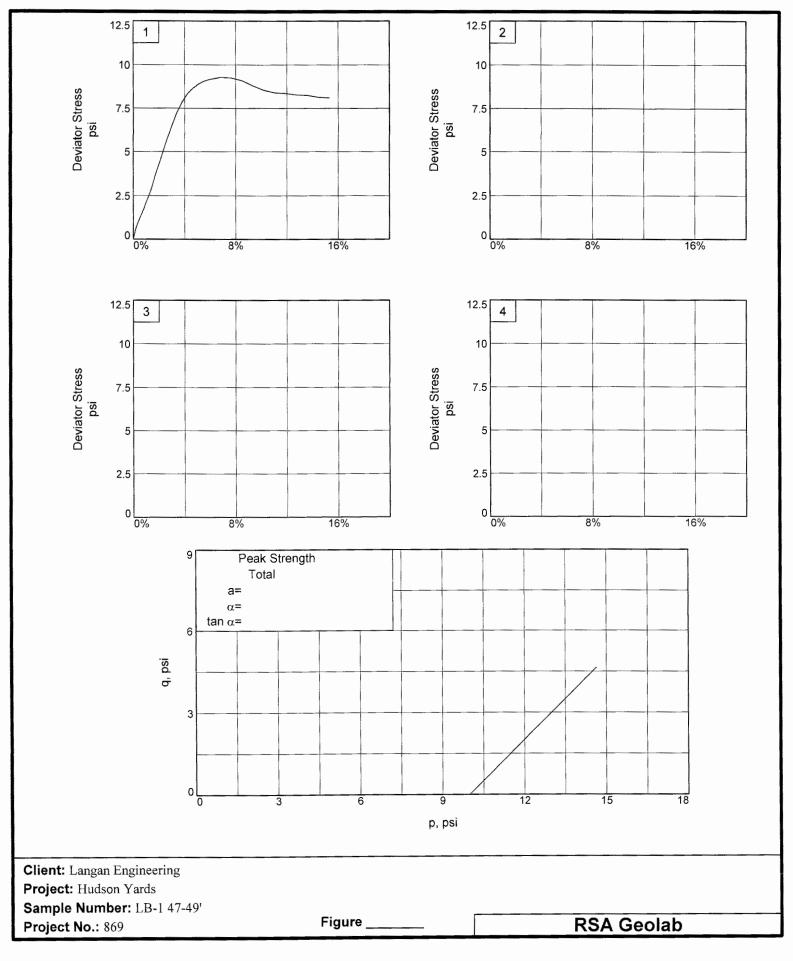
Remarks: H/D = 2.05

	Sar	npie No.	1	
	Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	51.6 69.3 103.2 1.2513 2.87 5.88	
1	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.		50.1 69.3 100.0 1.2513 2.87 5.88	
	Stra	ain rate, in./min.	0.050	
	Back Pressure, psi		0.0	
	Cel	l Pressure, psi	10.0	
	Fai	I. Stress, psi	9.3	
	Ult.	Stress, psi		
	σ ₁	Failure, psi	19.3	
	σ3	Failure, psi	10.0	

Client: Langan Engineering

Sample Number: LB-1 47-49'

Proj. No.: 869


Date Sampled: 11-8-17

TRIAXIAL SHEAR TEST REPORT RSA Geolab Union, New Jersey

Figure

Tested By: EE

Checked By: KP

Tested By: EE ____ Checked By: KP

TRIAXIAL COMPRESSION TEST

Unconsolidated Undrained

11/3/2017 12:19 PM

Date:

11-8-17

Client:

Langan Engineering

Project:

Hudson Yards

Project No.:

869

Sample Number:

LB-1 47-49'

Description:

Remarks:

Dark Gray Clay & Silt little (+), cmf Sand, trace mf Gravel, odorous, organics (sea shells)(visual)

H/D = 2.05

Type of Sample:

ASTM D2850

Assumed Specific Gravity=2.5

LL=

PL=

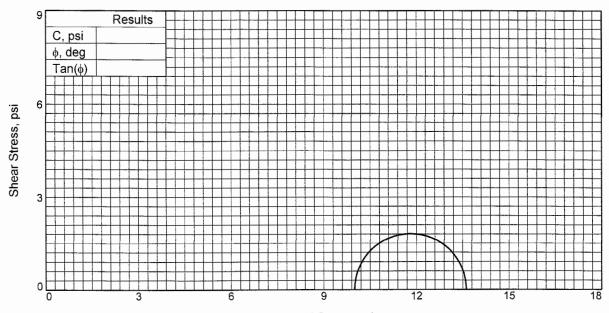
PI=

Test Method:

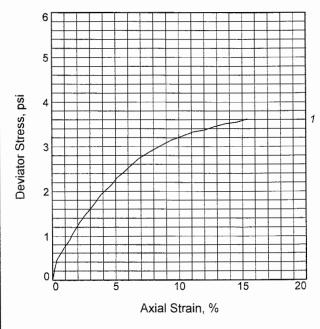
COE uniform strain

Specimen Parameter	Initial	Saturated	Final
Moisture content: Moist soil+tare, gms.	1046.900		1046.900
Moisture content: Dry soil+tare, gms.	690.400		690.400
Moisture content: Tare, gms.	0.000		0.000
Moisture, %	51.6	50.1	51.6
Moist specimen weight, gms.	1046.9		
Diameter, in.	2.87	2.87	
Area, in.²	6.45	6.45	
Height, in.	5.88	5.88	
Net decrease in height, in.		0.00	
Wet density, pcf	105.1	104.0	
Dry density, pcf	69.3	69.3	
Void ratio	1.2513	1.2513	
Saturation, %	103.2	100.0	

Cell pressure = 10.00 psi Back pressure = 0.00 psiStrain rate, in./min. = 0.050


Fail. Stress = 9.27 psi at reading no. 21

RSA Geolab .


					ATRICE	eg (oling) je (re)	Specimen	No. if		
	Def. Dial	Load	Load	Strain	Deviator Stress	Minor Princ. Stress	Major Princ. Stress	1:3	P	Q
No.	in.	Dial	lbs.	%	psi	psi	psi	Ratio	psi	psi
0	0.0000	2.400	0.0	0.0	0.00	10.00	10.00	1.00	10.00	0.00
1	0.0100	5.800	3.4	0.2	0.53	10.00	10.53	1.05	10.26	0.26
2	0.0200	8.300	5.9	0.3	0.91	10.00	10.91	1.09	10.46	0.46
3	0.0300	10.300	7.9	0.5	1.22	10.00	11.22	1.12	10.61	0.61
4	0.0400	12.100	9.7	0.7	1.49	10.00	11.49	1.15	10.75	0.75
5	0.0500	14.100	11.7	0.9	1.80	10.00	11.80	1.18	10.90	0.90
6	0.0600	16.300	13.9	1.0	2.13	10.00	12.13	1.21	11.07	1.07
7	0.0700	18.400	16.0	1.2	2.45	10.00	12.45	1.25	11.23	1.23
8	0.0800	20.600	18.2	1.4	2.78	10.00	12.78	1.28	11.39	1.39
9	0.0900	23.100	20.7	1.5	3.16	10.00	13.16	1.32	11.58	1.58
10	0.1000	26.200	23.8	1.7	3.63	10.00	13.63	1.36	11.81	1.81
11	0.1250	32.300	29.9	2.1	4.54	10.00	14.54	1.45	12.27	2.27
12	0.1500	38.900	36.5	2.6	5.51	10.00	15.51	1.55	12.76	2.76
13	0.1750	45.300	42.9	3.0	6.45	10.00	16.45	1.65	13.23	3.23
14	0.2000	50.800	48.4	3.4	7.25	10.00	17.25	1.72	13.62	3.62
15	0.2250	55.200	52.8	3.8	7.87	10.00	17.87	1.79	13.94	3.94
16	0.2500	58.700	56.3	4.3	8.36	10.00	18.36	1.84	14.18	4.18
17	0.2750	61.000	58.6	4.7	8.66	10.00	18.66	1.87	14.33	4.33
18	0.3000	62.900	60.5	5.1	8.90	10.00	18.90	1.89	14.45	4.45
19	0.3250	64.200	61.8	5.5	9.05	10.00	19.05	1.91	14.53	4.53
20	0.3500	65.200	62.8	6.0	9.16	10.00	19.16	1.92	14.58	4.58
21	0.4000	66.600	64.2	6.8	9.27	10.00	19.27	1.93	14.64	4.64
22	0.4500	67.000	64.6	7.7	9.25	10.00	19.25	1.92	14.62	4.62
23	0.5000	66.500	64.1	8.5	9.09	10.00	19.09	1.91	14.55	4.55
24	0.5500	65.000	62.6	9.4	8.80	10.00	18.80	1.88	14.40	4.40
25	0.6000	63.800	61.4	10.2	8.55	10.00	18.55	1.85	14.27	4.27
26	0.6500	63.300	60.9	11.1	8.40	10.00	18.40	1.84	14.20	4.20
27	0.7000	63.600	61.2	11.9	8.36	10.00	18.36	1.84	14.18	4.18
28	0.7500	63.600	61.2	12.8	8.28	10.00	18.28	1.83	14.14	4.14
29	0.8000	64.000	61.6	13.6	8.25	10.00	18.25	1.82	14.12	4.12
30	0.8500	63.800	61.4	14.5	8.14	10.00	18.14	1.81	14.07	4.07
31	0.9000	64.100	61.7	15.3	8.10	10.00	18.10	1.81	14.05	4.05

_____ RSA Geolab ___

Normal Stress, psi

Type	of	Test:
------	----	-------

Unconsolidated Undrained **Sample Type:** ASTM D2850

Description: Dark Gray Clay & silt little (+), cmf Sand, trace mf Gravel, odorous, organics (sea shells)(visual)

Assumed Specific Gravity= 2.5

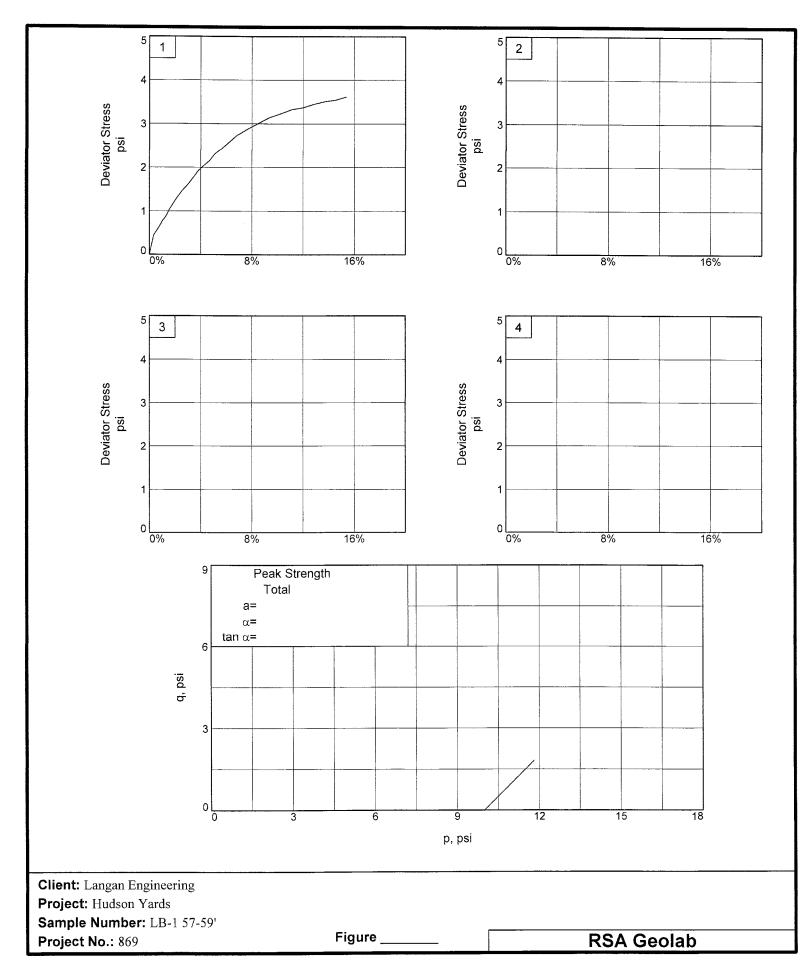
Remarks: H/D = 2.07

Sa	mple No.	1	
Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	56.1 67.9 108.1 1.2976 2.82 5.85	
At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	51.9 67.9 100.0 1.2976 2.82 5.85	
Str	ain rate, in./min.	0.050	
Ва	ck Pressure, psi	0.0	
Се	Il Pressure, psi	10.0	
Fa	il. Stress, psi	3.6	
Ult	. Stress, psi		
$\int \sigma_1$	Failure, psi	13.6	
σ_3	Failure, psi	10.0	

Client: Langan Engineering

Project: Hudson Yards

Sample Number: LB-1 57-59'


Proj. No.: 869 **Date Sampled:** 11-8-17

TRIAXIAL SHEAR TEST REPORT RSA Geolab Union, New Jersey

Figure __

Checked By: KP

Tested By: EE

Tested By: EE Checked By: KP

TRIAXIAL COMPRESSION TEST

Unconsolidated Undrained

11/3/2017 12:30 PM

Date:

11-8-17

Client:

Langan Engineering

Project:

Hudson Yards

Project No.:

869

Sample Number:

LB-1 57-59'

Description:

Dark Gray Clay & silt little (+), cmf Sand, trace mf Gravel, odorous, organics (sea shells)(visual)

Remarks:

H/D = 2.07

Type of Sample:

ASTM D2850

Assumed Specific Gravity=2.5

)

LL=

PL=

Pl≖

Test Method:

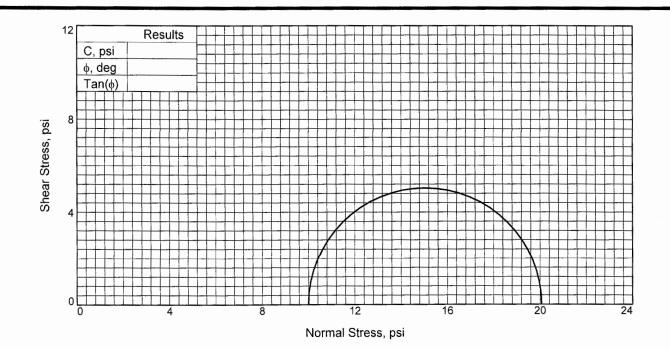
COE uniform strain

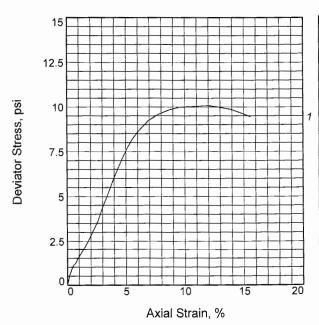
	Pausinistėje ji	enSpecimenthou	
Specimen Parameter	Initial	Saturated	Final
Moisture content: Moist soil+tare, gms.	1016.900		1016.900
Moisture content: Dry soil+tare, gms.	651.500		651.500
Moisture content: Tare, gms.	0.000		0.000
Moisture, %	56.1	51.9	56.1
Moist specimen weight, gms.	1016.9		
Diameter, in.	2.82	2.82	
Area, in.²	6.25	6.25	
Height, in.	5.85	5.85	
Net decrease in height, in.		0.00	
Wet density, pcf	106.0	103.2	
Dry density, pcf	67.9	67.9	
Void ratio	1.2976	1.2976	
Saturation, %	108.1	100.0	

inest Renaings for Spearing for the figure 1

Cell pressure = 10.00 psiBack pressure = 0.00 psiStrain rate, in./min. = 0.050

Fail. Stress = 3.62 psi at reading no. 31


_ RSA Geolab .


No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psi	Minor Princ. Stress psi	Major Princ. Stress psi	1:3 Ratio	P psi	Q psi
0	0.0000	1.900	0.0	0.0	0.00	10.00	10.00	1.00	10.00	0.00
1	0.0100	3.400	1.5	0.2	0.24	10.00	10.24	1.02	10.12	0.12
2	0.0200	4.700	2.8	0.3	0.45	10.00	10.45	1.04	10.22	0.22
3	0.0300	5.200	3.3	0.5	0.53	10.00	10.53	1.05	10.26	0.26
4	0.0400	5.700	3.8	0.7	0.60	10.00	10.60	1.06	10.30	0.30
5	0.0500	6.200	4.3	0.9	0.68	10.00	10.68	1.07	10.34	0.34
6	0.0600	6.800	4.9	1.0	0.78	10.00	10.78	1.08	10.39	0.39
7	0.0700	7.200	5.3	1.2	0.84	10.00	10.84	1.08	10.42	0.42
8	0.0800	7.700	5.8	1.4	0.92	10.00	10.92	1.09	10.46	0.46
9	0.0900	8.400	6.5	1.5	1.02	10.00	11.02	1.10	10.51	0.51
10	0.1000	8.900	7.0	1.7	1.10	10.00	11.10	1.11	10.55	0.55
11	0.1250	10.200	8.3	2.1	1.30	10.00	11.30	1.13	10.65	0.65
12	0.1500	11.300	9.4	2.6	1.47	10.00	11.47	1.15	10.73	0.73
13	0.1750	12.200	10.3	3.0	1.60	10.00	11.60	1.16	10.80	0.80
14	0.2000	13.300	11.4	3.4	1.76	10.00	11.76	1.18	10.88	0.88
15	0.2250	14.400	12.5	3.8	1.92	10.00	11.92	1.19	10.96	0.96
16	0.2500	15.200	13.3	4.3	2.04	10.00	12.04	1.20	11.02	1.02
17	0.2750	16.000	14.1	4.7	2.15	10.00	12.15	1.22	11.08	1.08
18	0.3000	17.100	15.2	5.1	2.31	10.00	12.31	1.23	11.15	1.15
19	0.3250	17.800	15.9	5.6	2.40	10.00	12.40	1.24	11.20	1.20
20	0.3500	18.600	16.7	6.0	2.51	10.00	12.51	1.25	11.26	1.26
21	0.4000	20.200	18.3	6.8	2.73	10.00	12.73	1.27	11.36	1.36
22	0.4500	21.400	19.5	7.7	2.88	10.00	12.88	1.29	11.44	1.44
23	0.5000	22.500	20.6	8.5	3.02	10.00	13.02	1.30	11.51	1.51
24	0.5500	23.600	21.7	9.4	3.15	10.00	13.15	1.31	11.57	1.57
25	0.6000	24.400	22.5	10.3	3.23	10.00	13.23	1.32	11.62	1.62
26	0.6500	25.300	23.4	11.1	3.33	10.00	13.33	1.33	11.67	1.67
27	0.7000	25.800	23.9	12.0	3.37	10.00	13.37	1.34	11.68	1.68
28	0.7500	26.600	24.7	12.8	3.45	10.00	13.45	1.34	11.72	1.72
29	0.8000	27.300	25.4	13.7	3.51	10.00	13.51	1.35	11.76	1.76
30	0.8500	27.800	25.9	14.5	3.54	10.00	13.54	1.35	11.77	1.77
31	0.9000	28.600	26.7	15.4	3.62	10.00	13.62	1.36	11.81	1.81

ellest Readings for Specimen No. 1

RSA Geolab

Type of Test.	Гуре	of	Test:
---------------	------	----	-------

Unconsolidated Undrained Sample Type: ASTM D2850

Description: Dark Gray Clay & Silt little (+), cmf Sand, trace mf Gravel, odorous, organics (sea shells)(visual) Project: Hudson Yards

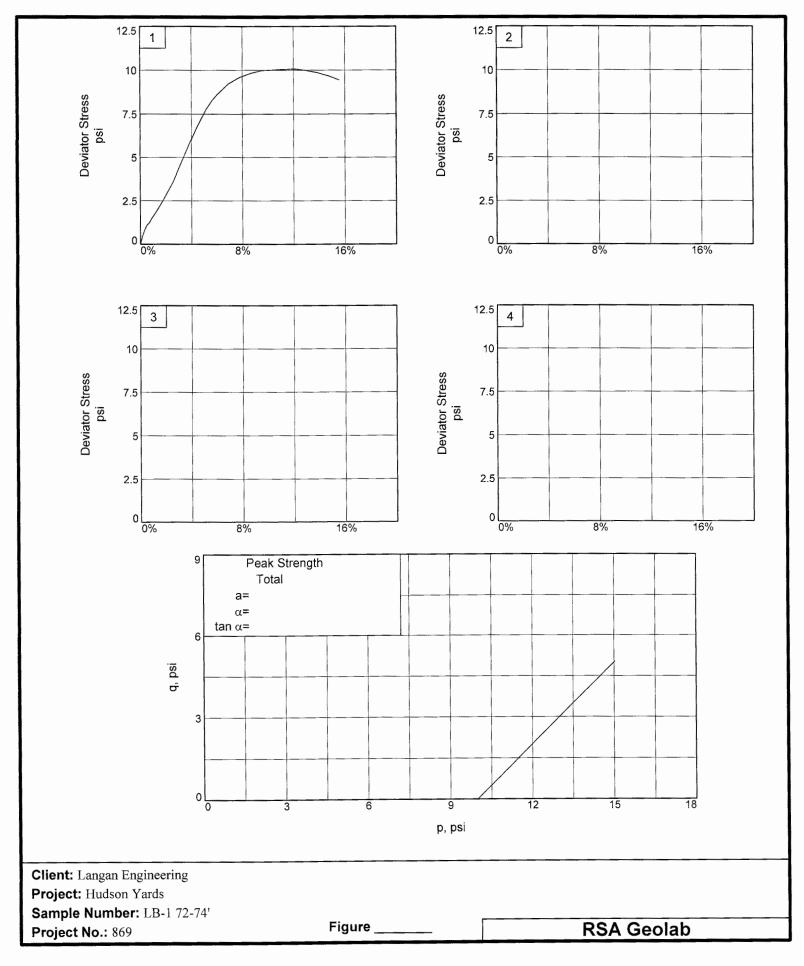
Assumed Specific Gravity= 2.5

Remarks: H/D = 2.03

Sar	nple No.	1	
Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	41.0 80.4 108.8 0.9422 2.85 5.79	
At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	37.7 80.4 100.0 0.9422 2.85 5.79	
Str	ain rate, in./min.	0.050	
Ва	ck Pressure, psi	0.0	
Cell Pressure, psi		10.0	
Fail. Stress, psi		10.1	
Ult	. Stress, psi		
σ1	Failure, psi	20.1	
σ_3	Failure, psi	10.0	

Client: Langan Engineering

Sample Number: LB-1 72-74'


Proj. No.: 869

Date Sampled: 11-8-17

TRIAXIAL SHEAR TEST REPORT RSA Geolab Union, New Jersey

Figure Tested By: EE

Checked By: KP

Tested By: EE Checked By: KP

TRIAXIAL COMPRESSION TEST

Unconsolidated Undrained

11/3/2017 12:41 PM

Date:

11-8-17

Client:

Langan Engineering

Project:

Hudson Yards

Project No.:

869

Sample Number:

LB-1 72-74'

Description:

Dark Gray Clay & Silt little (+), cmf Sand, trace mf Gravel, odorous, organics (sea

Remarks:

shells)(visual) H/D = 2.03

Type of Sample:

ASTM D2850

Assumed Specific Gravity=2.5

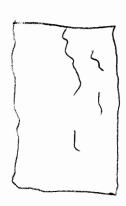
LL=

PL=

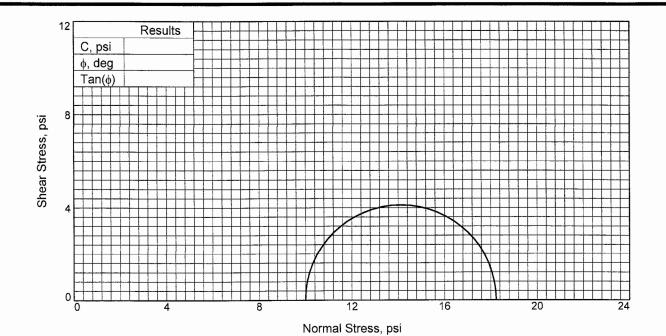
PI=

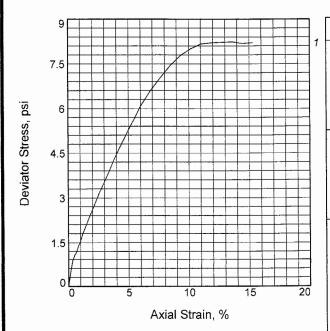
Test Method:

COE uniform strain


Specimen Parameter	Initial	Saturated	Final
Moisture content: Moist soil+tare, gms.	1094.300		1094.300
Moisture content: Dry soil+tare, gms.	776.000		776.000
Moisture content: Tare, gms.	0.000		0.000
Moisture, %	41.0	37.7	41.0
Moist specimen weight, gms.	1094.3		
Diameter, in.	2.85	2.85	
Area, in.²	6.36	6.36	
Height, in.	5.79	5.79	
Net decrease in height, in.		0.00	
Wet density, pcf	113.3	110.6	
Dry density, pcf	80.4	80.4	
Void ratio	0.9422	0.9422	
Saturation, %	108.8	100.0	

Cell pressure = 10.00 psi Back pressure = 0.00 psi Strain rate, in./min. = 0.050


Fail. Stress = 10.07 psi at reading no. 27


_ RSA Geolab .

					'allestife	eaduaigs (o)	Specimen	No. 1			
	Def. Dial	1 4	1 4	04		Minor Princ.	•	4.0	_		
No.	in.	Load Dial	Load lbs.	Strain %	Stress psi	Stress psi	Stress psi	1:3 Ratio	P psi	Q psi	
0	0.0000	3.000	0.0	0.0	0.00	10.00	10.00	1.00	10.00	0.00	
1	0.0100	6.000	3.0	0.2	0.47	10.00	10.47	1.05	10.24	0.24	
2	0.0200	8.300	5.3	0.3	0.83	10.00	10.83	1.08	10.42	0.42	
3	0.0300	10.000	7.0	0.5	1.10	10.00	11.10	1.11	10.55	0.55	
4	0.0400	10.800	7.8	0.7	1.22	10.00	11.22	1.12	10.61	0.61	
5	0.0500	12.300	9.3	0.9	1.45	10.00	11.45	1.15	10.73	0.73	
6	0.0600	13.500	10.5	1.0	1.63	10.00	11.63	1.16	10.82	0.82	
7	0.0700	14.800	11.8	1.2	1.83	10.00	11.83	1.18	10.92	0.92	
8	0.0800	16.000	13.0	1.4	2.02	10.00	12.02	1.20	11.01	1.01	
9	0.0900	17.400	14.4	1.6	2.23	10.00	12.23	1.22	11.11	1.11	
10	0.1000	18.800	15.8	1.7	2.44	10.00	12.44	1.24	11.22	1.22	
11	0.1250	22.700	19.7	2.2	3.03	10.00	13.03	1.30	11.52	1.52	
12	0.1500	26.500	23.5	2.6	3.60	10.00	13.60	1.36	11.80	1.80	
13	0.1750	31.800	28.8	3.0	4.39	10.00	14.39	1.44	12.20	2.20	
14	0.2000	36.600	33.6	3.5	5.10	10.00	15.10	1.51	12.55	2.55	
15	0.2250	41.800	38.8	3.9	5.87	10.00	15.87	1.59	12.93	2.93	
16	0.2500	46.500	43.5	4.3	6.55	10.00	16.55	1.65	13.27	3.27	
17	0.2750	51.000	48.0	4.8	7.19	10.00	17.19	1.72	13.60	3.60	
18	0.3000	55.200	52.2	5.2	7.79	10.00	17.79	1.78	13.89	3.89	
19	0.3250	58.600	55.6	5.6	8.26	10.00	18.26	1.83	14.13	4.13	
20	0.3500	61.400	58.4	6.0	8.63	10.00	18.63	1.86	14.32	4.32	
21	0.4000	66.000	63.0	6.9	9.23	10.00	19.23	1.92	14.61	4.61	
22	0.4500	69.100	66.1	7.8	9.59	10.00	19.59	1.96	14.79	4.79	
23	0.5000	71.300	68.3	8.6	9.82	10.00	19.82	1.98	14.91	4.91	
24	0.5500	73.100	70.1	9.5	9.98	10.00	19.98	2.00	14.99	4.99	
25	0.6000	74.000	71.0	10.4	10.01	10.00	20.01	2.00	15.01	5.01	
26	0.6500	74.900	71.9	11.2	10.04	10.00	20.04	2.00	15.02	5.02	
27	0.7000	75.800	72.8	12.1	10.07	10.00	20.07	2.01	15.03	5.03	
28	0.7500	75.900	72.9	13.0	9.98	10.00	19.98	2.00	14.99	4.99	
29	0.8000	75.800	72.8	13.8	9.87	10.00	19.87	1.99	14.93	4.93	
30	0.8500	75.100	72.1	14.7	9.68	10.00	19.68	1.97	14.84	4.84	
31	0.9000	74.100	71.1	15.6	9.45	10.00	19.45	1.94	14.72	4.72	

_____ RSA Geolab _

Type of Test:

Unconsolidated Undrained **Sample Type:** ASTM D2850

Description: Dark Gray Clay & Silt little (+), cmf Sand, trace f Gravel, odorous, organics (sea shells)(visual)

Assumed Specific Gravity= 2.5

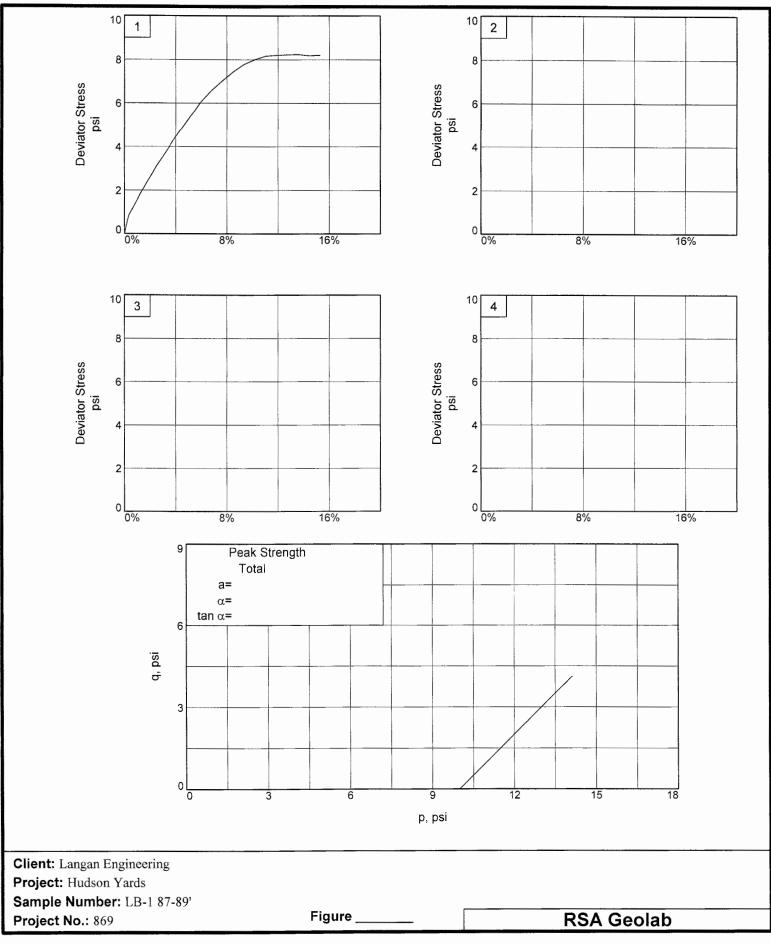
Remarks: H/D = 2.08

Sample No.		1	
Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	40.3 82.9 114.3 0.8815 2.83 5.89	
At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	35.3 82.9 100.0 0.8815 2.83 5.89	
Str	ain rate, in./min.	0.050	
Bad	ck Pressure, psi	0.0	
Cel	ll Pressure, psi	10.0	
Fai	I. Stress, psi	8.2	
Ult.	. Stress, psi		
σ,	Failure, psi	18.2	
σ_3	Failure, psi	10.0	

Client: Langan Engineering

Project: Hudson Yards

Sample Number: LB-1 87-89'


Proj. No.: 869 Date Sampled: 11-8-17

TRIAXIAL SHEAR TEST REPORT RSA Geolab Union, New Jersey

Figure _____

Tested By: EE

Checked By: KP

Tested By: EE Checked By: KP

TRIAXIAL COMPRESSION TEST

Unconsolidated Undrained

11/3/2017 12:46 PM

Date:

11-8-17

Client:

Langan Engineering

Project:

Hudson Yards

Project No.:

869

Sample Number:

LB-1 87-89'

Description:

Dark Gray Clay & Silt little (+), cmf Sand, trace f Gravel, odorous, organics (sea shells)(visual)

Remarks:

H/D = 2.08

Type of Sample:

ASTM D2850

Assumed Specific Gravity=2.5

LL=

PL=

PI=

Test Method:

COE uniform strain

Specimen Parameter	Initial	Saturated	Final
Moisture content: Moist soil+tare, gms.	1132.300		1132.300
Moisture content: Dry soil+tare, gms.	807.000		807.000
Moisture content: Tare, gms.	0.000		0.000
Moisture, %	40.3	35.3	40.3
Moist specimen weight, gms.	1132.3		
Diameter, in.	2.83	2.83	
Area, in.²	6.29	6.29	
Height, in.	5.89	5.89	
Net decrease in height, in.		0.00	
Wet density, pcf	116.4	112.2	
Dry density, pcf	82.9	82.9	
Void ratio	0.8815	0.8815	
Saturation, %	114.3	100.0	

Cell pressure = 10.00 psiBack pressure = 0.00 psiStrain rate, in./min. = 0.050

Fail. Stress = 8.24 psi at reading no. 29

_ RSA Geolab _

No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psi	Minor Princ. Stress psi	Major Princ. Stress psi	1:3 Ratio	P psi	Q psi
0	0.0000	1.400	0.0	0.0	0.00	10.00	10.00	1.00	10.00	0.00
1	0.0100	4.100	2.7	0.2	0.43	10.00	10.43	1.04	10.21	0.21
2	0.0200	6.800	5.4	0.3	0.85	10.00	10.85	1.09	10.43	0.43
3	0.0300	8.000	6.6	0.5	1.04	10.00	11.04	1.10	10.52	0.52
4	0.0400	9.000	7.6	0.7	1.20	10.00	11.20	1.12	10.60	0.60
5	0.0500	10.300	8.9	0.8	1.40	10.00	11.40	1.14	10.70	0.70
6	0.0600	11.400	10.0	1.0	1.57	10.00	11.57	1.16	10.79	0.79
7	0.0700	12.800	11.4	1.2	1.79	10.00	11.79	1.18	10.89	0.89
8	0.0800	13.900	12.5	1.4	1.96	10.00	11.96	1.20	10.98	0.98
9	0.0900	15.000	13.6	1.5	2.13	10.00	12.13	1.21	11.06	1.06
10	0.1000	16.200	14.8	1.7	2.31	10.00	12.31	1.23	11.16	1.16
11	0.1250	18.900	17.5	2.1	2.72	10.00	12.72	1.27	11.36	1.36
12	0.1500	21.700	20.3	2.5	3.14	10.00	13.14	1.31	11.57	1.57
13	0.1750	24.100	22.7	3.0	3.50	10.00	13.50	1.35	11.75	1.75
14	0.2000	26.700	25.3	3.4	3.88	10.00	13.88	1.39	11.94	1.94
15	0.2250	29.500	28.1	3.8	4.29	10.00	14.29	1.43	12.15	2.15
16	0.2500	32.000	30.6	4.2	4.65	10.00	14.65	1.47	12.33	2.33
17	0.2750	34.400	33.0	4.7	5.00	10.00	15.00	1.50	12.50	2.50
18	0.3000	36.900	35.5	5.1	5.35	10.00	15.35	1.54	12.68	2.68
19	0.3250	39.200	37.8	5.5	5.67	10.00	15.67	1.57	12.84	2.84
20	0.3500	41.800	40.4	5.9	6.04	10.00	16.04	1.60	13.02	3.02
21	0.4000	45.800	44.4	6.8	6.57	10.00	16.57	1.66	13.29	3.29
22	0.4500	49.300	47.9	7.6	7.03	10.00	17.03	1.70	13.51	3.51
23	0.5000	52.600	51.2	8.5	7.44	10.00	17.44	1.74	13.72	3.72
24	0.5500	55.400	54.0	9.3	7.78	10.00	17.78	1.78	13.89	3.89
25	0.6000	57.500	56.1	10.2	8.00	10.00	18.00	1.80	14.00	4.00
26	0.6500	59.200	57.8	11.0	8.17	10.00	18.17	1.82	14.08	4.08
27	0.7000	60.000	58.6	11.9	8.20	10.00	18.20	1.82	14.10	4.10
28	0.7500	60.700	59.3	12.7	8.22	10.00	18.22	1.82	14.11	4.11
29	0.8000	61.400	60.0	13.6	8.24	10.00	18.24	1.82	14.12	4.12
30	0.8500	61.600	60.2	14.4	8.18	10.00	18.18	1.82	14.09	4.09
31	0.9000	62.400	61.0	15.3	8.21	10.00	18.21	1.82	14.10	4.10

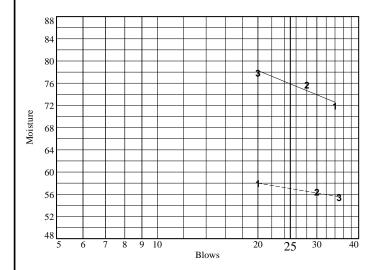
ilest Readings for Specimen(No 1

_____ RSA Geolab _____

11/8/2017

Client: Langan Engineering Project: Hudson Yards Project Number: 869

Sample Number: LB-1 27-29'


Material Description: Dark Gray Clay & Silt little (-), cmf Sand, trace f Gravel, odorous, organics (sea shells) (visual)

Tested by: RP Checked by: KP

Testing Remarks: 11-8-17

Liquid Limit Data									
Run No.	1	2	3	4	5	6			
Wet+Tare	19.36	20.47	20.52						
Dry+Tare	11.94	12.35	12.25						
Tare	1.62	1.63	1.63						
# Blows	34	28	20						
Moisture	71.9	75.7	77.9						

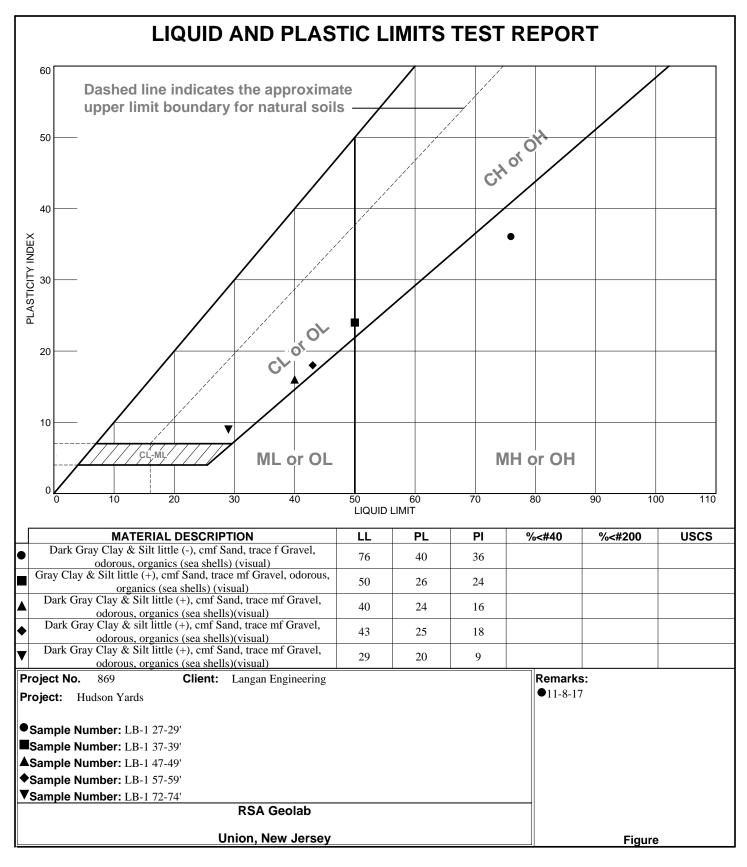
Organics Liquid Limit Data									
Run No.	1	2	3	4	5	6			
Wet+Tare	17.48	16.30	18.65						
Dry+Tare	11.58	10.93	12.48						
Tare	1.40	1.41	1.35						
# Blows	20	30	35						
Moisture	58.0	56.4	55.4						

Liquid Limit=	76
Liquid Limit (organics)=	57
Plastic Limit=	40
Plasticity Index=	36

_ RSA Geolab _

			Plastic Limit [)ata	
Run No.	1 7.58	2	3	4	
Wet+Tare Dry+Tare	5.86	7.62 5.90			
Tare Moisture	1.57 40.1	1.56 39.6			
WOISTUIE	40.1	39.0	<u> </u>		
			RSA Geola	ıb	
			1.0A 06018	·	

RSA Geolab


MOISTURE CONTENT (ASTM D2216)/ LOSS ON IGNITION (ASTM D2974)

Project: Hudson Yards Project #: 869

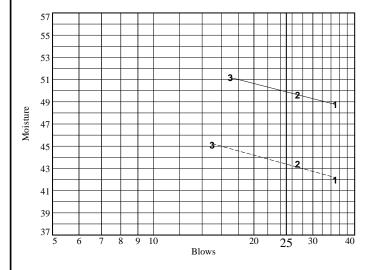
Client: Langan Engineering Date: 11-8-17

	LB-1	LB-1	LB-1	LB-1	LB-1	LB-1
HOLE #/ SAMPLE #	27-29'	37-39'	47-49'	57-59'	72-74'	87-89'
DEPTH						
WET WGT. + TARE (gm	334.9	337.6	393.5	438.4	350.5	433.1
DRY WGT. + TARE (gm	211.3	212.0	259.6	290.8	254.6	313.5
WGT. WATER (gms.)	123.6	125.6	133.9	147.6	95.9	119.6
TARE (gms.)	7.6	7.7	7.7	7.8	7.9	7.8
DRY WGT. (gms.)	203.7	204.3	251.9	283.0	246.7	305.7
MOISTURE CONTENT (%)	60.7	61.5	53.2	52.2	38.9	39.1
OVEN DRIED SAMPLE + TARE (gms.)	63.07	61.12	103.50	105.70	103.94	109.26
AFTER IGNITION SAMPLE + TARE (gms.)	60.96	59.29	100.71	103.99	102.17	107.63
LOSS ON IGNITION (gms.)	2.11	1.83	2.79	1.71	1.77	1.63
TARE (gms.)	31.23	26.97	52.11	57.23	52.10	57.23
INITIAL WGT. OF OVER DRIED SAMPLE (gms.)	N 31.84	34.15	51.39	48.47	51.84	52.03
LOSS ON IGNITION (%)	6.63	5.36	5.43	3.53	3.41	3.13

Performed by: EE Entered by: KH Checked by: KP

Tested By: RP Checked By: KP

11/8/2017


Client: Langan Engineering **Project:** Hudson Yards Project Number: 869

Sample Number: LB-1 37-39'

Material Description: Gray Clay & Silt little (+), cmf Sand, trace mf Gravel, odorous, organics (sea shells) (visual)

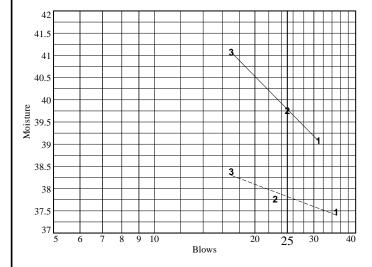
	Liquid Limit Data									
Run No. 1 2 3 4 5 6										
Wet+Tare	18.24	18.70	18.53							
Dry+Tare	12.79	13.04	12.80							
Tare	1.62	1.63	1.61							
# Blows	35	27	17							
Moisture	48.8	49.6	51.2							

	Organics Liquid Limit Data									
Run No.	1	2	3	4	5	6				
Wet+Tare	20.45	20.04	21.20							
Dry+Tare	14.82	14.38	15.04							
Tare	1.40	1.35	1.39							
# Blows	35	27	15							
Moisture	42.0	43.4	45.1							

Liquid Limit=	50
Liquid Limit (organics)=	43
Plastic Limit=	26
Plasticity Index=	24

Plastic Limit Data						
Run No.	1	2	3	4		
Wet+Tare	6.75	6.64				
Dry+Tare	5.68	5.58				
Tare	1.56	1.55				
Moisture	26.0	26.3				

$RS\Delta$	Geolah	


11/8/2017

Client: Langan Engineering
Project: Hudson Yards
Project Number: 869
Sample Number: LB-1 47-49'

Material Description: Dark Gray Clay & Silt little (+), cmf Sand, trace mf Gravel, odorous, organics (sea shells)(visual)

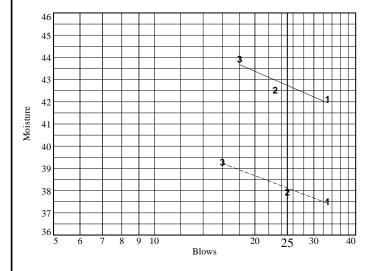
Liquid Limit Data						
Run No.	1	2	3	4	5	6
Wet+Tare	19.30	16.97	17.68			
Dry+Tare	14.27	12.54	12.94			
Tare	1.40	1.40	1.40			
# Blows	31	25	17			
Moisture	39.1	39.8	41.1			

Organics Liquid Limit Data						
Run No.	1	2	3	4	5	6
Wet+Tare	20.46	20.26	19.63			
Dry+Tare	15.27	15.09	14.57			
Tare	1.42	1.40	1.39			
# Blows	35	23	17			
Moisture	37.5	37.8	38.4			

Liquid Limit= _	40
Liquid Limit (organics)=	38
Plastic Limit=	24
Plasticity Index=	16

Plastic Limit Data						
Run No.	1	2	3	4		
Wet+Tare	8.13	7.19				
Dry+Tare	6.85	6.10				
Tare	1.45	1.45				
Moisture	23.7	23.4				

RSA	Geolal	b	


11/8/2017

Client: Langan Engineering **Project:** Hudson Yards **Project Number: 869** Sample Number: LB-1 57-59'

Material Description: Dark Gray Clay & silt little (+), cmf Sand, trace mf Gravel, odorous, organics (sea shells)(visual)

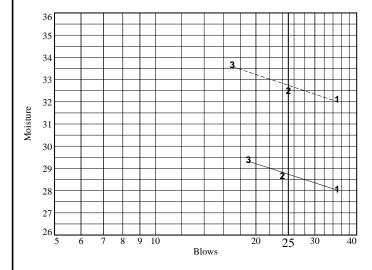
Liquid Limit Data						
Run No.	1	2	3	4	5	6
Wet+Tare	20.30	21.85	20.57			
Dry+Tare	14.68	15.73	14.70			
Tare	1.34	1.34	1.34			
# Blows	33	23	18			
Moisture	42.1	42.5	43.9			

Organics Liquid Limit Data						
Run No.	1	2	3	4	5	6
Wet+Tare	20.34	20.60	20.44			
Dry+Tare	15.18	15.32	15.05			
Tare	1.43	1.41	1.33			
# Blows	33	25	16			
Moisture	37.5	38.0	39.3			

Liquid Limit= _	43
Liquid Limit (organics)=	38
Plastic Limit=	25
Plasticity Index=	18

Plastic Limit Data							
Run No.	1	2	3	4			
Wet+Tare Dry+Tare	8.33	8.38					
Dry+Tare	6.93	6.98					
Tare	1.31	1.31					
Moisture	24.9	24.7					

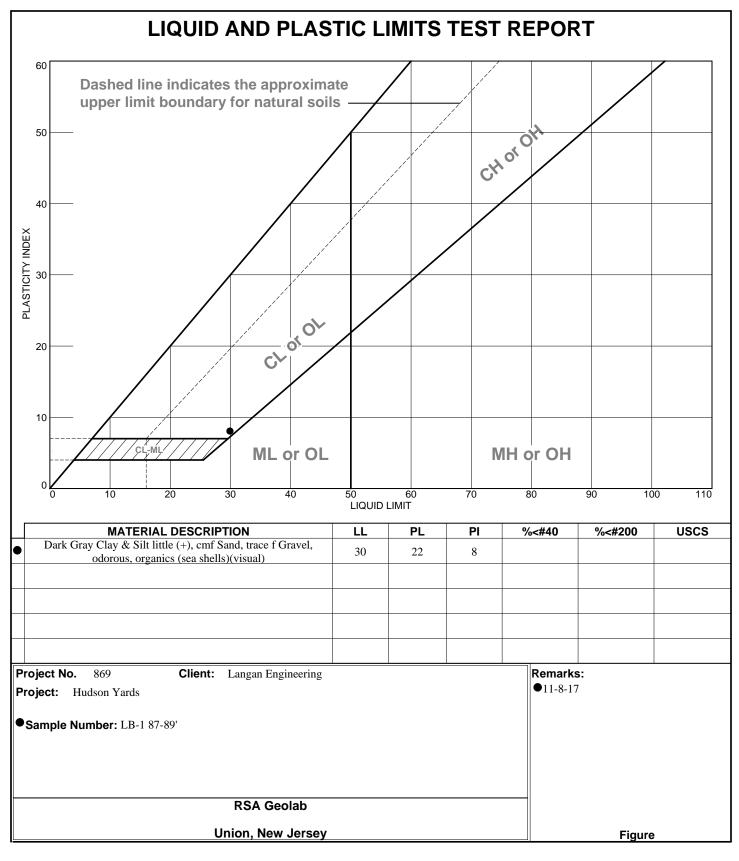
_ RSA Geolab _


11/8/2017

Client: Langan Engineering
Project: Hudson Yards
Project Number: 869
Sample Number: LB-1 72-74'

Material Description: Dark Gray Clay & Silt little (+), cmf Sand, trace mf Gravel, odorous, organics (sea shells)(visual)

Liquid Limit Data								
Run No.	1	2	3	4	5	6		
Wet+Tare	19.24	19.76	18.96					
Dry+Tare	15.38	15.72	15.02					
Tare	1.63	1.64	1.62					
# Blows	35	24	19					
Moisture	28.1	28.7	29.4					


Organics Liquid Limit Data								
Run No.	1	2	3	4	5	6		
Wet+Tare	19.30	18.68	18.89					
Dry+Tare	14.95	14.44	14.49					
Tare	1.41	1.40	1.43					
# Blows	35	25	17					
Moisture	32.1	32.5	33.7					

Liquid Limit=	29
Liquid Limit (organics)=	33
Plastic Limit=	20
Plasticity Index=	9

Plastic Limit Data							
Run No.	1	2	3	4			
Wet+Tare	9.05	8.82					
Wet+Tare Dry+Tare	7.78	7.59					
Tare		1.56					
Moisture	20.5	20.4					

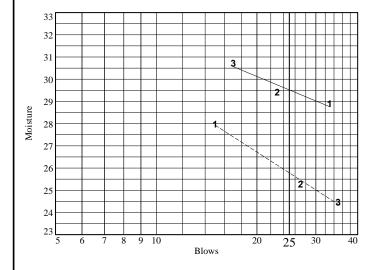
D	2	Geo	lah
R	ЭΑ	Geo	IaD

Tested By: RP Checked By: KP

11/8/2017

Client: Langan Engineering Project: Hudson Yards Project Number: 869

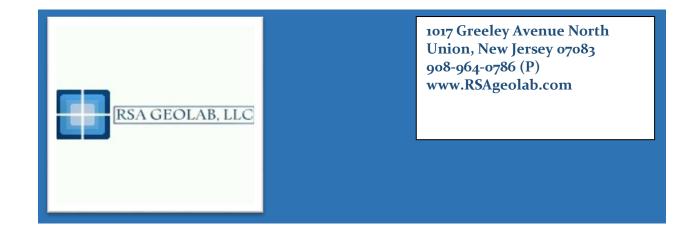
Sample Number: LB-1 87-89'


Material Description: Dark Gray Clay & Silt little (+), cmf Sand, trace f Gravel, odorous, organics (sea shells)(visual)

Tested by: RP Checked by: KP

Testing Remarks: 11-8-17

Liquid Limit Data							
Run No. 1 2 3 4 5 6							
Wet+Tare	19.36	19.30	17.71				
Dry+Tare	15.33	15.23	13.88				
Tare	1.39	1.40	1.42				
# Blows	33	23	17				
Moisture	28.9	29.4	30.7				


Organics Liquid Limit Data								
Run No.	1	2	3	4	5	6		
Wet+Tare	18.45	19.21	19.70					
Dry+Tare	14.72	15.62	16.11					
Tare	1.39	1.42	1.45					
# Blows	15	27	35					
Moisture	28.0	25.3	24.5					

Liquid Limit=	30
Liquid Limit (organics)=	26
Plastic Limit=	22
Plasticity Index=	8
•	

____ RSA Geolab _

			Plastic Limit [Data	
Run No.	1	2	3	4	
Wet+Tare Dry+Tare	7.25 6.19	8.23 6.97			
Tare	1.42	1.36 22.5			
Moisture	22.2	22.5			
			RSA Geola	ıb	

Letter of Transmittal

Date: 11-17-17 Job No.: 869 Lab Log: 17-359

Attention: Michael Paquette

Langan Engineering

360 West 31st Street, 8th Floor

New York, NY 10001

CC: Thomas Androutselis

Re: Hudson Yards

Sample(s) ID: LB-1 S-4 20-22', LB-1 S-13 65-67, LB-1 S-16 80-82', LB-1 S-19 95-97',

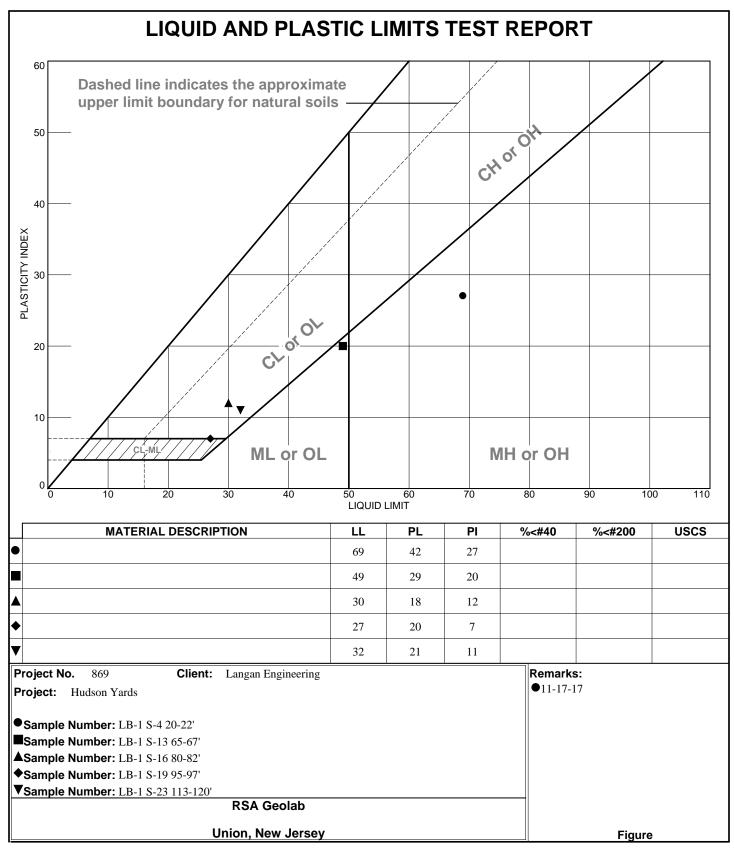
LB-1 S-23 113-120', LB-2 S-7 25-27', LB-2 S-13 55-57', LB-3 S-4 20-22',

LB-3 S-6 30-32'

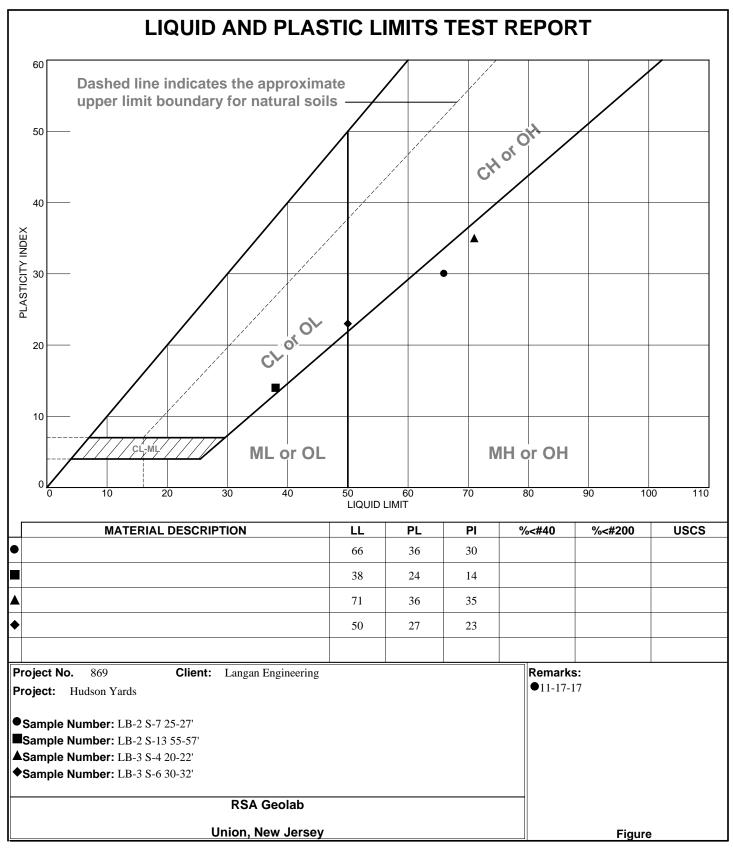
Dear Mr. Paquette,

Please find attached results for the samples referenced above. The following lab testing was performed:

ASTM D2216 Moisture Content
 ASTM D4318 Atterberg Limit


Regards,

RSA Geolab, LLC


Remarks: If you have any questions, please call 908-964-0786.

Dr. Raza S. Ahmed

President RSA Geolab, LLC

Tested By: RP Checked By: KP

Tested By: RP Checked By: KP

RSA Geolab MOISTURE CONTENTS

TEST METHOD ASTM D-2216

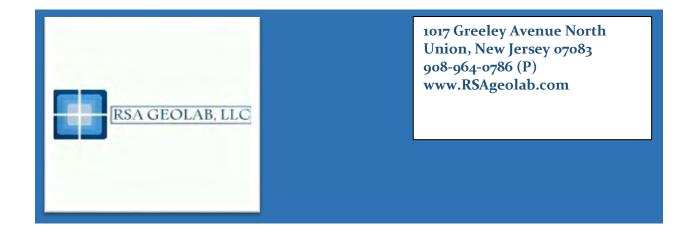
CLIENT: Langan Engineering and Environmental Services

DATE:

17-Nov-17

PROJECT: Huds

Hudson Yards


PROJECT #

869

HOLE #/ SAMPLE #	LB-1 S-4	LB-1 S-13	LB-1 S-16	LB-1 S-19	LB-1 S-23
DEPTH	20-22'	65-67'	80-82'	95-97'	113-120'
WET WGT. + tare (gms.)	57.16	52.53	54.60	50.21	56.07
DRY WGT. + tare (gms.)	35.72	37.58	42.98	37.95	41.78
WGT. WATER (gms.)	21.44	14.95	11.62	12.26	14.29
TARE (gms.)	7.61	7.57	7.56	7.57	7.52
DRY WGT. (gms.)	28.11	30.01	35.42	30.38	34.26
MOISTURE CONTENT	76.3%	49.8%	32.8%	40.4%	41.7%

HOLE #/ SAMPLE #	LB-2 S-7	LB-2 S-13	LB-3 S-4	LB-3 S-6	
DEPTH	25-27'	55-57'	20-22'	30-32'	
WET WGT. + tare (gms.)	52.68	51.26	60.65	57.92	
DRY WGT. + tare (gms.)	34.41	37.37	39.68	40.89	
WGT. WATER (gms.)	18.27	13.89	20.97	17.03	0.00
TARE (gms.)	7.55	7.54	7.53	7.54	
DRY WGT. (gms.)	26.86	29.83	32.15	33.35	0.00
MOISTURE CONTENT	68.0%	46.6%	65.2%	51.1%	

Performed by: EE Entered by: KH Checked by: KP

Letter of Transmittal

Date: 11-20-17 Job No.: 869 Lab Log: 17-358

Attention: Michael Paquette

Langan Engineering

360 West 31st Street, 8th Floor

New York, NY 10001

CC: Thomas Androutselis

Re: Hudson Yards

Sample(s) ID: LB-2 27-29', LB-2 37-39', LB-2 47-49', LB-2 67-69', LB-3 22-24', LB-3 32-34'

Dear Mr. Paquette,

Please find attached results for the samples referenced above. The following lab testing was performed:

ASTM D2216 Moisture Content
 ASTM D2974 Organic Content

ASTM D4318 Atterberg Limits (w/LL on oven dried material)
 ASTM D2850 Unconsolidated Undrained Triaxial Shear (10 psi)

• Log & Photograph of tubes

Regards,

RSA Geolab, LLC

Remarks: If you have any questions, please call 908-964-0786.

Dr. Raza S. Ahmed

Signed:

President RSA Geolab, LLC

R	RSA Ge	eolab, LLC	LOG OF UNDISTURBED SOIL SAMPLERS	
Project: Hudson Yards			Project Number: 869	
Client: Langan Engineering			Diameter: 2.8"	
Sample: LB-2 27-29'			Recovery: 20"	
Date: 11-14-17			Remarks:	
Top of Sample	Inches			Type of Test
	22			
	21	Light Gray, Dark Gray Clay	& Silt little (+), cmf Sand, little (-)	
	20	cmf Gravel,Odorous, organics (sea shells) (visual)		
	19			
	18			
	17			
	16	WIFTE CONTROLLY	The second secon	
	15		(22/24)	
	14			
	13			
	12	The second secon	CHARLES TO A PARK	
	11	7		
	10			
	9			Atterberg
	8			Moisture &
	7			Organic Cont.
	6			
	5			UU
	4			
	3			
	2			
	1			
	0			
Bottom of Sample				

RSA Geolab, LLC			LOG OF UNDISTURBED SOIL SAMPLERS		
Project: Hudson Yards			Project Number: 869		
Client: Langan Engineering			Diameter: 2.8"		
Sample: LB-2 37-39'			Recovery: 20"		
Date: 11-14-17			Remarks:		
Top of Sample	Inches			Type of Test	
	22				
	21	Gray Clay & Silt little (+), cmf Sand, trace (+) mf Grave			
	Odorous, organics (sea shells) (visual)		nics (sea shells) (visual)		
	19	and the same of th			
	18				
	17				
	16		32-31		
	15	1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			
	14	The state of the s			
	13				
	12	4 4 7	AND THE PROPERTY OF		
	11				
	10				
	9			Atterberg	
	8			Moisture &	
	7			Organic Cont.	
	6				
	5			UU	
	4				
	3				
	2				
	1				
	0				
Bottom of Sample					

R	SA G	eolab, LLC	LOG OF UNDISTURBED SOIL	SAMPLERS
Project: Hu	dson Yard	s P	Project Number: 869	
	gan Engir		Diameter: 2.8"	
Sample: LB-	-2 47-49	R	Recovery: 22"	
Date: 11-1	14-17	R	Remarks:	
Top of Sample	Inches			Type of Test
	22			
	21	Gray Clay & Silt little (+)), cmf Sand, trace mf Gravel	
	20	Odorous, organics	s (sea shells) (visual)	
	19			
	18			
	17			
	16	The state of the		
	15			
	14	LB-2 (42-4		
	13			
	12			
	11	A A		
	10	data and	A TOWN AND THE REAL PROPERTY OF THE PERSON O	
	9			Atterberg
	8			Moisture &
	7			Organic Cont.
	6			
	5			UU
	4			
	3			
	2			
	1			
	0			
Bottom of Sample				

F	RSA G	eolab, LLC	LOG OF UNDISTURBED SOI	L SAMPLERS
Project: Hu	dson Yard	ls	Project Number: 869	
Client: Langan Engineering		neering	Diameter: 2.8"	
Sample: LB	-2 67-69		Recovery: 26"	
	14-17		Remarks:	
Top of Sample	Inches			Type of Test
	22			
	21	Dark Gray Clay & Sil	t little, cmf Sand, trace f Gravel	
	20	Odorous, orga	nics (sea shells) (visual)	
	19			
	18			
	17			
	16		U3-2 1 C \ 2.00 \	
	15		(19-65)	
	14			
	13	THE MEDICAL STREET		
	12			
	11			
	10			
	9			Atterberg
	8			Moisture &
	7			Organic Cont.
	6			
	5			UU
	4			
	3			
	2			
	1			
	0			
Bottom of Sample				

R	SA G	eolab, LLC	LOG OF UNDISTURBED SOII	L SAMPLERS
Project: Hud	dson Yard	S	Project Number: 869	
Client: Lan	gan Engin	neering	Diameter: 2.8"	
Sample: LB-	-3 22-24		Recovery: 26"	
	14-17		Remarks:	
Top of Sample	Inches			Type of Test
	22			
	21	Gray Clay & Silt litt	tle, cmf Sand, trace f Gravel	
	20	Odorous, organ	nics (sea shells) (visual)	
	19			
	18		- Albert	
	17	The state of the s		
	16			
	15		(21-41)	
	14			
	13			
	12	学 是第一个		
	11			
	10			
	9			Atterberg
	8			Moisture &
	7			Organic Cont.
	6			
	5			UU
	4			
	3			
	2			
	1			
	0			
Bottom of Sample				

R	RSA G	eolab, LLC	LOG OF UNDISTURBED SOIL	SAMPLERS
Project: Hu	dson Yard	ls	Project Number: 869	
Client: Langan Engineering			Diameter: 2.8"	
Sample: LB-	-3 32-34		Recovery: 22"	
	14-17		Remarks:	
Top of Sample	Inches			Type of Test
	22			
	21	Dark Gray Clay & Silt little	(+), cmf Sand, trace (+) cmf Gravel	
	20	Odorous, organ	nics (sea shells) (visual)	
	19			
	18			
	17			
	16	(32	(-3Y)	
	15			
	14			
	13	FOLLOW OF THE PARTY OF THE PART		
	12			
	11			
	10			
	9			Atterberg
	8			Moisture &
	7			Organic Cont.
	6			
	5			UU
	4			
	3			
	2			
	1			
	0			
Bottom of Sample				

RSA Geolab

MOISTURE CONTENT (ASTM D2216)/ LOSS ON IGNITION (ASTM D2974)

Project: Hudson Yards Project #: 869

Client: Langan Engineering Date: 11-20-17

	LB-2	LB-2	LB-2	LB-2	LB-3	LB-2
HOLE #/ SAMPLE #	27-29'	37-39'	47-49'	67-69'	22-24'	32-34'
DEPTH						
WET WGT. + TARE (gm	492.6	351.8	395.2	384.0	338.2	349.7
DRY WGT. + TARE (gm	340.6	218.8	250.7	288.7	201.3	227.5
WGT. WATER (gms.)	152.0	133.0	144.5	95.3	136.9	122.2
(8)						
TARE (gms.)	7.6	7.6	7.6	7.6	7.6	7.6
DRY WGT. (gms.)	333.0	211.2	243.1	281.1	193.7	219.9
MOISTURE						
CONTENT (%)	45.6	63.0	59.4	33.9	70.7	55.6
OVEN DRIED						
SAMPLE + TARE (gms.)	107.25	102.56	103.09	70.18	59.02	107.62
AFTER IGNITION						
SAMPLE + TARE (gms.)	104.45	99.25	100.85	69.10	56.54	105.28
LOSS ON IGNITION						
(gms.)	2.80	3.31	2.24	1.08	2.48	2.34
TARE (gms.)	57.23	52.11	52.12	31.23	26.97	57.22
INITIAL WGT. OF OVE		v=	02.12	21.20	_0.57	07.22
DRIED SAMPLE (gms.)	50.02	50.45	50.97	38.95	32.05	50.40
LOSS ON						
IGNITION (%)	5.60	6.56	4.39	2.77	7.74	4.64

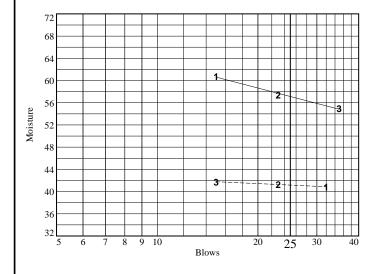
Performed by: EE Entered by: KH Checked by: KP

11/20/2017

Client: Langan Engineering Project: Hudson Yards Project Number: 869

Sample Number: LB-2 27-29'

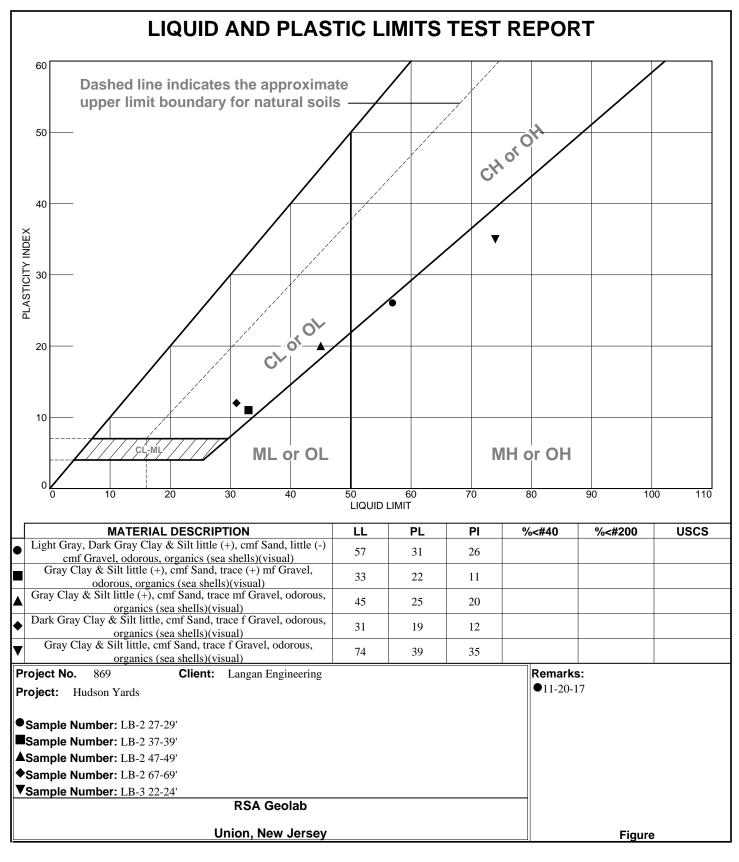
Material Description: Light Gray, Dark Gray Clay & Silt little (+), cmf Sand, little (-) cmf Gravel, odorous, organics (sea


shells)(visual)

Tested by: RP Checked by: KP

Testing Remarks: 11-20-17

Liquid Limit Data						
Run No.	1	2	3	4	5	6
Wet+Tare	16.90	17.10	18.59			
Dry+Tare	11.05	11.37	12.50			
Tare	1.42	1.39	1.42			
# Blows	15	23	35			
Moisture	60.7	57.4	55.0			

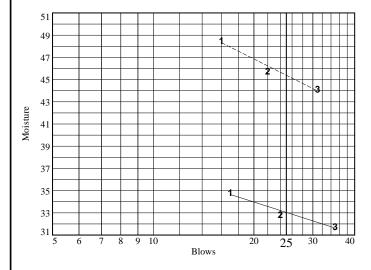

Organics Liquid Limit Data							
Run No.	1	2	3	4	5	6	
Wet+Tare	16.59	16.43	16.45				
Dry+Tare	12.20	12.04	12.00				
Tare	1.45	1.42	1.34				
# Blows	32	23	15				
Moisture	40.8	41.3	41.7				

Liquid Limit=	57
Liquid Limit (organics)=	41
Plastic Limit=	31
Plasticity Index=	26

_ RSA Geolab _

			Plastic Limit D)ata	
Run No.	1	2	3	4	
Wet+Tare Dry+Tare	6.03 4.92	6.18 5.09			
Tare	4.92 1.37	1.43			
Moisture	31.3	29.8			
			DO1 5		
			RSA Geola	ıb	

Tested By: RP Checked By: KP


11/20/2017

Client: Langan Engineering
Project: Hudson Yards
Project Number: 869
Sample Number: LB-2 37-39'

Material Description: Gray Clay & Silt little (+), cmf Sand, trace (+) mf Gravel, odorous, organics (sea shells)(visual)

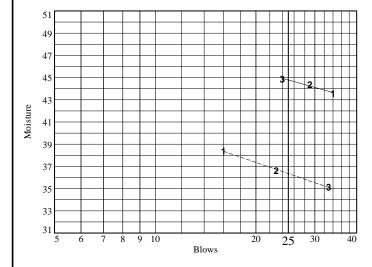
Liquid Limit Data							
Run No.	1	2	3	4	5	6	
Wet+Tare	16.93	18.52	17.76				
Dry+Tare	12.91	14.27	13.83				
Tare	1.37	1.34	1.47				
# Blows	17	24	35				
Moisture	34.8	32.9	31.8				

Organics Liquid Limit Data						
Run No.	1	2	3	4	5	6
Wet+Tare	18.36	17.63	18.99			
Dry+Tare	12.83	12.52	13.59			
Tare	1.44	1.36	1.37			
# Blows	16	22	31			
Moisture	48.6	45.8	44.2			

Liquid Limit=	33
Liquid Limit (organics)=	45
Plastic Limit=	22
Plasticity Index=	11
,	

Plastic Limit Data						
Run No.	1	2	3	4		
Wet+Tare Dry+Tare	8.54	7.81				
Dry+Tare	7.26	6.67				
Tare	1.34	1.36				
Moisture	21.6	21.5				

RSA	Geolab	


11/20/2017

Client: Langan Engineering
Project: Hudson Yards
Project Number: 869
Sample Number: LB-2 47-49'

Material Description: Gray Clay & Silt little (+), cmf Sand, trace mf Gravel, odorous, organics (sea shells)(visual)

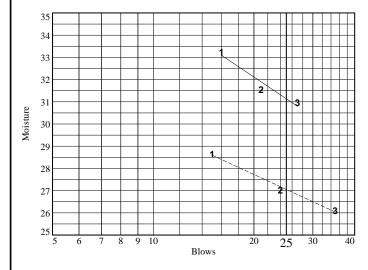
Liquid Limit Data						
Run No.	1	2	3	4	5	6
Wet+Tare	17.89	16.39	18.67			
Dry+Tare	12.88	11.79	13.34			
Tare	1.38	1.43	1.46			
# Blows	34	29	24			
Moisture	43.6	44.4	44.9			

Organics Liquid Limit Data						
Run No.	1	2	3	4	5	6
Wet+Tare	16.51	18.11	16.28			
Dry+Tare	12.33	13.63	12.42			
Tare	1.45	1.40	1.44			
# Blows	16	23	33			
Moisture	38.4	36.6	35.2			

Liquid Limit= .	45
Liquid Limit (organics)=	36
Plastic Limit=	25
Plasticity Index=	20

Plastic Limit Data						
Run No.	1	2	3	4		
Wet+Tare	8.13	8.58				
Dry+Tare	6.77	7.12				
Tare	1.35	1.35				
Moisture	25.1	25.3				

2SA Geolah			


11/20/2017

Client: Langan Engineering
Project: Hudson Yards
Project Number: 869
Sample Number: LB-2 67-69'

Material Description: Dark Gray Clay & Silt little, cmf Sand, trace f Gravel, odorous, organics (sea shells)(visual)

Liquid Limit Data						
Run No.	1	2	3	4	5	6
Wet+Tare	18.14	17.31	16.69			
Dry+Tare	14.00	13.50	13.06			
Tare	1.55	1.43	1.34			
# Blows	16	21	27			
Moisture	33.3	31.6	31.0			

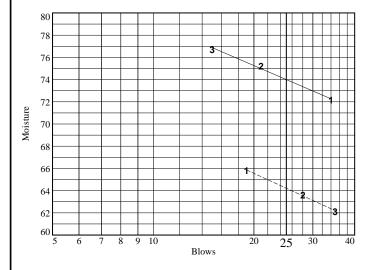
Organics Liquid Limit Data						
Run No.	1	2	3	4	5	6
Wet+Tare	17.23	17.36	19.00			
Dry+Tare	13.70	13.96	15.35			
Tare	1.38	1.39	1.37			
# Blows	15	24	35			
Moisture	28.7	27.0	26.1			

Liquid Limit=	31
Liquid Limit (organics)=	27
Plastic Limit=	19
Plasticity Index=	12

Plastic Limit Data						
Run No.	1	2	3	4		
Wet+Tare	8.09	8.38				
Dry+Tare	6.99	7.24				
Tare	1.31	1.42				
Moisture	19.4	19.6				

R	ΔP	Geo	lah
- 17		CIEC	ıaıı

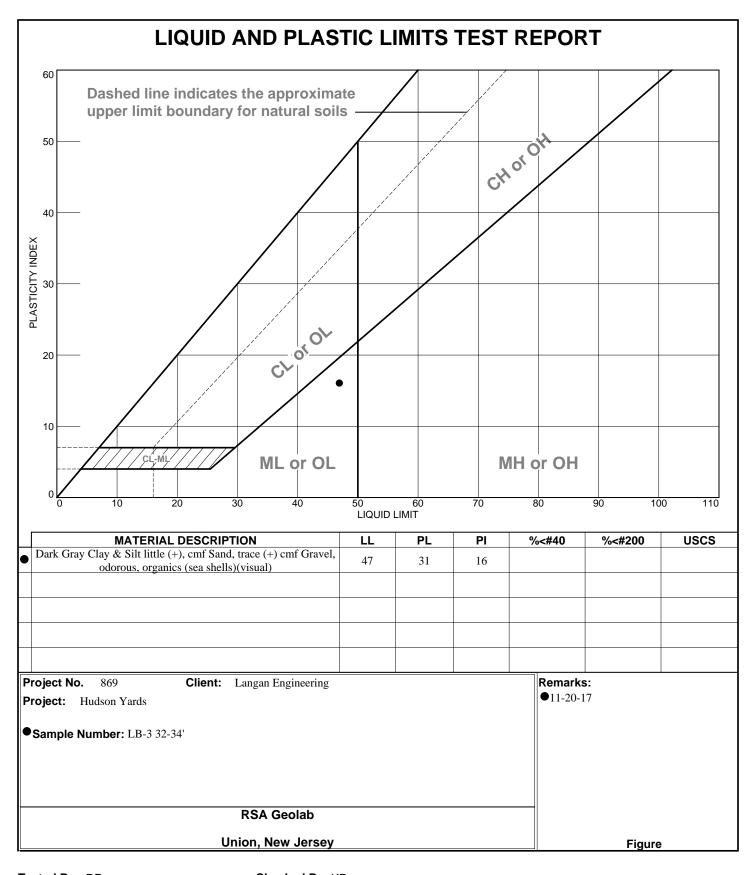
11/20/2017


Client: Langan Engineering Project: Hudson Yards **Project Number:** 869

Sample Number: LB-3 22-24'

Material Description: Gray Clay & Silt little, cmf Sand, trace f Gravel, odorous, organics (sea shells)(visual)

Liquid Limit Data									
Run No. 1 2 3 4 5 6									
Wet+Tare	17.12	17.51	16.60	-					
Dry+Tare	10.61	10.62	10.00						
Tare	1.59	1.46	1.40						
# Blows	34	21	15						
Moisture	72.2	75.2	76.7						


Organics Liquid Limit Data								
Run No.	1	2	3	4	5	6		
Wet+Tare	16.86	16.89	17.14					
Dry+Tare	10.83	10.96	11.20					
Tare	1.67	1.64	1.64					
# Blows	19	28	35					
Moisture	65.8	63.6	62.1					

Liquid Limit=	74
Liquid Limit (organics)=	64
Plastic Limit=	39
Plasticity Index=	35
i identity index	

Plastic Limit Data								
Run No.	1	2	3	4				
Wet+Tare	9.18	8.33						
Dry+Tare	7.00	6.40						
Tare	1.40	1.45						
Moisture	38.9	39.0						

DCV	Geo	lah
KSA	Geo	iab

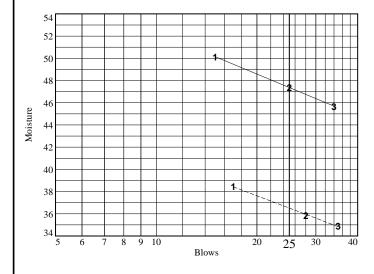
Tested By: RP Checked By: KP

11/20/2017

Client: Langan Engineering
Project: Hudson Yards
Project Number: 869

Sample Number: LB-3 32-34'

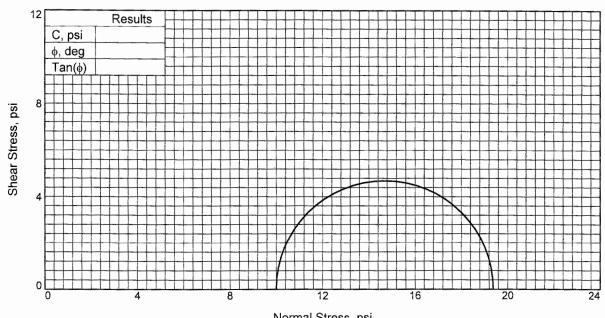
Material Description: Dark Gray Clay & Silt little (+), cmf Sand, trace (+) cmf Gravel, odorous, organics (sea

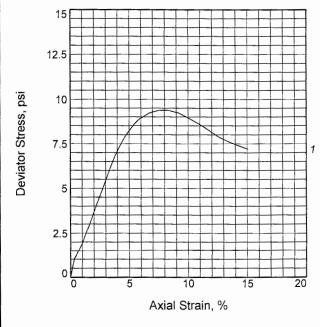

shells)(visual)

Tested by: RP Checked by: KP

Testing Remarks: 11-20-17

Liquid Limit Data									
Run No.	1		3	4	5	6			
Wet+Tare		17.73	17.11						
Dry+Tare	11.97	12.48	12.19						
Tare	1.42	1.40	1.42						
# Blows	15	25	34						
Moisture	50.1	47.4	45.7						


Organics Liquid Limit Data								
Run No.	1	2	3	4	5	6		
Wet+Tare	17.72	17.84	19.23					
Dry+Tare	13.19	13.50	14.62					
Tare	1.41	1.40	1.41					
# Blows	17	28	35					
Moisture	38.5	35.9	34.9					


Liquid Limit=	47
Liquid Limit (organics)=	37
Plastic Limit=	31
Plasticity Index=	16

_____ RSA Geolab _____

			Plastic Limit [Data	
Run No. Wet+Tare Dry+Tare Tare	1 8.39 6.73 1.36 30.9	8.37 6.71 1.41	3	4	
Moisture	30.9	31.3			
			RSA Geola	ab	

Normal Stress, psi

Type of Test:

Unconsolidated Undrained Sample Type: ASTM D2850

Description: Light Gray, Dark Gray Clay & Silt little (+), cmf Sand, little (-) cmf Gravel, odorous, organics

(sea shells)(visual)

Assumed Specific Gravity= 2.75

Remarks: H/D = 2.13

Sar	npie No.	1	
Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	71.1 57.1 97.5 2.0045 2.81 5.97	
At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	72.9 57.1 100.0 2.0045 2.81 5.97	
Str	ain rate, in./min.	0.050	
Ba	ck Pressure, psi	0.0	
Cel	Il Pressure, psi	10.0	
Fai	I. Stress, psi	9.4	
Ult.	Stress, psi		
σ1	Failure, psi	19.4	
σ_3	Failure, psi	10.0	

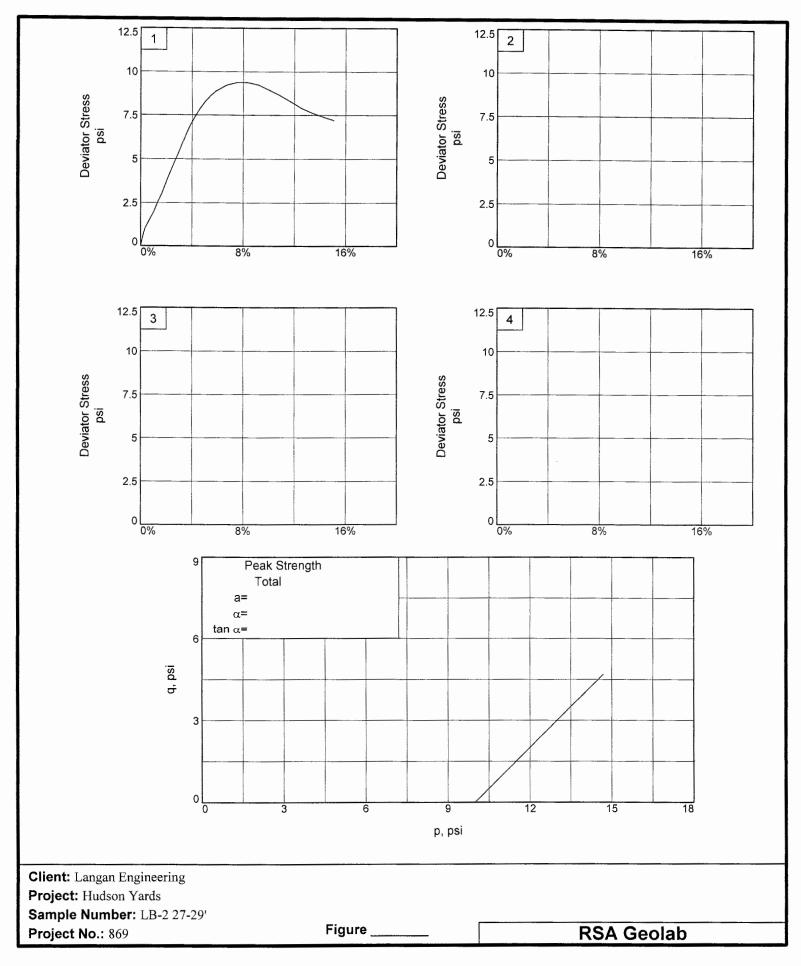
Client: Langan Engineering

Project: Hudson Yards

Sample Number: LB-2 27-29'

Proj. No.: 869

Date Sampled: 11-17-17


TRIAXIAL SHEAR TEST REPORT RSA Geolab

Union, New Jersey

Tested By: EE

Figure

Checked By: KP

Tested By: EE Checked By: KP

TRIAXIAL COMPRESSION TEST

Unconsolidated Undrained

11/17/2017 10:40 AM

Date:

11-17-17

Client:

Langan Engineering

Project:

Hudson Yards

Project No.:

869

Sample Number:

LB-2 27-29'

Description:

Light Gray, Dark Gray Clay & Silt little (+), cmf Sand, little (-) cmf Gravel, odorous, organics

(sea shells)(visual)

Remarks:

H/D = 2.13

Type of Sample:

ASTM D2850

Assumed Specific Gravity=2.75

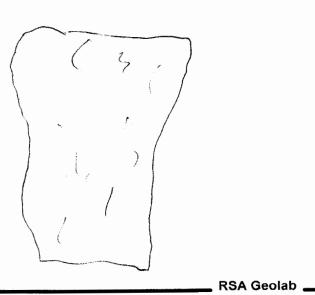
LL=

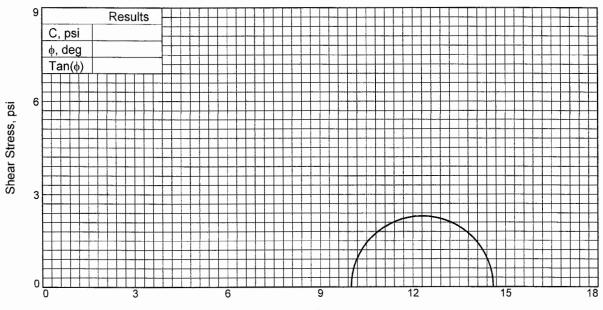
PL=

Pl≃

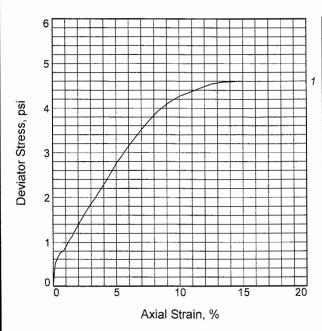
Test Method:

COE uniform strain


Specimen Parameter	Initial	Saturated	Final
Moisture content: Moist soil+tare, gms.	950.500		950.500
Moisture content: Dry soil+tare, gms.	555.600		555.600
Moisture content: Tare, gms.	0.000		0.000
Moisture, %	71.1	72.9	71.1
Moist specimen weight, gms.	950.5		
Diameter, in.	2.81	2.81	
Area, in.²	6.20	6.20	
leight, in.	5.97	5.97	
Net decrease in height, in.		0.00	
Wet density, pcf	97.8	98.8	
Ory density, pcf	57.1	57.1	
/oid ratio	2.0045	2.0045	
Saturation, %	97.5	100.0	


Cell pressure = 10.00 psi Back pressure = 0.00 psi Strain rate, in./min. = 0.050

Fail. Stress = 9.38 psi at reading no. 22


RSA Geolab

No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psi	Minor Princ. Stress psi	Major Princ. Stress psi	1:3 Ratio	P psi	Q psi
0	0.0000	3.100	0.0	0.0	0.00	10.00	10.00	1.00	10.00	0.00
1	0.0100	6.400	3.3	0.2	0.53	10.00	10.53	1.05	10.27	0.27
2	0.0200	9.500	6.4	0.3	1.03	10.00	11.03	1.10	10.51	0.51
3	0.0300	10.800	7.7	0.5	1.24	10.00	11.24	1.12	10.62	0.62
4	0.0400	12.300	9.2	0.7	1.47	10.00	11.47	1.15	10.74	0.74
5	0.0500	13.800	10.7	0.8	1.71	10.00	11.71	1.17	10.86	0.86
6	0.0600	15.200	12.1	1.0	1.93	10.00	11.93	1.19	10.97	0.97
7	0.0700	17.200	14.1	1.2	2.25	10.00	12.25	1.22	11.12	1.12
8	0.0800	19.100	16.0	1.3	2.55	10.00	12.55	1.25	11.27	1.27
9	0.0900	20.700	17.6	1.5	2.80	10.00	12.80	1.28	11.40	1.40
10	0.1000	22.400	19.3	1.7	3.06	10.00	13.06	1.31	11.53	1.53
11	0.1250	27.500	24.4	2.1	3.85	10.00	13.85	1.39	11.93	1.93
12	0.1500	32.400	29.3	2.5	4.61	10.00	14.61	1.46	12.30	2.30
13	0.1750	36.900	33.8	2.9	5.29	10.00	15.29	1.53	12.65	2.65
14	0.2000	42.000	38.9	3.3	6.06	10.00	16.06	1.61	13.03	3.03
15	0.2250	46.700	43.6	3.8	6.77	10.00	16.77	1.68	13.38	3.38
16	0.2500	50.600	47.5	4.2	7.34	10.00	17.34	1.73	13.67	3.67
17	0.2750	54.100	51.0	4.6	7.85	10.00	17.85	1.78	13.92	3.92
18	0.3000	57.000	53.9	5.0	8.25	10.00	18.25	1.83	14.13	4.13
19	0.3250	59.500	56.4	5.4	8.60	10.00	18.60	1.86	14.30	4.30
20	0.3500	61.500	58.4	5.9	8.87	10.00	18.87	1.89	14.43	4.43
21	0.4000	64.400	61.3	6.7	9.22	10.00	19.22	1.92	14.61	4.61
22	0.4500	66.000	62.9	7.5	9.38	10.00	19.38	1.94	14.69	4.69
23	0.5000	66.500	63.4	8.4	9.37	10.00	19.37	1.94	14.68	4.68
24	0.5500	66.100	63.0	9.2	9.22	10.00	19.22	1.92	14.61	4.61
25	0.6000	64.700	61.6	10.0	8.94	10.00	18.94	1.89	14.47	4.47
26	0.6500	63.100	60.0	10.9	8.62	10.00	18.62	1.86	14.31	4.31
27	0.7000	61.200	58.1	11.7	8.27	10.00	18.27	1.83	14.14	4.14
28	0.7500	59.100	56.0	12.6	7.90	10.00	17.90	1.79	13.95	3.95
29	0.8000	57.700	54.6	13.4	7.63	10.00	17.63	1.76	13.81	3.81
30	0.8500	56.600	53.5	14.2	7.40	10.00	17.40	1.74	13.70	3.70
31	0.9000	55.700	52.6	15.1	7.20	10.00	17.20	1.72	13.60	3.60

Normal Stress, psi

Type of Test:

Unconsolidated Undrained Sample Type: ASTM D2850

Description: Gray Clay & Silt little (+), cmf Sand, trace (+) mf Gravel, odorous, organics (sea shells)(visual)

Assumed Specific Gravity= 2.5

Remarks: H/D = 2.16

	Sar	mple No.	1	
1	Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	58.4 67.0 110.0 1.3288 2.78 6.00	
	At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	53.2 67.0 100.0 1.3288 2.78 6.00	
	Str	ain rate, in./min.	0.050	
	Ba	ck Pressure, psi	0.0	
	Ce	II Pressure, psi	10.0	
	Fai	I. Stress, psi	4.6	
	Ult.	. Stress, psi		
	σ1	Failure, psi	14.6	
	σ_3	Failure, psi	10.0	

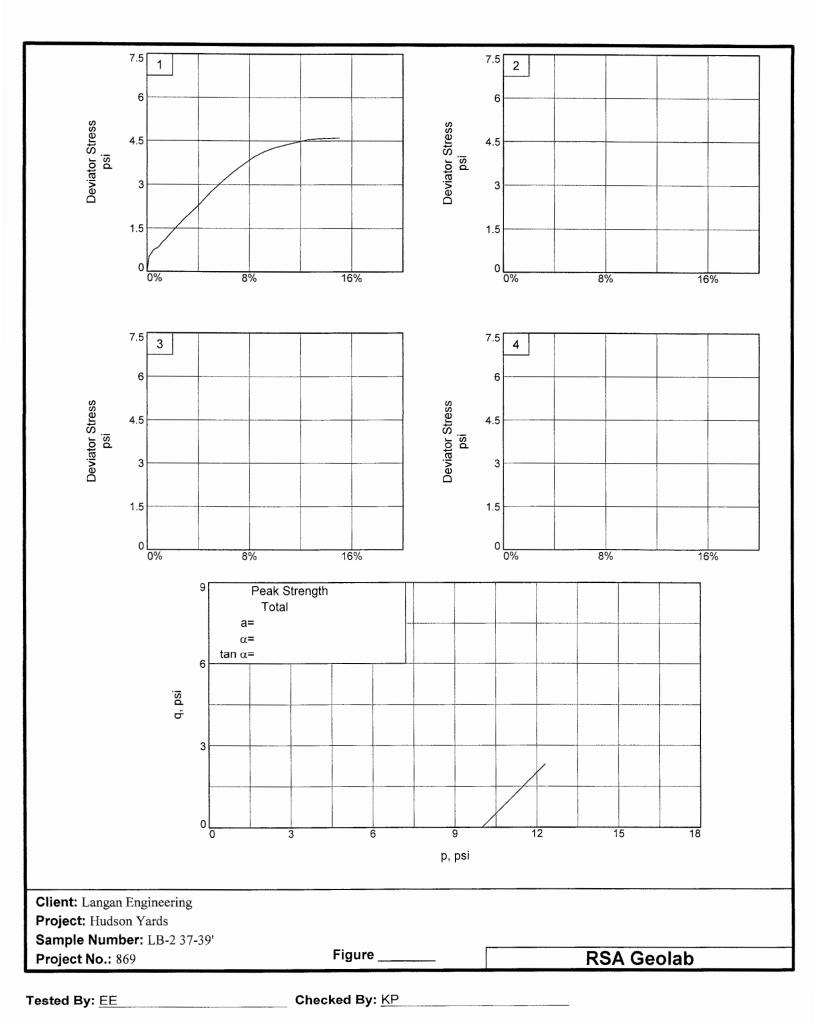
Client: Langan Engineering

Project: Hudson Yards

Sample Number: LB-2 37-39'

Proj. No.: 869

Date Sampled: 11-17-17


TRIAXIAL SHEAR TEST REPORT

RSA Geolab Union, New Jersey

Tested By: EE

Figure

Checked By: KP

TRIAXIAL COMPRESSION TEST

Unconsolidated Undrained

11/17/2017 10:48 AM

Date:

11-17-17

Client:

Langan Engineering

Project:

Hudson Yards

Project No.:

869

Sample Number:

LB-2 37-39'

Description:

Gray Clay & Silt little (+), cmf Sand, trace (+) mf Gravel, odorous, organics (sea shells)(visual)

Remarks:

H/D = 2.16

Type of Sample:

ASTM D2850

Assumed Specific Gravity=2.5

LL=

PL≃

PI=

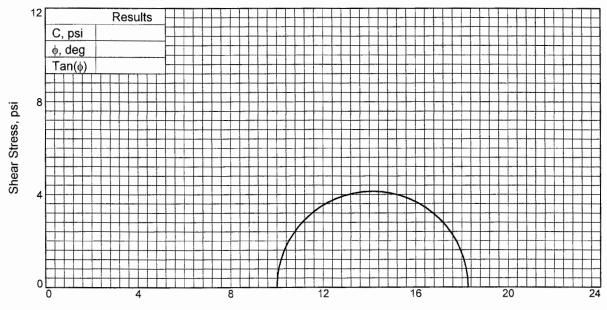
Test Method:

COE uniform strain

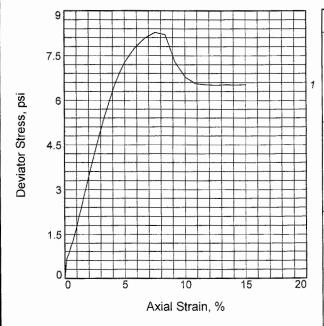
Specimen Parameter	Initial	Saturated	Final
Moisture content: Moist soil+tare, gms.	1015.000		1015.000
Moisture content: Dry soil+tare, gms.	640.600		640.600
Moisture content: Tare, gms.	0.000		0.000
Moisture, %	58.4	53.2	58.4
Moist specimen weight, gms.	1015.0		
Diameter, in.	2.78	2.78	
Area, in.²	6.07	6.07	
Height, in.	6.00	6.00	
Net decrease in height, in.		0.00	
Wet density, pcf	106.2	102.6	
Dry density, pcf	67.0	67.0	
Void ratio	1.3288	1.3288	
Saturation, %	110.0	100.0	

Cell pressure = 10.00 psi Back pressure = 0.00 psi Strain rate, in./min. = 0.050

Fail. Stress = 4.60 psi at reading no. 31


____ RSA Geolab _

No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress psi	Minor Princ. Stress psi	Major Princ. Stress psi	1:3 Ratio	P psi	Q psi
0	0.0000	2.400	0.0	0.0	0.00	10.00	10.00	1.00	10.00	0.00
1	0.0100	5.500	3.1	0.2	0.51	10.00	10.51	1.05	10.25	0.25
2	0.0200	6.200	3.8	0.3	0.62	10.00	10.62	1.06	10.31	0.31
3	0.0300	6.900	4.5	0.5	0.74	10.00	10.74	1.07	10.37	0.37
4	0.0400	7.200	4.8	0.7	0.78	10.00	10.78	1.08	10.39	0.39
5	0.0500	7.400	5.0	0.8	0.82	10.00	10.82	1.08	10.41	0.41
6	0.0600	7.900	5.5	1.0	0.90	10.00	10.90	1.09	10.45	0.45
7	0.0700	8.500	6.1	1.2	0.99	10.00	10.99	1.10	10.50	0.50
8	0.0800	9.000	6.6	1.3	1.07	10.00	11.07	1.11	10.54	0.54
9	0.0900	9.400	7.0	1.5	1.14	10.00	11.14	1.11	10.57	0.57
10	0.1000	10.000	7.6	1.7	1.23	10.00	11.23	1.12	10.62	0.62
11	0.1250	11.300	8.9	2.1	1.43	10.00	11.43	1.14	10.72	0.72
12	0.1500	12.600	10.2	2.5	1.64	10.00	11.64	1.16	10.82	0.82
13	0.1750	13.800	11.4	2.9	1.82	10.00	11.82	1.18	10.91	0.91
14	0.2000	14.900	12.5	3.3	1.99	10.00	11.99	1.20	10.99	0.99
15	0.2250	16.100	13.7	3.8	2.17	10.00	12.17	1.22	11.09	1.09
16	0.2500	17.300	14.9	4.2	2.35	10.00	12.35	1.24	11.18	1.18
17	0.2750	18.600	16.2	4.6	2.54	10.00	12.54	1.25	11.27	1.27
18	0.3000	20.000	17.6	5.0	2.75	10.00	12.75	1.28	11.38	1.38
19	0.3250	21.100	18.7	5.4	2.91	10.00	12.91	1.29	11.46	1.46
20	0.3500	22.300	19.9	5.8	3.08	10.00	13.08	1.31	11.54	1.54
21	0.4000	24.500	22.1	6.7	3.40	10.00	13.40	1.34	11.70	1.70
22	0.4500	26.600	24.2	7.5	3.68	10.00	13.68	1.37	11.84	1.84
23	0.5000	28.500	26.1	8.3	3.94	10.00	13.94	1.39	11.97	1.97
24	0.5500	30.000	27.6	9.2	4.13	10.00	14.13	1.41	12.06	2.06
25	0.6000	31.200	28.8	10.0	4.27	10.00	14.27	1.43	12.13	2.13
26	0.6500	32.100	29.7	10.8	4.36	10.00	14.36	1.44	12.18	2.18
27	0.7000	33.000	30.6	11.7	4.45	10.00	14.45	1.44	12.22	2.22
28	0.7500	33.900	31.5	12.5	4.54	10.00	14.54	1.45	12.27	2.27
29	0.8000	34.500	32.1	13.3	4.58	10.00	14.58	1.46	12.29	2.29
30	0.8500	34.900	32.5	14.2	4.59	10.00	14.59	1.46	12.30	2.30
31	0.9000	35.300	32.9	15.0	4.60	10.00	14.60	1.46	12.30	2.30


Test Readings for Specimen No. 1

RSA Geolab

Normal Stress, psi

Type of Test:

Unconsolidated Undrained **Sample Type:** ASTM D2850

Description: Gray Clay & Silt little (+), cmf Sand, trace mf Gravel, odorous, organics (sea shells)(visual)

Assumed Specific Gravity= 2.5

Remarks: H/D = 2.10

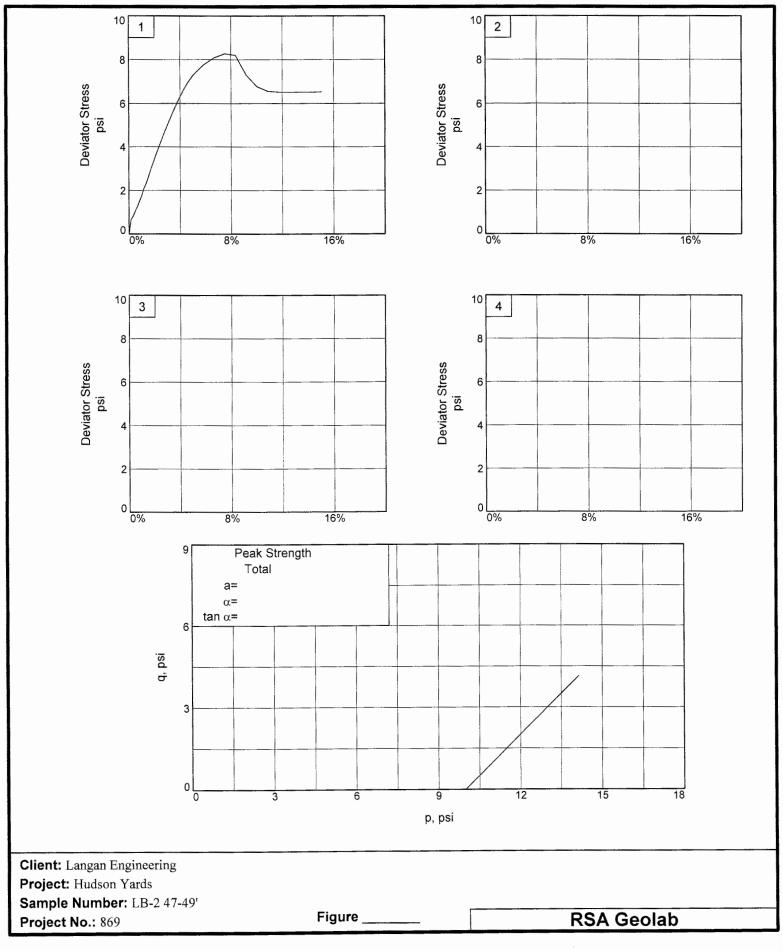
Sar	nple No.	1	
Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	52.8 68.0 102.1 1.2939 2.85 5.98	
At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	51.8 68.0 100.0 1.2939 2.85 5.98	
Str	ain rate, in./min.	0.050	
Ba	ck Pressure, psi	0.0	
Ce	l Pressure, psi	10.0	
Fai	I. Stress, psi	8.3	
Ult	Stress, psi		
σ1	Failure, psi	18.3	
σ_3	Failure, psi	10.0	

Client: Langan Engineering

Project: Hudson Yards

Sample Number: LB-2 47-49'

Proj. No.: 869


Date Sampled: 11-17-17

TRIAXIAL SHEAR TEST REPORT RSA Geolab Union, New Jersey

Figure ____

Tested By: EE

____ Checked By: KP

Tested By: EE Checked By: KP

TRIAXIAL COMPRESSION TEST

Unconsolidated Undrained

11/17/2017 10:56 AM

Date:

11-17-17

Client:

Langan Engineering

Project:

Hudson Yards

Project No.:

869

Sample Number:

LB-2 47-49'

Description:

Gray Clay & Silt little (+), cmf Sand, trace mf Gravel, odorous, organics (sea shells)(visual)

PL=

ASTM D2850

Type of Sample: ASTM D20

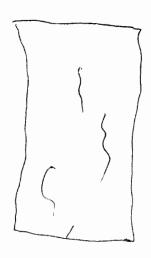
Assumed 6 Assumed Specific Gravity=2.5

LL=

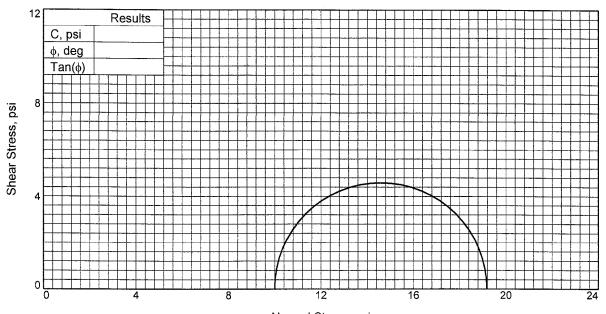
PI=

Test Method:

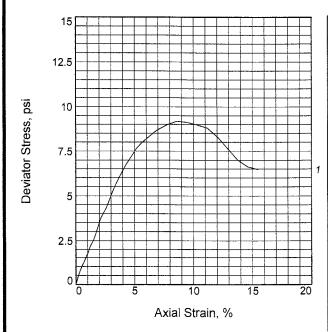
COE uniform strain


Specimen Parameter	Initial	Saturated	Final
Moisture content: Moist soil+tare, gms.	1042.100		1042.100
Moisture content: Dry soil+tare, gms.	681.800		681.800
Moisture content: Tare, gms.	0.000		0.000
Moisture, %	52.8	51.8	52.8
Moist specimen weight, gms.	1042.1		
Diameter, in.	2.85	2.85	
Area, in.²	6.38	6.38	
Height, in.	5.98	5.98	
Net decrease in height, in.		0.00	
Wet density, pcf	104.0	103.3	
Dry density, pcf	68.0	68.0	
Void ratio	1.2939	1.2939	
Saturation, %	102.1	100.0	

Cell pressure = 10.00 psi Back pressure = 0.00 psiStrain rate, in./min. = 0.050


Fail. Stress = 8.27 psi at reading no. 22

_ RSA Geolab .


10000					85-83-4H-					
						exightes in		10/07-51/2		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psi	Minor Princ. Stress psi	Major Princ. Stress psi	1:3 Ratio	P psi	Q psi
0	0.0000	10.400	0.0	0.0	0.00	10.00	10.00	1.00	10.00	0.00
1	0.0100	14.600	4.2	0.2	0.66	10.00	10.66	1.07	10.33	0.33
2	0.0200	15.700	5.3	0.3	0.83	10.00	10.83	1.08	10.41	0.41
3	0.0300	17.200	6.8	0.5	1.06	10.00	11.06	1.11	10.53	0.53
4	0.0400	18.500	8.1	0.7	1.26	10.00	11.26	1.13	10.63	0.63
5	0.0500	20.200	9.8	0.8	1.52	10.00	11.52	1.15	10.76	0.76
6	0.0600	21.700	11.3	1.0	1.75	10.00	11.75	1.18	10.88	0.88
7	0.0700	23.800	13.4	1.2	2.07	10.00	12.07	1.21	11.04	1.04
8	0.0800	25.300	14.9	1.3	2.30	10.00	12.30	1.23	11.15	1.15
9	0.0900	27.100	16.7	1.5	2.58	10.00	12.58	1.26	11.29	1.29
10	0.1000	29.200	18.8	1.7	2.90	10.00	12.90	1.29	11.45	1.45
11	0.1250	33.800	23.4	2.1	3.59	10.00	13.59	1.36	11.79	1.79
12	0.1500	38.100	27.7	2.5	4.23	10.00	14.23	1.42	12.12	2.12
13	0.1750	42.600	32.2	2.9	4.90	10.00	14.90	1.49	12.45	2.45
14	0.2000	46.500	36.1	3.3	5.47	10.00	15.47	1.55	12.73	2.73
15	0.2250	50.300	39.9	3.8	6.01	10.00	16.01	1.60	13.01	3.01
16	0.2500	53.800	43.4	4.2	6.51	10.00	16.51	1.65	13.26	3.26
17	0.2750	56.800	46.4	4.6	6.93	10.00	16.93	1.69	13.47	3.47
18	0.3000	59.300	48.9	5.0	7.28	10.00	17.28	1.73	13.64	3.64
19	0.3250	61.200	50.8	5.4	7.53	10.00	17.53	1.75	13.76	3.76
20	0.3500	63.000	52.6	5.9	7.76	10.00	17.76	1.78	13.88	3.88
21	0.4000	65.700	55.3	6.7	8.08	10.00	18.08	1.81	14.04	4.04
22	0.4500	67.500	57.1	7.5	8.27	10.00	18.27	1.83	14.14	4.14
23	0.5000	67.500	57.1	8.4	8.20	10.00	18.20	1.82	14.10	4.10
24	0.5500	61.600	51.2	9.2	7.28	10.00	17.28	1.73	13.64	3.64
25	0.6000	58.500	48.1	10.0	6.78	10.00	16.78	1.68	13.39	3.39
26	0.6500	57.400	47.0	10.9	6.56	10.00	16.56	1.66	13.28	3.28
27	0.7000	57.600	47.2	11.7	6.53	10.00	16.53	1.65	13.26	3.26
28	0.7500	57.900	47.5	12.5	6.51	10.00	16.51	1.65	13.25	3.25
29	0.8000	58.500	48.1	13.4	6.53	10.00	16.53	1.65	13.26	3.26
30	0.8500	58.900	48.5	14.2	6.52	10.00	16.52	1.65	13.26	3.26
31	0.9000	59.500	49.1	15.1	6.53	10.00	16.53	1.65	13.27	3.27

RSA Geolab

Normal Stress, psi

Type	of	Test:
------	----	-------

Unconsolidated Undrained **Sample Type:** ASTM D2850

Description: Dark Gray Clay & Silt little, cmf Sand, trace f Gravel, odorous, organics (sea shells)(visual)

Assumed Specific Gravity= 2.5

Remarks: H/D = 2.05

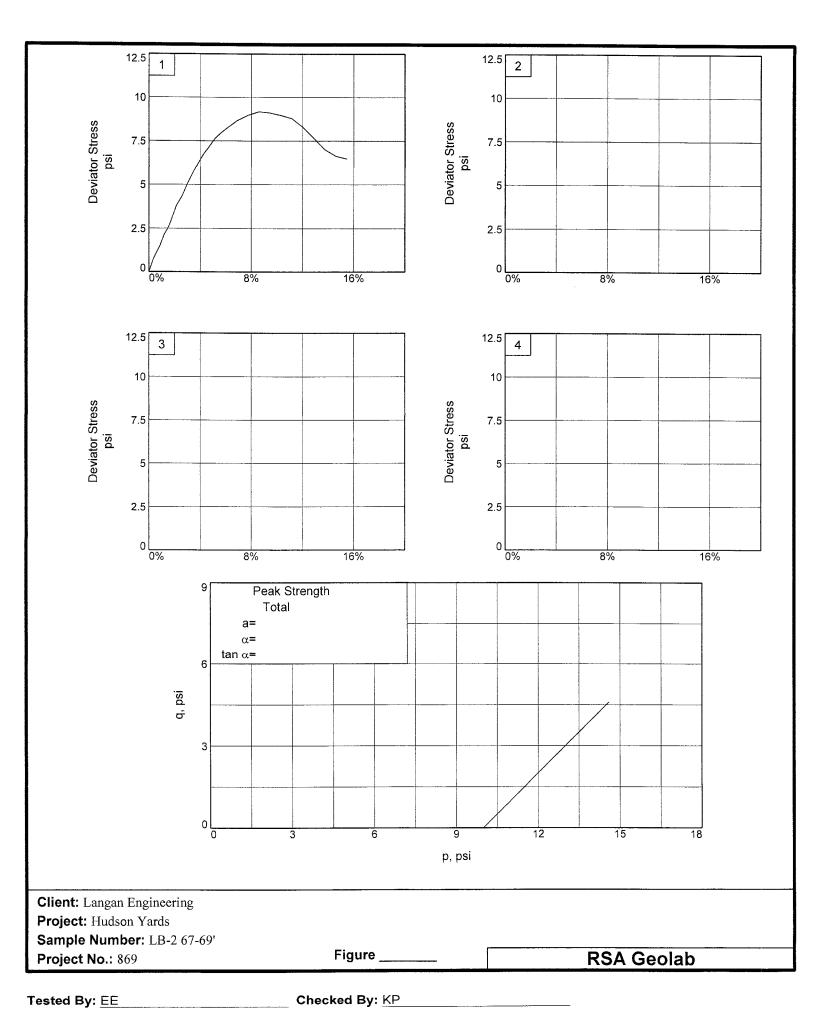
Sa	mple No.	1	
Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	33.3 90.0 113.4 0.7347 2.84 5.82	
At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	29.4 90.0 100.0 0.7347 2.84 5.82	
Str	ain rate, in./min.	0.050	
Ва	ck Pressure, psi	0.0	
Се	Il Pressure, psi	10.0	
Fa	il. Stress, psi	9.2	
Ult	. Stress, psi		
σ_1	Failure, psi	19.2	
σ_3	Failure, psi	10.0	***

Client: Langan Engineering

Project: Hudson Yards

Sample Number: LB-2 67-69'

Proj. No.: 869


Date Sampled: 11-17-17

TRIAXIAL SHEAR TEST REPORT RSA Geolab Union, New Jersey

Figure _

Tested By: EE

Checked By: KP

TRIAXIAL COMPRESSION TEST

Unconsolidated Undrained

11/17/2017 11:03 AM

Date:

11-17-17

Client:

Langan Engineering

Project:

Hudson Yards

Project No.:

869

Sample Number:

LB-2 67-69'

Description:

Dark Gray Clay & Silt little, cmf Sand, trace f Gravel, odorous, organics (sea shells)(visual)

Remarks:

H/D = 2.05

Type of Sample:

ASTM D2850

Assumed Specific Gravity= 2.5

LL=

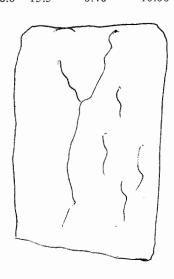
PL=

Pl=

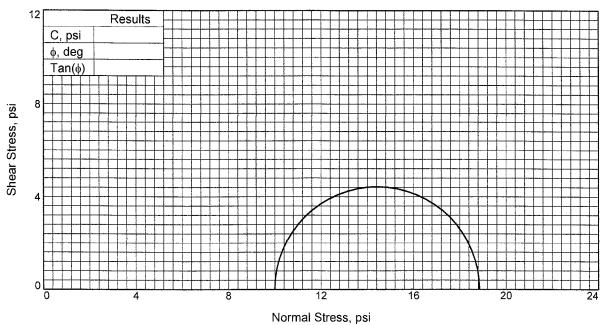
Test Method:

COE uniform strain

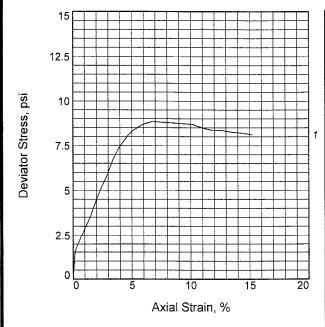
Specimen Parameter	Initial	Saturated	Final
Moisture content: Moist soil+tare, gms.	1162.000		1162.000
Moisture content: Dry soil+tare, gms.	871.600		871.600
Moisture content: Tare, gms.	0.000		0.000
Moisture, %	33.3	29.4	33.3
Moist specimen weight, gms.	1162.0		
Diameter, in.	2.84	2.84	
Area, in.²	6.34	6.34	
Height, in.	5.82	5.82	
Net decrease in height, in.		0.00	
Wet density, pcf	119.9	116.4	
Dry density, pcf	90.0	90.0	
Void ratio	0.7347	0.7347	
Saturation, %	113.4	100.0	


Cell pressure = 10.00 psi Back pressure = 0.00 psi

Strain rate, in./min. = 0.050


Fail. Stress = 9.18 psi at reading no. 23

_ RSA Geolab 。


					etrasjus	estallistes (to)	Specimen	Nto 1		San Carlotte
	Def.					Minor Princ.	•			
No.	Dial in.	Load Dial	Load Ibs.	Strain %	Stress psi	Stress psi	Stress psi	1:3 Ratio	P psi	Q psi
0	0.0000	3.400	0.0	0.0	0.00	10.00	10.00	1.00	10.00	0.00
1	0.0100	5.700	2.3	0.2	0.36	10.00	10.36	1.04	10.18	0.18
2	0.0200	8.000	4.6	0.3	0.72	10.00	10.72	1.07	10.36	0.36
3	0.0300	9.800	6.4	0.5	1.00	10.00	11.00	1.10	10.50	0.50
4	0.0400	11.300	7.9	0.7	1.24	10.00	11.24	1.12	10.62	0.62
5	0.0500	13.000	9.6	0.9	1.50	10.00	11.50	1.15	10.75	0.75
6	0.0600	15.000	11.6	1.0	1.81	10.00	11.81	1.18	10.90	0.90
7	0.0700	17.100	13.7	1.2	2.13	10.00	12.13	1.21	11.07	1.07
8	0.0800	18.600	15.2	1.4	2.36	10.00	12.36	1.24	11.18	1.18
9	0.0900	20.200	16.8	1.5	2.61	10.00	12.61	1.26	11.30	1.30
10	0.1000	22.200	18.8	1.7	2.91	10.00	12.91	1.29	11.46	1.46
11	0.1250	28.000	24.6	2.1	3.79	10.00	13.79	1.38	11.90	1.90
12	0.1500	31.500	28.1	2.6	4.32	10.00	14.32	1.43	12.16	2.16
13	0.1750	36.200	32.8	3.0	5.02	10.00	15.02	1.50	12.51	2.51
14	0.2000	40.700	37.3	3.4	5.68	10.00	15.68	1.57	12.84	2.84
15	0.2250	44.600	41.2	3.9	6.24	10.00	16.24	1.62	13.12	3.12
16	0.2500	48.200	44.8	4.3	6.76	10.00	16.76	1.68	13.38	3.38
17	0.2750	51.300	47.9	4.7	7.19	10.00	17.19	1.72	13.60	3.60
18	0.3000	54.500	51.1	5.2	7.64	10.00	17.64	1.76	13.82	3.82
19	0.3250	56.700	53.3	5.6	7.93	10.00	17.93	1.79	13.97	3.97
20	0.3500	58.700	55.3	6.0	8.19	10.00	18.19	1.82	14.10	4.10
21	0.4000	62.400	59.0	6.9	8.66	10.00	18.66	1.87	14.33	4.33
22	0.4500	65.100	61.7	7.7	8.97	10.00	18.97	1.90	14.49	4.49
23	0.5000	67.100	63.7	8.6	9.18	10.00	19.18	1.92	14.59	4.59
24	0.5500	67.300	63.9	9.5	9.12	10.00	19.12	1.91	14.56	4.56
25	0.6000	66.900	63.5	10.3	8.98	10.00	18.98	1.90	14.49	4.49
26	0.6500	66.200	62.8	11.2	8.79	10.00	18.79	1.88	14.40	4.40
27	0.7000	63.200	59.8	12.0	8.29	10.00	18.29	1.83	14.15	4.15
28	0.7500	59.200	55.8	12.9	7.66	10.00	17.66	1.77	13.83	3.83
29	0.8000	54.900	51.5	13.8	7.00	10.00	17.00	1.70	13.50	3.50
30	0.8500	52.600	49.2	14.6	6.62	10.00	16.62	1.66	13.31	3.31
31	0.9000	52.000	48.6	15.5	6.48	10.00	16.48	1.65	13.24	3.24

____ RSA Geolab ___

Normai Stress, psi

Type	of	Test:	
------	----	-------	--

Unconsolidated Undrained **Sample Type:** ASTM D2850

Description: Gray Clay & Silt little, cmf Sand, trace f

Gravel, odorous, organics (sea shells)(visual)

Assumed Specific Gravity= 2.5

Remarks: H/D = 2.10

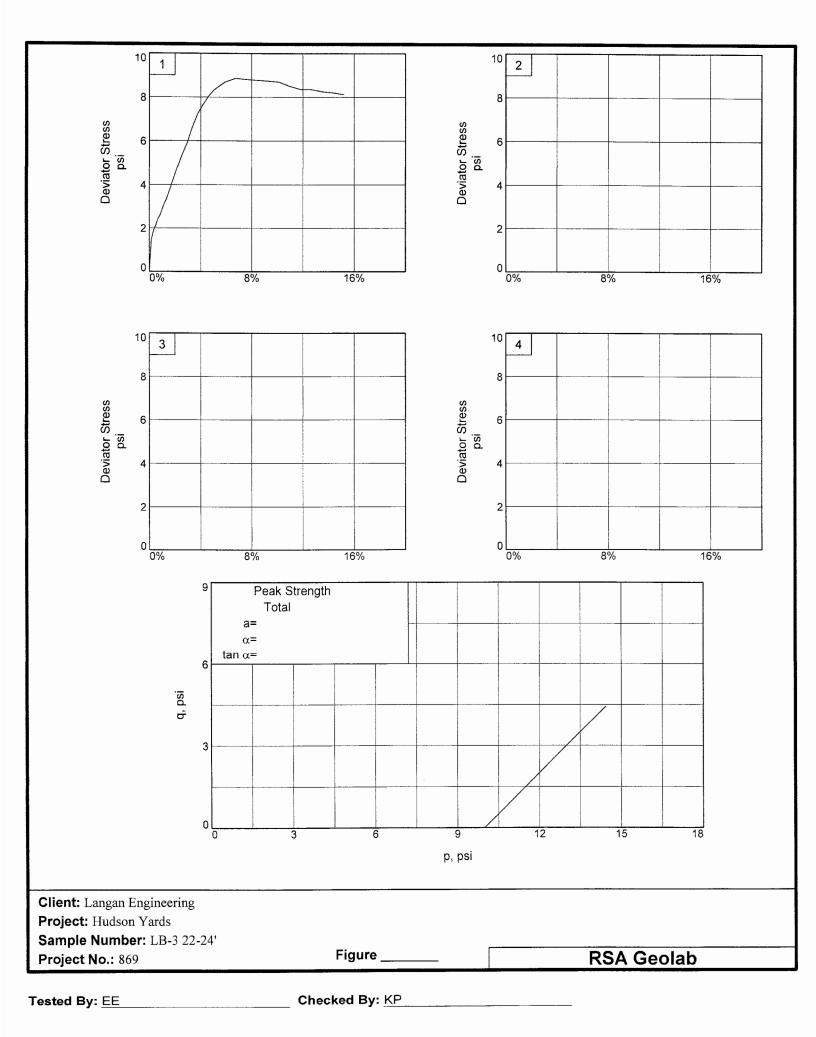
Sar	nple No.	1	
Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	61.7 63.0 104.2 1.4788 2.82 5.92	
At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	59.2 63.0 100.0 1.4788 2.82 5.92	
Str	ain rate, in./min.	0.050	
Bad	ck Pressure, psi	0.0	
Cel	l Pressure, psi	10.0	
Fai	I. Stress, psi	8.9	
Ult.	Stress, psi		
σ ₁	Failure, psi	18.9	
σ_3	Failure, psi	10.0	

Client: Langan Engineering

Project: Hudson Yards

Sample Number: LB-3 22-24'

Proj. No.: 869


Date Sampled: 11-17-17

TRIAXIAL SHEAR TEST REPORT RSA Geolab Union, New Jersey

Figure _

Checked By: KP

Tested By: EE

TRIAXIAL COMPRESSION TEST

Unconsolidated Undrained

11/17/2017 11:09 AM

Date:

11-17-17

Client:

Langan Engineering

Project:

Hudson Yards

Project No.:

869

Sample Number:

LB-3 22-24'

Description:

Gray Clay & Silt little, cmf Sand, trace f Gravel, odorous, organics (sea shells)(visual)

Remarks:

H/D = 2.10

Type of Sample:

ASTM D2850

Assumed Specific Gravity=2.5

LL=

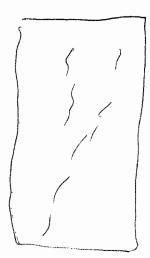
PL=

PI=

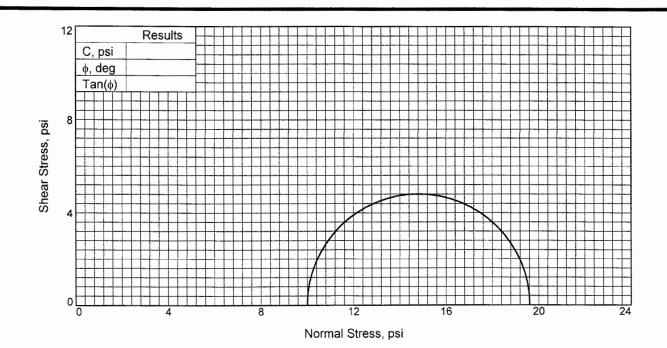
Test Method:

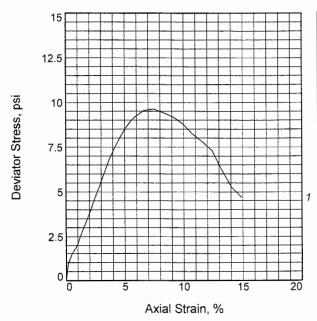
COE uniform strain

Specimen Parameter	Initial	Saturated	Final
Moisture content: Moist soil+tare, gms.	988.400		988.400
Moisture content: Dry soil+tare, gms.	611.400		611.400
Moisture content: Tare, gms.	0.000		0.000
Moisture, %	61.7	59.2	61.7
Moist specimen weight, gms.	988.4		
Diameter, in.	2.82	2.82	
Area, in.²	6.25	6.25	
łeight, in.	5.92	5.92	
Net decrease in height, in.		0.00	
Wet density, pcf	101.8	100.2	
Ory density, pcf	63.0	63.0	
/oid ratio	1.4788	1.4788	
Saturation, %	104.2	100.0	


Cell pressure = 10.00 psi Back pressure = 0.00 psi

Strain rate, in./min. = 0.050


Fail. Stress = 8.85 psi at reading no. 21


RSA Geolab

					i Teal	ealöilmes joi	Specialen	No.458		
	Def. Dial	Load	Load	Strain	Deviator Stress	Minor Princ. Stress	Major Princ. Stress	1:3	P	Q
No.	in.	Dial	lbs.	%	psi	psi	psi	Ratio	psi	psi
0	0.0000	4.400	0.0	0.0	0.00	10.00	10.00	1.00	10.00	0.00
1	0.0100	13.600	9.2	0.2	1.47	10.00	11.47	1.15	10.74	0.74
2	0.0200	16.300	11.9	0.3	1.90	10.00	11.90	1.19	10.95	0.95
3	0.0300	17.700	13.3	0.5	2.12	10.00	12.12	1.21	11.06	1.06
4	0.0400	19.600	15.2	0.7	2.42	10.00	12.42	1.24	11.21	1.21
5	0.0500	20.700	16.3	0.8	2.59	10.00	12.59	1.26	11.29	1.29
6	0.0600	22.600	18.2	1.0	2.88	10.00	12.88	1.29	11.44	1.44
7	0.0700	24.200	19.8	1.2	3.13	10.00	13.13	1.31	11.57	1.57
8	0.0800	25.600	21.2	1.4	3.35	10.00	13.35	1.33	11.67	1.67
9	0.0900	27.400	23.0	1.5	3.63	10.00	13.63	1.36	11.81	1.81
10	0.1000	29.500	25.1	1.7	3.95	10.00	13.95	1.40	11.98	1.98
11	0.1250	34.300	29.9	2.1	4.69	10.00	14.69	1.47	12.34	2.34
12	0.1500	38.500	34.1	2.5	5.32	10.00	15.32	1.53	12.66	2.66
13	0.1750	42.400	38.0	3.0	5.90	10.00	15.90	1.59	12.95	2.95
14	0.2000	47.500	43.1	3.4	6.67	10.00	16.67	1.67	13.33	3.33
15	0.2250	51.500	47.1	3.8	7.25	10.00	17.25	1.73	13.63	3.63
16	0.2500	54.400	50.0	4.2	7.67	10.00	17.67	1.77	13.83	3.83
17	0.2750	57.100	52.7	4.6	8.05	10.00	18.05	1.80	14.02	4.02
18	0.3000	59.200	54.8	5.1	8.33	10.00	18.33	1.83	14.16	4.16
19	0.3250	60.600	56.2	5.5	8.50	10.00	18.50	1.85	14.25	4.25
20	0.3500	62.000	57.6	5.9	8.68	10.00	18.68	1.87	14.34	4.34
21	0.4000	63.700	59.3	6.8	8.85	10.00	18.85	1.89	14.43	4.43
22	0.4500	63.900	59.5	7.6	8.80	10.00	18.80	1.88	14.40	4.40
23	0.5000	64.200	59.8	8.4	8.77	10.00	18.77	1.88	14.38	4.38
24	0.5500	64.500	60.1	9.3	8.73	10.00	18.73	1.87	14.36	4.36
25	0.6000	64.800	60.4	10.1	8.69	10.00	18.69	1.87	14.35	4.35
26	0.6500	64.000	59.6	11.0	8.50	10.00	18.50	1.85	14.25	4.25
27	0.7000	63.600	59.2	11.8	8.36	10.00	18.36	1.84	14.18	4.18
28	0.7500	64.100	59.7	12.7	8.35	10.00	18.35	1.83	14.17	4.17
29	0.8000	64.000	59.6	13.5	8.25	10.00	18.25	1.83	14.13	4.13
30	0.8500	64.200	59.8	14.4	8.20	10.00	18.20	1.82	14.10	4.10
31	0.9000	64.200	59.8	15.2	8.12	10.00	18.12	1.81	14.06	4.06

_ RSA Geolab _

Type of Test:

Unconsolidated Undrained **Sample Type:** ASTM D2850

Description: Dark Gray Clay & Silt little (+), cmf Sand,

trace (+) cmf Gravel, odorous, organics (sea

shells)(visual)

Assumed Specific Gravity= 2.5

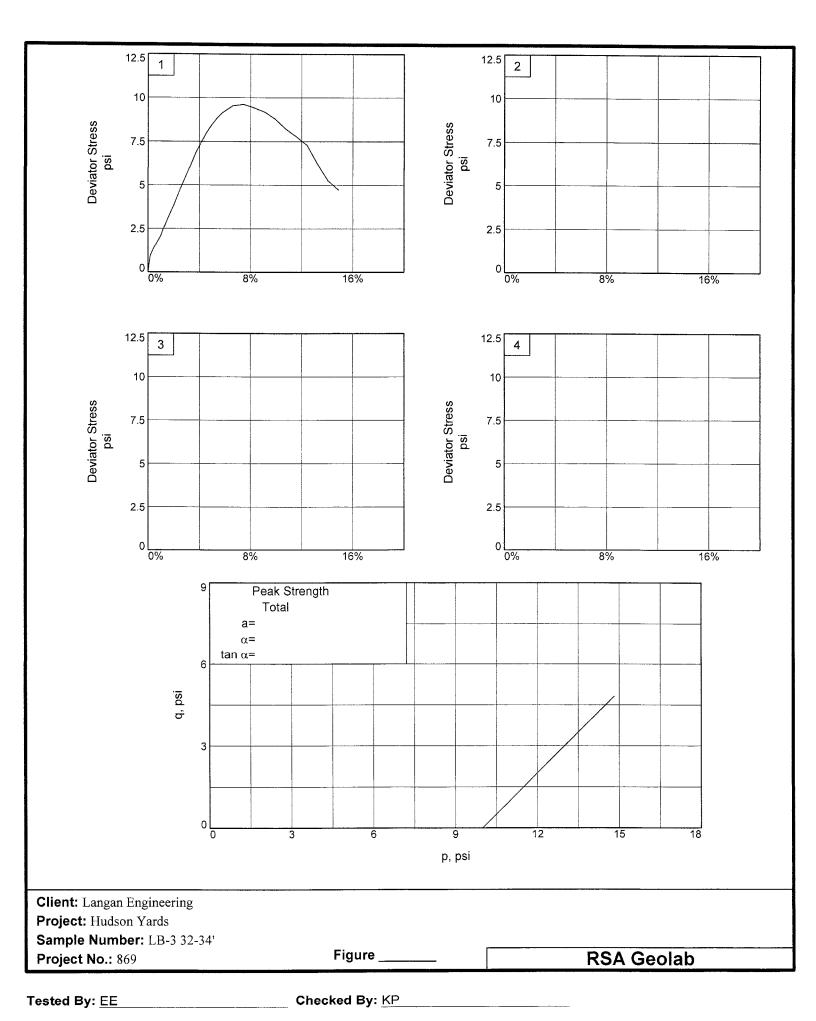
Remarks: H/D = 2.10

Figure

Sample No.		1	
Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	52.3 67.8 100.5 1.3017 2.88 6.04	
At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	52.1 67.8 100.0 1.3017 2.88 6.04	
Str	ain rate, in./min.	0.050	
Ва	ck Pressure, psi	0.0	
Се	ll Pressure, psi	10.0	
Fai	l. Stress, psi	9.6	
Ult	. Stress, psi		
σ,	Failure, psi	19.6	
σ_3	Failure, psi	10.0	

Client: Langan Engineering

Project: Hudson Yards


Sample Number: LB-3 32-34'

Proj. No.: 869 **Date Sampled:** 11-17-17

TRIAXIAL SHEAR TEST REPORT RSA Geolab Union, New Jersey

Union, New Jerse

Tested By: EE Checked By: KP

TRIAXIAL COMPRESSION TEST

Unconsolidated Undrained

11/17/2017 11:15 AM

Date:

11-17-17

Client:

Langan Engineering

Project:

Hudson Yards

Project No.:

869

Sample Number:

LB-3 32-34'

Description:

Dark Gray Clay & Silt little (+), cmf Sand, trace (+) cmf Gravel, odorous, organics (sea

Remarks:

shells)(visual) H/D = 2.10

Type of Sample:

ASTM D2850

Assumed Specific Gravity=2.5

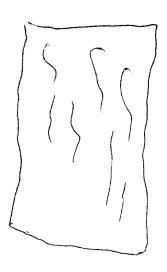
LL=

PL=

PI=

Test Method:

COE uniform strain


Specimen Parameter	Initial	Saturated	Final
Moisture content: Moist soil+tare, gms.	1067.400		1067.400
Moisture content: Dry soil+tare, gms.	700.800		700.800
Moisture content: Tare, gms.	0.000		0.000
Moisture, %	52.3	52.1	52.3
Moist specimen weight, gms.	1067.4		
Diameter, in.	2.88	2.88	
Area, in.²	6.51	6.51	
leight, in.	6.04	6.04	
Net decrease in height, in.		0.00	
Wet density, pcf	103.3	103.1	
Ory density, pcf	67.8	67.8	
/oid ratio	1.3017	1.3017	
Saturation, %	100.5	100.0	

Cell pressure = 10.00 psi Back pressure = 0.00 psi Strain rate, in./min. = 0.050

Fail. Stress = 9.62 psi at reading no. 22

____ RSA Geolab

					Tasifi	e erofiske Grakov	aSpeciales	No. 1,		
	Def.					Minor Princ.	-			
No.	Dial in.	Load Dial	Load lbs.	Strain %	Stress psi	Stress psi	Stress psi	1:3 Ratio	P psi	Q psi
0	0.0000	4.900	0.0	0.0	0.00	10.00	10.00	1.00	10.00	0.00
1	0.0100	10.800	5.9	0.2	0.90	10.00	10.90	1.09	10.45	0.45
2	0.0200	12.800	7.9	0.3	1.21	10.00	11.21	1.12	10.60	0.60
3	0.0300	14.500	9.6	0.5	1.47	10.00	11.47	1.15	10.73	0.73
4	0.0400	15.700	10.8	0.7	1.65	10.00	11.65	1.16	10.82	0.82
5	0.0500	17.100	12.2	0.8	1.86	10.00	11.86	1.19	10.93	0.93
6	0.0600	18.600	13.7	1.0	2.08	10.00	12.08	1.21	11.04	1.04
7	0.0700	20.800	15.9	1.2	2.41	10.00	12.41	1.24	11.21	1.21
8	0.0800	22.600	17.7	1.3	2.68	10.00	12.68	1.27	11.34	1.34
9	0.0900	24.600	19.7	1.5	2.98	10.00	12.98	1.30	11.49	1.49
10	0.1000	26.400	21.5	1.7	3.25	10.00	13.25	1.32	11.62	1.62
11	0.1250	31.000	26.1	2.1	3.92	10.00	13.92	1.39	11.96	1.96
12	0.1500	36.200	31.3	2.5	4.69	10.00	14.69	1.47	12.34	2.34
13	0.1750	41.100	36.2	2.9	5.40	10.00	15.40	1.54	12.70	2.70
14	0.2000	46.100	41.2	3.3	6.12	10.00	16.12	1.61	13.06	3.06
15	0.2250	51.300	46.4	3.7	6.86	10.00	16.86	1.69	13.43	3.43
16	0.2500	55.400	50.5	4.1	7.43	10.00	17.43	1.74	13.72	3.72
17	0.2750	59.300	54.4	4.5	7.97	10.00	17.97	1.80	13.99	3.99
18	0.3000	62.800	57.9	5.0	8.45	10.00	18.45	1.84	14.22	4.22
19	0.3250	65.700	60.8	5.4	8.83	10.00	18.83	1.88	14.42	4.42
20	0.3500	68.100	63.2	5.8	9.14	10.00	19.14	1.91	14.57	4.57
21	0.4000	71.400	66.5	6.6	9.53	10.00	19.53	1.95	14.77	4.77
22	0.4500	72.600	67.7	7.4	9.62	10.00	19.62	1.96	14.81	4.81
23	0.5000	71.800	66.9	8.3	9.42	10.00	19.42	1.94	14.71	4.71
24	0.5500	70.700	65.8	9.1	9.18	10.00	19.18	1.92	14.59	4.59
25	0.6000	68.500	63.6	9.9	8.79	10.00	18.79	1.88	14.40	4.40
26	0.6500	64.900	60.0	10.8	8.22	10.00	18.22	1.82	14.11	4.11
27	0.7000	62.300	57.4	11.6	7.79	10.00	17.79	1.78	13.90	3.90
28	0.7500	59.200	54.3	12.4	7.30	10.00	17.30	1.73	13.65	3.65
29	0.8000	51.500	46.6	13.2	6.21	10.00	16.21	1.62	13.10	3.10
30	0.8500	44.700	39.8	14.1	5.25	10.00	15.25	1.53	12.63	2.63
31	0.9000	40.900	36.0	14.9	4.70	10.00	14.70	1.47	12.35	2.35

____ RSA Geolab __

Projectivo.: 31737700-458

File: Indx1.xls

Langan #35578403 New York Sports and Convention Center LABORATORY TESTING DATA SUMMARY

CONTENT LUMIT LU	WATER LIQUID PLASTIC P		
CONTENT LIMIT ALANT NO. SYMB. WINUSS CANTENT UNIT SYMB SIST PEAK ALANALSTRAIN MINITAL CONTENT ON THE STATE OF	CONTENT LIMIT LIMIT (1) N. SYMB. MINUS CONTENT (1) NO. 200 2 Hm (burnoff) WEIGHT (1) NO. 200 2 Hm (burnoff) WEIGHT (1) NO. 200 2 Hm (burnoff) WEIGHT (2) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%		
Charles Char	(%) (%) <td>DEVIATOR AXIAL STRAIN</td> <td></td>	DEVIATOR AXIAL STRAIN	
7 65 64 24 32 CH (%)	7 48.3 66.5 24 32 CH (%)	STRESS STRESS RATIO	RATIO
7 85.1 CH 3.8 CH 3.8 2 35.1 25 20 25 CL-ML 3.3 2 35.1 35 17 CL-ML 3.4 CH-OH 5.2 CH-OH 5.2 CH-OH 5.2 CH-OH 5.2 CH-OH 5.2 CH-OH 5.2 CH-OH 6.2 CH-OH <td>49.3 36 24 32 CH 3.8 7 66.5 45 20 26 CL-ML 3.3 7 36.1 33 16 17 CL 3.4 8 43.3 63 25 38 CH-OH 5.2 8 43.3 63 25 18 CH-OH 4.4 9 48.7 CH-OH 4.4 4.4 4.4 4.4 10 48.7 CH-OH CH-OH 4.4 4.4 4.4 10 48.7 CH-OH CH-OH 5.9 4.4 4.4 10 48.7 CH-OH CH-OH 5.9 4.4 4.4 10 48.7 CH-OH 5.9 4.4 4.4 4.4 10 57.7 77 28 49 CH-OH 5.9 4.4 10 48.2 CH-OH CH-OH 5.9 4.4 4.6 10 10</td> <td>(tsf) (%)</td> <td></td>	49.3 36 24 32 CH 3.8 7 66.5 45 20 26 CL-ML 3.3 7 36.1 33 16 17 CL 3.4 8 43.3 63 25 38 CH-OH 5.2 8 43.3 63 25 18 CH-OH 4.4 9 48.7 CH-OH 4.4 4.4 4.4 4.4 10 48.7 CH-OH CH-OH 4.4 4.4 4.4 10 48.7 CH-OH CH-OH 5.9 4.4 4.4 10 48.7 CH-OH CH-OH 5.9 4.4 4.4 10 48.7 CH-OH 5.9 4.4 4.4 4.4 10 57.7 77 28 49 CH-OH 5.9 4.4 10 48.2 CH-OH CH-OH 5.9 4.4 4.6 10 10	(tsf) (%)	
2 30.1 25 CL-ML 3.3 CH-ML 3.4 CL-ML 3.4 CH-CH 3.4 CH-CH 3.4 CH-CH 5.2 CH-CH 5.2 CH-CH 4.4 A.4 A.4 <td>6 00.5 45 20 25 CL 3.3 7 36.1 33 16 17 CL 3.4 8 43.3 63 26 38 CH-OH 5.2 8 43.5 25 18 CH-OH 5.2 10 43.5 26 38 CH-OH 4.4 10 48.7 4.4 4.4 4.4 10 48.7 4.4 4.4 4.4 10 48.7 4.4 4.4 4.4 10 48.7 4.4 4.4 4.4 10 48.7 4.4 4.4 4.4 10 4.8 4.4 4.4 4.6 10 4.8 4.4 4.4 4.7 10 4.8 4.4 4.6 4.6 10 4.5 4.6 4.6 4.6 10 4.1 4.6 4.6 4.6 10 4.1</td> <td>, , , , , , , , , , , , , , , , , , ,</td> <td></td>	6 00.5 45 20 25 CL 3.3 7 36.1 33 16 17 CL 3.4 8 43.3 63 26 38 CH-OH 5.2 8 43.5 25 18 CH-OH 5.2 10 43.5 26 38 CH-OH 4.4 10 48.7 4.4 4.4 4.4 10 48.7 4.4 4.4 4.4 10 48.7 4.4 4.4 4.4 10 48.7 4.4 4.4 4.4 10 48.7 4.4 4.4 4.4 10 4.8 4.4 4.4 4.6 10 4.8 4.4 4.4 4.7 10 4.8 4.4 4.6 4.6 10 4.5 4.6 4.6 4.6 10 4.1 4.6 4.6 4.6 10 4.1	, , , , , , , , , , , , , , , , , , ,	
2 3.5.1 3.5 6 CH-ML 3.4 6 5.2 6 CH-ML 3.4 6 7 CL-ML 3.4 6 6.2 6 6.2 6 6.2 6 6.2 6 6.2 6 6.2 6 6.2 6 6.2 <td>2 30.1 25 20 5 CL-ML 36.1 33 16 17 CL 3.4 2 43.3 63 25 38 CH-OH 5.2 4 8.7 26 38 CH-OH 5.2 4 8.7 27.1 27 14 13 SC 5 7.7 27 14 13 SC 107.3 6 1.4 26 32 CH-OH 5.9 107.3 6 1.4 27.1 27 14 13 SC 107.3 4 8.2 43.6 CH-OH 5.9 107.3 4 8.2 7 24 CL 107.3 4 8.2 7 CH-OH 5.9 107.3 5 5.7 7 24 CL 107.3 6 1.4 7 CH-OH 5.9 107.3 8 48.2 CH-OH 6.9 107.3 4 8.2 CH-OH 4.2 107.3 2 5.7 7 24 CL 107.3 2 5.2 20 32 CH 4.6 2 5.1 10 10 10 10 2 5.2 25 CH-OH 4.6 10 2 5.2</td> <td></td> <td></td>	2 30.1 25 20 5 CL-ML 36.1 33 16 17 CL 3.4 2 43.3 63 25 38 CH-OH 5.2 4 8.7 26 38 CH-OH 5.2 4 8.7 27.1 27 14 13 SC 5 7.7 27 14 13 SC 107.3 6 1.4 26 32 CH-OH 5.9 107.3 6 1.4 27.1 27 14 13 SC 107.3 4 8.2 43.6 CH-OH 5.9 107.3 4 8.2 7 24 CL 107.3 4 8.2 7 CH-OH 5.9 107.3 5 5.7 7 24 CL 107.3 6 1.4 7 CH-OH 5.9 107.3 8 48.2 CH-OH 6.9 107.3 4 8.2 CH-OH 4.2 107.3 2 5.7 7 24 CL 107.3 2 5.2 20 32 CH 4.6 2 5.1 10 10 10 10 2 5.2 25 CH-OH 4.6 10 2 5.2		
2 43.3 63 16 17 CL 34 6 2 43.3 63 26 38 CH-OH 5.2 6	7 36.1 33 16 17 CL 3.4 A 2 43.3 63 25 38 CH-OH 5.2 A 2 43 25 18 CH-OH 5.2 A 48.7 CH-OH A A A A 5 48.7 CH-OH A A A 5 27.5 CH-OH A A A 5 27.6 CH-OH CH-OH A A 6 27.1 27 A A B CH-OH CH-OH B 6 61.4 CH-OH CH-OH CH-OH CH-OH B A A A 6 61.4 CH-OH CH-OH CH-OH CH-OH A <t< td=""><td></td><td></td></t<>		
2 43.3 63 26 38 CH-OH 5.2 6 2 43.3 63 26 38 CH-OH 5.2 6 2 43.1 64 26 38 CH 44 6 3 48.7 6 6 6 6 6 6 2 27.5 7 74 13 5.0 122.6 UU@1.16 0.9 15.2 2 27.1 27 14 13 5.0 107.3 6 10.0 15.2 10.0 15.2 10.0 <td>25.1 43.3 63 26 38 CH-OH 52 2 43.3 63 26 38 CH-OH 52 4 3 25 18 CH-OH 52 5 43 25 18 CH-OH 4.4 4 48.7 CH-OH 4.4 4.4 5 27.1 27 14 13 5C 6 1.4 13 5C 10.0 6 1.4 1.0 1.0 10.0 8 1.0 1.0 1.0 1.0 8 1.0 1.0 1.0 1.0 8 1.0 1.0 1.0 1.0 9 1.0 1.0 1.0 1.0 <</td> <td></td> <td></td>	25.1 43.3 63 26 38 CH-OH 52 2 43.3 63 26 38 CH-OH 52 4 3 25 18 CH-OH 52 5 43 25 18 CH-OH 4.4 4 48.7 CH-OH 4.4 4.4 5 27.1 27 14 13 5C 6 1.4 13 5C 10.0 6 1.4 1.0 1.0 10.0 8 1.0 1.0 1.0 1.0 8 1.0 1.0 1.0 1.0 8 1.0 1.0 1.0 1.0 9 1.0 1.0 1.0 1.0 <		
2 43.3 63 26 38 CH-OH 5.2 6 7 6 7 6 7 6 7 <	2 43.3 63 26 38 CH-OH 52 2 43 25 18 CH-OH 4.4 4 59.1 64 26 38 CH 4.4 48.7 64.87 64.87 64.87 64.87 65.9 120.3 5 27.5 77 28 49 CH-OH 5.9 107.3 61.4 61.4 61.4 61.4 61.4 62 64.4 61.4 61.4 62.9 107.3 48.2 64.3 43.6 64.6		
2 43 25 18 CH-OH 3-2 44	2 59.1 64 26 38 CH 4.4 4.4 4.4 4.5 34.9 CH-OH 5.2 CH-OH 7.2 CH-OH 7.2 CH-OH 7.2 CH-OH 7.2 CH-OH 7.3 CH-OH 7.2 CH-OH 7.3 CH-OH		
7 59.1 64 26 38 CH 44 120.3	59.1 64 26 38 CH 4.4 4.4 120.3 148.7 120.3		
59.1 64 26 38 CH 4.4 120.3 CH 4.4 CH 4.2 4.2 4.4 CH 4.4 CH 4.2 4.2 4.2 4.2 4.4 CH 4.4 CH 4.4 CH 4.4 CH 4.4 CH 4.4 A.2 A.2<	48.7 CH 4.4 120.3 48.7 CH 120.3 27.1 27 14 13 SC 120.3 57.7 77 28 49 CH-OH 5.9 107.3 61.4 CH-OH CH-OH 5.9 107.3 43.6 CH-OH CH-OH 107.3 43.3 43 19 24 CL 110.7 42.1 65 20 32 CH 4.2 110.7 25.1 np np ML 4.6 1.6 53.0 57 22 35 CH-OH 4.6		
48.7 120.3	48.7 27.1 27 14 13 SC 122.6 57.7 77 28 49 CH-OH 5.9 107.3 61.4 61.4 6. 61.4		
48.7 120.3	48.7 120.3 27.5 14 13 SC 122.6 27.7 28 49 CH-OH 5.9 107.3 61.4 18 24 CL 107.3 48.2 2 CH 4.2 107.3 42.1 52 CH 4.2 110.7 25.1 10 ML 4.6 110.7 25.1 10 ML 4.6 4.6 25.0 57 22 58 6.9 110.7 42.1 52 20 32 CH 4.2 110.7 25.1 10 ML 4.6 4.6 4.6 4.6 53.0 57 22 35 CH-OH 4.6 4.6 4.6 53.0 57 22 35 CH-OH 4.6 4.6 4.6 4.6		
48.7 12.6 UU@1.15 0.9 15.2 12.6 UU@1.15 0.9 15.2	48.7 48.7 27.1 27 14 13 SC 122.6 27.1 27 14 13 SC 122.6 61.4 12 14 13 SC 107.3 61.4 14 14 14 14 14 61.4 15 16 107.3 107.3 48.2 19 24 CL 4.2 110.7 42.1 52 20 32 CH 4.2 110.7 25.1 np np ML 4.6 1.6 53.0 57 22 35 CH-OH 4.6 4.6		
3 34.9 1 27.1	5 34.9 127.5 27.5 14 13 SC 122.6 27.1 27 14 13 SC 122.6 6 1.4 7 28 49 CH-CH 5.9 107.3 6 1.4 8.3.6 19 24 CL 107.3 48.2 20 32 CH 4.2 110.7 42.1 52 20 32 CH 4.2 110.7 25.1 np np ML 4.6 1.6 1.6 1.6 53.0 57 22 35 CH-OH 4.6 4.6 1.6 53.0 57 22 35 CH-OH 4.6 4.6 1.6 53.0 57 22 35 CH-OH 4.6 4.6 1.6		
27.5 14 13 SC 122.6 UU@1.15 0.9 15.2 15	57.5 14 13 SC 122.6 57.7 77 28 49 CH-OH 5.9 107.3 61.4 61.4 61.4 5.9 107.3 48.2 48.2 CH 42.1 107.3 42.1 52 20 32 CH 42.2 25.1 np np ML 1.6 107.3 53.0 57 22 35 CH-OH 4.6 1.6 53.0 57 22 35 CH-OH 4.6 4.6 53.0 57 22 35 CH-OH 4.6 4.6 53.0 57 22 35 CH-OH 4.6 4.6		
27.1 27 14 13 SC 122.6 UU@1.15 0.9 15.2 10.2	27.1 27 14 13 SC 122.6 57.7 77 28 49 CH-OH 5.9 107.3 61.4 61.4 61.4 7 107.3 107.3 43.6 61.4 61.4 107.3 107.3 48.2 62 61.4 61.4 107.3 42.1 62 62 61.4 107.3 42.1 62 20 32 64 42.2 25.1 10 10 10 10 10 53.0 57 22 35 64-OH 4.6 1.6 53.0 57 22 35 64-OH 4.6 1.6 1.6 53.0 57 22 35 64-OH 4.6 1.6 1.6 1.6 53.0 57 22 35 64-OH 4.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 <td></td> <td></td>		
57.7 77 28 49 CH-OH 5.9 7 40.2 10.2 10.3 10.2 <td>57.7 77 28 49 CH-OH 5.9 107.3 61.4 43.6 61.4 5.9 107.3 43.6 48.2 CL 107.3 43.3 43 19 24 CL 44.2 42.1 52 20 32 CH 45.2 110.7 25.1 np np ML 1.6</td> <td>0</td> <td>150</td>	57.7 77 28 49 CH-OH 5.9 107.3 61.4 43.6 61.4 5.9 107.3 43.6 48.2 CL 107.3 43.3 43 19 24 CL 44.2 42.1 52 20 32 CH 45.2 110.7 25.1 np np ML 1.6	0	150
61.4 77 28 49 CH-OH 5.9 107.3 CH-OH Fig. 107.3 CH-OH Fig. 107.3 Fig. 107	61.4 66.4 66.4 67.3 8 49 CH-OH 5.9 707.3 66.4 707.3 66.4 707.3 707	2	7.0
43.6 43.6 107.3 1	61.4 107.3 43.6 100.3 48.2 100.3 43.3 43 43.3 43 42.1 52 53.0 57 53.0 57 53.0 57 44.0 100.0 45.0 100.0 45.0 100.0 46.0 100.0 46.0 100.0 46.0 100.0 46.0 100.0 46.0 100.0 46.0 100.0 46.0 100.0 46.0 100.0 47.0 100.0 48.0 100.0 49.0 100.0 41.0 100.0 41.0 100.0 41.0 100.0 41.0 100.0 41.0 100.0 41.0 100.0 41.0 100.0 41.0 100.0 41.0 100.0 41.0 100.0 41.0 100.0		
43.6 48.2 1.0 11.5	43.6 48.2 48.2 43.3 42.1 52.1 100 100 100 100 100 100 100 1		
43.6 43.6 43.6 10.0 11.5	43.6 43.6 48.2 CL CL 110.7 42.1 52 24 CL 42.2 42.1 52 20 32 CH 42.2 25.1 np np ML 1.6 53.0 57 22 35 CH-OH 4.6 53.0 57 22 35 CH-OH 4.6		
48.2 48.2 CL CL 110.7 UU@0.94 1.0 11.5	48.2 48.2 19 24 CL 7 110.7 42.1 52 20 32 CH 4.2 110.7 25.1 np np ML 1.6 1.6 53.0 57 22 35 CH-OH 4.6 41 21 20 CH-OH 4.6		
43.3 43 19 24 CL 4.2 110.7 UU@0.94 1.0 11.5 11.5 42.1 52 20 32 CH 4.2 100 100 11.5 100 11.5 11.5 100 11.5 100 11.5 100 11.5 100 11.5 100 11.5 100 <td< td=""><td>43.3 43 19 24 CL 110.7 42.1 52 20 32 CH 4.2 110.7 25.1 np np ML 1.6 1.6 1.6 53.0 57 22 35 CH-OH 4.6 4.6 41 21 20 CH-OH 4.6 4.6</td><td></td><td></td></td<>	43.3 43 19 24 CL 110.7 42.1 52 20 32 CH 4.2 110.7 25.1 np np ML 1.6 1.6 1.6 53.0 57 22 35 CH-OH 4.6 4.6 41 21 20 CH-OH 4.6 4.6		
42.1 52 20 32 CH 4.2 10.7 OUQUU.94 11.5	42.1 52 20 32 CH 4.2 10.7 25.1 np np ML 1.6 53.0 57 22 35 CH-OH 4.6		- 11
25.1 np np ML 1.6 UU 53.0 57 22 35 CH-OH 4.6 4.6 4.6	25.1 np np ML 1.6 53.0 57 22 35 CH-OH 4.6	1.0	-
25.1 np np ML 1.6 UU ML A.6 53.0 57 22 35 CH-OH 4.6	25.1 np np ML 1.6 53.0 57 22 35 CH-OH 4.6 41 21 20 CH-OH		
25.1 np ML 1.6 UU Till 53.0 57 22 35 CH-OH 4.6 4.6 41 21 20 CH-OH 4.6 6 6	25.1 np np ML 1.6 53.0 57 22 35 CH-OH 4.6 41 21 20 CH-OH 4.6		
53.0 57 22 35 CH-OH 4.6 41 21 20 CH-OH 4.6	53.0 57 22 35 CH-OH 41 21 20 CH-OH		
53.0 57 22 35 CH-OH 4.6 4.8 4.1 21 20 CH-OH	53.0 57 22 35 CH-OH 41 21 20 CH-OH		
41 21 20 CH-OH	41 21 20 CH-OH		

Reviewed by: Lud Prepared by: RV

Date: 01/10/2005

Page 1 of 5

Page 2 of 5

Projectivo.: 31737700-458 File: Indx1,xls

[

Langan #35578403 New York Sports and Convention Center LABORATORY TESTING DATA SUMMARY

BORING	BORING SAMPLE	DEPTH					IDENTIFICATIO	NTESTS									
			WATER		DI ASTIC	oγ iα	000	1, (1,0					N KENG H	E		CONSOL.	REMARKS
ģ	S			1		3 4	200	מודע די	TYCKO.		TOTAL	Type Test	PEAK	AXIAL STRAIN		INITIAL CONDITIONS	· · ·
	:						o YiMb.	SONIE	SONIM %	CONTENT	E N	(1)	DEVIATOR	@ PEAK	αIOΛ	SATUR.	····
		€	(%)				.	NO. 200	2 µm	£	WEIGHT	STRESS	STRESS	STRESS	RATIO	ATION	
0-27	y.	30,32	0 3		1			(%)	(%)	(%)	(bct)	(tsf)	(tst)	(%)			
100		70-07	2.5		2	2	ML			1.2							
100	5	40-47									104.9						
G-27	5	45.6	52.3														
G-27	5	46.15	50.4														
G-27	U-1C	46.4	42.3	49	22	27				0.7	7 7 7						
G-27	0-5	55-57					,			7 1	- 6				1.159	86	C04255
G-27	0.5	55.55	53.7	Ī				1			102.3						
G-27	U-2B	55.8	50.1	50	21	20	17.0			* * *	1000						
G-27	S-10	60-62	41.9	49	23	28	5 0			1	0.001	0000.94	2.	6.7			UU342f
G-27	S-12	70-72	46.9	57	24	333	3 5										
G-27	S-15	85-87	36.3	37	20	0	1			0							
G-27	S-23	125-127	43.6	64	22	+	ָ קַרָּי	1	1	8,7							
				;	1	十		1	1	- A							
G-30	U-1	40-42		1		1		1			1,0,						
G-30	1-0	40.6	42.4			1		+		1	104.7		1				
G-30	U-1B	40.85	51.5	52	5	33	15						ļ				
G-30	0-5 0	50-52					5	1				CIO@0./9	9.0	7.3			T2438
6-30	U-2	50,3	26.3			<u> </u>		1			24.4						
G-3 0	U-2B	50,55	23.7	22	16	9	OL-M			+	120 1	111	000	7			
								1	1		╅	20,000	0.0	1.0.1			UU342d
G-31	5-1	20-22				†	T		1	+	110		1		_		
G-31	÷	20.35	64.9			\dagger	T	1	1	-	87.1						
G-31	U.1	20.9	65,2			T	T				1		1				
G-31	U-1B	21.15	63.8				CH.OH	0 00	i c			01 00					
G-31	U-1	21.45	57.0					*	3		?! ?!	00000); 	8.2			UU343e
6-31	C-10	21.7	66.2	83	30	53	당이		\dagger	5.7	8 00		1		4700		
						I		-					+		1./20	201	C04252
						1		-			-						

Project No.: 31737700-458

File: Indx1.xls

Langan #35578403 New York Sports and Convention Center LABORATORY TESTING DATA SUMMARY

BORING	BORING SAMPLE	DEPTH				DEN	IDENTIFICATION	N TESTS					STRENGTH		JOSINOS	jo	DEMADIZE
			WATER	LIQUID	PLASTIC	ā	USCS	SIRVE	HYDRO	CINACIAC	TOT	Type Toot	7/10	AVIA CTERAIN		1000	2 CONTRACTOR CO
ó	o Q		CONTENT				SYMB.	MINUS		CONTENT	Z E	189 B	DEVIATOR	BEAK	VOID CO	VOID SATUR.	
							3	NO. 200	2 µm		WEIGHT	STRESS	STRESS	STRESS	RATIO	ATION	
		(#)	(%)					(%)	(%)	8	(pg)	(tsf)	(tst)	(%)	•		
G-37	S-1	10-12	22.8				SM	29.3									***************************************
G-37	S-2	15-17	25.5				SM	19.7									
G-37	S-3	20-22	15.7				SM	43.2									
G-37	S-5	30-32	58.6	69	27	42	CHOH			4,4							
G-37	S-6	35-37	50.6	62	23	39	CHOH			4.6							
G-37	9-8	35-37		43	21	22	CHOH										Oven dried
G-37	S-8	45-47	26.8	34	17	17	70			2.0							חבווה וופא
																1	
G-39	S-4	25-27	44.9	64	24	40	CH-OH			3.9							
65-9 6	S-5	30-32	10.5				SM	20.8									
G-48	U-2	25-27									0.76						
G-48	U-2	25.3	72.4														
G-48	0-5	25,85	79.8														
G-48	U-2B	26.1	69.4	80	29	57	PO-HO			6.5	1003	CII 1@0 50	% 0	6.0			T0490
G-48	N-2	26.4	66.8								-	22.2		2			62429
G-48	U-3	60-62									114.6						
G-48	0-3	60.25	52.0														
G-48	ლ-ე	60.8	33.7									 					
G-48	U-3B	61.05	30.8				g				1207	111100086	σc	- W-			11112400
G-48	င်း	61.35	30.7								+						274500
G-48	င္က-၁	61.6	37.8	33	17	16	ට ට				116.1				1.022	101	C04250
									-								
9,49	4-7	25-27	72.5	8	59	51	CH-OH			6.2							
G-49	<u>-</u>	30-32							-	卜	102.1				†		
G-49	 1	30.5	42.5			-									1		
G-49	 	31.05	57.5		-						+						
G-49	U-10	31.3	56.6		-		HO-HO				103 7 11	11.1000 58	140	ν α	\parallel		1119735
G-49	- -	31,6	54.7								+-	2017	;	5			0000
G-49	ر 1	31.85	60,4	- 67	25	42	CHOH				102.7		1		1 584	101	C04254
64-6	9-0	35-37	50.4	63	24	33	SHOH HOH		-	3.8						1	2
G-49	8-8	45-47	22.6	23	13	1	ರ										
															-		

Date: 01/10/2005 Reviewed by: Mo

Prepared by: RV

Page 4 of 5

File: Indx1.xls Projectivo.: 31737700-458

Langan #35578403 New York Sports and Convention Center LABORATORY TESTING DATA SUMMARY

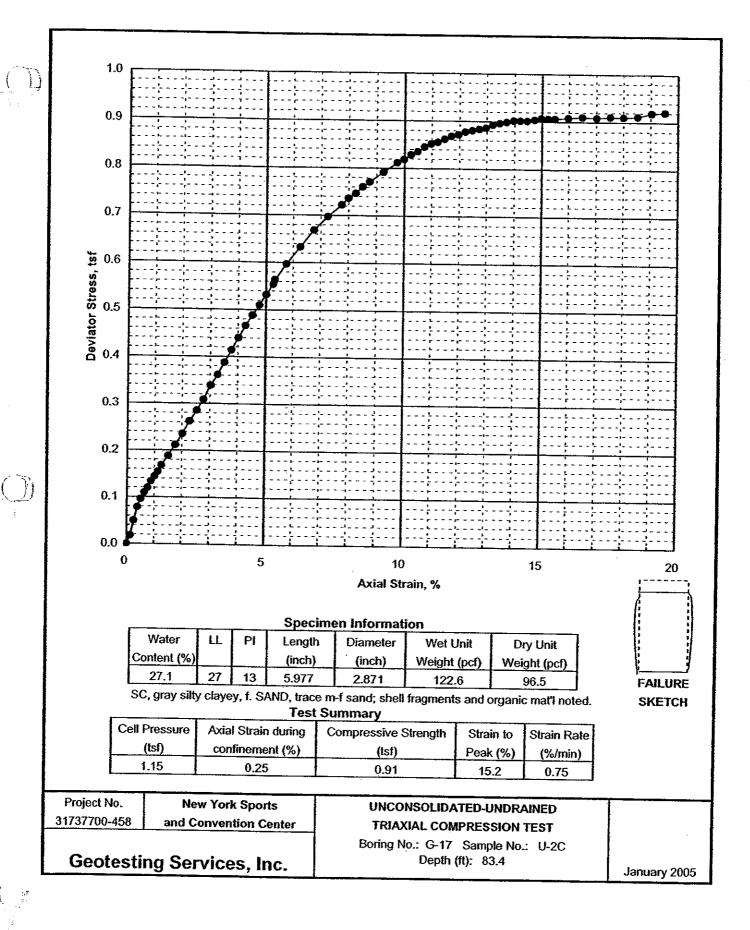
BORING	BORING SAMPLE	DEPTH					IDENTIFICATION	N TESTS					10140				
			WATER		CITAL PLASTIC	õ	0001		00000	0.000						SOL.	REMARKS
Ç.	S) t			9 5	บ ก ก	22.0	CKGANIC	TOTAL	Type Test	PEAK	AXIAL STRAIN	INITIAL CONDITIONS	SNOILIONS	
)	į		2000	- - - - -	_ 	oj N	SYMB.	SOUM	S∩NIW %	CONTENT	FZ >	0)	DEVIATOR	@ PEAK	alox	SATUR.	
			:				€	NO. 200	2 µm	(parnoff)	WEIGHT	STRESS	STRESS	STRESS	RATIO	ATION	
		(£)	(%)					(%)	(%)	(%)	(bct)	(tsf)	(tst)	(%)			
0	į	,															
2 0	4-0	25-27	55.0	99	56	40	CHOH			4.5							
00.50	လ-မ	35-37	18.6	5	윤	<u>c</u>	SM			10							
O-50	9 - 8	35-37															
														_	np - oven d	 oven aried not performed 	ertormed
G-52	S-2	16-18	52.7	7.1	30	41	Ę	83.3	24	0 7	1		1				
G-52	S-3	20-22	17.2	21	14	7	CI-MI	2	17								
G-62	S-7	40-42	51.8	52	21	33.	군		1	9 6						1	
G-62	<u>-1</u>	45-47					,			2	7 50						
G-62	5	45.35	57.9								102:		1				
G-62	1-5	45.85	563							1	1						
G-62	-	46 25	50.5	T													
0.63) <u>-</u>	AR B	100	.00	500												
	2 6		0.67		77	ဗ္ဂ	TO-TO				105.1	UU@0.86	0,8	8.5			UU005a
70.5	S O	20-07	54.3	28	24	34	CH-OH			4.2							
79-5	7-0	60-62									107.9						
G-62	C-2	60.55	53.5														
G-62	U-2	61.05	32.3								1					-	
G-62	U-2	61.4	37.3								1				-		
G-62	0-2C	61,7	34.1	99	16	4	2				118 E	1111001	90	7 11 7			1 0 00
G-62	S-11	70-72	28.5	28	15	13	l d				-	10:100	0.0	1.0.1			000020
Q-62	S-14	85-87	32,4	34	16	18	ಠ				1						T
															+	-	
5-63	┨	20-22	86.0	9	33	-	OHO HOHO			7.0						+	
ල- <u>ც</u>	S-5	30-32	83.7	86	32	99	C.F.O.F.O.F.O.F.O.F.O.F.O.F.O.F.O.F.O.F.			γ α	1						
6-63	Н	40-42	65.1			+		1		5	+						
G-63	-	55-57	42.7	32	47	15	ō	T		1	+	1	+			1	
6-63	\vdash	65-67	33.7							96		-				-	
G-63		70-72	34.6	33	1	16	 C		+	210	+		1			+	
G-63	S-15	80-82		T			NS:	30.8	α	t:4	†	+	+		1	+	
	⊢			T	T	1	T	7,55	1	+	1						
		1				1			-								

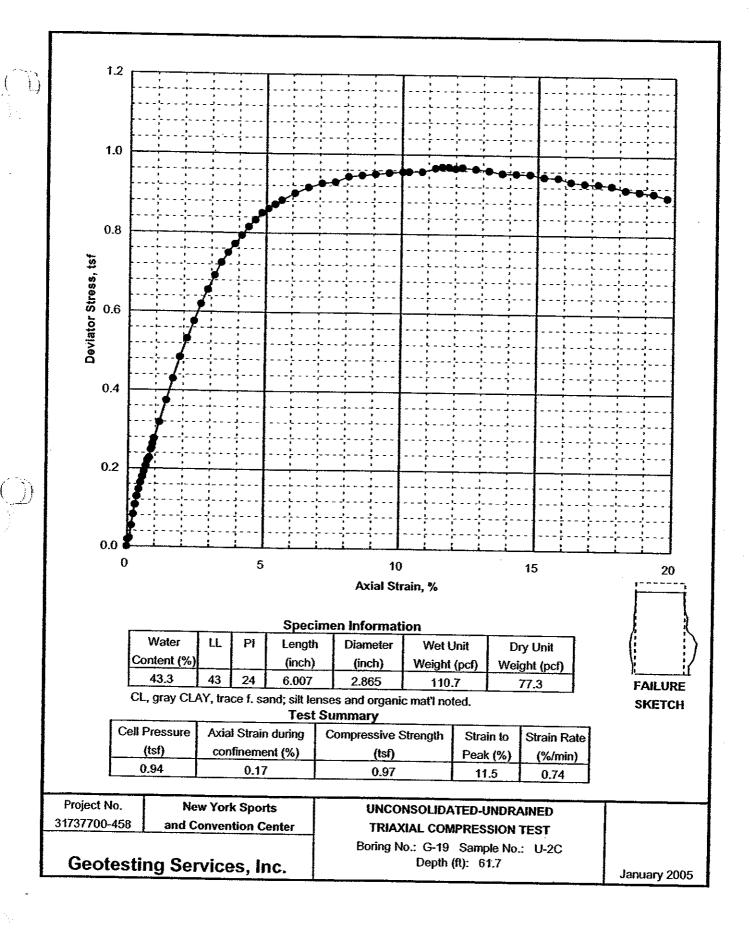
Prepared by: RV

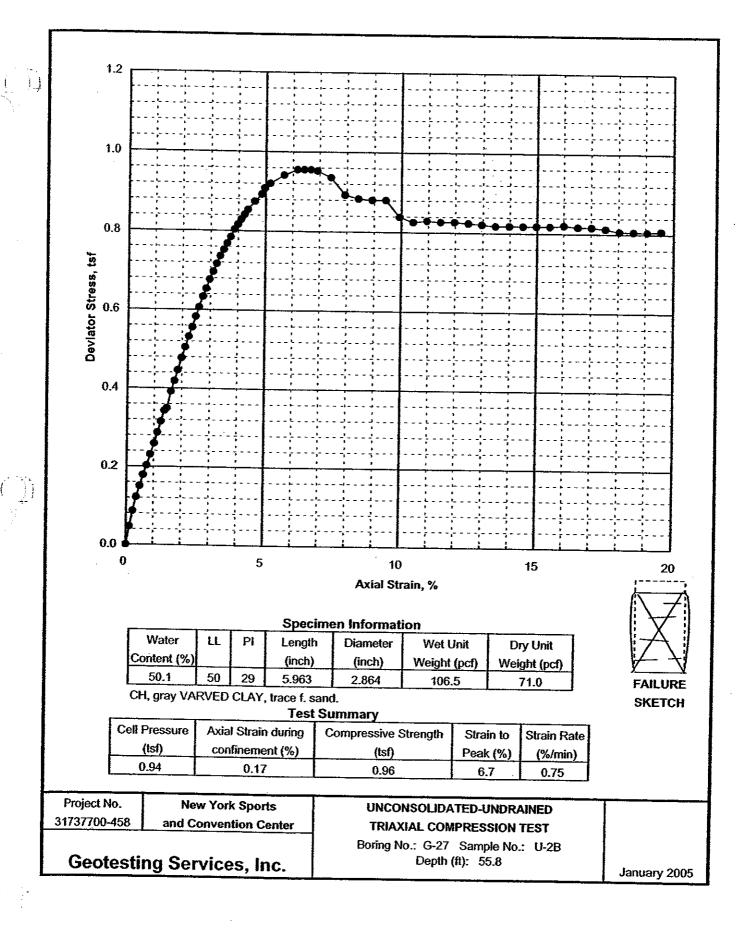
Reviewed by: Cue

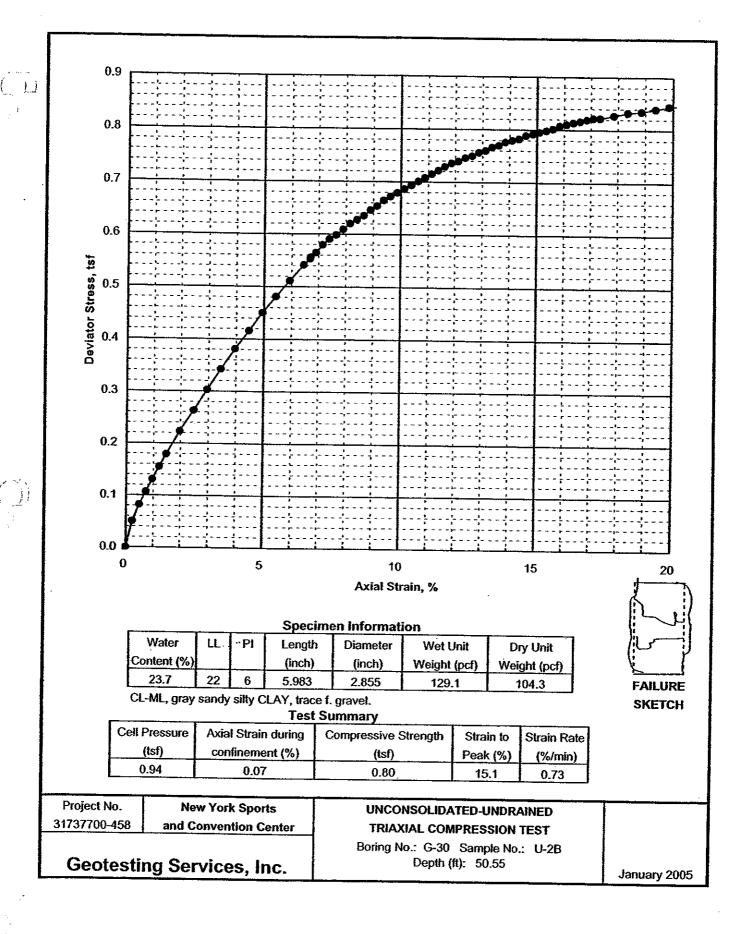
Date: 01/10/2005

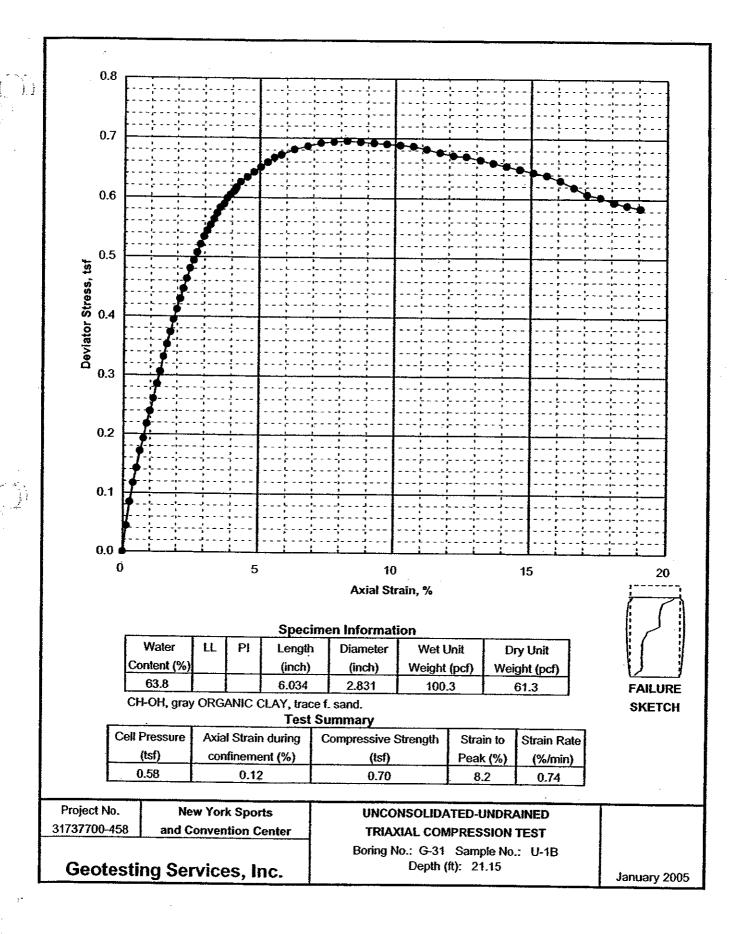
Langan #35578403 New York Sports and Convention Center LABORATORY TESTING DATA SUMMARY

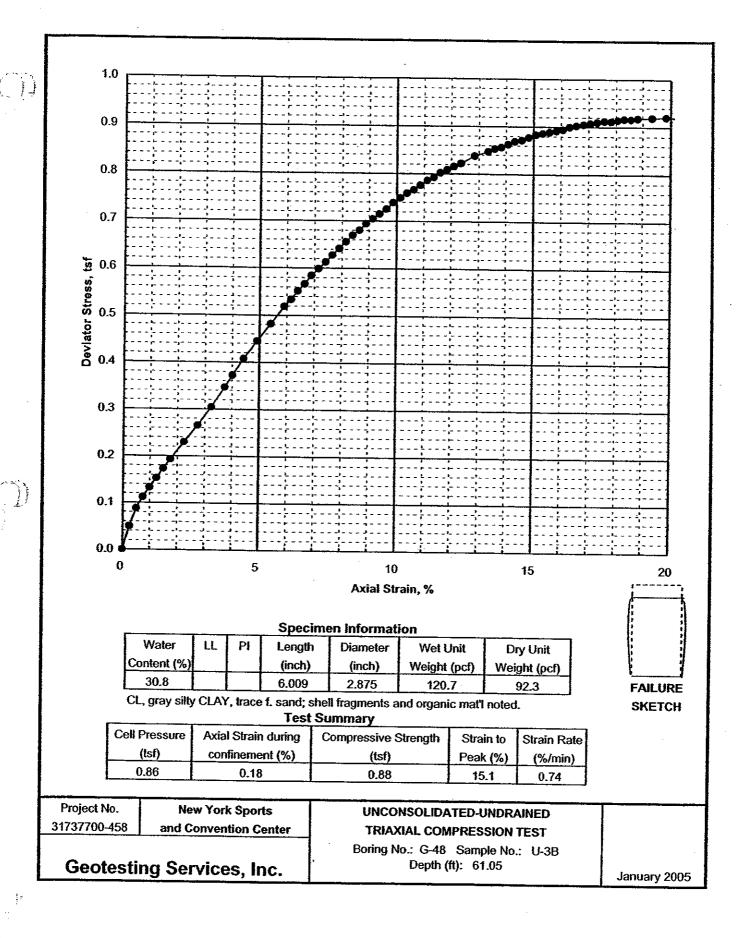

BORING	BORING SAMPLE	DEPTH				DEN.	IDENTIFICATION	NTESTS					UTOENICTO		0,000	ľ	
			14.4 THE	⊢									DNING		CONSOL.	_	THE STATE
			Y 11 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		•	S S S	SSS	SIEVE	HYDRO.	HYDRO. ORGANIC TOTAL	TOTAL	Type Test	PEAK	AXIAL STRAIN INITIAL CONDITIONS	INITIAL CO	SNOILION	
ė Š	<u>0</u>		CONTENT LIMIT	LIMIT	CIMIT	S.	SYMB.	MINUS	% MINUS	MINUS % MINUS CONTENT UNIT	FIND	0	DEVIATOR		diov	SATUR.	
							£	NO. 200	2 mm	(burnoff) WEIGHT	WEIGHT	STRESS	STRESS			NOITA	
		(t t)	(%)				_	(%)		(%)	(pct)	(tef)	(tef)	(%)	}	}	
G-64	S-3	20-22	26.3							σ			()(2)	(0/)			
G-64	1 - 0	25-27								2							****
G-64	S-6	30-32	58.9														no test
G-64	D-2	40-42									α / O F						
G-64	U-2	40.55	53.6								2:10						
G-64	U-2	41.1	53.6														-
G-64	U-2C	41.35	46.4				ಠ	83.5	6	3.6	108 1	108 1 1111@0 BE	000	0 8			1110400
G-64	0-2	41.65	34.2									200	2	9			000400
G-64	6-S	42-44	42.6	51	20	31	공			2.9	T						
																	-
99-9	S-3	20-22	49.6	99	28	38	CHOH DE-OH			43							
99-S	S-4	25-27					SM	16.5	33								
Note:	(1)	S evmbo	(1) List a symbol based on sylving long and CAMPA (1)	1012	10,000,000			, , ,									

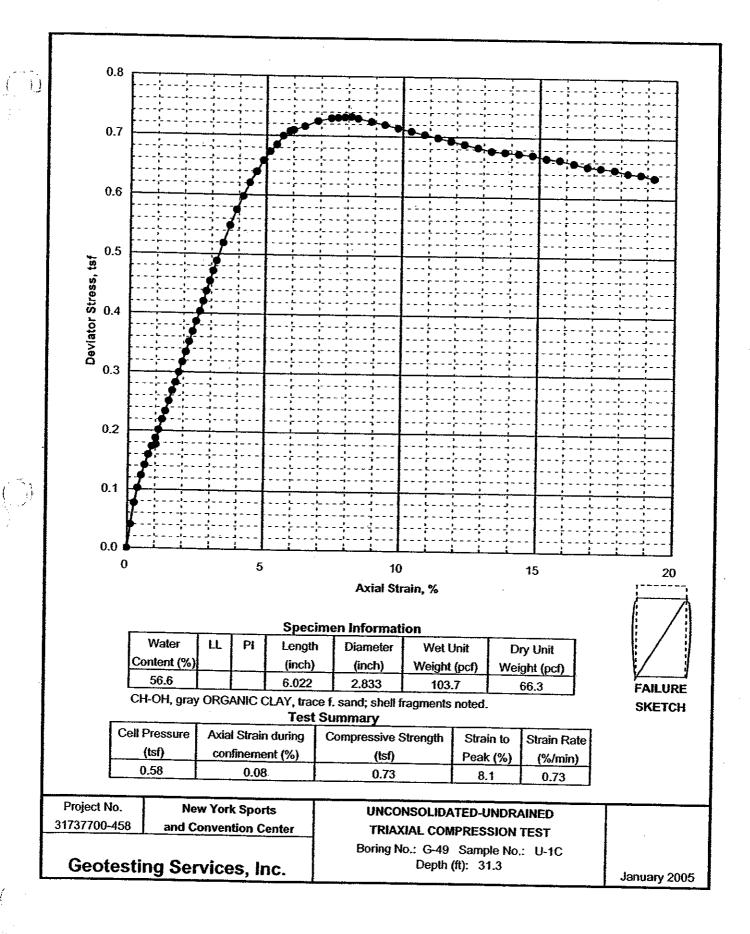

Note: (1) USCS symbol based on visual observation and Sieve and Atterberg limits reported,

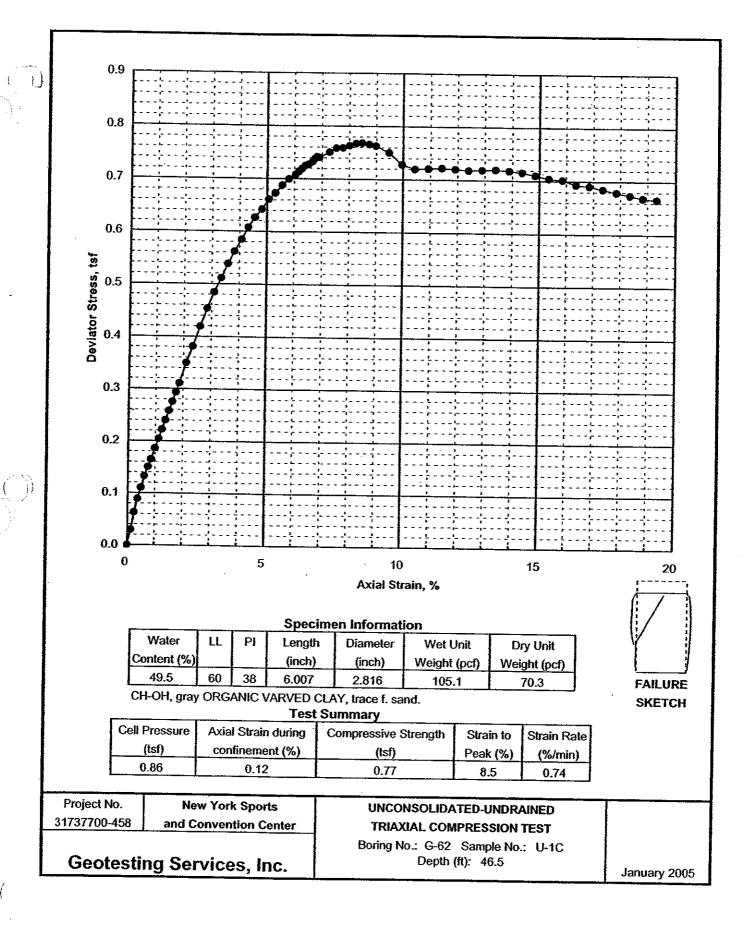

Prepared by: RV

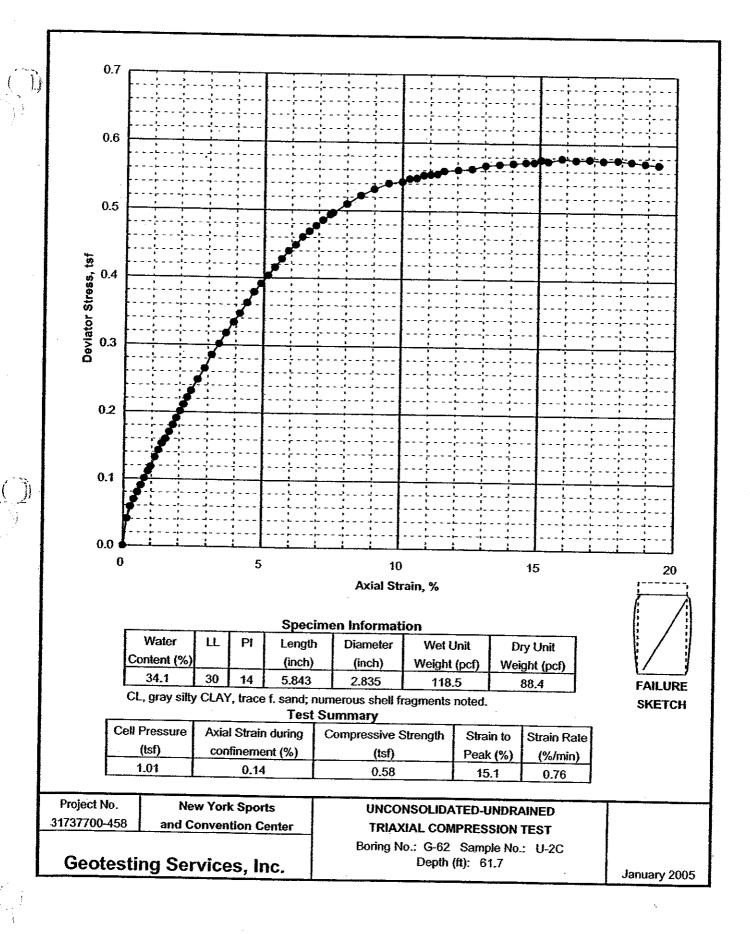

Date: 01/10/2005

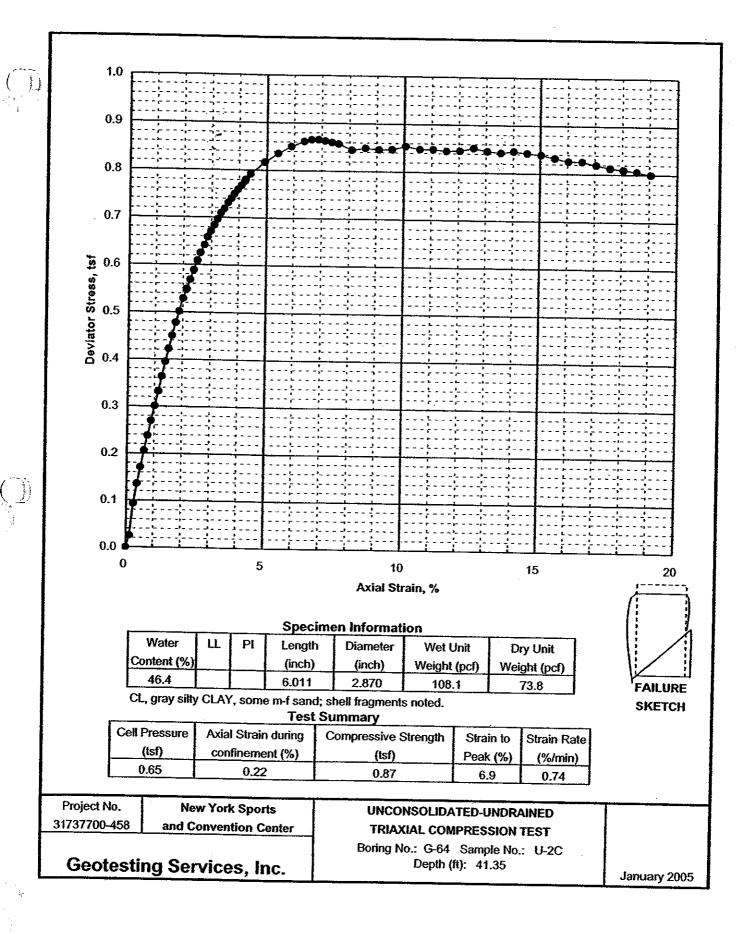

0	69.0	8-15	80-82		60.2	# 80 00 00 00 00 00 00 00 00 00 00 00 00 0	ξ ω						SM			<u>ااا</u>	С)						100.0	93.3	64.3	52.7	39.8	NOIT			Figure	9	Inc.
-	6.52	8-5 S	16-18		16.7	83.3	24			71	30	4	귱			PERCENT FINER	•							100.0	C) 60 60 60 60 60 60	97.8	2.06	83.3	PARTICLE SIZE DISTRIBUTION	Langan #5578403		December 2004	O Citation	georesung services, inc.
b	2,30	S-8	30-32	20.2	59.0	20.8							SM	10,5		PE	0			100.0	89.4	85.7	79.8	73,0	68,0 8,0 8,0	39.5	30,3	20.8	RTICLE SIZ	Langan			£ 50000	SILLANDE
Symbol	Boring	Sample	Spec	% +3" % Gravel	% SAND	% FINES	% -2µ	පි	ਟੋ	Ⅎ	ቪ	ā.	nscs	(%) M	Particle	Size	(Sieve #)	- 4	'n	1 1/2"	3/4"	3/8"	4	우 (5 4			200	PA		Project No	31737700-458	- (-	ָ כֿ
GRAVEL.	ES COARSE FINE COARSE MEDIUM FINE SILT OR CLAY	U.S. Standard Sleve Size	007#- 001#- 001#- 01#- 1		06		08				09							30		20			0-100	0	100 10 0.01 0.001				reddish brown o-t SAND, some gravel, slit.	reddich brown OI AV	יסטינין ניסיון כראון, נסווים ו, צמווים, יומכפ ווו. צמווים,	brown silty m-f SAND.		
	COBBLES				<u> </u>	•••					Φ (Mi						CE		}	ลี		<i>∓</i>					CRAYS	מו ומוסרו	3	-		0		

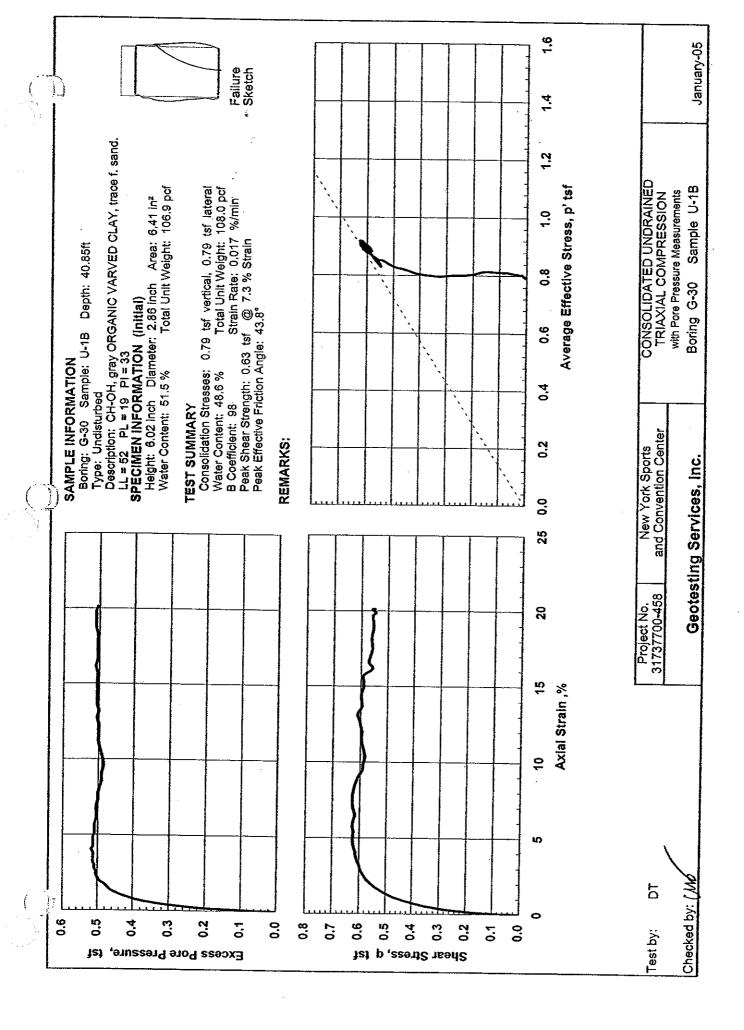


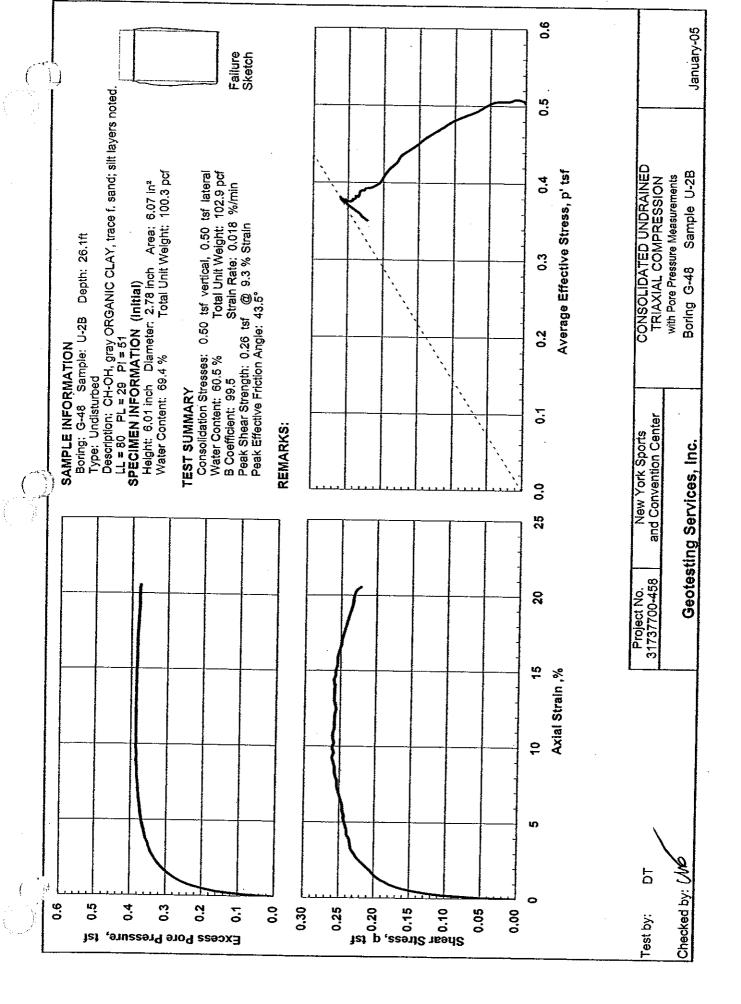


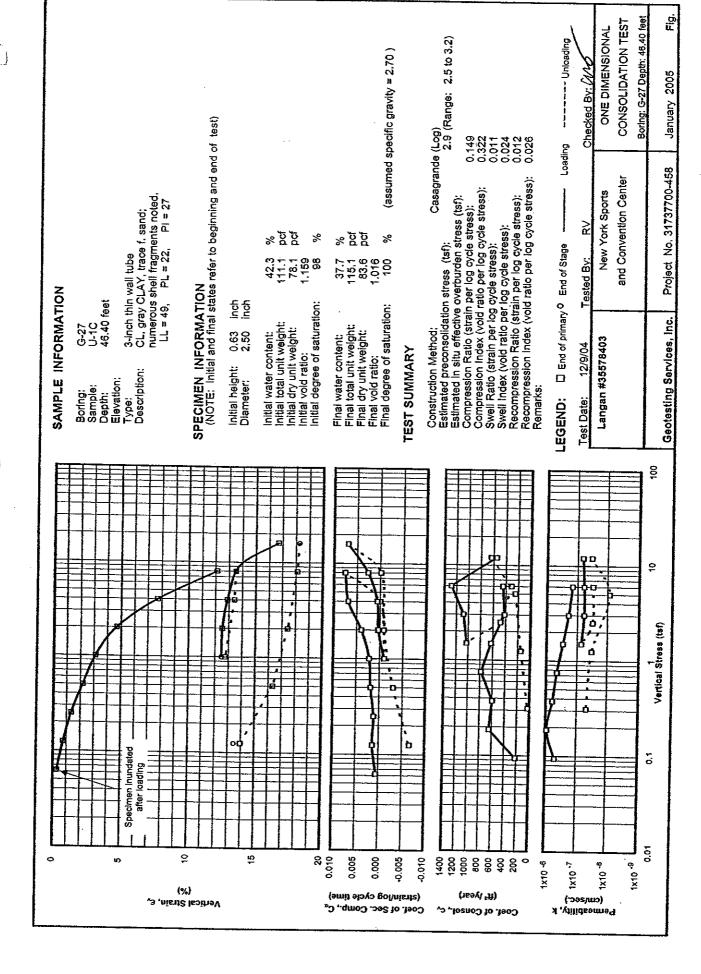




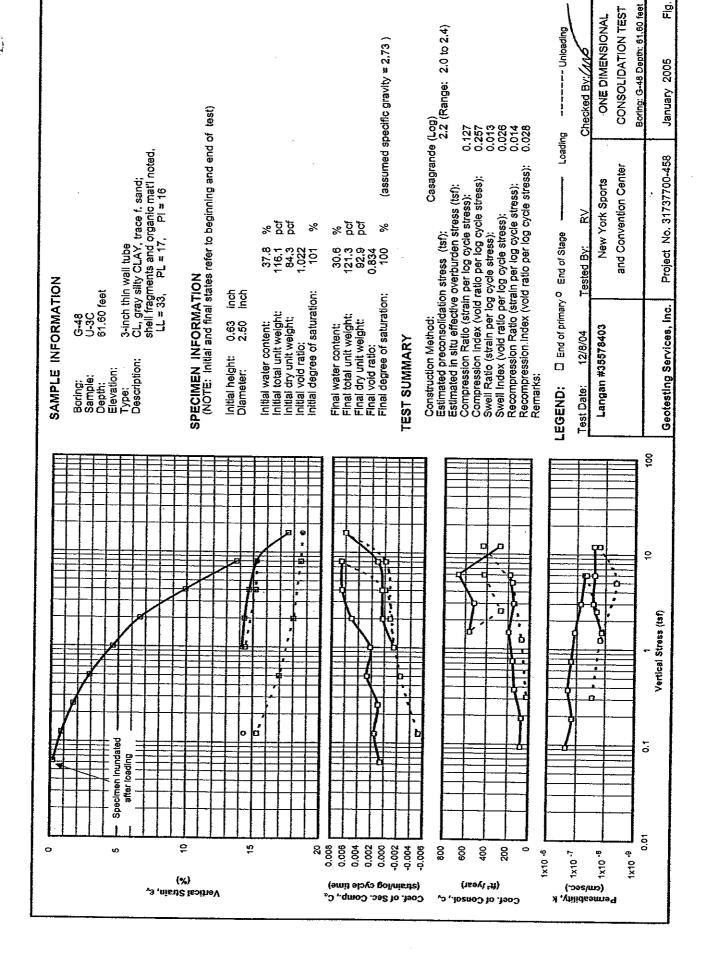




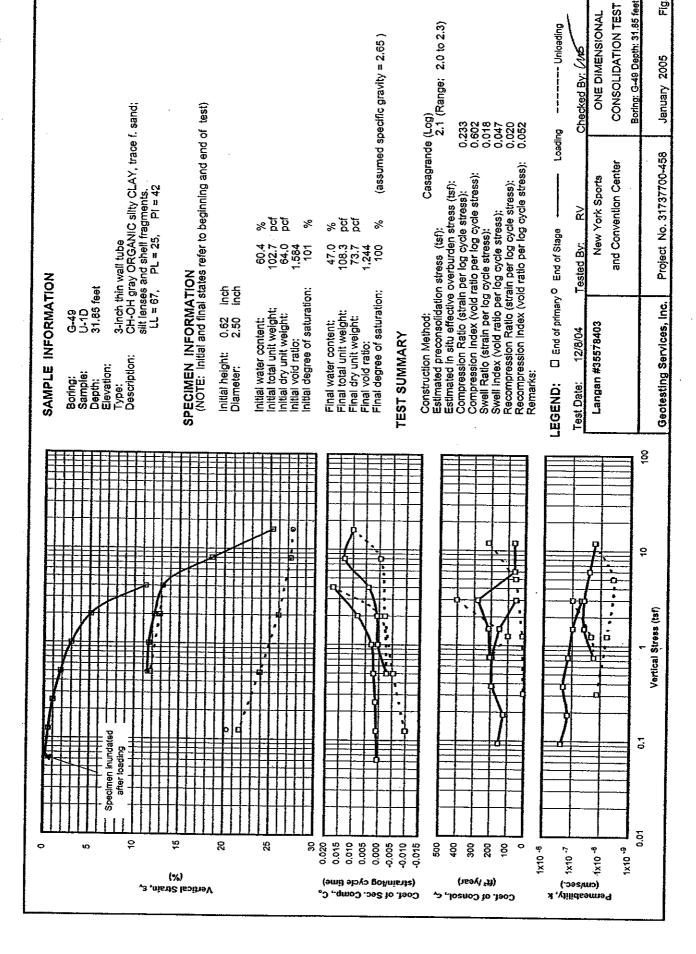




01/06/2005 Page 1 of 1



-	inch pof pof %		Dormoohility	o company	(cm/sec)	2.60E-07	4.90E-07	9.10E-07	6.07E-07	4,41E-07	2.90E-07	1,92E-07	1,47巨-07	3.06E-08	3,12E-08	7.30E-08	5.96E-08	6.01E-08	6.63E-08	3.37E-08	8.36E-09	3.28€-08	4.72E-08
	0.593 37.7 83.6 115.1 100 1.016 6.6	P1	Constrained	Modulus	(tsf)	21.56	13.01	21.32	29.52	53.35	65.18	65,39	91.55	306.24	463.63	424.48	546.40	644.31	250,79	569.51	887.59	138,52	15.73
	Final height: Final water content: Final dry density: Final total density: Final saturation: Final void ratio: Final strain:	ted. PL 22	ပ	d I	(strain/logt)	0,0005	0.0013	0.0011	0.0018	0,0022	0.0039	0.0069	0.0076	-0.0001	-0,0010	0.0003	0.0006	0.0026	0.0070	-0.0002	6000'0-	-0.0030	-0.0067
	eri Eri Eri Eri Eri Eri Eri Eri Eri Eri E	, trace f. sand; I fragments not LL 49	હે	•	(ft²/year)	186.14	211.17	643.01	593.76	780,56	626.94	415.93	445.28	310.77	479.60	1027.25	1079.08	1283.66	551.18	636.91	246.02	150.82	24.61
	inch p cf %	ECIMEN DESCRIPTION: CL, gray CLAY, trace f, sand; numerous shell fragments noted G LL 2.7 49	Finai	Void Ratio	•	1.152	1,136	1.125	1.103	1.080	1.040	0.963	0,867	0.870	0.889	0.887	0.875	0.845	0.765	0.769	0.785	0.815	0.868
	0.635 42.3 78.1 111.1 98 1.159	SCRIPTION:	Final	Strain	(%)	0.299	1,075	1.581	2.576	3.636	5.516	9.058	13.522	13,402	12.484	12.617	13.129	14,562	18.246	18.069	17.297	15.925	13.469
	Convention Center Initial height: Initial water content; Initial dry density: Initial total density; Initial saturation: Initial void ratio;	Specimen de	t100	Void Ratio	: •	1,153	1.142	1.130	1,11	1.091	1.058	0.892	0.888	0000	0.883	888.0	0.081	0.867	0.788	0.768	0.783	0.806	0.857
	rts and C	inch	100	Strain	(%)	0.780	0.770	/00°. 20°.	7.404 4.44	3.141	4.07.0	40	19,103	10,100	10.104	12,020	12,032	13,010	00.00	7 0, 100	7.407	10.348	3.800
	New York Spo 31737700-458 G-27 U-1C C04255 46.4 RV 12/09/2004	4 6.	d ₁₀₀	(1)	(Inch)	0.00	0.0049	0.0000	0.00	0.000	0.0297	0.0788	0.00 1.880.0	0.0810	0.0010	0.0 0.0 0.0 0.0	0 tac	0.0000	0.1749	0.110	0.100	0.1030	0000
	ECT: IG: IG: LE: A, feet:	EQUIPMENT; Load Frame No.: Ring Diameter:	Load	(+0+)	(181)	0,000 125	0.120	0.500	1.00	000	4 5 C	8.00	4.00	1.00	2.00	4.00	800	16.0	8.00	000	0.500	0.125) - -
	PROJECT PROJECT BORING: SAMPLE: TEST: DEPTH, f. BY:	EQUI Load Ring (•	Load	<u> </u>	٠ ،	ı m	4	, rc	မ	^	- α	ග	0	7	12	5	4	<u>1</u>	9	17	. 6	i.

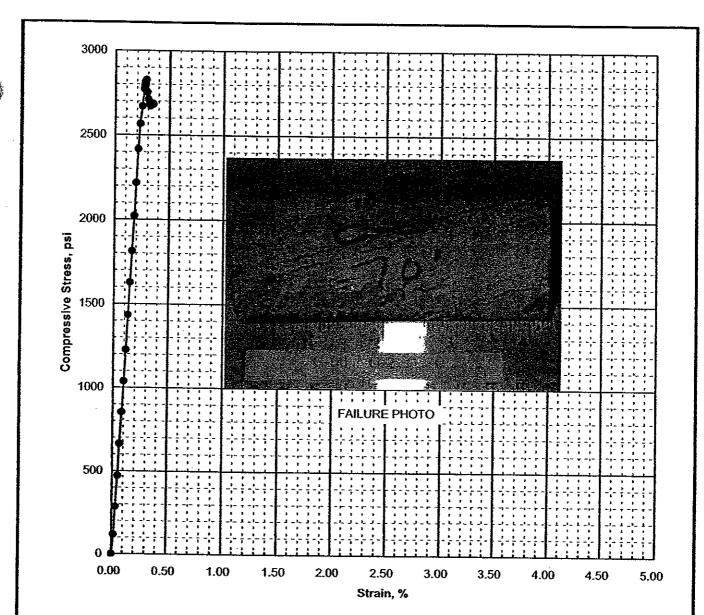

Coef. of Consol., c,

Permeability, k

inch pof % %			Permeability		(cm/sec)	4.05E-07	3.4.1E-07	1.56E-07	1.35E-07	7.10E-08	3,16E-08	7.16E-08	2.14E-08	1.33臣-08	4,64E-08	3.07E-08	1,84E-08	8.58E-09	4.93E-09	2.83E-09	5.81臣-09	6.71E-09
0.534 inch 51.2 % 69.8 pef 105.5 pef 10.344 14.3 %	_	53 - ES	Constrained		(tsf)	43.87	20.10 20.00	21.38	27,93	32.89	23,19	103.01	64.88	234.24	81,09	107.71	46.67	80,12	389,14	299.86	40.64	7.37
Final height: Final water content: Final dry density: Final total density: Final saturation: Final void ratio: Final strain:	PECIMEN DESCRIPTION: CH-OH, gray ORGANIC CLAY, trace f. sand	30	ပံ		(strain/logt)	0.0009	0.0000	0.0017	0.0026	0.0077	0.0167	-0.0006	-0.0033	0.0006	0.0012	0,0061	0.0141	0.0100	-0.0005	-0.0031	-0,0083	-0.0136
Final	RGANIC CLA	33 7	♂		(ft²/year)	107.30	93.44	110,39	125.18	77.39	24.27	244.34	46,12	103,33	124.82	109.64	28,51	22.78	63.54	28.08	7.83	1.64
inch Poc Sef	CH-OH, gray C	G 2,62	Final	Void Ratio	(-) 1 704	1712	1,699	1,674	1.632	1.557	1,359	1.368	1.422	1,406	B/9.	1,320	1,104	0.912	0.927	0.973	1.061	1.183
0.623 inch 66.2 % 60.0 pcf 99.6 pcf 100 % 1.728	SCRIPTION:		Final	Strain	(%)	0.569	1.068	1.984	3.511	6.276	13.527	13,185 24,000	1.4.20	1000	77.700	70.4.0	22.880	29,895	29,349	27.681	24,451	19.985
Sonvention Center Initial height: Initial water content: Initial dry density: Initial total density: Initial saturation: Initial void ratio:	SPECIMEN DE		t100	Vold Ratio	(-) 1 705	1,714	1.704	1,680	1.642	1.580	1.405	000.	5 4. 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	. t 9 0 4 7 9 0 6 4	 	2, 4	0/	0.800	0.924	0,965	1.041	1.148
ts and Convent Initial w Initial Initi		inch	t100	Strain	(%) 0.114	0,510	0.887	1.776	3,136	5,417	11.841	11 546	11,040	12.633	14.046	20.474	24.044	706.77	4/4/010	778.72	25.196	21.260
New York Sports and Convention Center 31737700-458 Initial heigl G-31 Initial water conter CO4252 Initial total densitial total CO4252 Initial total densitial Young RV Initial void rational conternational CO42004	64	2,5 ii	d ₁₀₀	(1-1)	(incn) 0.0007	0.0032	0.0055	0.0111	0.0195	0.0337	0.0/3/	0.0020	0.0700	0.0787	0.0873	0.1273	0 1740	0 0 0	0.100	0.1.4	0,1569	0.1324
PROJECT: PROJECT NO.: BORING: SAMPLE: TEST: DEPTH, feet: BY: TEST DATE:	EQUIPMENT: Load Frame No.:	Ring Diameter:	Load	(404)	(ISI) 0.050	0.090	0.190	0.380	0.760	- C.S.	5.00 5.00	0.380	0.760	1,51	3,00	00.9	12.0	: «	, t	- c	0.000	0.080
PROJECT PROJECT BORING: SAMPLE: TEST: DEPTH, f BY: TEST DA	EQUII Load	Ring [Load	<u>.</u>	7	თ .	4 6	n u) h	~ 00	თ	9	-	<u>.</u>	<u>ლ</u>	4	<u>τ</u>	<u>,</u>	. 1	- 0	<u>o</u>

inch pof pof	%		Permeability		(cm/sec)	6.57E-08	2.37E-07	1,46E-07	1.97E-07	1.54E-07	1.16E-07	7,31⊑-08	5.27E-08	4.67E-08	2.03E-08	1.32E-08	2.63E-08	2.42E-08	2.52E-08	1.58E-08	4.31E-09	1,49臣-08	2.85E-08
	0.834 9.3	<u>c</u> 6	Constrained	Modulus	(tst)	35,47	9.84	14.23	20.73	29.65	49.90	60.15	104.87	273.78	395.40	1273.05	591.47	831.17	332.11	831,16	1116.97	143,97	22,93
Final height: Final water content; Final dry density; Final total density; Final saturation:	rillal volu ratio; Final strain;	and; nat'l noted. PL 17	ပ်	ı	(strain/logt)	0.0005	0.0014	0.0009	0.0026	0.0022	0,0050	0.0065	0.0066	-0.0001	-0,0015	0.0003	0,0004	0.0011	0.0060	-0.0001	6000'0-	-0.0025	-0.0053
Final Final Final Final	Ĺ	LAY, trace f. s and organic m LL 33	હે		(ft²/year)	77.29	77.21	69.00	135,66	151.83	192.66	145,79	183.17	423,40	265.71	558,65	516,16	99'299	277.02	434.71	159.57	71.14	21.69
inch pof pof		ECIMEN DESCRIPTION: CL, gray silty CLAY, trace f. sand; shell fragments and organic mat'l noted. G LL PL 2.73 33	Final	Void Ratio	①	1,016	1,000	0.986	0.958	0.924	0.876	0.804	0.713	0,715	0.736	0.731	0.724	0.710	0.645	0.648	0.662	0.691	0.732
0.625 i 37.8 84.3 p 116.1 p 101	-	SCRIPTION:	Final	Strain	(%)	0.297	1.086	1.774	3.186	4.867	7.260	10.817	15.284	15,177	14.180	14,425	14,773	15.424	18,655	18.496	17.809	16.390	14,350
Convention Center Initial height: Initial water content; Initial dry density; Initial total density; Initial saturation; Initial void ratio;		SPECIMEN DE	1,00	Void Ratio	①	1,019	1.006	0.988	0.964	0.930	0.889	0,822	0.745	0.715	0.731	0.732	0.725	0.716	0.667	0.647	0.658	0.679	0.712
rts and Conve Initial Initial Initial	•	nch	4100	Strain	(%)	0.176	0.811	1,690	2.895	4,582	6.586	9.671	13,725	10,100	14,427	14,349	14.687	15,158	17,577	18.540	18.002	16.961	15,325
New York Sports and Convention Center 31737700-458 Initial water conter C-48 Initial water conter U-3C Initial total densities 61.6 Initial saturation RV Initial void rati	12/08/2004	5.5 Inch	d ₁₀₀	;	(lnch)	0,0011	0,0051	0.0106	0.0181	0.0286	0.0412	9.000	0.0838	9.00 0.00	0.0902	0.0887	0.0918	0.0040	0.1088	0.1158	0.1125	0.1060	00800
PROJECT: PROJECT NO.: BORING: SAMPLE: TEST: DEPTH, feet: BY:	TEST DATE:	EQUIPMENT: Load Frame No.: Ring Diameter:	Load	3	(tst)	0.063	0.125	0.250	0.50 0.00	00.0	0.5 7.00 7.00 7.00	00; 600	6.00	8 6		9 6	000	9,00	9.0	9.00	00.4	0.500 1.56	0.140
PROJECT PROJECT BORING: SAMPLE: TEST: DEPTH, ft	TEST	EQUI Load Ring (Load	Ś.	- (7 0	o -	4 M	n q	9 6	- α	σ	ć	<u> </u>	- ;	<u> </u>	2 5	<u> </u>	<u> </u>	<u> </u>	<u>- α</u>	<u>-</u>

inch pof pof %			remeability	(1,1)	(CIT/Sec)	2.41E-07	1 42E-07	2,03E-07	1,38E-07	9.67E-08	4.88E-08	9.76E-08	2.17E-08	1.75E-08	3.88E-08	3.87E-08	2.54E-08	1.58E-08	1.69臣-08	3.73⊑-09	6,05E-09	1.346-08
0.542 inch 47.0 % 73.7 pcf 108.3 pcf 100 % 1,244	sand; PI 42	Constrain	Participation of the state of t	spinogivi	(131)	19,02	26.21	28.89	42.71	47.26	32.70	124.27	139.55	354.62	166,11	216,77	72.91	121.28	388.21	447.01	73.59	16,79
Final height; Final water content; Final dry density; Final total density; Final saturation; Final void ratio;	CLAY, trace f. ts. PL 25	c	ਰ)	(etroip/logt)	0,0004	0,0008	0.0012	0.0019	0.0028	0.0082	0.0175	-0.0004	-0.0028	0.0004	0.0008	0.0041	0.0132	0.0101	-0.0004	-0.0021	-0.0053	-0.0099
E III III III III III III III III III I	CH-OH gray ORGANIC silty C silt lenses and shell fragments G LL 2.65 67	ď	•	(ff2/vear)	260.21	151.88	122.97	194.29	195.32	151,42	52,85	401.95	100.43	205.75	213.47	278.08	61.30	63.38	217.24	55.34	14.76	7,46
inch pcf %	CH-OH gray C slit lenses and G 2.65	ir.	Void Ratio) (•)	1.577	1.565	1.554	1.527	1,496	1.423	1.244	1.254	1.287	1.281	1,263	1.221	1.058	0.873	0.881	0.924	0.987	1.058
0.624 inch 60.4 % 64.0 pcf 102.7 pcf 101 %	SCRIPTION:	Final la	Strain	(%)	0.253	0.715	1,163	2.191	3.411	6.213	13.149	12,770	11,487	11.716	12.410	14.023	20.336	27.526	27.215	25.547	23.111	20.341
Sonvention Center initial height: Initial water content: Initial dry density: Initial total density: Initial saturation: Initial void ratio:	SPECIMEN DESCRIPTION: CH-OH gray ORGANIC silty CLAY, trace f. sand; silt lenses and shell fragments. G LL PL 2.65 67 25	1,00	Void Ratio	•	1.579	1,571	1.558	1.536	1.506	1,451	1.293	1,251	1.279	1,283	107.1	1,743	201.1	0,831	0.878	0.913	0.965	1.023
ts and (Inch	t 100	Strain	(%)	0.181	0.510	0.987	1,852	8,023 4,023	0.130 0.130	1.205	14.003	1.780	10.048	13 473		00.000	00.400	71.01.7	0.000	23,930	21./03
New York Sports and Convention Center 31737700-458 initial water conter G-49 initial water conter CO4251 initial total densitial 31.85 initial saturation RV initial void rational and a saturation RV initial saturation RV	6 2.5 Inch	d ₁₀₀		(inch)	0,0011	0.0032	0.0062	0.0176	0.0	0,0321	0.0703	0.000	0.0700	0.0765	0.0822	0.0020	0.1.00	0.100	0.100	0.102	10 C	0,1000
PROJECT: PROJECT NO.: BORING: SAMPLE: TEST: DEPTH, feet: BY: TEST DATE:	EQUIPMENT: Load Frame No.: Ring Diameter:	Pool		(tsf)	0.063	0,120	0.450	0.300		2.4 0.50	200	0 500	00.1	2.00	4.00	000	16.0	ς α α	0000	0.500	0.00	
PROJECT PROJECT BORING: SAMPLE: TEST: DEPTH, fi BY: TEST DA'	EQU Load Ring		Load	Š	 c	4 0) ~	r vo	o c	^	- ω	, O	, 6	-	12	13	4	r.	τ	17	ξ.	<u> </u>


Langan #35578403 New York Sports and Convention Center SUMMARY OF ROCK TESTING

BORING NO.	RUN NO.	DEPTH (ft)	WATER CONTENT (%)	TOTAL UNIT WGT. (pcf)	DRY UNIT WGT.	UNCONFINED COMPRESSIVE STRENGTH	FAILURE
G-6	C-2	70	0.2	171	(pcf) 171	(psi)	(%)
G-7	C-3	61	0.1	174		2830	0.28
G-7	C-3 (2)	61	0.0	173	174 173	5580 3050	0.21
G-15	C-3	52	0.1	173	173	3690	0.19
G-27	C-4A	156	0.2	165	165	17960	0.19 0.40
G-27	C-4B	156	0.1	169	169	3830	0.40
G-30	C-2	60	0.1	172	172	4190	0.19
G-35	C-3	98	0.3	176	176	7040	0.30
G-35	C-9	128	0.1	172	172	7190	0.21
G-48	C-2	86	0.1	172	172	2810	0.14
G-62	C-2A	97	0.1	162	162	18300	0.50
G-62	C-2B	97	0.2	164	164	13130	0.39
G-63	C-4	100	0.2	169	169	3390	0.16
						·	

Prepared by: RV

Reviewed by: 6

Date: 01/06/2005

Specimen Information

Water	Wet Unit	Dry Unit	Length	Diameter
Content (%)	Weight (pcf)	Weight (pcf)	(inch)	(inch)
0.17	171	171	4.291	1.981

gray mica schist

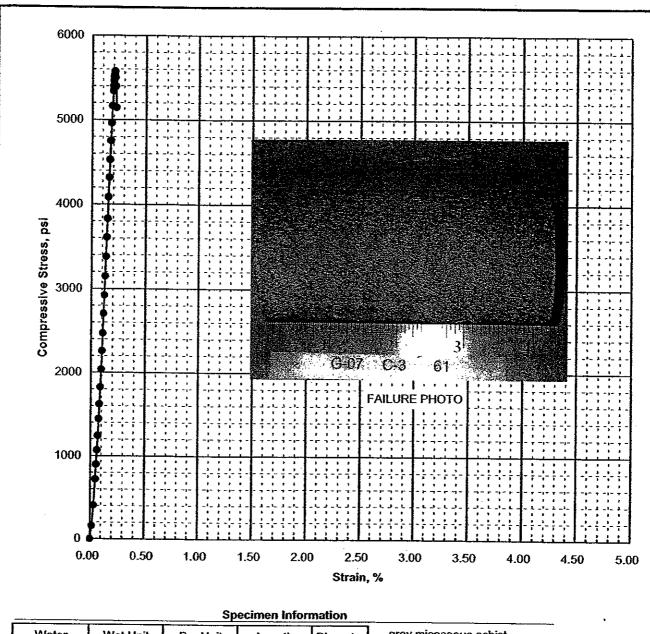
Specimen meets ASTM D4543 shape tolerances

Test Summary

Tested by: DT

Test Date: Dec-21-04

Strain Rate	Strain to	qu
(%/min)	Peak (%)	(psi)
0.17	0.28	2830


Project No. 31737700-458

Langan #35578403 New York Sports and Convention Center

COMPRESSIVE STRESS VS STRAIN UNCONFINED COMPRESSIVE STRENGTH TEST

Geotesting Services, Inc.

Boring: G-6 Sample: C-2 Depth 70 ft.

Water Wet Unit		Dry Unit	Length	Diameter
Content (%)	Weight (pcf)	Weight (pcf)	(inch)	(inch)
0.05	174	174	4.269	2.000

gray micaceous schist

Specimen meets ASTM D4543 shape tolerances

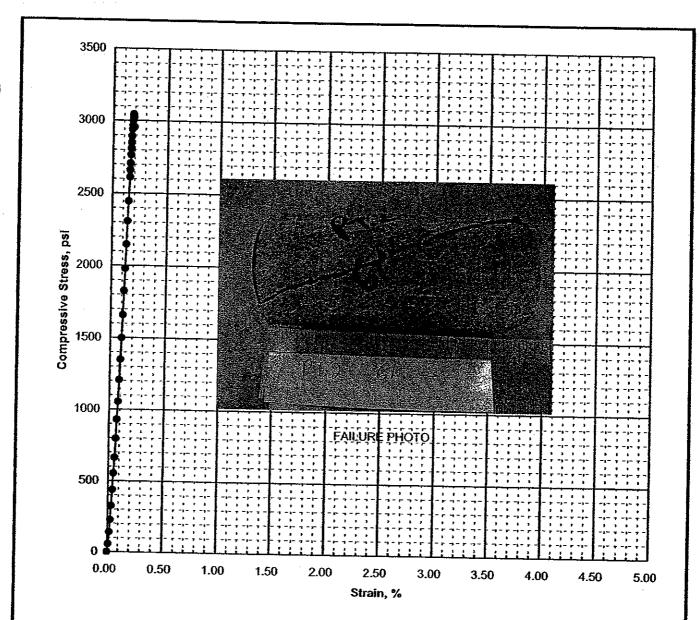
Test Summary

Tested by: DT

Test Date: Dec-21-04

		<u> </u>
Strain Rate	Strain to	\mathbf{q}_{o}
(%/min)	Peak (%)	(psi)
0.15	0.21	5580

Project No.
31737700-458


Langan #35578403

New York Sports and
Convention Center

COMPRESSIVE STRESS VS STRAIN UNCONFINED COMPRESSIVE STRENGTH TEST

> Boring: G-7 Sample: C-3 Depth 61 ft.

Geotesting Services, Inc.

Specimen Information

Water	Wet Unit	Dry Unit		Diameter
Content (%)	Weight (pcf)	Weight (pcf)	(inch)	(inch)
0.02	173	173	4.214	2.000

gray fine grained gneiss

Specimen meets ASTM D4543 shape tolerances

Test Summary

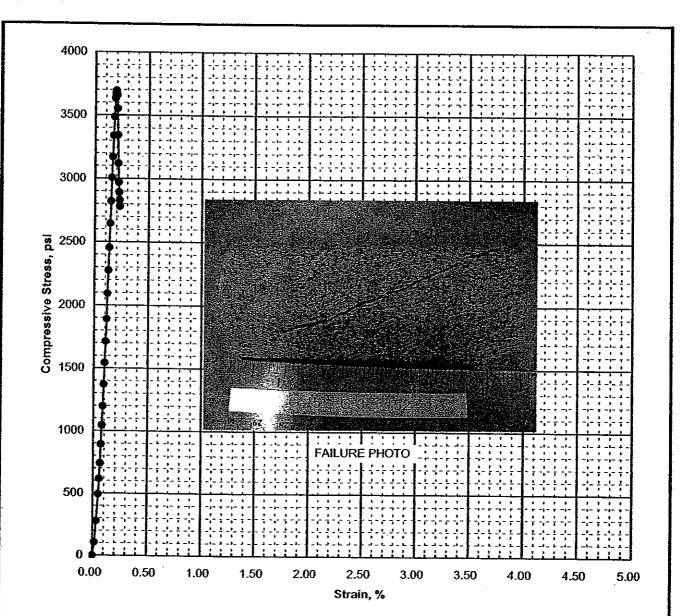
Tested by: DT

Test Date: Dec-21-04

Tost odininary				
Strain Rate	Strain to	q_u		
(%/min)	Peak (%)	(psi)		
0.16	0.19	3050		

Project No.

31737700-458


Langan #35578403

New York Sports and
Convention Center

COMPRESSIVE STRESS VS STRAIN UNCONFINED COMPRESSIVE STRENGTH TEST

> Boring: G-7 Sample: C-3 (2) Depth 61 ft.

Geotesting Services, Inc.

Water	Wet Unit	Dry Unit	Length	Diameter
Content (%)	Weight (pcf)	Weight (pcf)	(inch)	(inch)
0.10	173	173	4.355	1.975

gray granitiferous gneiss

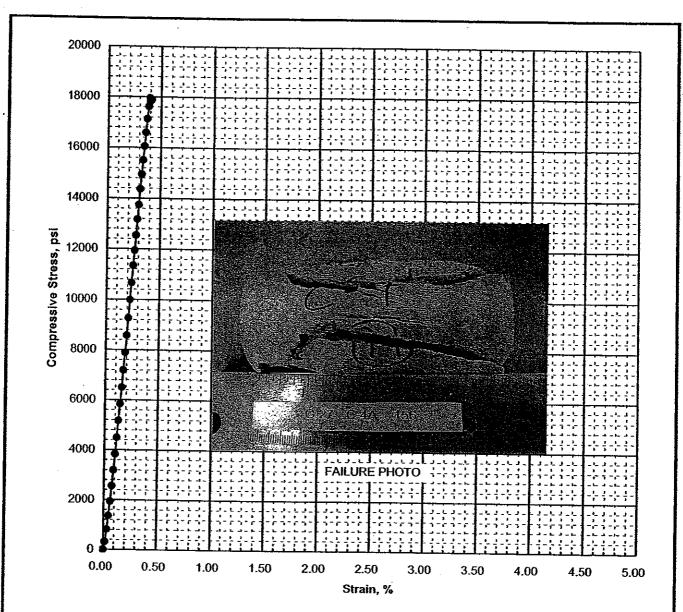
Specimen does not meet ASTM D4543 shape tolerances

Tested by: DT

Test Date: Dec-21-04

Strain Rate	Strain to	q _u
(%/min)	Peak (%)	(psi)
0.16	0.19	3690

Test Summary


Project No. 31737700-458

Langan #35578403 New York Sports and Convention Center

COMPRESSIVE STRESS VS STRAIN UNCONFINED COMPRESSIVE STRENGTH TEST

> Boring: G-15 Sample: C-3 Depth 52 ft.

Geotesting Services, Inc.

Water	Wet Unit	Dry Unit	Length	Diameter
Content (%)	Weight (pcf)	Weight (pcf)	(inch)	(inch)
0.21	165	165	4.261	1.982

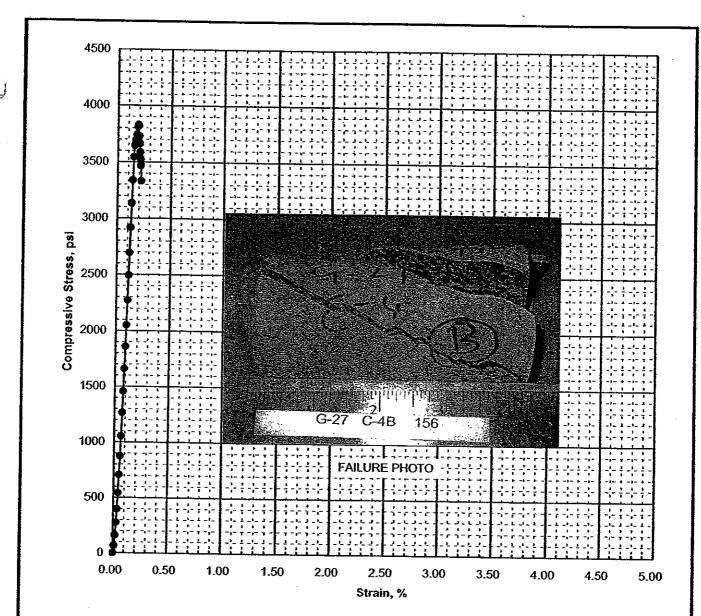
white fine grained schist

Specimen meets ASTM D4543 shape tolerances

Test Summary

Tested by: DT
Test Date: Dec-21-04

Strain Rate	Strain to	í
	i	$q_{\mathbf{u}}$
(%/min)	Peak (%)	(psi)
0.12	0.40	17960


Project No. 31737700-458

Langan #35578403 New York Sports and Convention Center

COMPRESSIVE STRESS VS STRAIN UNCONFINED COMPRESSIVE STRENGTH TEST

Geotesting Services, Inc.

Boring: G-27 Sample: C-4A Depth 156 ft.

Water	Wet Unit	Dry Unit		Diameter
Content (%)	Weight (pcf)	Weight (pcf)	(inch)	(inch)
0.12	169	16 9	4.142	1.984

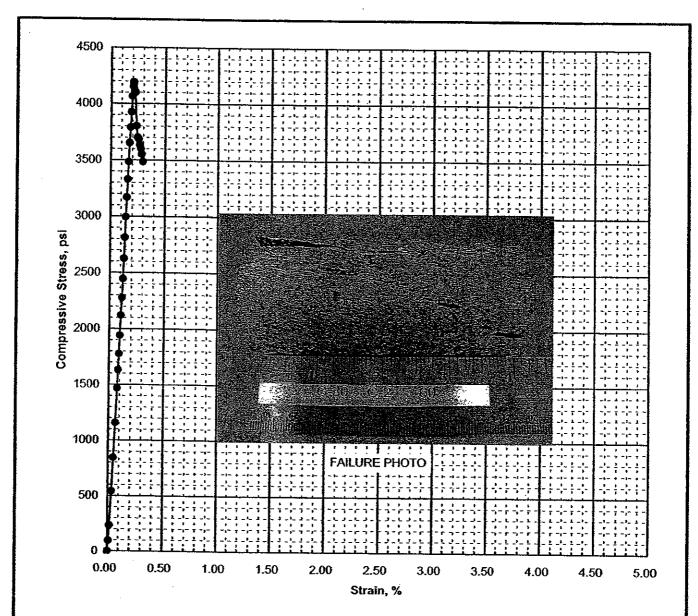
gray micaceous schist

Specimen meets ASTM D4543 shape tolerances

Test Summary

Tested by: DT
Test Date: Dec-21-04

	Strain Rate	Strain to	զ _ս
	(%/min)	Peak (%)	(psi)
ļ	0.16	0.19	3830


Project No. 31737700-458

Langan #35578403 New York Sports and Convention Center

COMPRESSIVE STRESS VS STRAIN UNCONFINED COMPRESSIVE STRENGTH TEST

Boring: G-27 Sample: C-4B Depth 156 ft.

Geotesting Services, Inc.

Water	Wet Unit	Dry Unit	Length	Diameter
Content (%)	Weight (pcf)	Weight (pcf)	(inch)	(inch)
0.09	172	172	4.204	1.974

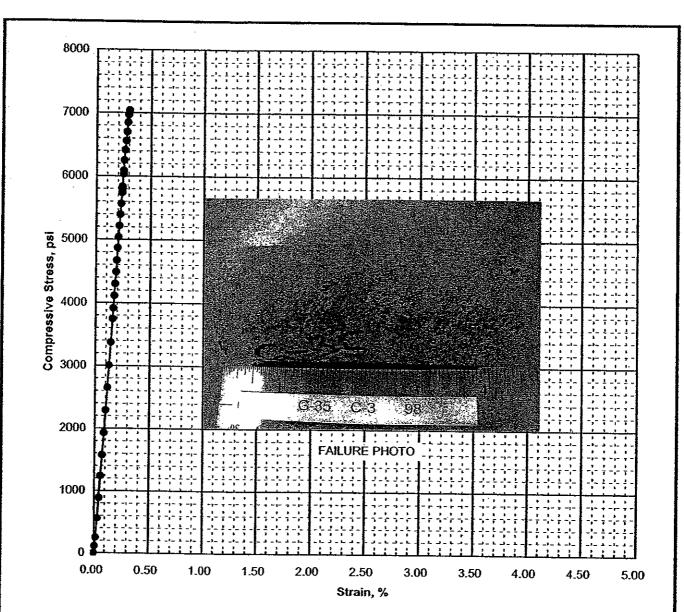
gray granitiferous gneiss

Specimen meets ASTM D4543 shape tolerances

Test Summary

Tested by: DT

Test Date: Dec-21-04


1001 00111111111					
Strain Rate	Strain to	$\mathbf{q}_{\mathbf{o}}$			
(%/min)	Peak (%)	(psi)			
0.17	0.21	4190			

Project No. 31737700-458 Langan #35578403 New York Sports and Convention Center

COMPRESSIVE STRESS VS STRAIN UNCONFINED COMPRESSIVE STRENGTH TEST

Geotesting Services, Inc.

Boring: G-30 Sample: C-2 Depth 60 ft.

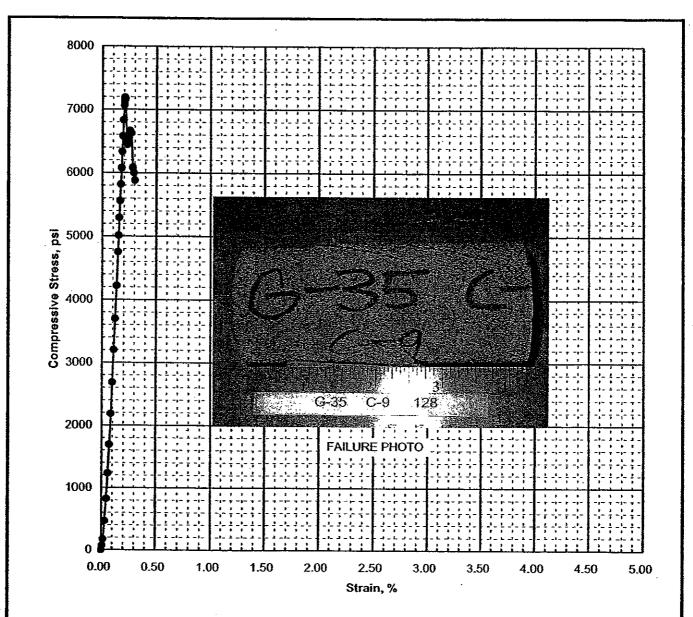
Water	Wet Unit	Dry Unit	Length	Diameter
Content (%)	Weight (pcf)	Weight (pcf)	(inch)	(inch)
0.31	176	176	4.329	1.981

blue-gray gneiss

Specimen meets ASTM D4543 shape tolerances

Test Summary

Tested by: DT
Test Date: Dec-21-04


0.14	0.30	7040
Strain Rate (%/min)	Strain to Peak (%)	(psi)

Project No. 31737700-458 Langan #35578403 New York Sports and Convention Center

COMPRESSIVE STRESS VS STRAIN UNCONFINED COMPRESSIVE STRENGTH TEST

> Boring: G-35 Sample: C-3 Depth 98 ft.

Geotesting Services, Inc.

Water	Wet Unit	Dry Unit	Length	Diameter
Content (%)	Weight (pcf)	Weight (pcf)	(inch)	(inch)
0.08	172	172	4.320	1.986

gray granitiferous gneiss

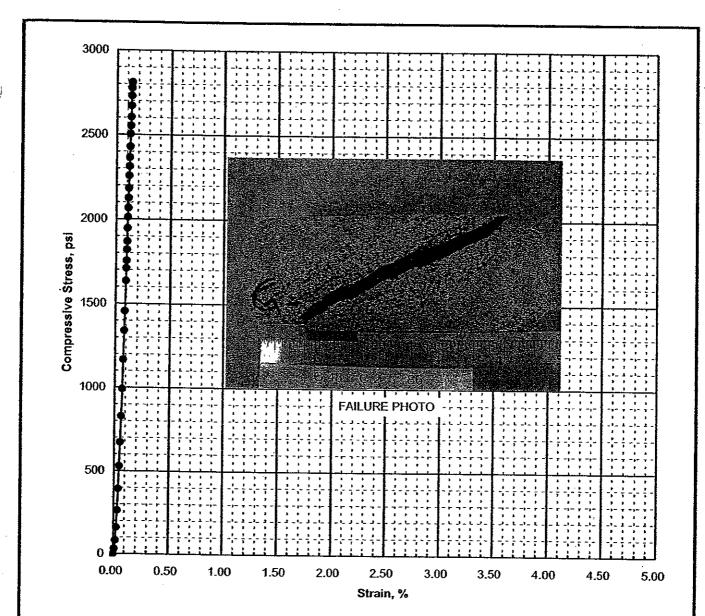
Specimen meets ASTM D4543 shape tolerances

Test Summary

Tested by: DT

Test Date: Dec-21-04

Strain Rate	Strain to	q _u
(%/min)	Peak (%)	(psi)
0.15	0.21	7190


Project No. 31737700-458

Langan #35578403 New York Sports and Convention Center

COMPRESSIVE STRESS VS STRAIN UNCONFINED COMPRESSIVE STRENGTH TEST

Geotesting Services, Inc.

Boring: G-35 Sample: C-9 Depth 128 ft.

Water	Wet Unit	Dry Unit	Length	Diameter
Content (%)	Weight (pcf)	Weight (pcf)	(inch)	(inch)
0.10	172	172	4.451	1.988

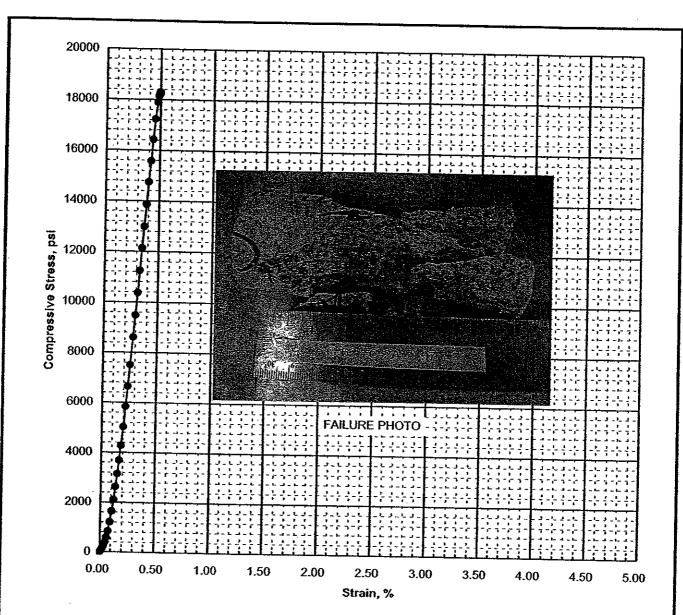
gray granitiferous gneiss

Specimen meets ASTM D4543 shape tolerances

Test Summary

Tested by: DT
Test Date: Dec-21-04

Strain Rate	Strain to	$\mathbf{q}_{\mathbf{v}}$		
(%/min)	Peak (%)	(psi)		
0.15	0.14	2810		


Project No. 31737700-458

Langan #35578403 New York Sports and Convention Center

COMPRESSIVE STRESS VS STRAIN UNCONFINED COMPRESSIVE STRENGTH TEST

Geotesting Services, Inc.

Boring: G-48 Sample: C-2 Depth 86 ft.

Water	Wet Unit	Dry Unit		Diameter
Content (%)	Weight (pcf)	Weight (pcf)	(inch)	(inch)
0.12	162	162	4.276	1.989

pink pegmatite

Specimen meets ASTM D4543 shape tolerances

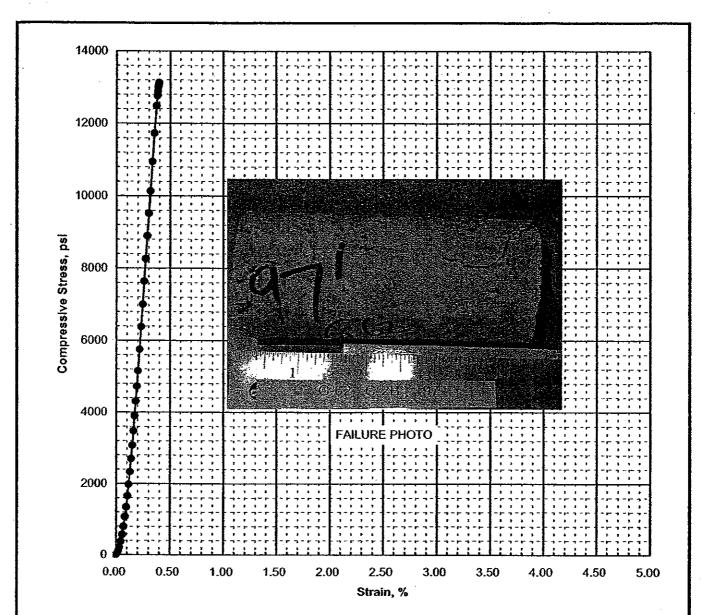
Test Summary

Tested by: DT

Test Date: Dec-21-04

Strain Rate	Strain to	q_{υ}								
(%/min)	Peak (%)	(psi)								
0.13	0.50	18300								

Project No. 31737700-458


Langan #35578403 New York Sports and Convention Center

UNCONFINED COMPRESSIVE STRENGTH TEST

Geotesting Services, Inc.

Boring: G-62 Sample: C-2A Depth 97 ft.

COMPRESSIVE STRESS VS STRAIN

Water	Wet Unit	Dry Unit	Length	Diameter
Content (%)	Weight (pcf)	Weight (pcf)	(inch)	(inch)
0.16	164	164	4.329	1.989

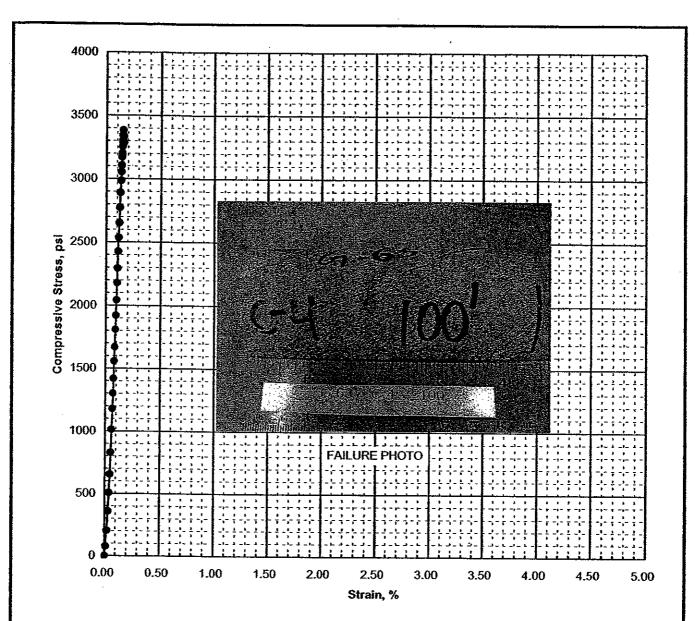
white-gray pegmatite

Specimen meets ASTM D4543 shape tolerances

Test Summary

Tested by: DT
Test Date: Dec-21-04

Strain Rate	Strain to	$\mathbf{q}_{\mathbf{u}}$
(%/min)	Peak (%)	(psi)
0.13	0.39	13130


Project No. 31737700-458 Langan #35578403 New York Sports and Convention Center

COMPRESSIVE STRESS VS STRAIN UNCONFINED COMPRESSIVE STRENGTH TEST

Geotesting Services, Inc.

Boring: G-62 Sample: C-2B Depth 97 ft.

UCG62-C2B-97.xls

Water	Wet Unit	Dry Unit	Length	Diameter
Content (%)	Weight (pcf)	Weight (pcf)	(inch)	(inch)
0.18	169	169	4.364	1.985

gray gneiss

Specimen meets ASTM D4543 shape tolerances

Test Summary

Tested by: DT

Test Date: Dec-21-04

Strain Rate	Strain to	qυ									
(%/min)	Peak (%)	(psi)									
0.15	0.16	3390									

Langan #35578403 Project No. New York Sports and 31737700-458 **Convention Center**

COMPRESSIVE STRESS VS STRAIN UNCONFINED COMPRESSIVE STRENGTH TEST

> Boring: G-63 Sample: C-4 Depth 100 ft.

Geotesting Services, Inc.

APPENDIX D Borings by Others (Various)

		₽ F	Parsons									BORING NUMBER: CD-15					
		_			erhoff BORING LOG							SHEET I	NUMBER	R:1_	of	2	
≣				ade			ם	OI	71114	G L		G					
	100 YEAR) s _®	ου	ıgla	ıs,	Inc.							PROJEC	T NUMB	ER: 265 5	3A	
					•	line Ext	ension	1					LOCATION: LIRR (West Side Yard)				
	LOCATION: Manhattan												COORD. N: 213,874.0 E: 983,206.0				
	CLIENT: MTA											STN. NC			FFSET:		
	CONTRACTOR: Jersey Boring & Drilling													E ELEV.	: 108.0 fe	eet	
	DRILLER: M. Blejuwas												DATUM:				
I	INSPECTOR: A. Zabala DRILLING METHOD: Rotary Wash) A T)/02 T	INAE. 0.04	0
RIG T					ΚŪ	tary was	11							DATE: 6/2 DATE: 6/6		IME: 8:0 0 IME: 4:0 0	
1110 1			asir		Sn	lit Spoon Sh	elby Ti	ıbe F	Piston	Gra	b C	ore Barrel	THAIGHT		NDWATER		рш
Type/S	Symbo		HW		ОР	S	U		PN	G		C			Water	Casing	Hole
I.D.	эуппос	" -	4"			1.375"	2.938"	_	.938"		7	2"	D-4-	T:	Depth	Depth	Depth
							3"					3"	Date	Time	(ft)	(ft)	(ft)
O.D.			4.5			2"			3"			3"					
Length						24"	24"		24"								
Hamm		-	00 1			140 lbs		Rod Si			NW						
Hamm	er Fa	II	24'	'		30"	I.D). (O.D.)	2.9	37" (2	938")					
					SAI	MPLE		SOIL	(Blows	/6 in.)							
et)	90	££	┢				0.10	0/40	40/40	40/04	REC.	1					
¥) -		(Blows/ft) (Min./ft)				et)	0/6	6/12	12/18	18/24	(in.)	J FII	ELD CLAS	SSIFICAT	ΊΟΝ ΔΝΙ	REMAR	RKS
DEPTH (feet)	GRAPHIC LOG	<u>ლ</u> ⊴ ეტ	1	띪	7	DEPTH (feet)		(CORING	3		'"	LLD OLAC		ION AND		VIVO
	GR.	CASING (CORING	TYPE	NUMBER	SYMBOL	l E	RUN REC. REC.		L>4" RQD [Depth						
					λ		(in.)	(in.)	%	(in.)	%	Elev.					
	***												Hand Augered Material: 0' to 1' - Concrete				
													1' to 4' - Lig	to 4' - Light brown, yellowish Sand with little			
	***		1			0.0.60		1		.			Gravel 4' to 6' - Dar	k brown co	parse to fine	e grained Sa	nd .
<u> </u>	**************************************		1			0.0 - 6.0		Hand		Auger			some coarse	to medium	Gravel, tra	ce organics	
Γ ₋	 		1														•
- 5	* L		1														_
	* 4		1										Brown, c-f S		e m-f Grave	el, little Silt	, very
-			S	1		6.0 - 8.0	WOH	WOH	WOH	1	12		loose, moist				
-	₩		1														-
-	***		1														
- 10			┨										S-2A (10") s	same as abo	ve.		_
F	\$ 45		S	2		10.0 - 12.0	2	3	1	2	20		S-2B (10") I Gravel, sma	Dark brown	to black, m		
-	1. 41		1										Giavei, silia	ii pieces oi	orick, organ	iics, very ic	oose.
-	**************************************		-														
F	****		┨														-
_ 15			-										S-3A (12") Brown, black and li trace c-f Gravel, little Silty Clay		ok and light	graan a f S	AND -
5 -	*		S	3		15.0 - 17.0	4	3	3	6	20				ilty Clay, lo	ose.	
}_	EDV C		1									L	S-3B (8") Li	ight gray SI	LT, trace m	<u>-f Sand, loc</u>	ose.
<u> </u>																	
			1														
20																	
20	- 20			20.0 - 22.0	2	2	2	,	10		Dark brown moist.	Silty CLAY	Y, little m-f	Sand, high	PI,		
<u>.</u>			S	4		20.0 - 22.0		2	2	3	19		111015t.				
			1														•
			1														•
			1									F	S-5A (18") S	Same as abo	ove.		
			-				•					Bori	ing No.	CD-15	Shee	t 1 (of 2

			<u></u> P	ars	son	S								BORING NUMBER: CD-15				
					cke		off	R	∩E	RIN	G I	\mathbf{O}	G	SHEET NUMBER: 2 of 2				
					de		Ino	D	OI'	contir	nued)	_0	9					
	55015	100 YEAR	- 0		_		Inc.							PROJECT NUMBER: 26553A				
						-	line Exte	ension	1					CONTRACTOR: Jersey Boring & Drilling				
LOCATION: Manhattan														DRILLER: M. Blejuwas				
	CLIEN.	T: M ′	TA											INSPECTOR: A. Zabala				
		40			;	SAI	MPLE		SOIL	(Blows	/6 in.)							
	feet)	GRAPHIC LOG	/s/ft)						DEPTH (feet)	0/6	6/12	12/18	18/24	REC.				
	DEPTH (feet)	PHIC	(Blows/ft) (Min./ft)	Щ		<u>~</u>	_					(in.)	FIE	ELD CLASSIFICATION AND REMARKS				
	DEF	GRA	CASING (CORING		NUMBER	SYMBOL	H_C	CORING				DOD	Donath					
			800	TYPE		S		RUN (in.)	REC. (in.)	REC.	L>4" (in.)	RQD %	Depth Elev.					
	-			S	5		24.0 - 26.0	3	2	3	4	24		S-5B (6") Gray m-f SAND, some Silt, loose, dry.				
	_	م ت ز		S	6		26.0 - 28.0	2	3	1	6	22		S-6A (11") Gray m-f SAND, some Silt, very loose, trace Gravel, very loose. S-6B (11") Reddish SILT, m-f Sand, very loose, dry,				
	_	300											_2 <u>8</u> .5\	5-66 (11) Reddish StL1, m-1 Sand, very loose, dry				
	20												//	Roller bit refusal and begin coring at 28.5'.				
	- 30 -												<u> </u>	Koner bit refusar and begin coring at 28.3.				
	-																	
	-																	
	- 0-																	
	- 35 -													_				
	_																	
	-																	
	_																	
	 40													-				
	-																	
	_																	
	 45													-				
	_																	
	-																	
	-																	
90/8	 50													-				
MAINLI~1.GLB 8/18/06	 																	
.l~1.G																		
MAIN	-																	
7NE.GPJ														-				
NO_7NE	-																	
OG NC	 																	
SORING LOG																		
S S	I	1		Ī				l										

CD-15

Boring No.

Sheet 2

of **2**

		Pars	ons				BORING	NUM	BER	:: CD-1	5			
	₹≣	\overline 🖺 Brind	kerho	off		CORING LOG	SHEET N	NUMB	ER:	1	0	of	4	
		Quad				CORING LOG								
-	10 YEA	Doug	glas, I	nc.			PROJEC	T NU	MBE	R: 265	53A			
PROJ	ECT:	No 7 Sul	bway	line l	Extens	sion	LOCATION: LIRR (West Side Yard)							
		l: Manha			COORD. N: 213,874.0 E: 983,206.0									
CLIEN	NT: M	ITA					STN. NO				OFFSE	ΞT:		
CONT	RAC	TOR: Jer	sey B	Boring	g & D1	rilling	SURFAC	E ELI	EV.:	108.0 f	eet			
DRILL	ER:	M. Blejuv	was				DATUM:							
INSPE	ECTC)R: A. Z a	bala											
DRILL	ING	METHOD): Dia	mond	l drilli	ng with double core barrel	START [DATE:	6/2/	03	ΓIME:	8:00	am	
RIG T	YPE:	CME 75	,				FINISH [DATE:	6/6/	03	ΓIME:	4:00	pm	
								GR	OUNI	DWATER	R DATA			
CORE	BAI	RREL DA	TA:		NOT	ES:				Water	Cas		Hole	
TYPE	: NX						Date	Tim	e	Depth (ft)	Dep (ft		Depth (ft)	
CORE	SIZ	E: 2"												
O.D.:	3"													
I.D.: 2	2"													
CASIN	NG S	IZE: 4" (4.	.5")								+			
	Jin)									DIS	CONTI	NUITY	DATA	
et)	(ff/min)	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)		DESCRIPTION AND REMARK (Lithology, Structure, Weatherin		Ŋ	王					
DEPTH (feet)	RATE	몽붑	R₹	<u>}</u>	(%)	Continuity, Strength, Color, Grain	Size)	WEATHERING	STRENGTH	ANGLE (deg)			DEPTH (feet)	
	X	E R DE	OVE) SE	RQD	* - Denotes discontinuity along foli	ation	I	R	Щ	느	a	<u>;</u>	
B		S O	SEC	Ö	"			WE/	ST	NGI				
	CORING	04	"	LE.		MB - Denotes mechanical brea	ĸ			⋖				
						Dark gray SCHIST, slightly weathered, s fractured, strong rock, coarse to fine grain	lightly	II	R4	40	1.5	2	28.6	
- 30		C-1	42	100	69	Intercalated with light gray fine-medium	grained			70 30	1.5 1.5	2 2	28.7 29.1	
-		28.5 - 32.0		100		GRANOFELS, faintly foliated (about 80 Granofels)	% of rock is			35 *50	1.5 1.5	2	29.3 29.6	
-						-Yellow rusted joints @ 28.7' (reddish), 2	27.3' and		D.4	60 _{MB}	-	-	30 -	
F						29.6'; 28.5' - 28.6'- quartz vein. No wall contact at 31.8'	1	II	R4	30 _{MB} 55	1.5	2	30.5 31.1	
L						Intercalated dark gray SCHIST and light	gray fine			40	4	1	31.3	
- 35						fine-medium grained, light gray GRANC slightly weathered, sound, wide fracture	spacing,			$0_{ m MB} \\ 90$	1.5	- 1	31.8 31.9-	
						strong rock, coarse to fine grained				0_{MR}	Roller	Bit	32	
		C-2	112	100	96	-Rusty coated joint walls: 34.2' - reddish joint, 36.5' - green with Pyrite joint, 37.9'	- reddish			*40 _{MB} *55 _{MB}	-	-	32.8 33.5	
		32.0 - 41.3				joint				25	3	1	34.2	
 										$^{*40}_{MB}$	3.0	- 1	35.1 36.2	
F										*60	1.5	1	36.6	
- 40										45 _{MB} *60	1.5	2	36.9_ 37.3	
-										60-10	1.5	2	37.9	
						Gray SCHIST, slightly weathered, sound to wide fracture spacing, strong rock, coa	, moderate	II	R4	30 *60	1.5 1.5	1 1	39.9 40.5	
- 1/21/0						grained				*60 _{MB}	-	-	40.9	
GLB 8						Except 43.8' to 45.4", light gray-white PI -Garnets 1/8" along the run	EGMATTE			35 _{MB} *70	1.5	- 1	41.3	
ণ - 45						- Reddish coated joint walls at 42.0', 43.7	", 47.2',			40	3	2	42 43.1	
		C-3				48.3'				$40_{\mathrm{MB}} \\ 90_{\mathrm{MB}}$	-	_	43.3	
Ž		41.3 - 51.2	119	100	97					$\begin{array}{c} 60_{\mathrm{MB}} \\ 0 \end{array}$	1.5	1.0	43.5 43.7	
E.G.										50_{MB}	-	-	43.8	
NO_7NE.GPJ MAINL										$\begin{array}{c} 0_{\mathrm{MB}} \\ 20 \end{array}$	1.5	2	44.5 45.4	
N										20	1.5	2	45.5	
<u>ූ</u> – 50										*50 _{MB} *40 _{MB}	-	- -	46 - 46.7	
NA P						Gray SCHIST, slightly weathered, sound	wide to	II	R4	*40 55	1.5 1.5	1.0 1.0	47.2 48.3	
ე_ -						very wide fracture spacing, strong rock, or	coarse to			*70 _{MB}	-	1.0	49.1	
ġŀ						fine grained		I		*70 _{MB}	-	-	49.5 -	

Boring No.

CD-15

Sheet 1

of **4**

	Parsons Brinckerhoff
	Quade &
100 YEARS ®	Douglas, Inc.

CORING LOG (continued)

BORING NUMBER: CD-15 SHEET NUMBER: 2 of 4

PROJECT NUMBER: 26553A

PROJECT: No 7 Subway line Extension

LOCATION: Manhattan

CLIENT: MTA

CONTRACTOR: Jersey Boring & Drilling

DRILLER: M. Blejuwas

- 55 C-4	CLIEN	IT: M	ITA				INSPE	CTOR:	A. Za	bala			
Section Figure		min)	-: <u>-</u>		_		DESCRIPTION AND DEMARKS			DIS	CONTI	NUITY	DATA
- 55 - 61.2 - 61.2 120 100	DEPTH (feet)	RATE	CORE RUN NO AND DEPTH (ft	RECOVERY (in	RECOVERY (%	RQD (%)	(Lithology, Structure, Weathering, Continuity, Strength, Color, Grain Size) * - Denotes discontinuity along foliation	WEATHERING	STRENGTH	ANGLE (deg)	Jr	Ja	DEPTH (feet)
Gray SCHIST, slightly weathered, sound, wide fracture spacing, strong rock, coarse to fine grained. C-5	- - -		C-4 51.2 - 61.2	120	100	100	-Garnets 1/8" along the run			$ \begin{array}{c} 40_{\mathrm{MB}} \\ 40 \\ 0 \\ *70_{\mathrm{MB}} \\ 0_{\mathrm{MB}} \\ *60_{\mathrm{MB}} \\ 10_{\mathrm{MB}} \\ 40 \\ 20_{\mathrm{MB}} \\ 40_{\mathrm{MB}} \\ *60_{\mathrm{MB}} \end{array} $	1.5 1.0 - - - 1.5 -	2 2 2.0	49.9 - 50.6 51 - 51.2 52.2 53.8 - 54.8 55.2 - 55.4 55.8 56.4 - 57.2 57.2
Gray SCHIST, slightly weathered, sound, wide fracture spacing, strong rock, coarse to fine grained, wavy foliation -Garnets 1/8" along the run -Rusted Joints: 71.7' and 71.9' - green stains 77.7' and 77.8' - yellow stains -Possible micro-shears along foliation from 71.2' to 71.7' and from 81' to 81.2' -GRANOFELS from 79.4' to 79.7' and 80.3' to 81' -70 C-6	- - - - 65 -		C-5 61.2 - 71.2	120	100	91	fracture spacing, strong rock, coarse to fine grained Except 69.8' to 71.2' - light gray-white PEGMATIT -Slight rusty coating and greenish gray discoloration on joints at 70' and 71.2'	E n	R4	*65 _{MB} *80 _{MB} *70 _{MB} *70 _{MB} 65 _{MB} 35 _{MB} *70 _{MB} 60-90 _{MB} 40 _{MB}	- - - - - - - - 1.5	3.0	57.8 - 58.6 - 59.9 - 60.6 - 61.2 - 61.4 - 62.2 - 62.6 - 64 - 65.5 - 67 - 67.2 -
- 75 C-6 71.2 - 81.2 120 100 95 1-Garnets 1/8' along the run -Rusted Joints: 71.7' and 71.9' - green stains 77.7' and 77.8' - yellow stains -Possible micro-shears along foliation from 71.2' to 71.7' and from 81' to 81.2' -GRANOFELS from 79.4' to 79.7' and 80.3' to 81' -GRANOFELS from 79.4' to 79.7' and 80.3' to 81' -70 1.5 1.0 71 72 73 75 75 75 76 77 78 78 79 79 70 70 70 70 70 70 70 70	- 70 - -						fracture spacing, strong rock, coarse to fine grained wavy foliation		R4	*65 0 _{MB} 55 _{MB} 35 *75 30 _{MB} 65 _{MB}	1.5 - 1.5 1.5	3.0 - 2 1.0 -	67.4 68.5 - 69.7— 69.9 70 - 70.1 - 70.3 71.2 -
Gray SCHIST, slightly weathered, sound, wide fracture spacing, strong rock, coarse to fine grained, wavy foliation R4	- - -		C-6 71.2 - 81.2	120	100	95	-Rusted Joints: 71.7' and 71.9' - green stains 77.7' and 77.8' - yellow stains -Possible micro-shears along foliation from 71.2' to 71.7' and from 81' to 81.2'			*50 *60 10 _{MB} 0-50 _{MB} *70 35 _{MB} *55 _{MB} 20 50 85 50	1.5 1.5 - 1.5 - 1.5 1.5 1.5	1.0 1.0 - 1.0 - 2 1.0 1.0	71.7 - 72.7 - 73.5 - 75.4 - 76.8 - 77.2 - 77.2 - 77.8 - 77.9
$\begin{bmatrix} C-7 \\ 81.2-90.5 \end{bmatrix} 112 \begin{vmatrix} 100 \end{vmatrix} 98 \begin{vmatrix} C-7 \\ 81.2-90.5 \end{vmatrix} 112 \begin{vmatrix} 100 \end{vmatrix} 98 \begin{vmatrix} 84 \\ 40_{MB} & - & - & 84 \\ 20_{MB} & - & - & 85 \\ 0-30_{MB} & - & - & 85 \\ 0-30_{MB} & - & - & 85 \end{vmatrix}$	- - -						fracture spacing, strong rock, coarse to fine grained		R4	40 _{MB} *40 _{MB} *60 _{MB}	1.5	1.0	78.4 - 79.9 81.2 - - 84
Boring No. CD-15 Sheet 2 of 4	85 - - -		C-7 81.2 - 90.5	112	100	98			1.7	$\begin{array}{c} 40_{\rm MB} \\ 20_{\rm MB} \\ *60_{\rm MB} \\ 0\text{-}30_{\rm MB} \end{array}$	- - -	- - -	84.2— 84.6 84.9 - 85.3 _ 85.7 -

	Parsons Brinckerhoff
	Quade &
100 YEARS ®	Douglas, Inc.

CORING LOG (continued)

BORING NUMBER: CD-15 SHEET NUMBER: 3 of 4

PROJECT NUMBER: 26553A

PROJECT: No 7 Subway line Extension

LOCATION: Manhattan

CLIENT: MTA

CONTRACTOR: Jersey Boring & Drilling

DRILLER: M. Blejuwas

CLIEN	IT: M	ITA				INSPEC	TOR:	A. Za	bala			
	(ft/min)					DESCRIPTION AND DEMARKS			DIS	CONTI	NUITY	DATA
DEPTH (feet)	CORING RATE (#//	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS (Lithology, Structure, Weathering, Continuity, Strength, Color, Grain Size) * - Denotes discontinuity along foliation MB - Denotes mechanical break	WEATHERING	STRENGTH	ANGLE (deg)	٦٢	ьl	DEPTH (feet)
- 90 -						Gray SCHIST, unweathered, sound, very wide	I	R4	0 *65 45 30 _{MB}	1.5 1.5 1.5	1.0 1.0 1.0	88.3 - 89.3 - 90 90.5 -
-						fracture spacing, strong rock, coarse to fine grained -PEGMATITE Material from 98.3' to 98.7' congruen to foliation -Possible micro-shears at 98.2' to 98.3'	t		*65 _{MB}	-	-	90.9
- - 95 - - -		C-8 90.5 - 100.0	114	100	100				$^{*50_{\rm MB}}_{40_{\rm MB}}$ $^{40_{\rm MB}}_{70_{\rm MB}}$ $^{40_{\rm MB}}$ $^{20_{\rm MB}}$			95.3 95.8 96.3 96.5 98.2
- 100 -						Gray SCHIST, slightly weathered, sound, wide fracture spacing, strong rock, coarse to fine grained	II	R4	60 _{MB}	-	-	100
- - - 105 -		C-9 100.0 - 109.6	115	100	92	(100'-103.8'), except PEGMATITE material from 101.1' to 101.5' congruent with wavy foliation Light gray PEGMATITE, unweathered, very wide fracture spacing, sound, very strong, medium to fine grained (103.8'-109.6') -Core barrel jammed from 108.5' to 109.6'. Rock damaged.	I	R5	0 _{MB} *50 _{MB} *40 *30 *30 *30 50 10 _{MB} 30 _{MB}	1.5 1.5 1.5 1.5 1.5 1.5	1.0 2.0 1.0 1.0 1.0	101.3 101.7 102.5 - 103.1 103.4 - 103.6 103.8 104.8 - 106.1
- 110 -						Light gray-white PEGMATITE, unweathered, very wide fracture spacing, sound, very strong, medium to fine grained (109.6'-112',113.4'-116' and	I	R5				- - -
- - - - 115		C-10 109.6 - 118.8	110	100	100	116.4'-117.1') Gray SCHIST, unweathered, sound, wide fracture spacing, strong rock, coarse to fine grained (112'-113.4'), (116'-116.4'), (117.1'-118.8')	I	R4	$^{*65_{\rm MB}}_{0_{\rm MB}}$ $^{0_{\rm MB}}_{40_{\rm MB}}$ $^{60_{\rm MB}}$	-		112 - 113.3 113.8 114.3_
- - - - -									50 _{MB}	-	-	- 116.8 ⁻ 117.9 ⁻
- - 115 - - - - 120 - -		C-11 118.8 -	74	100	100	Gray SCHIST, slightly weathered, sound, wide fracture spacing, strong rock, coarse to fine grained. Foliation is + or - 65 degrees along the run.	П	R4	$55_{\mathrm{MB}} \\ 30_{\mathrm{MB}} \\ *60_{\mathrm{MB}} \\ 10_{\mathrm{MB}} \\ *70_{\mathrm{MB}}$	-		118.4 – 118.8 119.5 – 120.2 – 121.4 –
j _		125.0				Boring No.	CD-	15	Shee	t 3	of	4

DD	Parsons Brinckerhoff
	Quade &
100 YEARS ®	Douglas, Inc.

CORING LOG (continued)

BORING NUMBER: CD-15
SHEET NUMBER: 4 of 4

PROJECT NUMBER: 26553A

PROJECT: No 7 Subway line Extension

LOCATION: Manhattan

CONTRACTOR: Jersey Boring & Drilling

DRILLER: M. Blejuwas

CLIE	NT: M	TA					INSPEC ⁻	ΓOR:	A. Za	bala			
	(nir									DIS	CONTI	NUITY	DATA
DEPTH (feet)	CORING RATE (ft/min)	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS (Lithology, Structure, Weathering Continuity, Strength, Color, Grain S * - Denotes discontinuity along folia MB - Denotes mechanical breat	g, Size) ation	WEATHERING	STRENGTH	ANGLE (deg)	Jr	Ja	DEPTH (feet)
- 125 -						E.O.B. at 125'.				20 _{MB} *65 _{MB} 10 _{MB}	- - -	- - -	123.7 - 124.4 125 -
- - - 130 -													- - - -
- - 135 -													-
- - - 140 -													- - - -
- - - 145 - - -													- - -
IE.GPJ MAINLI~1.GLB 8/2													-
NO. 7 CORING LOG NO_7NE.GPJ MAINL ~1.GLB 8/21/06													
	ı			ı	I	Bori	ng No.	CD-1	15	Shee	t 4	of	4

# 4	# 5	# <i>6</i>
0t02	oto of Filled	EI. +4.0
of Filled Ground	Cindere class	Sand and
	5and 8	Of Boulders Of Boulders Of Boulders Of Boulders
El-24,0 (2)	Sand 8 Boulders	The Windle Control of the Control of
5/1/	El-39.0	Soft Mud
El-54.0. Silt. Pebbles	El-62.0 yes	
El-950 Shells		EI94.0
5and 5 Shells	Silt Sand	Mud and fine Sand
El-108.00 5070 8 El-111.0 00 Pebbles	All traines	EI1080
	El-116.0	Red Sand EL -114.2 & Boulders
Gneiss	Mica Schist	Rock
96.		N.Y.C. E-9-627 #332
Fluidi D	El-135.0 P.R.R P.R.R N.Y.CW.S. Imp. #21	8
P.R.R. N.Y.CW.S.Imp. #20	# a	
ROCK DATA	V	DL.2 SHEET IO

2

~

EL. +6.8 E GYOT +3.9 Cinders. Cinders, Cobbles, & Cobbles, Sand Sand Fill & Wood -29.2 29.7 Mud & Boulders Wood wood -Boulders EL. EL. -28.1 13:0' Pile Mud 15:0= 7 -45:0= -91.5 Mud Med. fine Sand & Mud Med. fine Sand & Mud EL. -101.1 1.0,01 Rock Red Clay, Clay N.Y.C.- E-9 - 627 #334 & Cobbles EL. EL. -125.1 Rock NY.C. E-9-627 #341

4.5	4 (4 b) 4 (4 b)	
El.+5.8 #15	El. + 5.9 # 16	#17 17
0+07 OF Cinders	0+01: A Brick Cinders Sand (50ft)	Oto 7
El-16.2 A.	Dork River	El5.5 Cinders Sond & Boulders
8.45 River Mud	El-34.1 Grey	El-22.5 & Wood El-24.3 W Wood Mud
El-71.0 \$ 5and, Grover El-18.7 \$ 4 Cobbles Rock	Rock	El-90.5 Coarse Red
El-88.7 SHelfandoned NY.5. Imp. #347	E/-81.6 W.S.Imp. #342	El-105.5 Rock
#10	±19	N.Y.C. W.S. Imp. #361
		#20
©±070 & Cinders sand Small Boulders 8 El-12.8 & Little Wood	Oto7 Cinders & Small Boulders	0±02, 420 0±02, 4 Coarse 0, 50nd
Cinders sand Small Small Small Small Soulders 8 El-12.8 A Little Wood El-19.6 Med Coarse Sand El-21.1 River Mud El-14.8 River Mud	Oto7: A Cinders & Small Boulders El-17.3 Dark River Mud El-23.3 (very soft)	El.+33 #20
Cinders sand Small Small Boulders 8 El-12.8 Little Wood El-19.6 River Mud El-14.8 River Mud El-14.8 River Mud El-90.5 Little line Sond	Dies & Cinders & Small Boulders El-17.3 Dork River Mud El-23.3 El-89.3 El-92.0 The Sand	El. 8.2 Lobbles Fine & Medium
Cinders, sand Small Small Small Small Small Soulders 8 Little Wood El-12.8 El-19.6 El-21.1 El-21.1 El-22.1 El-30.5 El-90.5 El-90.5 El-90.8 El-90.8 El-105.8	El-123 Dark River El-23.3 El-23.3 Fine Sand Rock El-1053 Rock	El-22.3 Fine & Medium El-22.3 Grey River
Cinders sand Small Small Boulders 8 Little Wood El-12.8 Med. Coarse Sand El-19.6 River Mud El-21.1 River Mud El-90.5 El-92.8 Rock El-105.8	Oto7 Cinders 8 small Boulders El-123 Oork River Mud (very soft) El-893 El-920 Fine Sand Rock W.S. Imp. #33/	El-13.3 #20 Ot03. A Coarse Sond El-22.3 Fine & Medium Sond El-13.2 Fine Mud El-13.3 Fine Mud El-13.5 Fine Mud El-
Cinders sand Small Small Boulders 8 Little Wood El-12.8 Med. Coarse Sand El-19.6 River Mud El-21.1 River Mud El-90.5 El-92.8 Rock El-105.8	Oto7 Cinders 8 small Boulders El-123 Oork River Mud (very soft) El-893 El-920 Fine Sand Rock W.S. Imp. #33/	El-13.3 #20 Oto3. A Coarse Sond El-8.2 D Cobbles Fine & Medium Sond El-13.2 Grey River Mud El-113.2 Boylder Cobbles El-113.2 Boylder Cobbles El-113.2 Boylder Cobbles El-12.3 Boylder Cobbles El-12.3 Boylder

	4		
Guell	*21	#22	Flac #23
El. +5.1	Sand R	El.+ 4.5	112:1
Et2.1 00	Sangra/	12	Doulders,
QtQ2	Cinders 4		Qto 2 Vo Wood 8
El-4.9	Bricks	Cobbles &	Sana:
	Sand,	Db / ITT/E	E/:7.8 (A)
22	Cinders,	El-13.5 A Wood	Boulder
El-269 A	Wood 8 Cobbles	El-zio	47.73.0
	1	El-35.53 Mud (Soft)	6/200 FIGREY MUN
	50ff Grey	Grey River.	El.35.8 Grey Mud
78	Mud	El-77-5 TEMUS (Soft)	El-73.8 F Grey Mud
5/-/24.4	7700	EL-121.2 8 Fine Sano	8.82.8 % A Fine Sond
3	Barrelatara	Med. Coorse,	
F-1279" C	Boulders	EL-126.54 Sond & Cobble	Granite
000	Coorse		S CI SINIC
£-132.9	Sand & Gravel	Rock	El-928
,	0.0.0		N.Y.C. W.S. Imp. #300
4	Syenite	E/-/40.5 . #233	W.S. (111p.
E1-146.9		W.S.Imp. #333	1
W.S. Imp.	#316		_
	24		T S
El.+6.8	24	El. 16.5 725	E/40, #26
El. 16.8	50nd 8 Gravel	El. 16.5 725	12.76./
El. 13.8	Sand 8 Gravel Cinders	Cinders	EI.76.1
6.13.8 0 0 to 7 0 RP	Sand 8 Graref Cinders Wood 8	Oroz Sp Small Boulders	Coorse Sand
6.76.6 6.73.8 0 0 to 7 0 0 El-S.2	Sand & Gravel Cinders Wood & Cobbles	Otos Spanoll	oto Z & Coarse Oto Z & Coarse Of Cinders & El-12.4 A Cobbles
6.13.8 0 0 to 7 0 RP	Sand 8 Graref Cinders Wood 8	Otos Sinders Small Boulders El-145 (Hard)	oto Z. A Coarse oto Z. A Sand Cinders & El-12.4 A Cobbles
6.76.6 6.73.8 0 0 to 7 0 0 El-S.2	Sand & Gravel Cinders Wood & Cobbles	Cinders Small Boulders EI-145 (F. Chard) EI-175 (F. Chard) EI-175 (F. Chard) EI-175 (F. Chard) EI-175 (F. Chard)	oto Z & Coarse Oto Z & Coarse Of Cinders & El-12.4 A Cobbles
6.76.6 6.73.8 0 0 to 7 0 0 El-S.2	Sand & Gravel Cinders Wood & Cobbles	Cinders Small Boulders El-14.5 (F. Chard) El-27.5 (F. Chard) El-30.0 (Chard) El-30.0 (Chard) El-30.0 (Chard)	Oto 7 Straind Coorse Sand Cinders & Cobbles El-12.4 Za Cobbles NO Boulder El-23.6 Fill 50f/
6.76.6 6.73.8 0 0 to 7 0 0 El-S.2	Sond & Gravel Cinders Wood & Cobbles Boulders Fill	Cinders Small Boulders EI-14.5 (Hard) EI-27.5 (Cinders Boulders EI-14.5 (Hard) EI-27.5 (Cinders EI-27.5 (Cinders EI-30.0 (Cin	Oto 7 Sty Coorse Sand Cinders & Cobbles El-12.4 Za Cobbles Boulder Fill 50f/
El. 17.2 D	Sond & Gravel Cinders Wood & Cobbles Boulders Fill	Cinders Small Boulders EI-14.5 (Hard) EI-27.5 (Grey EI-30.0) EI-30.0 (Figure Boulders EI-30.0) EI-30.0 (Figure Boulders	El-12.4 Coorse Sand Cinders & Cobbles N D Boulder El-23.6 Fill Soft Grey Mud
El-3.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sond & Gravel Cinders Wood & Cobbles Boulders Fill Soft	Cinders Small Boulders El-14.5 (Hard) El-17.5 (Singles and El-30.0) El-30.0 (Cinders and El-30.0) El-30.0 (Cinders and El-30.0) El-30.0 (Cinders and El-30.0) El-30.0 (Cinders and El-30.0) El-63.5 (Cinders and El-63.5) El-63.5 (Cinders and El-63.5) El-63.5 (Cinders and El-63.5)	El-12.4 Coorse Sand Cinders & Cobbles N D Boulder El-23.6 Fill Soft Grey Mud
El. 17.2 D	Sond & Gravel Cinders Wood & Cobbles Boulders Fill	Cinders Small Boulders El-14.5 (Hard) El-17.5 (Difference Boulders El-30.0 (Large Boulders El-35. (Large Boulders El-34.1 (Large Boulders El-35.1 (Large Boulders El-36.1 (La	Coarse Sand Cinders & Cobbles El-12.4 Za Cobbles Boulder Fill Soft Grey Hud El-63.5 W Freq Red Sand
0.107 6.0. 47.2. 4.0. 4.0. 4.0. 4.0. 4.0. 4.0. 4.0. 4	Sond & Gravel Cinders Wood & Cobbles Boulders Fill Soft Grey Mud	Cinders Small Boulders El-145 Cinders Chard Boulders Chard El-27-5 Cinders Chard Chard El-27-5 Cinders Chard Chard Chard Chard Compact Mud El-24-1 Compact Red Sand	Coorse Sand Cinders & Cobbles & Cobb
El-9/2:	Sond & Gravel Cinders Wood & Cobbles Boulders Fill Soft Grey Mud	Cinders Small Boulders El-145 Cinders Chard Boulders Chard El-27-5 Cinders Chard Chard El-27-5 Cinders Chard Chard Chard Chard Compact Mud El-24-1 Compact Red Sand	Coorse Sand Cinders & Cobbles & Cobb
El-9/2:	Sond & Gravel Cinders Wood & Cobbles Boulders Fill Soft Grey Mud	Cinders Small Boulders (Hard) El-145 Cinders (Hard) El-145 Cinders (Hard) El-145 Cinders (Hard) El-175 Cinders Compact Mud El-74.1 Coarse Red Sand Mica Schist Talc Schist	Coorse Sand Cinders & Cobbles & Cobb
El-83.4	Sand & Gravel Cinders Wood & Cobbles Boulders Fill Grey Mud	Cinders Small Boulders (Hard) El-145 Cinders (Hard) El-145 Cinders (Hard) El-145 Cinders (Hard) El-145 Cinders Cinders Composite Mud El-14.1 Coarse Red Sand El-17.4 Coarse Red Sand Mica Schist Talc Schist	Coorse Sand Cinders & Cobbles & Cobb
El-83.43	Sand & Gravel Cinders Wood & Cobbles Boulders Fill Grey Mud	Cinders Small Boulders (Hard) El-145 Cinders (Hard) El-175 Cinders (Hard) Small Boulders Cinders Cinders Cinders Cinders Conse Boulders Compact Mud El-14.15 Conse Red Sand El-17.46 Conse Red Sand El-17.46 Conse Red Sand Conse Red Sand Conse Red Conse Re	Coorse Sand Cinders & Cobbles & Cobb
El-97.4	Sand & Gravel Cinders Wood & Cobbles Boulders Fill Soft Grey Mud Fine Sand Horne blend Schist	Cinders Small Boulders (Hard) El-14.5 (D) El-27.5 (D) El-30.0 (D)	Coorse Sand Cinders & Cobbles & Cobb
El-83.4	Sand & Gravel Cinders Wood & Cobbles Boulders Fill Soft Grey Mud Fine Sand Horne blend Schist	Cinders Small Boulders (Hard) El-145 Cinders (Hard) El-175 Cinders (Hard) Small Boulders Cinders Cinders Cinders Cinders Conse Boulders Compact Mud El-14.15 Conse Red Sand El-17.46 Conse Red Sand El-17.46 Conse Red Sand Conse Red Sand Conse Red Conse Re	Coorse Sand Cinders & Cobbles & Cobb

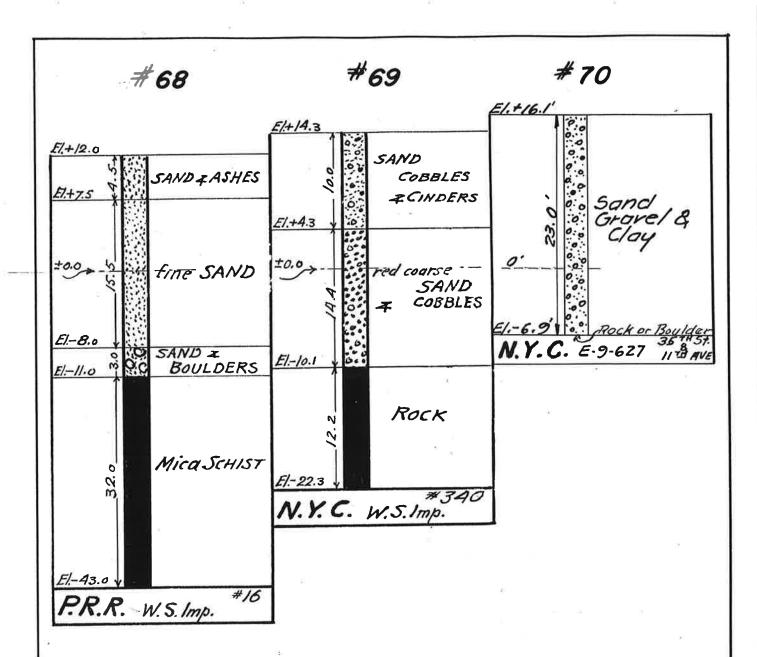
VOL. 2 SH. 10

#07		
121	El+8.9 # 28	El.+9.2 # 29
E/.+5*4	14	Cinders,
otol Sand,	otol . Coorse	Ex Little Sond
1 8 Small	4 Cindere	0t07: V4 8
El-8.6 A Boulders	8	N (066/c
Vi Small	Cobbles	El-14.8
が 5moll * 祖 Boulders で (FIII)	El:-17.1	
	B B B B B B B B B B B B B B B B B B B	Grey
El-25.0 V	Mud Mud	River Min Mud
25.6	No Mud	T. C.
Grey Grey	Elstoj. Eine 8	E/-44.8
River Mud	Fine 8	Med Coalse
El-54.8	El-50.6 Fine 8 Coorse Sand	El-50.0 Red Sand
		to Port
Rock	S Rock	No.
7	El-656	E 618 #343
El-67.6 N.Y.C; #22C	El-65.6 N.Y.C. W.S.Imp. #362	W.5.1mp. #343
W.5./Mp. 1306		- 4. ∞
El.+8.6 #30	E/+9.1 #31	El.+9.4 #32
Cinders	. (0)	o Sand
oto 70 0. 5mall	otoz 5and 8 Cobbles	SETCIONETE 8
NE 8 LIHIC	El2.9 0°	27.03. Cobbles
El-15.9 Wood	5and.	Cinders
S Grey	Cinders 8 & Cobbles	El:-18.1
El-34.4 Mud	E/-22.4 60 4 CODDIES	Mud 4
Compact	Grey	El-26.6: Wood
	1.37.9. Flogs	El-28.4 5 Schles
	139.7 0 5808618s	
E-49.4 6 Cobbles		Rock
El-49.4 6 4 Cobbles	Rock	
	7.001	E/-4/.6
Rock		El-41.6 N.Y. G. W.S. Imp. #358
	7.54.9 V	3
El-61.9 \\ N.Y.C. #210	v.s. Imp. #353	
W.5./mp. "348	14C	5 X
ROCK DATA		VOL.2 SH. 10

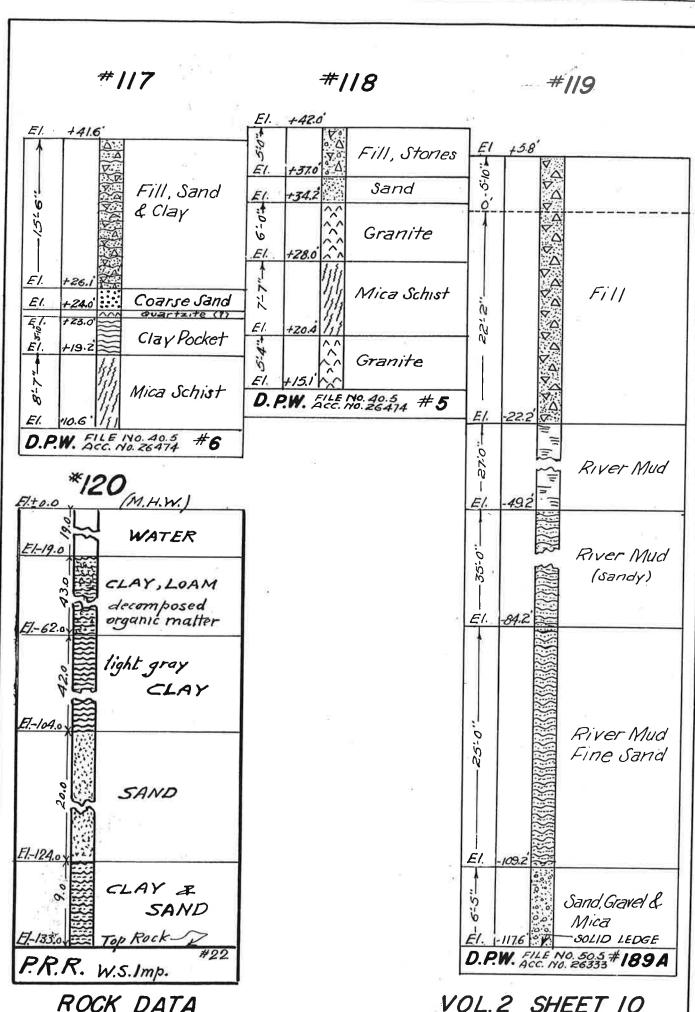
		2. 3
El.+11.8 *33	El.+11.5 #34	EI.+11.4 #35
El. 13.8 Cinders	A L	(2)
0+07	0402:	oto?
	Seria	1 11/2/10/07/23
Fine Son	Cobbles	Cabbles &
cobbles		(50H)
200	WE DON'T MAN	
	El-11.5 Course Sond	
El-16.5 1.0	The state of the s	PET RIVER
New Mud, Bould	Tels .	E1-18.1 Sand & Cobbles
El-20.29 9 4 Wood	/ Rock	EL-19.6 Sand & Cobbles
E1-25.5 4 Wood		ò
C1,-23,3 Prof	F/-72 F	Rock
N P -4	El-27.5 N.Y.C. W.5./mp. #35	<u> </u>
Rock	W.5./mp. #33	- S. 37.6
		W.5.Imp. #349
El-40.2 #25	<u></u>	×, i
W.5. Imp. #35	2	8
El.+12.4 *36	#37	#38
S EALTH &	El.+11.3	_
El. 16.4 GOVC)	MI. I	
: 18:	Fly 3 Fine &	El.+8.1
oto ? d Cinders	El.H.3 Coarse Sone	
	El.H.3 Coarse Sone	Qto 2 VV Cinders
Oto ? 4 Cinders El-8.1 Dark	El.41.3 Coorse Sone Q+07 Coorse Sond & El.9.7 Cinders Mud	
Oto 7 14 Cinders El-8.1 Dark El-23.8 Mud	El.41.3 Coarse Sond Qto7. Coarse Sond & El9.7 Cinders El17.4 Market Mud	Oto 7 Cinders Sand 8 No Boulder
Oto 7 4 4 Cinders El-8.1 The River El-23.8 Footse Sand	El.+1.3 Coorse Sone Q+07 Coarse Sond & El9.7 A Cinders El17.4 M Wood El17.7 M Wood El24.18 M	Oto 7 To Cinders Sand 8 Divider Fill Mud
Oto 7 4 Cinders El-8.1 Dark El-23.8 Mud	El. 4.3 Coarse Sono Qto7 Coarse Sand & Sand & Cinders H-17.4 West El-17.7 West El-17.7 West El-17.7 Mood El-24.1 Boulder El-14.7 Boulder	Oto 7 Oto 7 Cinders Sand 8 Boulder Fill El-18.9 Mud
Oto 7 4 4 Cinders El-8.1 The River El-23.8 Footse Sand	El.41.3 Coorse Sone Qto7 . Coorse Sond & El.9.7 A Cinders Mud El.17.1 W Wood Rel-24.18 Boulder Fine Sond &	Cinders Sand 8 Soulder Fill El-17.9 Med, Fine Sond 8
Oto ? 4 Cinders El-8.1 To River El-23.8 E Mud El-23.6 To Borse Sand El-30.1 To Gravel, Boulde	El.4.3 Coorse Sone Qto7 Coarse Sond & El.9.7 A Cinders Mud El.17.4 W Wood El.24.13 Mud El.24.13 Boulder Fine Sond & Clay El.34.7 Clay	Cinders Sand 8 Soulder Fill El-18.9 Med, Fine Sond 8 El-33.9 Little Mud
Oto 7 4 4 Cinders El-8.1 The River El-23.8 Footse Sand	El.41.3 Coorse Sono Qto7 Coarse Sond & El.9.7 A Cinders El.41.7 W Wood El.24.13 A Boulder Fine Sond & Clau	El-17.9 Fill El-33.9 Fine 8
Oto ? 4 Cinders El-8.1 Dark River Mud El-23.8 El-23.6 Rock Rock	El.+1.3 Coorse Sond Q+0.7 Coorse Sond & El9.7 Mud El17.4 Mud El17.7 Mud El14.7 Sond & Clay El34.7 Coorse Sond	Cinders Sand 8 Soulder Fill El-17.99 Med, Fine Sond 8 Little Mud Fine Coarse Sand Red Clay
Oto ? 4 Cinders El-8.1 To River El-23.8 E Mud El-23.6 To Borse Sand El-30.1 To Gravel, Boulde	El.4.3 Coorse Sone Qto7 Coarse Sond & El.9.7 A Cinders Mud El.17.4 W Wood El.24.13 Mud El.24.13 Boulder Fine Sond & Clay El.34.7 Clay	Cinders Sand 8 Soulder Fill El-18.9 Med, Fine Sond 8 El-33.9 Little Mud
Cinders El-8.1 El-23.8 El-23.8 El-23.8 El-23.8 El-23.8 El-23.12 Coorse Sand B Gravel Coorse Sand B Gravel Coorse Sand B Gravel Rock Rock	El. 17.4 Se Coorse Sond El. 17.4 Se Mud El. 17.4 Se Mood El. 24.13 Se Mood El. 24.13 Se Boulder Fine Sond & Clay El. 34.7 Se Coorse Sond Rock	Cinders Sand 8 Soulder Fill El-18.9 Med, Fine Sond 8 Little Mud Fine 8 Coarse Sand Red Clay 8 Cobbles
Cinders El-8.1 El-23.8 El-23.8 El-23.8 El-23.8 El-23.8 El-23.12 Coorse Sand B Gravel Coorse Sand B Gravel Coorse Sand B Gravel Rock Rock	El. 17.4 Mud El. 17.4 Mud El. 17.4 Mud El. 17.7 Mud El	Cinders Sand 8 Boulder Fill El-18.9 Med, Fine Sond 8 El-33.9 Fine 8 Coarse Sand Red Clay Red Clay 8 Cobbles
Cinders El-8.1 El-23.8 El-23.8 El-23.8 El-23.8 El-23.8 El-23.12 Coorse Sand B Gravel Coorse Sand B Gravel Coorse Sand B Gravel Rock Rock	El. 17.4 Se Coorse Sond El. 17.4 Se Mud El. 17.4 Se Mood El. 24.13 Se Mood El. 24.13 Se Boulder Fine Sond & Clay El. 34.7 Se Coorse Sond Rock	Cinders Sand 8 Boulder Fill El-18.9 Med, Fine Sand 8 Little Mud Fine Sond 8 Little Mud Fine Sond 8 Coarse Sand Red Clay 8 Cobbles Rock
Cinders El-8.1 El-23.8 El-23.8 El-23.8 El-23.8 El-23.8 El-23.6 Rock Rock Rock Rock Rock	El. 17.4 Mud El. 17.4 Mud El. 17.4 Mud El. 17.7 Mud El	Cinders Sand 8 Boulder Fill El-18.9 Med, Fine Sond 8 Little Mud Fine 8 Coarse Sand Red Clay 8 Cobbles Rock
Cinders El-8.1 El-23.8 El-23.8 El-23.8 El-23.8 El-23.8 El-23.12 Coorse Sand B Gravel Coorse Sand B Gravel Coorse Sand B Gravel Rock Rock	El. 17.4 Mud El. 17.4 Mud El. 17.4 Mud El. 17.7 Mud El	Cinders Sand 8 Boulder Fill El-18.9 Med, Fine Sand 8 Little Mud Fine Sond 8 Little Mud Fine Sond 8 Coarse Sand Red Clay 8 Cobbles Rock

El+7.7 #39	El.+8.0 #40	TEL+7.8
oto? Cinders, Sand, Cobbles	oto 2 Stilled Ground	oto? Coorse
El-14:6 Wood	E/:-/3.0	Sond Ginders & Cobbles El-144 Cobbles
El-223 GreyRiver	- Sond	Soft Grey Mud
El:37-3 Mud(Soff)		El-189 Cobbles
5 Doulders (very Hard)	Sand Sand	El-51.5 Red Spnd
El-65.8 Rock N.Y. Cimp. #329	El:-64.0 Quartzite	El-(4.9 Kooth Rock) N.Y.C. W.S.Imp. #323
	El-80.0 #15	30 Jan 20 7
El+8.1 +42	#43 LEI.+7.6	El. + 8.2 #44
etor Cinders,	Sand	O RD Cinders
di-9.9 Cobbles	0+07 4 Cinders E-2-4 4 Gravel	El-2.8 Domalf Boulders Fine Sond Gravel 8
Soft Grey Mud	El-17.4 Cobbles El-27.4 To & Cobbles	TE1:36.2 ES MUd
El49.9. Fine Sond El52.3 Fine Sond Quartaile relati	El-434 Grey Mud	El-40.5 FT & COLDIES
El-65.9 Mica Schist	EL-58A FFFINE SAND SING SOND FORCE EL-62 Mica	5chist W.S. Imp. #31/
'N.Y.C. #214	El-79.1 Schist	
W.S./mp. #314	W.S.Imp. # 301	.1

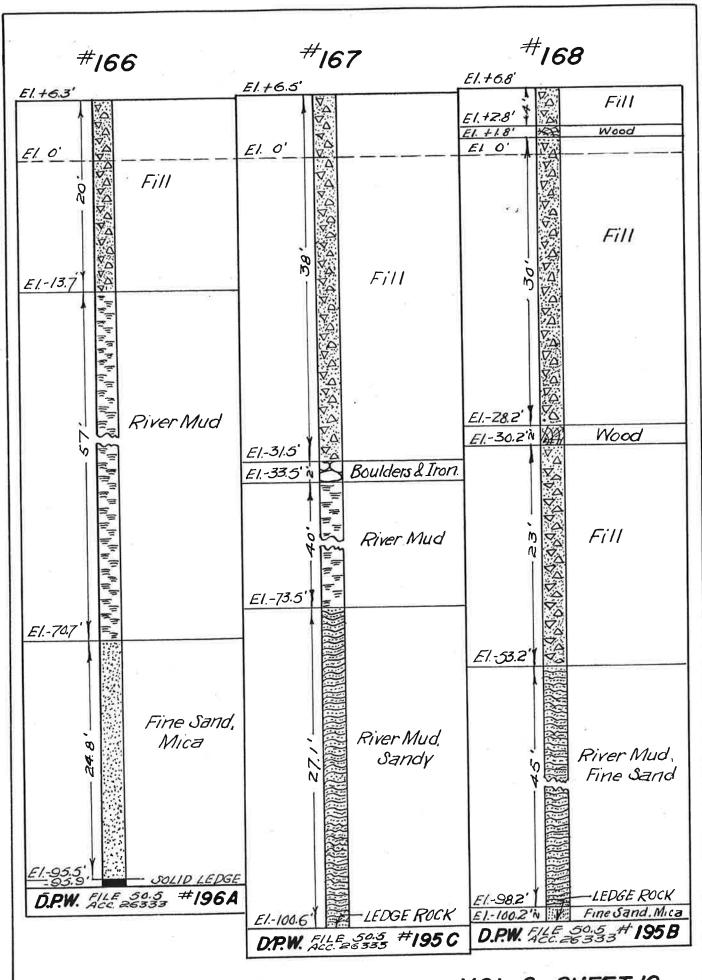
VOL. 2 SH. 10

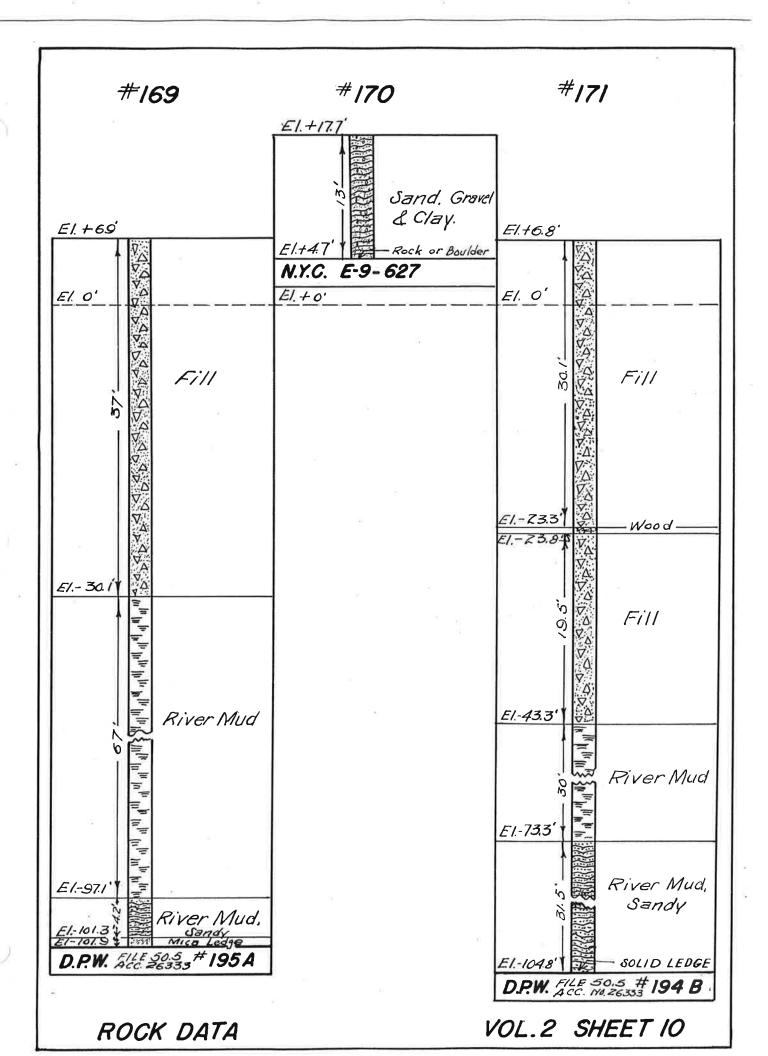

	*	
El.+9.0 745	£1.193 *46	El+10.0 # 47
A	OA Earth &	
Coorse	EL+4.3 6 Gravel	
5ond	E Sand	100
0+07 To Cinders	Cinders	Oto 7. Cinders
El-4.0 19 Wood	8 Small	Cinders, Ashes
Medium	El-7.7: Cobbles	
Coorse Sano	6 5 11/16 20110	
CJ14.0		5.770.1163
Gray Clay Mud 8	到 50 ft Dork Mud	El-215 Sand
I Cabbles	El-23.9 5 0071 7100 El-25.7 6 5000 8	1 1
E1-29.8 5 CODDICS	1 STREN CIOU	Feldenar
	5-31.9 Cobbles	Feldspor Quortz
6-bit	Mica	755.7
5chist	Mica . Schist	
		E[-41.5]
El-43.5	El-44.7	P.P.C.W.S.Imp. #18
W.5.1111p. "313	11.0.111p.	
W.5.1111p. "313	11.0.111p.	#50.
#48	#322 #49 E[.+11.2	EL+13.0 *50.
#48 El.18.1	#49	Coorse Sono
#48 El.+8.1. El.+2.1. O+0.7	#49 E .+ .2 Cinders	El+3.0 8 Cobbles
#48 El. 18.1. El. 12.1. Oto 7 Cinders	#49 E/.+11.2 CINDERS O+01 (Soft) El-1.8	El.+3.0 8 Cobbles Oto 7 Fine & Coarse
#48 El.+8.1. El.+2.1. O+0.7	#49 E/+11.2 CINDERS O+07 DI E/-1.8 Med. (oorse	El.+3.0 8 Cobbles Oto 1 - Or Fine & Coarse Sign of Si
#48 El. 18.1. El. 12.1. Oto 7 Cinders	#49 E + .Z O+01 (Soft) E -1.8 A Med. (ogrsc Sond	El+3.0 & Coorse Sand O+01 Pine & Coorse Sand & Sand & Sand & Sand & Sand & Soulder
# 48 El.+8.1. El.+2.1. Oto 7 Cinders & Wood El11.7	#49 E/.+11.Z Oto 1 (Soft) E/7.8 Med. (ogrse Sond	El-8.0. A River Mud
# 48 El. 18.1. El. +2.1. Oto 7 Cinders & Wood El11.7 Soft Dark	#49 E + .Z O+01 CInders (Soft) E -1.8 A Med (Ogrse Sond E -7.8 Sond E -12.3 Sond E -13.8 Sond (Hord)	El-8.0. A River Mud
# 48 El. 18.1. El. +2.1. Oto 7 Cinders & Wood El11.7 Soft Dark Mud	#49 El.+11.2 CINDERS Oto 1 (Soft) El-1.8 Med (Cogrec Sond El-12.3 El-13.8 Red Clay Grove/ 8	El.+3.0 & Coarse Sand El.+3.0 Fine & Coarse Sand & El8.0 A Boylder El12.0 Fine Sand
# 48 El.+8.1. El.+2.1. Oto 7 Cinders A Wood El11.7 Soft Dark Mud El18.9	#49 El.+11.2 CINDERS Oto 1 VI CINDERS (Soft) El1.8 Med. (corse Sono El12.3 El13.8	El. 8.0 Fine 8 El. 8.0 Soulder Fine 8 Coarse Sand 8 El. 8.0 Soulder El. 12.0 Fine Sand Fine Sand El. 14.6 Reg Clay
El.+2.13 Cinders a Wood El11.7 Soft Dark Mud El18.9 Sonol 8 Cobbles	#49 El.+11.2 CINDERS Oto 1 (Soft) El-1.8 Med (Cogrec Sond El-12.3 El-13.8 Red Clay Grove/ 8	El.+3.0 & Coarse Sand El.+3.0 Fine & Coarse Sand & El8.0 A Boylder El12.0 Fine Sand
El-18.9	#49 El.+11.2 Oto 1 (Soft) El1.8 Med. (ogrse Sand El12.3 El13.8 El13.8 El13.8 El13.8 El22.6 El22.6 El22.6	El. 8.0 Fine 8 El. 8.0 Soulder Fine 8 Coarse Sand 8 El. 8.0 Soulder El. 12.0 Fine Sand Fine Sand El. 14.6 Reg Clay
EL-18.9 EL-	#49 E + .Z O+01 CInders (Soft) E -1.8 Med. (ogrsc Sond E -12.3 Med. Coffee F -13.8 Med. Coffee	El-8.0 Fine 8 El-8.0 Signal 8 El-8.0 S
EL-18.9 EL-	#49 El.+11.2 CINDERS (Soft) El1.8 Med. (ogrsc Sond El12.3 El13.8 El13.8 El22.6 Red Clay Grove! 8 El22.6 Rock El36.8	El.+3.0 & Coorse Sand & Coorse Sand & Coorse Sand & Boylger River Mud El.+12.0 Fine Sand & Boylger River Mud El.+14.6 Red Clay Rock El29.6 Rys. #364
EL-18.9 EL-	#49 E + .Z O+01 CInders (Soft) E -1.8 Med. (ogrsc Sand E -12.3 Oorle River Mud Colphe F -13.8 Cobbles E -22.6 Rock	El.+3.0 & Coorse Sand & Coorse Sand & Coorse Sand & Boylger River Mud El.+12.0 Fine Sand & Boylger River Mud El.+14.6 Red Clay Rock El29.6 Rys. #364
# 48 El. 18.1. El. +2.1. Oto 7 Cinders A Wood El11.7 Soft Dark Mud El18.9 Sonol & Cobbles, Boulders Mica	#49 El.+11.2 CINDERS (Soft) El1.8 Med. (ogrsc Sond El12.3 El13.8 El13.8 El22.6 Red Clay Grove! 8 El22.6 Rock El36.8	El.+3.0 & Coorse Sand & Coorse Sand & Coorse Sand & Boylger River Mud El.+12.0 Fine Sand & Boylger River Mud El.+14.6 Red Clay Rock El29.6 Rys. #364

			78
(1)	#57 El. +15.1	[#] 58	# 59
	Coarse Sand Cobbles & Cinders El. +3.1' October Sand Cobbles & Cinders El5.1' October Sand Cobbles & Cinders	Sand, Grave	EI. +12.4
//a	El2.9' 20 Rock	Medium Coarse San	
	N.Y.C. E-9 627 #365	Rock	
	#60 _EI.+II.0	#6I	N.Y.C. E-9 - 627#327
	Sand and Ashes FI o' Coarse Sand	El. +11.0' Sand, Cinders & Clay Coarse Sand & Cobbles	Fil + 6.1 Cinders and Gravel Fine Sand, Gravel & Cobbles
9 *** **	Gray Sand	EI10.0' Soft Mud Red Clay & Gravel	Fine Sand. Cobbles & Mud E110.9' Soft dark Mud
	Granite & Greiss	Mica Schist Et24.2	Med. coarse Sand & Small Cobbles Mica Schist
	N.Y.C. E-9-627-P.R.R. #17	· h	V.Y.C. E-9 - 627 #312
L	ROCK DATA		OL.2 SHEET IO


*65 *63 El.+9.5 Cinders, anthracite *64 med, coarse fragments, coarse Gravel & Cobbles E1.+5.9 SAND & Small Surf El.+4.5 COBBLES fine 4 med, fine med. coarse SAND +0.0 SAND SAND & GRAYEL 45mall COBBLES +0.0 x El.+0.6 El.-3,3 coarse FILL fine SAND & Small CobblES fine SAND El-6.1 El.-5.6 cobbles & Wood El-9.3 Feldspar x coarse FILL El-11.1 GRANITE SILL med. Soft dark El-12.4 Boulders , Clay MUD. El-16,1 EZ-18.0 Mica Schist Sand & Cobbles El-18.3 Mica M.C.B.R. JENI N.Y.C. #309 Mica W.S. Imp. Schist Schist 7-36,1 F1-37.3 N.Y.C. M W.S.Imp. #302 MCBR 8N9 N.Y.C. E9-627 #310

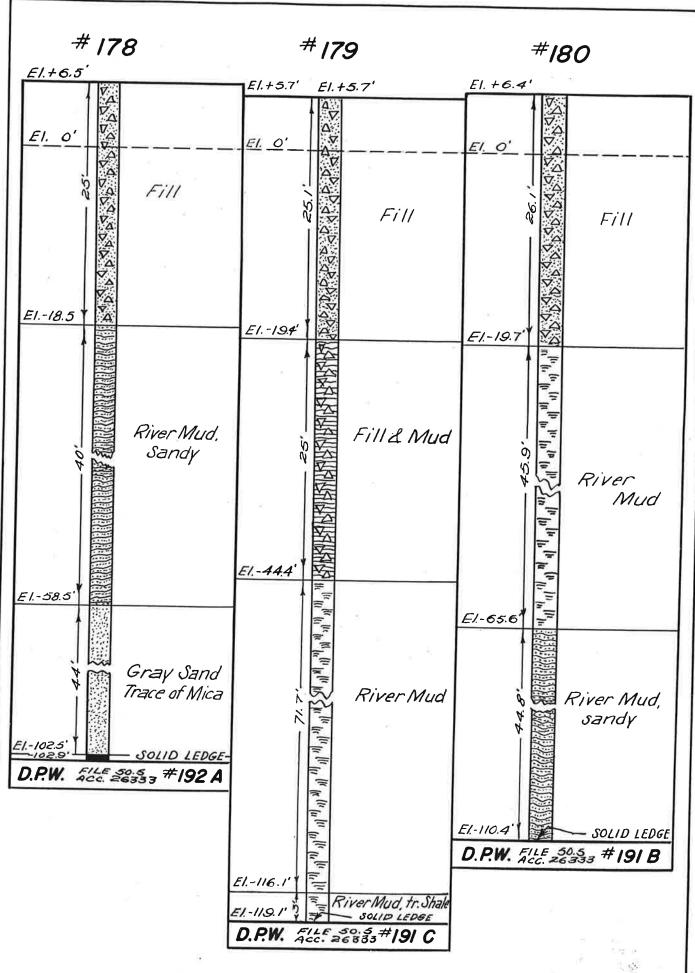
ROCK DATA


VOL. 2, SHEET 10


VOL. 2 SH. 10

VOL.2 SHEET 10

VOL. 2 SHEET 10

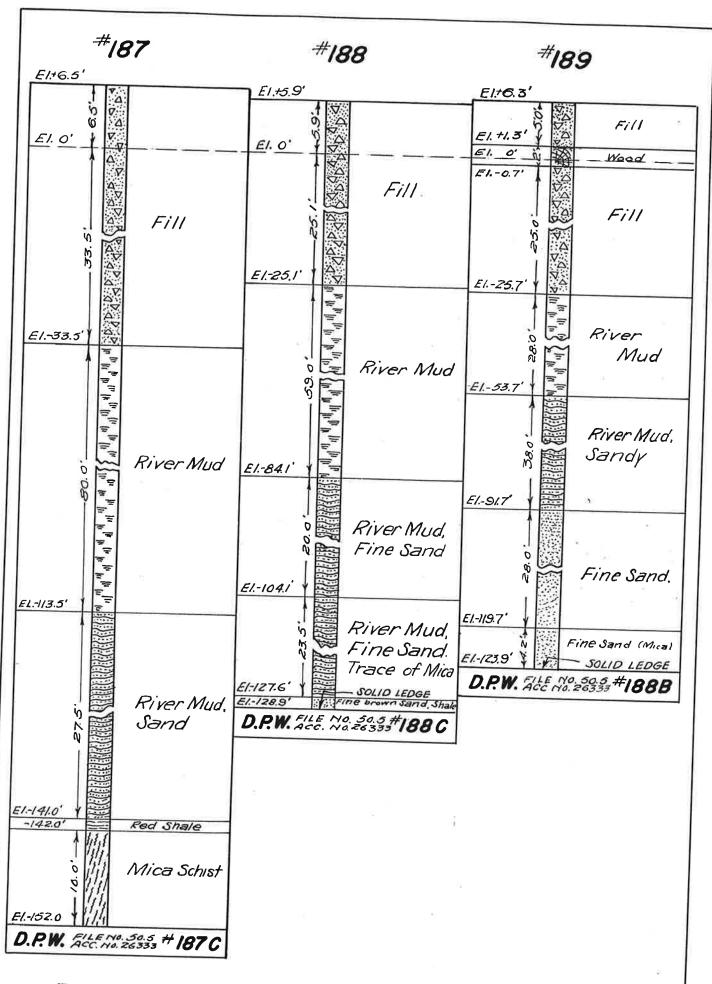


#172	**1 73	[#] 174
El. +6.3'	E/.+6.2'	El.+6.7'
EI. O'. VA.	E1. + 0' V	A VA
1.52 Fill	Fill	, s Fill
E1-18.7'	E13381	
fc 1 n n n to to	River Muo	E122.9' \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
River Mud	E163.8' \ E1.	
16 16 16 16 16 16 16 16 16 16 16 16 16 1	River Mud. Sandy	Lu lu lu lu lu
EI78.7 River Mud.	El84.8'	E/83.5'
Sandy	River Mud, Very Sandy	River Mud, Sand
D.P.W. FILE SOS #194 A	E1-988'	
	Sand, Tr. of Mica EI102.5 F SOLID LEDGE D.P.W. ALE 2633 #193 C	EI1024 LEDGE ROCK
	U.F.W. ACC 26333" 1300	D.P.W. FILE NO. 503 #1938
ROCK DATA	L	IN 2 SHEET IN

VOL. 2 SHEET 10

# 175 <u>E1.+64</u>	# <i>176</i>	# 177 .El.+6.6'
El. O' NA	El. 0' 7 Fill El. 0' 7 Wood Wood	E1.+0.7; \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Fill	Fill	\$ \$ FIII
85	E118.1' A Wood	El13.4' River Mud,
E1316 X	EI24.1' \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	trace of small gravel.
River Mud	E132.6' Wood	le le lite lite lip be fit
E168.6'V	River Mud	River Mud
River Mud, Sandy	E185.1'	El83.4'
El-866' Fine Sand	EI-85.1' = Sand & Mica	N trace of Mica
EI-97.61 Fine Sand, Mica D.P.W. ACE 26333 # 193A	io de la companya de	EI-105.9' F SOLID LEDGE
	EI107.7' SOLID LEDGE D.P.W. FILE 30.3 26 333 # 192 C	The state of the s

VOL.2 SHEETIO



VOL.2 SHEET 10

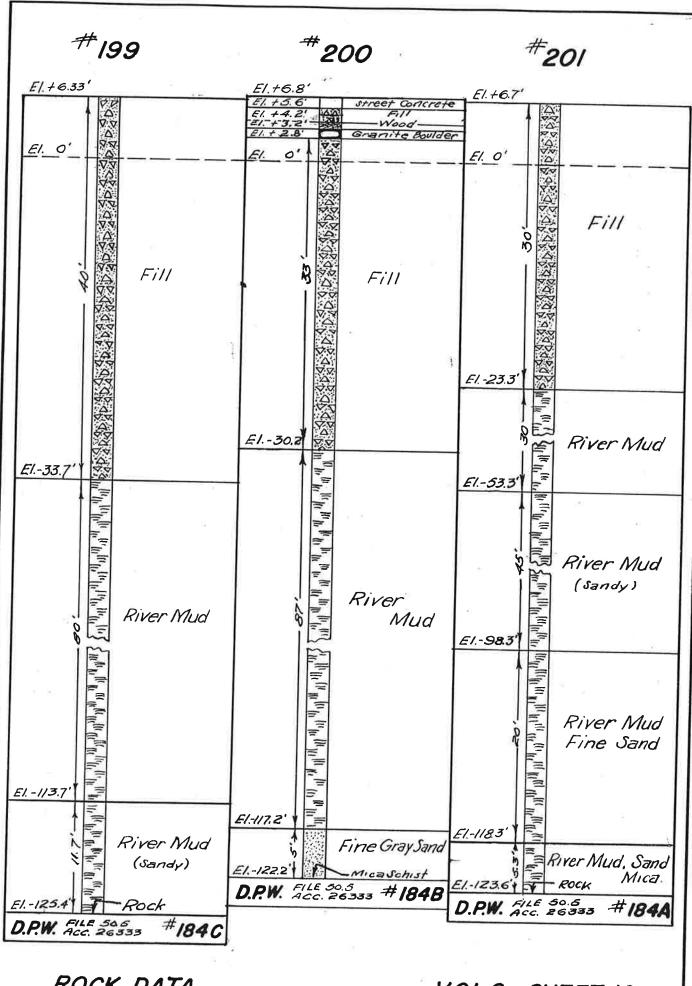
#181	[#] 182	[#] /83
El. + 6.2' El. + 6.2' El. + 6.2' Reverment Block	El.+58'	_El.+6.1'
El. + 2.2 Fill El. + 1.2 Farement Blo		EI. O' D'ADA FIII
E113.8'	75.58 - Fill	E115.9' Wood
River Mud	El29.7' 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	El30.9' 42 Wood
E173.8'	E133.2 FIII	-31.9 Wood Wood River
River Mud Trace of Schis	River Mud	1/1
El:103.8' Solid Ledge D.P.W. FILE NO. 505 # 191 A		River Mud, Sand, trace of Shell
	El114.2' Solid Ledge El115.7 River Mud, Sandy	El1/3.1' Solid Ledge D.P.W. FILE NO. 50.5 #190B
ROCK DATA	D.P.W. FILE NO. 50.5 #190C	OL.2 SHEET IO

# 184 _E1.+5.8*	# 185 E1.+5.8	# 186 E1.+6.1'
E1. 0' \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	E1. 0'	E1. 0' DA FIII
-02 Fill		E16.9'
River M.	ud,	To the the the the
E129.2'	E129.2 SA	River Mud
River Mu Shells.	River Mud. Shells:	յուն արև
River Mud		El68.9' River Mud,
Fine Sand Trace of Mica		Sand, Shell
-110.5' -SOLID LEDG D.P.W. FILE 2033 #190		River Mud, Trace of Schist
	El-120.2 SOLID LEDGE	
		D.P.W. FILE SO.S #189 B

VOL.2 SHEET 10

VOL. 2 SHEET 10

	100000	
#190	[#] 191	[#] 192
E1.+6.2	E1.+6.8	El.+6.5
	FI.+1.3 Granite Quantite Quantite	
E1/3.8 ↓ Fill	23./	\$\$ Fill
River Mud	E123.1	EI-28.6 River Mud
E174.8	River Mud	El58.5
Fine Gray River Mud	River Mud	River Mud
E1,-93.8	E1/o3.1v	Sandy
Fine Gray Sand Trace of Mica	River Mud	
36.8 ENTERING	Sandy	E1118.5 River Mud Mica Fine Sand
	E1136.1 5"Solid Ledge	ا ا
D.P.W. Acc. 26333 #188A	D.P.W. File 505 Acc. 26333 #/878	D.P.W. Acc. 26333 #187A
ROCK DATA	1	20333 707

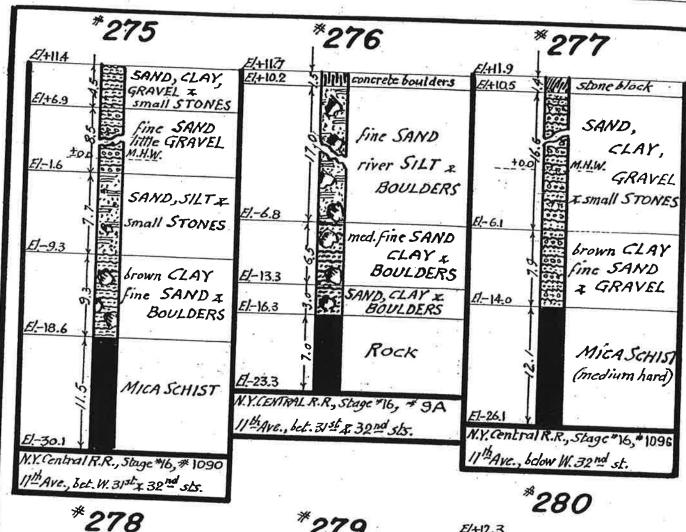

VOL. 2 SHEET 10.

*19 3	*194	*195
El. 0 Fill.	E1.6.46 Fill. E1.0 1 Wood.	El. 0
E1. 0	E11.54 v	20' \$ Fi//.
40' Fill	32' A Fill	El-13.65
40 40 40 40 40 40	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Is' A Fill, Sand, Mud.
₹ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	E1-33.54	E1-28.65 - N
WE W	40' River Mud.	17 19 19 19 19 19 19 19 19 19 19 19 19 19
80' F		65' River Mud.
River Mud.	E1,-73.64\ _ ==	E/-93.63 =
River Mud	River Mud 54 Sand	Fine Gray Sand, Trace of
146.6 y Sand	Solid Ledge	Trace of Mica
A 444 FILE 50 5	61137.64	D. P.W. File 50.5 186 A

VOL.2 SHEET 10

[#] 196	# 107	-11-
	#197	[#] 198
E1.+3.48 G A Fill.	E1.+6.43 Street Concrete	E1.+6,37
ELLE OU WOOD.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	00
E7.72.98 A.A.		
	72	
S;LI S Fill		o Fill.
Fill.	47	EI33'.6 EI33'.6 EI33'.6
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	,835 Fill.	
El14.02	SSS Fill.	E133',6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
수 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등	A D	1 25,0 V AV
	Δ̈́	등 급 등 급
Millian Millian River Mud.		는 목
- E	EI30.57	======================================
		===
, o 三号	= - = -	=======================================
River Mud.	=======================================	===
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	The state of the s
	프로 프로	River Mud.
P		9
로 프 크루	12 12	
	E130.57	-
E174.02		
	River Mud.	
Fine Sand, River Mud.	River Mud.	======================================
A Kiver Mud.	1 1	El93.6
E1.~94.02		LI 73.6 V
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Fine Sand,	F. E.	
Trace of Mica	le di pi	River Mud,
E1114.02	11 pr	River Mud, Sandy.
Fine Sand,	===	
River Mud, Trace of Wood. El.	-132,5	
	Mud,	F1134.6
1134.35 Trace of Mica.	-137.5 Trace of Wood.	Red Shale.
D. F. W. Acc. 26333 # 185 [D. P. W. Acc. 26333 #1858	D.P.W. Acc. 26333 #/85A

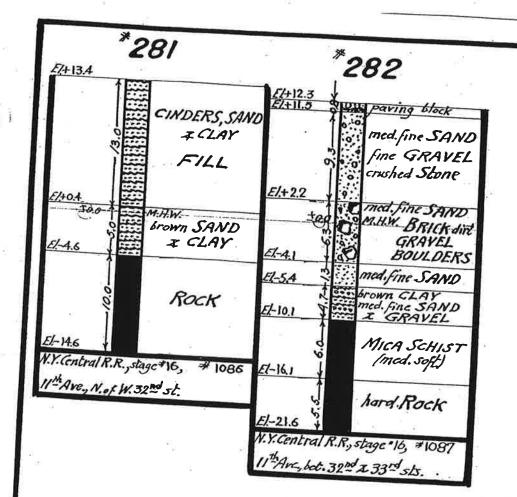
VOL.2 SHEET 10


VOL.2 SHEET 10

#202	#203	#204
El+6.0' V	El. + 2.4' Pavement El. + 2.4' Fill El. + 1.4' Doulders & Iron El. 0' V	
	A FIII	Fill PARA FILL
	E///.6' \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	E114.0'y
	River Mud	River Mud
か	E182.6 F River Mud & Shells	fr Br fig. Br for far far far
El51.5' \(\frac{1}{2}\)	Piver Mud	E174.0'Y
River Mud	6190.6° TO 57/1+	River Mud, sandy
E1126.0	Clay & Sand	
Fine Sand (Trace of Mice) EI131.3 F ROCK D.P.W. FILE NO. 50.5 # 183C	D.P.W. ACC. NO. 26333# 1838	EI125.5 Rock D.P.W. FILE NO. 50.5 # 183 A

VOL. 2 SHEET IO

# 205	# 206	#207			
F1.+17.5	E1. +6.8 V	El. +5.8' O			
D.P.W. File 103.23 11TH AVE. Acc. 26390 Z 36THst.	EI - 19.2 0	El -14.3 A Bull In			
	River Mud	River Mud			
	E1/00.2	E1943			
74	River Mud River Mud (Trace of Mua)	River Mud. Sand			
ROCK DATA	El131.2 P ROCK D.P.W. FILE NO. 50.5#182B	Fire Gray Sand (Trace of) EI. 122.1 D.P.W. FILE NO. 50.5 # 182 A VOL.2 SHEET 10			


*269	*270	*271
E/+10.8		
El+9.8 Concrete	- E/+10.3	E/+10.6
	[52]	SAND, CINDER
JE 5040	917	BRICK dirt x
SAND,	SAND,	E.45.3 \ WOOD
river SIL	TI GRAVEL	SAND, BRICK d
El-32 BOULDI	AN CTANE	17 () 4 ()
O'SE SAIND, BRIG	KE Small STONES	El-3.8 \ Y
BOULDER	S 10 125	EL-5.7 SKY BRICK
El-8.2 TIMBER	1 32	SILT
	SILT 4	Ni o-
Fine SANI	O STORY	
150	E/-142 =	brown CLAY
CLAY	I Strown CLAY	William SAMA
BOULD		GRAVEL
20022	EN 19.5 Small BOULDERS	Flago Small BOULDERS
	EN 19.5 Small BOULDERS	El-19.0
El-21.7	- X-	
T I	44.	MICA SCHIST
96 Pa	MICA SCHIST	
ROCK	(hard)	Z QUARTZ
E!-30,5		(hard)
NV Contain 100 ct	9 7 7 8	
N.Y. Central R.R., Stage 16, # 6		<i>E!</i> ,−31.0 ↓
11 Ave, below 31st st.,	N.Y.Central R.R., Stugelb, #1095	
	11th Ave., below 31st st.	11th Arc. 4 W. 31st st.
*272		
E+11.0	*273	*274
1608		214
SAND	E/+10.7	E/+11.4
11973	EL+7.7 S CINDERS	SAND
GRAVEL	100	
BRICKdirl	SAND,	CLAY &
X STONE FIL		EL+34 Small STONES
A-21	L too S GRAVEL,	1 27
El-25	MHWBRICK dirt	JOO MAY SILT,
SAND, GRAVEL	Small STONE	SAND,
FI-55 MICO - CTOME -		0,1,10,
E1-3.5 PASTONE FILL		BRICK dirt
5/LT Z	El6.6 ₽	BRICK dirt
EI-8.5 SULT A SMAIL STONES	El-6.6 35 5127 4	BRICK dirt
EI-8.5 SILT X Small STONES	El-98 3 STAT A Small STONES	BRICK dirt
EI-8.5 SULT A SMAIL STONES	El-98 7 57LT Z Small STONES El-11.8 5 51LT	BRICK dirt & STONE FILL brown CLAY
EL-8.5 SILT X SMAIL STONES EL-11.7 SO GRAVEL	El-66 SILT A SMAIL STONES El-11.8 S SILT CROUSI	BRICK dirt ** STONE FILL brown CLAY Fine SAND
EI-8.5 SILT X Small STONES	El-6.6 SILT A SIMULT STONES El-11.8 El-14.9 GRAVEL	BRICK dirt 2 STONE FILL brown CLAY
EL-8.5 SILT X SMAIL STONES EL-11.7 SO GRAVEL	El-9.8 SILT Z SMAIL STONES El-11.8 SILT GRAVEL El-14.9 SILT MICA SCHIST	BRICK dirt ** STONE FILL brown CLAY fine SAND ** GRAVEL
EI-8.5 GRAVEL EI-11.7 GRAVEL QUARTZ	El-9.8 SILT Z. SMAIL STONES El-11.8 SILT GRAVEL El-14.9 Soft MICA SCHIST Soft	BRICK dirt ** STONE FILL brown CLAY fine SAND
EL-8.5 SILT X SILT X SMAIL STONES EL-11.7 SO GRAVEL QUARTZ (hard)	El-9.8 SILT A SMAIL STONES El-11.8 SILT GRAVEL El-17.7 SILT MICA SCHIST MICA SCHIST MICA SCHIST	BRICK dirt # STONE FILL brown CLAY Fine SAND # GRAVEL
EI-3.5 SILT Z SILT Z SMAIL STONES EI-11.7 SO GRAVEL EI-23.7 (hard)	El-98 SILT A SMAIL STONES El-11.8 SILT GRAVEL El-17.7 SOFT MICA SCHIST SOFT OUARTZ (hard)	BRICK dirt ** STONE FILL brown CLAY Fine SAND ** GRAVEL
El-8.5 SILT X SILT X SILT X SMAIL STONES El-11.7 SO GRAVEL El-23.7 (hard) El-23.7 (NY. Gentral R.R., Stage 16., * 1093	El-9.8 SILT A SMAIL STONES El-11.8 SILT GRAVEL El-14.9 Soft MICA SCHIST Soft MICA SCHIST OUARTZ Thard N.Y. CENTRAL R.R., Stage 16, 1092	BRICK dirt ** STONE FILL brown CLAY fine SAND ** GRAVEL EI-17.3 MICA SCHIST
El-8.5 SILT X SILT X SMAIL STONES El-11.7 SO GRAVEL El-11.7 SO GRAVEL VY. Contral R.R., Stage 16., * 1093	El-98 SILT A SMAIL STONES El-11.8 SILT GRAVEL El-17.7 SOFT MICA SCHIST SOFT OUARTZ (hard)	BRICK dirt ** STONE FILL brown CLAY Fine SAND ** GRAVEL
El-8.5 SILT X SILT X SILT X SMAIL STONES El-11.7 SO GRAVEL El-23.7 (hard) El-23.7 (NY. Gentral R.R., Stage 16., * 1093	El-9.8 SILT A SMAIL STONES El-11.8 SILT GRAVEL El-14.9 Soft MICA SCHIST Soft MICA SCHIST OUARTZ Thard N.Y. CENTRAL R.R., Stage 16, 1092	BRICK dirt ** STONE FILL brown CLAY fine SAND ** GRAVEL EI-17.3 MICA SCHIST
El-8.5 SILT X SILT X SILT X SMAIL STONES El-11.7 SO GRAVEL El-23.7 (hard) El-23.7 (NY. Gentral R.R., Stage 16., * 1093	El-98 SILT A SIMAL STONES El-18 SILT GRAVEL El-14.9 Soft MICA SCHIST OUARTZ (Nard) N.Y. CENTRAL R.R., Stage 16, 1092 11th Ave., N. of W. 31st st.	BRICK dirt ** STONE FILL brown CLAY fine SAND ** GRAVEL El-17.3 MICA SCHIST (hard)
El-11.7 CARTZ. (hard) El-23.9 V.Y.Gentral R.R., Stage 16, * 1093	El-98 SILT Z SILT Z SIMALI STONES El-11.8 SILT GRAVEL El-14.9 Soft MICA SCHIST SOFT OUARTZ OUARTZ OUARTZ OUARTZ N.Y. CENTRAL R.R., Stage 16, 1092 II the Ave., N. of W. 3 5t.	BRICK dirt ** STONE FILL brown CLAY fine SAND ** GRAVEL EI-17.3 MICA SCHIST (hard)
El-8.5 SILT X SILT X SMAIL STONES El-11.7 SO GRAVEL El-11.7 SO GRAVEL VY. Contral R.R., Stage 16., * 1093	El-98 SILT A SMAIL STONES El-18 SILT GRAVEL El-14.9 SOFT MICA SCHIST SOFT MICA SCHIST OUARTZ N.Y. CENTRAL R.R., Stage 16, 1092 II MAYEL, N. of W. 3 St st.	BRICK dirt # STONE FILL brown CLAY fine SAND # GRAVEL El-17.3 MICA SCHIST (hard) T-30.3 V.CENTRAL R.R., Stage 16, # 1091
El-8.5 SILT & SI	El-98 SILT A SMAIL STONES El-18 SILT GRAVEL El-14.9 SOFT MICA SCHIST SOFT MICA SCHIST OUARTZ N.Y. CENTRAL R.R., Stage 16, 1092 II MAYEL, N. of W. 3 St st.	BRICK dirt # STONE FILL brown CLAY fine SAND # GRAVEL El-17.3 MICA SCHIST (hard) T-30.3 V.CENTRAL R.R., Stage 16, # 1091
El-8.5 SILT X SILT X SMAIL STONES El-11.7 SO GRAVEL PUARTZ (hard) N.Y.Gentral R.R., Stage 16., * 1093	El-98 SILT Z SILT Z SIMALI STONES El-11.8 SILT GRAVEL El-14.9 Soft MICA SCHIST SOFT OUARTZ OU	BRICK dirt ** STONE FILL brown CLAY fine SAND ** GRAVEL EI-17.3 MICA SCHIST (hard) II-30.3 IV.CENTRAL R.R., Stage 16, # 1091 IIIAve., N. of W. 315 t.
EI-85 SILT Z SMAIL STONES EI-11.7 GRAVEL	El-98 SILT Z SILT Z SIMALI STONES El-11.8 SILT GRAVEL El-14.9 Soft MICA SCHIST SOFT OUARTZ OU	BRICK dirt # STONE FILL brown CLAY Fine SAND # GRAVEL El-17.3 MICA SCHIST (hard) T-30.3 V.CENTRAL R.R., Stage 16, # 1091

*278 *279 E/+12.3 SAND, CLAY, 5/+11.9 E.+10.3 tobbles BRICK X FILL, SAND, small STONES CINDERS SAND ASHES, BOULDERS El.+5.8 B+6.7 SAND brick Dirtz Z CLAY FILL El.+0.8 FILL SAND GRAVEL M.H.W. 20,00 M.H.W. MHW. ASHES El-2.5 ROCK FILL BRICKS river MUD x SILTE BOULDERS WOOD SAND. El-9.7 EL-9.5 F-9.8 SM Small BOULDERS brown SANDZCLAY Small BOULDERS E/-14.1 fine SAND hard Rock 事が後 E/-15.7 X CLAY Soft Rock E1-17.4 El-18.1 MICA SCHIST **QUARTZ** ROCK hard Rock N.Y. Central R.R., Stage 16, \$1089 N.Y. Central R.R., Stage 16, *IIA 11th Ave., above W. 32nd st. El-29.1 11 Ave., below. S.W. corner W. 32ndst. N.Y. Central R.R., Stage *16, + 1088 11th Ave., N.E. corner W. 32nd st.

ROCK DATA

VOI 9 CHEET IN

VOL. 2, SHEET 10

MUESER, RUTLEDGE, JOHNSTON & DESIMONE WOODWARD-CLYDE CONSULTANTS, INC.

SHEET 1 of 2 BORING NO MG-824

NW

DRILL ROD

At completion. Water in hole.

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	DOMME 110
	BORING LOG	FILE NO. 4840
PROJECT: WEST SIDE HIGHWAY	DOT. CONTR. NO.: D 250002	ELEVATION: +5.7
COORDINATES: N 192491.8	E 1998852.4	
BORING LOCATION: MTA Yard, Ramp		DATUM: Manhattan
INSPECTOR: Y.K. Chan (MRJD)		DATE STARTED: 04/07/8
CONTRACTOR: Warren George, Inc.		DATE COMP.: 04/08/8
DRILLER: J. Farrell	HELPER: G. Mccar	tar
TYPE OF RIG: TRUCK 🖾 SKID 🗋 BARGE	MOUNTED TRIPOD THER []	tal
CASING: DIA. 4 IN. FROM 0.0 TO 5.0	FT.; DIA. 3 IN. FROM 0.0 TO 29.5 FT	T
DRILLING MUD UTILIZED: MUD TYPE Quic	1 - 1	OTARY BIT DIA. 3 7/8 IN.
D 041171 55 5 5		7.1.1.1 DIA. 3 7/0 IN,

131720	SIZE										
		CORE		iamond,	NX				CORE BARREL	Double	Barrel
FEED DURING	CORIN	G: MECHAN	ICAL	HYDE	AULIC 🔀	OTHER [TOTAL DAMINEL	DOMPTE	parrel
SAMPLER HAM	MER: V	VEIGHT (LB	s) 14			AVG. FALL	30	IN.			
CASING HAMM		IGHT (LBS)	30	0		AVG. FALL	18	IN.	· · · · · · · · · · · · · · · · · · ·	<u></u>	
NO. OF U-TUE	BES	_ NO.	OF VANE T			ROCK 27.		FT.	DEPTH TO COMP. 39	.5 FT.	
				W/	ATER LEVEL O	BSERVATION	vs.		, ·		
DATE	TIME	DEPTH OF HOLE	DEPTH OF CASING	DEPTH TO WATER	ELEVATION OF TIDE		***	COND	ITIONS OF OBSERVA	TION	
04/08/82	0730	20.0	5.0	0.0		Overnig	ht		mud in hole.		
04/08/82	1120	39.5	29.5	5.0		At comp			Water in hole		

D-SAMPLER: Split Spoon, 2" O.D.

U-SAMPLER: DIA.

SAMPLING EQUIPMENT,

		· · · · · · · · · · · · · · · · · · ·			·				
	AILY OGRESS	CASING BLOWS	NO.	SAMP DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH (FT)	REMARKS
130	00	10 15 17	1D	2.0	6-8 9-8	Dark brown f-c sandy gravel, some silt, trace glass	tr	_0 _	W = Water content in %
	Sunny, Windy	31 17 Ω				(Fill) (GM)	brn, f-c , sm silt ss (Fill	 - 5 -	
	Sunny	हर स	NR 2D	5.5 7.5 7.5 9.5	6-8 5-6 9-9 16-13	Dark brown f-c sand, sm silt,	pt ak & gvl, , glas	- I	
	04/07/82	<u>н</u>		10.0 12.0 12.0	3-3 3-4 5-3	trace brick (Fill) (SM) Black organic clayey m-f sand	Med sand bric	- 10 	
1530 0700	0		4D	14.0 15.0 17.0	4-6 1-1 1-1	(Fill)(SC) Medium dark gray organic silty clay, tr fine sand, decomposed wood (OH)	tion 1 Loose Cilly 0 (Fill)	15	W = 72
	Sunny			20.0	1/12"	Do 4D, trace vegetation (OH)	4D, trace vegetation	20	W ≈ 57
. 00/ 00/ 70	04/08/82	6	-	25.0	6-5 5-6	Red-brn silty f-m sand, sm silty clay layers, tr gravel, mica (SM)	24.0	25-	Decomposed rock fgmts, in wash at 27.5'.

MUESER, RUTLEDGE, JOHNSTON & DESIMONE WOODWARD-CLYDE CONSULTANTS, INC. BORING LOG

SHEET 2 of 2 BORING NO. MG-824

				<u> </u>	BORING LOG	•	FILE	NO. <u>4840</u>
DAILY PROGRESS	CASING BLOWS	NO. DEPTH BLOWS/6"			SAMPLE DESCRIPTION	STRATA		REMARKS
		1C	29.5		Green to light gray hornblende	 	30	
٨.		<u> </u>	34.5	RQD=84%	mica schist, tr quartz veins &		- ~~	
Sunny				1	mica schist, jtd, UnWExJts.	1C	├ ┤	
Ä				1	, jou, com <u>and</u>	-	\vdash \dashv	
01						24 5	┆ ╴┤	
22		2C	34.5	Rec=96%	Light gray mica schist, trace	34.5	35	
× ×			39.5	RQD=84%	quartz inclusions, mdjtd,		\vdash \dashv	
ő.					UnWExJts		<u> </u>	
04/08/82	<u> </u>					2C	- -	
						39.5	\vdash \dashv	
1200						33.3	40	
						ļ		
						l ·		
į							[]	
	· · .					l.	45	*
-					· ·			i
					· .			
ļ	<u> </u>				-	1		
					·			
ļ							50	
ļ								
-								
				· · · · · · · · ·			-55-	
			———				_ 22 _	
}								
}	\dashv							
-								
-				·	•		-60 -	
							~~	
F							_	
<u>-</u>		 -					_	
	 -				•			
ļ-	-				·		-65-	
-					•		_ ~ _	•
							_	
F					•		_	
-								
<u> </u>					·		-70 -	
-	 -						_ `-	
[-							- 4	
-	 -						-, -	
-		 -						
├-			 -[-				-75 -	
F	 -	-					-	
· -	- 	 -						
-	 -	-+				}		•
F						 		
<u> -</u>			 -		Í	ļ	-80-	
<u> </u>						-		
<u> </u>			 -			-		
上		- -				-		
⊢						Ļ		

MUESER, RUTLEDGE, JOHNSTON & DESIMONE WOODWARD-CLYDE CONSULTANTS, INC.

BORING NO. FILE NO.__ 4840

BORING LOG DOT. CONTR. NO.: D 250002

220 1522		BORIN	G LOG		FILE NO	0 4840
	DE HIGHWAY	DOT. CONTR. NO	: D 25000	12		
COORDINATES: N 19:	2600.2	E 1998598.9				ion: +6.2
	MTA Yard, MABSTOA (DATUM:	
		arade			DATE ST	ARTED: 04/02/82
	. Mukherjee en George, Inc.		···········		DATE CO	MP.: 04/05/82
DRILLER: J. Steve			HELPER: C.	Soto	· · · · · · · · · · · · · · · · · · ·	
TYPE OF RIG: TRUCK [3]	SKID BARGE MOU	NTED T TRIBO				
CASING: DIA. 4 IN.	FROM 0.0 TO 35.0 F		D ☐ OTHER . FROM 0.0	_		
DRILLING MUD UTILIZED	: MUD TYPE Zeogel		. FROM U.U	10 49.5		
					ROTARY BIT DIA.	. 3 3/4, 2 15/16 IN
SAMPLING EQUIPMENT.		Spoon, 2" O	DRILL ROD	BW		
(TYPE & SIZE)	U-SAMPLER: DIA.	IN.: TYPE	*			
	COREBIT Diamond	BX		······································	Table	
FEED DURING CORING: M		DRAULIC 🔀	0741 57		CORE BARREL	Double Barrel
SAMPLER HAMMER: WEIGI			OTHER [···		
CASING HAMMER: WEIGHT			AVG. FALL	_30 IN.		
	300		AVG. FALL	18 IN.	·	
NO. OF U-TUBES	NO. OF VANE TESTS	- DEPTH TO	ROCK 49.5		РТН ТО СОМР. 68.	<u> </u>
		WATER LEVEL OF			7 17 TO COMP. 68,	.0 FT.
			22110143			

	WATER LEVEL OBSERVATIONS										
DATE	TIME	DEPTH OF HOLE	DEPTH OF CASING	DEPTH TO WATER	ELEVATION OF TIDE	CONDITIONS OF OBSERVATION					
04/05/82	0715	60.0	49.5	3.0		0					
04/05/82	1430	68.0	49.5	4.9		Over weekend					
04/05/82	1440	68.0	35.0	9.0		At completion of rock coring					
04/05/82	1500	68.0	20.0	4.5							
04/05/82	1510		0.0	5.2							
1											

DAILY	CASING	<u> </u>	SAMP	LE		1		r
PROGRESS	BLOWS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH	REMARKS
0700		1D	0.5	12-12	Dk gryc-f cinders, sm silt	*	(+1)	*Acoba14
	16		2.5	8-9	(Fill) (SM)	0.3	⊢	*Asphalt
	14				1			W = Water
	31]	힅		content in %
	32					some 1)		
	14	2D	5.0	7-4	Dk gray c-f cinders, some		- 5-	
	11		7.0	4-5	organic silt (Fill) (SM)	sand • (F:	- 4	
	_14		<u> </u>		(FIII) (SM)	. Sa.		
	13		ļi			t s		
	18.					en		
ļ		3D	10.0	2-1	Gray fine sand, sm organic silt	o coarse fragments	- 10-	
ŀ	_16		12.0	1-2	(Fill) (SM)	O E		Lost all drill;
ŀ	82			· .	, (1111) (DH)	ו נב		water at 12.0'.
_	87							45 12.0
g i	45					fine rock		
Sunny		4D	15.0	12-11		44	-15-	
-	_30		17.0	_30=32	(Fill) (SM)	e l		
, ,	62				(2 111) (011)	4 g g	- 4	
82	45				j	ck gray gravel,		
5/2	46				•			
04/02/82			20.0	15-21		ומ	20 -	
24	56		22.0	<u>6-3</u>	· ·	ᅧᄨᆥ	• 1	
			22.0	5-12	Gry mic silty f-c sand, some	U		
-	44		24.0	17-20	rock fragments (Fill) (SM)	silt, tr	· 1	
} -	48					გ წ. ⊢	. 4	
<u> -</u>	26 <i>€</i> 51			14-1.9	Gray mic f-c sand, sm silt	្ស្ដ	25	
<u>-</u>	13		27_0	3-21	(72:33) (424)		· 1	
	276	\dashv	 -		,	cinders,	· 1	•
 						ŏ # [· 1	
	82 j				1,	→ ∪ ⊢	30	

MUESER, RUTLEDGE, JOHNSTON & DESIMONE WOODWARD-CLYDE CONSULTANTS, INC.

SHEET 2 of 2 BORING NO._ MG-825 FILE NO. 4840

					BORING LOG	J.		ING NO. 4840
DAILY	CASING		SAMP	LE				. 110.
PROGRESS	BLOWS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH (FT)	REMARKS
	46	7D	30.0	WR/12"	Top: Soft blk org silty clay,tr	*		*7D Top
	_30	<u></u>	32.0	4-4	mica (OH)	31.0		Top: W = 52
	39	<u> </u>			Bot: Med gry org silty clay, sm	0 g	├ -	Bot: W =55
	36	ļ	<u> </u>		shells, fine sand (OH)			
	39	 		ļ				
		8Đ	35.0	1-1	Medium gray organic silty clay,	clay, sand	35	W = 48
	M		37.0	2-2	some shells, trace fine sand	o a fe		
	U	<u> </u>	<u> </u>	ļ	(OH)	1ty fine		
	D	<u> </u>	 	ļ			_	
_	<u> </u>	05	40.0	1 /2 0 11			- 40 - -	
ļ	<u> </u>	9D	40.0	1/12"	Med gry org silty clay, tr fine	rg ra in	_ `` _	W = 53
	s	 -	42.0	2-2	sand partings, veg (OH)			
	E		 			ry s,		
> -	- D					ويناه		
Sunny		LOD	45.0	WH −1	Top: Do 9D (OH)	Med gry shells, sand pa	45	Mon . W = 34
ng			47.0	1-2	Bot: Gray f-m sand, sm organic		⊢ ⊣	Top: $W = 34$
_						46.0		
					sir, trace peat, shells (SM)	10b Bottom		
[·	of the		
[1C	50.0	Rec=94%	Lt gry to white granitic	H H	50	
- · . [55.0	RQD=46%		49.5		
04/02/82				~~~	2 - 3			
22		-						•
<u> </u>					·	granitic rtzite,		
ő		2C	55.0	Rec=98%	Do 1C	it te	-55-	New diamond bit
-			60.0	RQD=26%		an zi	1	at 55.0'.
1.					·	te granit quartzite	_ 7	
-					·	e E		-
1538 - -						1		
,,,,,		3C		Rec=93%	Do 2C, trace quartzite	≱ n ⊠	_60_	Core barrel
-			63.0	RQD=50%		to who trace	_]	blocked at 63.0'
/82					· ·	OI.		
20 21	 -	4C	63.0	Rec=98%	Lt gray to white quartzite	k ca v	_]	
04/05 Sunny			68.0	RQD=84%	and granitic gneiss, jtd, UnW	Light gra pegmatite itd, UnW	_ = = _]	•
Sur F						Light pegmat itd,	_~~]	
						i di di		
1530					<u> </u>		_	•
·						68.0		
F						Ļ	- 70-	
· -			╼┷╌┼		1	-	_ ``_	
<u> </u> -						-		
}-								
-		_				ŀ		
.		_	-			-	- 75-	-
					1	ŀ		
	 [į.	}		
E					ł			
						ŀ		
						ŀ	- 80-	
					ļ	F		
					i	<u> </u>		9
. [_	<u></u> .l .				t e	I	į.	İ
. [-						-		

MUESER, RUTLEDGE, JOHNSTON & DESIMONE WOODWARD-CLYDE CONSULTANTS, INC.

SHEET 1 of 2

BORING NO. MG-826

										DOTTING NO.	110-020
(MOOM	0755 117			BORII	NG LOG				FILE NO.	4840
PROJECT:	WEST	SIDE HI	GHWAY	D	OT. CONTR. NO	D: D 2500	02				
COORDINAT	ES: N	192690	5	E						ELEVATION:	+5.7
BORING LO	CATION:	MTA Y	ard MAR	STON Care	1998436.	2					nhattan
INSPECTOR:		Y. K. C		DION GAL	age					DATE STARTE	D: 04/01/82
CONTRACTO				T						DATE COMP.:	04/02/82
DRILLER:			George,	inc.		٠,					
 _		Farrel				HELPER:	G.	McC	artar		
TYPE OF RIC			KID 🔲 BA	RGE MOUNT	ED TRIPO	OD OTHE	R E				
CASING: DIA	. 4	IN. FROM	0.0то	11.0 FT.; C		N. FROM O.		71	0.5+		·
DRILLING M	UD UTIL	IZED: MUD.					0 10	, ,1			
		10.04			el				ROTAR	Y BIT DIA. 3	7/8IN.
SAMPLING		NT -	MPLER: DIA	Split Spo		D.D			DRILL	ROD N	
(TYPE	& SIZE)			IN.	TYPE						· ·
5555		CORE		Diamond	XX ,E				CORE	BARREL Doub	.1
FEED DURIN				HYDR	AULIC 🔀	OTHER [JUNES DOUR	ore sarrer
SAMPLER HA				140		AVG. FALL	30	181			
CASING HAM	MER: WE	IGHT (LBS)		300		AVG. FALL					
NO. OF U-TU	BES	NO.	OF VANE T		DEPTH TO		18				
								FT.	DEPTH TO	COMP. 82.0	FT.
		DE0711.05			TIEN LEVEL O	BSERVATIONS	<u> </u>		<u> </u>		
DATE	TIME		DEPTH OF	1	ELEVATION						
04/06/06		HOLE	CASING	WATER	OFTIDE		,	COND	ITIONS OF	OBSERVATION	•
04/02/82		82.0	71.0	6.2		Overnight	-				
04/02/82	0815	82.0	0.0	6.9							····
									· ····		
								·			
	•				<u> </u>						

DAILY	CASING	<u> </u>	SAMP	LE				T
ROGRESS	BLOWS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH (FT)	REMARKS
0700	-	1D	3.0	23-16 14-11	Gray c-f sand, sm gravel, trace silt (Fill)(SP)	0.3		*Asphalt W = Water content in %
		2D	5.0 7.0	6-8 7-7	Gray silty fine to medium sand (Fill)(SM)	-c sand, (Fill)	- 5 -	
иу		NR	10.0	7-5		blk f	 - 10 -	**Tried for
Sunny		3D	12.0 12.0 14.0	3-3 3-3 13-17	Black c-f sand, sm silt, tr gravel (Fill)(SM)	gry to		sample twice. No recovery.
04/01/82		4D	15.0 17.0	3-3 3-3	Blk f-c sand, sm silt, tr gvl decomposed wood, sls(Fill) (SM)	compact gvl, sls	- 15 - -	
04/0		5D	20.0	6-3 3-4	Gray-brn clayey fine to medium sand, trace gravel (Fill)(SC)	Loose to c silt, tro	20	
		6D	25.0			걸 등 23.0	- - -	Color of mud w black at 23.0'
			27.0	3-3	Soft black organic silty clay, trace fine sand (OH)	6D 28.0	-25 - 	W = 72 *Soft-med,dk gr org silty clay
						²⁸ .0	- 30	tr f sa, f sa seams,sls, veg

MUESER, RUTLEDGE, JOHNSTON & DESIMONE WOODWARD-CLYDE CONSULTANTS, INC.

SHEET 2 of 2 BORING NO. MG-826

BORING LOG FILE NO. ____4840_ DAILY SAMPLE CASING SAMPLE DESCRIPTION PROGRESS BLOWS STRATA DEPTH BLOWS/6" REMARKS NO. (FT) 7D 30.0 WH/12" Soft dark gray organic silty 30 W = 6932.0 clay, tr fine sand seams (OH) Ū 8D 35.0 Do 7D, trace shells, veg (OH) _WH-1 W = 4637.0 1-2 sand D 9D 40.0 1/12" Do (OH) W = 5242.0 WH/12" 뷰 100 45.0 2-2 Do (OH) W = 5247.0 2-2 silty 110 50 0 Medium dark gray organic silty organic 52.0 2-3 clay, trace fine sand 12D 55.0 WR/24" Do 11D, some fine sand, trace shells 13D 60.0 Medium dark gray organic silty WH/12" W = 4162.0 3-3 clay, tr fine sand, shells, 04/01/82 (OH) ဂ္ 14D 65.0 WH/18" Medium dark gray organic silty W = 3367.0 clay, tr fine sand, veg Telescoped 3" 69.0 casing inside 4" casing to 72.0' *Possible 1C 72.0 Rec=98% Top: Gray garnet mica schist, t mica schist
quartzite,
mdjtd,UnWExJts decomposed rock 77.0 RQD=88% jtd, UnWExJts Bot: White quartzite, mdjtd. Mica schist is very micaceous. 2C 77.0 Rec=98% Top: White quartzite, mdjtd, 82.0 RQD=96% Bottom: Gray garnet mica schist, mdjtd, UnWExJts 1530 82.0

BORING NO. MG-826

MUESER, RUTLEDGE, JOHNSTON & DESIMONE WOODWARD-CLYDE CONSULTANTS, INC.

SHEET 1 of 3

BORING NO. MG-827

FILE NO. 4840

									20/11/10 110, 130 027
222.55					BORI	NG LOG			FILE NO. 4840
PROJECT:				D(OT. CONTR. NO	o.: D 2500	002		ELEVATION: +5.5
COORDINAT		192663.	3	Ę	1998186.				
BORING LO	CATION:	MTA	Yard F	Ramps					DATUM: Manhattan
INSPECTOR:	I	Mukhe		(MRJD)				-	DATE STARTED: 04/07/82
CONTRACTO			eorge, I						DATE COMP.: 04/09/82
DRILLER:		Steven	son			lugi see		Coto	
TYPE OF RIC				RGF MOUNT	ED TRIPO	HELPER:		Soto	
			0.0 то 4	0.0 FT.;			ER [
DRILLING M	UD UTIL	IZED: MUD	TYPE		<i>71</i> 7. 3 1	N. FROM O	.0 1	0115.3	
		D 64		Split Sp	00p 3" (0.D.			ROTARY BIT DIA. 3 3/4 IN.
SAMPLING		NT	MPLER: DIA			U.D.			DRILL ROD BW
(TYPE	& SIZE)	CORE			TYPE	·			
FEED OURIN	G CORIN			iamond,					CORE BARREL Double Barrel
SAMPLER HA					AULIC 🔀	OTHER [
				140		AVG. FALL	30	IN.	
CASING HAM	MEH: WE	IGHT (LBS)		300		AVG. FALL	18	IN.	
NO. OF U~TL	-BES	_ NO.	OF VANE T	ESTS _	DEPTH TO	D ROCK 115	.3	FT. D	ертн то comp.135.0 FT.
		· · · · · · · · · · · · · · · · · · ·	,	WA	TER LEVEL C	BSERVATION	vs		133.0 11.
DATE	TIME	DEPTH OF	DEPTH OF		ELEVATION	F			
		HOLE	CASING	WATER	OF TIDE			CONDIT	IONS OF OBSERVATION
04/08/82	0730	62.0	40.0	4.6		Orrownia	h.	""	
04/09/82	0715	115.3	115.3	6.0		Overnig	ΠĘ		
04/09/82			115.3	2.0		7.1			
04/12/82		_	15.0	5.7		AT COMP.	<u>leti</u>	on at	rock coring
04/12/82		_	0.0			Over t	ne w	eekend	
	~~~		<u> </u>	5.0	: 1				

· <del></del>		-			•			
DAILY	CASING		SAMP	LE		Т		T
PROGRESS 0830	BLOWS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH (FT)	REMARKS
0630		1 <u>D</u>	0.75	32-19	Brown cinders, sm c-f sand,	*-	-0	*Asphalt
	28	<u> </u>	2.75	10-30	silt, tr gravel (Fill) (SM)	0.2	-	W = Water
•	48	<u> </u>			]		├	content in %
	37		ļ <u>.</u>			e gray-brown and, trace	╟ -	
	56		<u> </u>			oro Fro	<del> -</del> -	
Cold	31	2D	5.0	9-16	Gry-brn silty f-m sand, tr gvl	Ja h	<b>j-</b> 5-	
ប	27	<u> </u>	7.0	9-10	cndrs, brick, mica (Fill) (SM)	a day	<del> -</del> -	
_	34		<u> </u>			19.09		
Cloudy,	13					se x	<u>-</u>	
ă						10.78		·
Ř	29 25	_3D	10.0	11-17	Top: 18" Do 2D (Fill) (SM)	7 8 7	-10-	
5	38		12.0	12-8	Bot: 6" Red-brn silt, sm fine	to loc coarse s, bric	<b>-</b> -	
Ţ	29				sand (Fill) (ML)	1 5 8		•
; Partly	17				•	act to den		
i A	15	45	15.0			ורט. מ	15	
	15		17.0	1-3	Dark gray c-f sand, sm gravel,	comj ine		
04/07/82	16	<del></del> -	<del>-1</del> /•U	3-5	silt, tr cndrs, mica (Fill)(SM)	l ≂ Ҹ ユ		
7	18				•	Medium silty gravel		
2	16				•	r i i		•
9	*19	5D	20.0	WR-13	Mod blasta and a	1 - 1	- 20 -	
	18		22.0	9-6	Med black organic silty clay,	20.0	_	₩ = 58
. [	12			<del></del>	tr fine sand, wood, bricks (OH)	g,		*20.0'-25.0'
	26				İ	5D Medium	- 1	drilled ahead of
	27		-			, je	_	casing.
[	28	6D :	25.0	30-19	Gray-hrn mig gilter 5 m as a		- 25 -	
. [	43		27.0		Gray-brn mic silty f-m sand, sm rock fragments (SM)			6D rock fgmts
ļ	80				rock fragments (SM)	Med ot (1)		are decomposed
<u>[</u>	69					<i>-</i> 1-		mica schist.
	90	$\Box$				O g E	- 30 -	(Fill)

MUESER, RUTLEDGE, JOHNSTON & DESIMONE WOODWARD-CLYDE CONSULTANTS, INC. BORING LOG

SHEET 2 of 3 BORING NO. MG-827 FILE NO. 4840

DAILY   CASING PROCRESS   SAMPLE DESCRIPTION   STRATA   DETTA   NEMARKS		T				DOMING EOG			FILE NO. 1040			
44	DAILY PROGRESS			<del></del>	<del>,</del>	SAMPLE DESCRIPTION		STRATA		REMARKS		
22   30.3   32   33.4   33.5   35   42.7   70.2   35.0   10-14   26.   37.0   8-9   26.   25.   25.   26.   25.   25.   26.   25.   26.   25.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.   26.								<del> </del>				
32	1		1						<u> </u>	ļ ·		
## 90 45.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 69    ## 90 45.0 1-1   Trace shells (OH)   W = 53    ## 90 45.0 1-1   Trace shells (OH)   W = 53    ## 90 45.0 1-1   Trace shells (OH)   W = 47    ## 100 50.0 1-1   Do 9D, some fine sand (OH)   W = 47    ## 110 55.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 53    ## 100 50.0 1-1   Do 9D, some fine sand (OH)   W = 53    ## 100 50.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 53    ## 100 50.0 1-1   Do 9D, some fine sand (OH)   W = 50    ## 110 55.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 53    ## 100 50.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 51    ## 100 50.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 51    ## 100 50.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 51    ## 100 50.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 51    ## 100 50.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 51    ## 100 50.0 1-1   Do 13D (OH)   W = 51    ## 100 50.0 1-1   Do 13D (OH)   W = 51    ## 100 50.0 1-1   Do 13D (OH)   W = 51    ## 100 50.0 1-1   Do 13D (OH)   W = 51    ## 100 50.0 1-1   Do 13D (OH)   W = 51    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   Do			┼	100.5	<del></del>			0 0	<u> </u>			
## 90 45.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 69    ## 90 45.0 1-1   Trace shells (OH)   W = 53    ## 90 45.0 1-1   Trace shells (OH)   W = 53    ## 90 45.0 1-1   Trace shells (OH)   W = 47    ## 100 50.0 1-1   Do 9D, some fine sand (OH)   W = 47    ## 110 55.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 53    ## 100 50.0 1-1   Do 9D, some fine sand (OH)   W = 53    ## 100 50.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 53    ## 100 50.0 1-1   Do 9D, some fine sand (OH)   W = 50    ## 110 55.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 53    ## 100 50.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 51    ## 100 50.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 51    ## 100 50.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 51    ## 100 50.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 51    ## 100 50.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 51    ## 100 50.0 1-1   Do 13D (OH)   W = 51    ## 100 50.0 1-1   Do 13D (OH)   W = 51    ## 100 50.0 1-1   Do 13D (OH)   W = 51    ## 100 50.0 1-1   Do 13D (OH)   W = 51    ## 100 50.0 1-1   Do 13D (OH)   W = 51    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   Do	ĺ		<del> </del> -	ļ	ļ	· ;		Ě "Ó				
## 90 45.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 69    ## 90 45.0 1-1   Trace shells (OH)   W = 53    ## 90 45.0 1-1   Trace shells (OH)   W = 53    ## 90 45.0 1-1   Trace shells (OH)   W = 47    ## 100 50.0 1-1   Do 9D, some fine sand (OH)   W = 47    ## 110 55.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 53    ## 100 50.0 1-1   Do 9D, some fine sand (OH)   W = 53    ## 100 50.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 53    ## 100 50.0 1-1   Do 9D, some fine sand (OH)   W = 50    ## 110 55.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 53    ## 100 50.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 51    ## 100 50.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 51    ## 100 50.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 51    ## 100 50.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 51    ## 100 50.0 1-1   Medium gray organic silty clay, trace shells (OH)   W = 51    ## 100 50.0 1-1   Do 13D (OH)   W = 51    ## 100 50.0 1-1   Do 13D (OH)   W = 51    ## 100 50.0 1-1   Do 13D (OH)   W = 51    ## 100 50.0 1-1   Do 13D (OH)   W = 51    ## 100 50.0 1-1   Do 13D (OH)   W = 51    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   W = 50    ## 100 50.0 1-1   Do 13D (OH)   Do	ł		<del></del>	ļ		:		a a a				
1		35	<u> </u>	l		*			1	·		
26		* 42	70	35.0	10-14	Stiff black organic clay	frace	25.0	<del> </del> 35	W = 64		
26			1			monatation		35.0	<b>├-</b> ⊣			
A			<del> </del>	27.0	6-9	vegetation	(UH)	រូប	<b>⊢</b>			
A			<del> </del>	<del>                                     </del>				H Ö :	<u> </u>			
A			<u> </u>	ļ:			*		1	of casing.		
A	ਲ	25	1					Ly Ed C	$\Gamma$ . $\Box$			
1	ή	A	8D	40.0	1-1	Medium gray organic silty	clav.		40-			
1	် ပိ		!			trace shells		40.0	├ <b>-</b>	W = 69		
Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic sil				1	~~~	Crace Sherrs	(OII)		├ ┤			
Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic sil			<del> </del>	<del>  </del>		•			$\vdash$ $\dashv$			
Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic sil	<del>.</del> 5		<del></del>	<del> </del>	<del></del>							
Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic sil	8 1		<u> </u>	<b></b>					L /5_]	•		
Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic sil	ਂ ਜ਼ੁੱ [	н	9D	45.0	1-1	Medium gray organic silty	clav.		┌ 45 <b>┦</b>	W = 53		
Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic sil	, ,	Д	L			trace shells			┌╴┤			
Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic sil	7,	<u>بع</u>					(011)		┝╶┥	i		
Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic sil	ا با			<del>                                     </del>				Ø	$\vdash$ $\dashv$			
Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic sil	र्व ह			<del></del>				[]	┝╶┙			
Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic silty clay, trace shells   Medium gray organic sil	Pi l							<u> </u>	]	į		
S   S   S   S   S   S   S   S   S   S	Ļ	<u> </u>	10D	50.0	1-1	Do 9D, some fine sand	(OH)	S	_ 5U_	₩ = 47		
S	- 1	闰		52.0	1-1	•			$\vdash$ $\dashv$			
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	· [	- ₹	_					Ω.	┝╶┩			
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	22							ជ		·		
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	~ }		<del>-</del>			·		描				
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	6 1	<del>1</del>						<u>ų</u>		·		
1530	7		11D	55.0	1-1	Medium gray organic silty	clay,	Ω ₄ .	>5	W = 47		
1530	οL	[]		57.0	2_2			175				
1530	L						(011)	ğ				
1530	ſ						į	S	ㅡ ન			
0700    13D 65.0	r											
0700    13D 65.0	<u>-</u>							Ĕ.	_ <			
0700    13D 65.0	1520 F		12D		2-2	Do 11D	(OH)	÷ i	60	W = 53		
13D 65.0 1-WH				62.0	3-4					•		
13D 65.0 1-WH	0700		- 1	ŀ		•		ğ				
13D 65.0 1-WH							1	, i	∤			
14D 70.0 WH-1   Do 13D   OH   To   W = 34   To   W = 34   To   W = 34   To   W = 50   To   W = 39   To   W = 30	<u>†</u>						- 1	ا ب				
14D 70.0 WH-1   Do 13D   OH   To   W = 34   To   W = 34   To   W = 34   To   W = 50   To   W = 39   To   W = 30	Ļ								_ 65_	į.		
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	ļ-		_13D		_1-WH	Medium gray organic silty	clay.	a,	05_	W = 57		
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	1		1	67.0	<u>WH-1</u>			G	- 7	1		
14D 70.0   WH-1   Do   13D   (OH)   O   WH-1   T2.0   T-2   T2.0   T-2   T3D   (OH)   O   WH-1   T3D   W = 34   T3D   T5D   T7.0   T7	I		- 1			, build put to				<b>!</b>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Γ						(00)	j.	- ⊢	. 1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>			<del></del>	<del></del>		ļ	11	<u> </u>	I		
72.0 1-2  72.0 1-2  15D 75.0 1-1  77.0 2-2  16D 80.0 2-3  82.0 4-2  Do 13D  (OH)  (OH)  W = 34  W = 50  W = 50  W = 39	-	<del></del>							- 70-	İ		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<b> </b>		14D			Do 13D	(OH)	υ	_ ′0 ]	W = 34		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L L			72.0	1-2			ni		<b>!</b>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ig [		7				ł	g F		· i		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- <del>5</del>		. 🗆				ł	ř.		f		
Total Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (	Ω	1		<del></del>	<del></del>		ŀ		- →	Į		
Total Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (	<b>├</b> -	<del></del>	15-					<u></u>	- 75-	· · ·		
Total Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (	·  -		TPD			Do 13D	(OH)	Ĕ	_ ′3 ]	W ≈ 50		
Total Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (	L.			77.0	2-2		İ	ο [				
Total Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (	0		T	7		•	1	Ħ F		}		
Total Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (	8							된 H		1		
Total Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (OH) Solution (	<u>8</u>						[	S F		· [		
	< ⊢	<del>-  -</del>	765	<del></del>		D		ž		1		
	8 F	<del>-  -</del>				DO 13D	(OH)	Γ	_ 00 _	W = 39		
				82.0	4-2			ľ		ł		
	Г							·		1		
85			_					<u> </u>		j		
	<del> </del>	₩	-					<u> </u>		1		
	<u></u>	<del>- V</del> l							85			

### MUESER, RUTLEDGE, JOHNSTON & DESIMONE WOODWARD-CLYDE CONSULTANTS, INC.

SHEET 3 of 3 BORING NO. MG-827

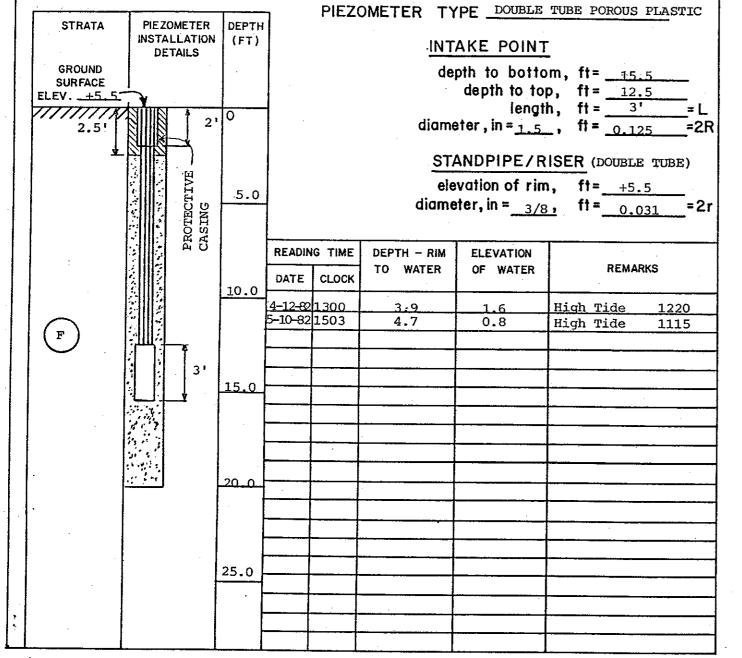
				<del> </del>	BORING LOG	FILE NO. 4840
DAILY PROGRE	CASIN SS BLOW		SAMP DEPTH		SAMPLE DESCRIPTION	STRATA DEPTH REMARKS
		17D	85.0 87.0	2-2 6-5	Medium gray organic silty clay,	
			07.0	0-3	some fine sand (OH)	H
					<u></u>	1 [ 7
		18D	90.0	WH-6	Medium gray organic silty clay,	, g 90 W = 39
			92.0	3-2	trace fine sand partings (OH)	1
	-	┼		<u> </u>		fine
\ \ \ \ \>						#
Sunny	-	19D	95.0 97.0	WH-1 5~9	Medium gray organic silty clay,	$\sqrt{95} = 40$
ά			57.0		some fine sand (OH)	
						1
·		T	100.0	WR-2	Medium gray organic silty clay,	M = 45
82	-		102.0	2-11	trace fine sand partings, peat	1 1
04/08/82					(OH)	silty peat
04/		210	105.0	5-11	Modium gran annui - 11	0  y  -105  W = 32
			107.0	16-16	and or desired pire, pil	or ganio A was a solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of t
						art
						₩ = 52 ₩ = 73 (Peat
` <b>1</b>			110.0	2~5 7-10	Stiff gray organic clay, some peat, trace decomposed wood	ו תב ויי - יט (דכמנ ו
					(OH)	I a L _ portion or the
1500	V				<b>y</b> .	sample)
1500 0700	, y -			100/4"	Light gray micaceous f-m sand,	115.0 115 * Decomposed
			115.3 116.0	Rec=88%	tr c sand, silt (SP)* Light gray garnet mica schist,	mica schist.
		1	21.0 I	RQD=12%	broken, SlW to HiW	118.0
				<del></del>		nd —120—
Cloudy,				Rec=82%	Light gray garnet mica schist,	g -120- O Z N Run #2C
100			25.0	ROD=25%	trace quartz veins, cljtd, UnWExJts.	t
						z n E
22				Rec=92%	Top: Light gray mica schist, tr quartz veins, broken, UnWExJts	155- 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
04/09/82					Bot: White mic quartzite, clitd	guartzi Guartzi Guartzi
14/0			-+		OHARAU CS	# ₽ ⁰ !
				ec=100%	Light gray mica schist & mic	Ö 130-
		<u></u>	35.0 R	QD=88%	quartzite, mdjtd, UnWExJts	gry ist,
1430						_C -러
					i .	世 g g ー ー 135.0 135
					į	
						-
L						140

### MUESER, RUTLEDGE, JOHNSTON & DESIMONE WOODWARD-CLYDE CONSULTANTS, INC.

SHEET 1 of 2 BORING NO. MG-827P

FILE NO. 4840 **BORING LOG** PROJECT: WEST SIDE HIGHWAY DOT. CONTR. NO.: D 250002 ELEVATION: +5.5 COORDINATES: N 192674 1998158 DATUM: Manhattan BORING LOCATION: MTA Yard, MABSTOA Garage DATE STARTED: 04/12/82 B. Mukherjee (MRJD) INSPECTOR: DATE COMP.: 04/12/82 CONTRACTOR: Warren George, Inc. DRILLER: HELPER: C. Soto Stevenson TYPE OF RIG: TRUCK SKID BARGE MOUNTED TRIPOD OTHER CASING: DIA. 4 IN. FROM 0.0 TO 20.0 FT.; DIA. IN. FROM DRILLING MUD UTILIZED: MUD TYPE ROTARY BIT DIA. 3 3/4 IN. D-SAMPLER: Split Spoon, DRILL ROD BW 2" O.D. SAMPLING EQUIPMENT, U-SAMPLER: DIA. IN.: TYPE (TYPE & SIZE) CORE BIT CORE BARREL FEED DURING CORING: MECHANICAL HYDRAULIC [ OTHER [ SAMPLER HAMMER: WEIGHT (LBS) AVG. FALL 30 IN. 140 CASING HAMMER: WEIGHT (LBS) 300 AVG. FALL 18 IN. NO. OF U-TUBES - NO. OF VANE TESTS -DEPTH TO ROCK -FT. DEPTH TO COMP. FT. WATER LEVEL OBSERVATIONS DEPTH OF DEPTH OF ELEVATION DEPTH TO DATE CONDITIONS OF OBSERVATION HOLE CASING WATER OF TIDE 04/12/82 1000 20.0 20.0 2.0 04/12/82 1300 15.5 15.0 3.9 Inside piezometer

DAILY	CASING		SAMP	l F		<del>-</del>		
PROGRESS		NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH (FT)	REMARKS
0700	13					<del> </del>	0	· · · · · · · · · · · · · · · · · · ·
	18						- "-	
	16							
	34						├	
	12					· .		
	20						- 5	•
ğ	110			<del></del>				
Sunny	88			· <del></del>			⊢ ⊣	•
	19						_	•
Partly	10					.		
뉡	25				·		-10-	
Pa	20			· · · · · · · · · · · · · · · · · · ·				
ļ	20	<del> </del>						
22	18	$\dashv$	<del></del>			3		
~ %	12			<del></del>	-	(Fill)		^
17	11	1D	15.0	3-3	Gray-brown medium to fine		-15-	
04/12/82	11		17.0	4-5	sand, trace gravel (Fill)(SP)			
· · ·	13				butter, organization (11111) (DI)		- 4	
Ī	12			<del></del>				
.300	12							•
						<u> </u>	- 20 -	
<u> </u>						20.0	<b>-</b> ∤	
	<del></del>				·			
ľ			<del></del>			l 1		
<u> </u>	<del></del>						- 4	
F	-	-	<del></del>		•	[	- 25 -	
·f								
	<del></del>		···				- 4	
F						-		
							- 30	


SHEET OF 2
FILE NO. 4840
SUBCODE SMBST

## MUESER, RUTLEDGE, JOHNSTON & DESIMONE

CONSULTING ENGINEERS

#### PIEZOMETER RECORD

PROJECT _WEST SIDE HIGHWAY - CONTRACT 5	PIEZOMETER NO. MG-827 P
LOCATION MABSTOA GARAGE	
PIEZOMETER LOCATION 12th AVE & W 30th STREET	DATE OF INSTALLATION 4-12-8
☐ SEE SKETCH ON BACK	RES. ENG. B. Mukherjee



Sand Bentonite

A P A Gravel Grout

GROUND SURFACE ELEV. +5.5

PIEZOMETER NO. MG-827P

## MUESER, RUTLEDGE, JOHNSTON & DESIMONE WOODWARD—CLYDE CONSULTANTS, INC.

SHEET ___ of ____ BORING NO. _____MG-828 EU E NO. ____4840

					BORIN	IG LOG		FILE NO.	4840
PROJECT:	WEST	SIDE HI	GHWAY	DO	T. CONTR. NO	.: D 250002		ELEVATION	t: +5.3
COORDINAT	ES: N 1	92784.1		E	1998289.	0		DATUM:	Manhattan
BORING LOC	ATION:	MTA Ya	rd, Ram						TED: 04/02/82
INSPECTOR:		Y. K. C	han (	MR.TD)				DATE COMP	
CONTRACTO	R:	Warren G				<del>"</del> "			·
DRILLER:		J Farre	11	<del></del>		HELPER:	Mr. G. Mc	Cartar	<del></del>
TYPE OF RIG	: TRUCK	∑ sk	ID BAF	RGE MOUNTE	D TRIPO	D OTHER			<u></u>
CASING: DIA	. 4	IN. FROM		10.0 FT.; D		N. FROM 0.0 TO	105.0FT.		····
DRILLING MI				Duick Ge				RY BIT DIA. 3	7/8 IN
CANEL INC.		D-SA			on, 2" O.I	),	<del></del>	LROD N	- 7 -
SAMPLING E			MPLER: DIA		TYPE		····		
TYPE 8	SIZE)	CORE	BIT Dia	amond, N	ıx		COR	E BARREL D	ouble Barrel
FEED DURING	CORIN	G: MECHAN	ICAL []		AULIC 🛛	OTHER []	L		
SAMPLER HA	MMER: V	VEIGHT (LBS	3) 14	10		AVG. FALL 30	IN.		
CASING HAM	MER: WE	IGHT (LBS)	30	00		AVG. FALL 18	IN.	· ·-	
NO. OF U-TU	BES	_ No.	OF VANE TE	sts -	DEPTH TO	поск 103.0	FT. DEPTH T	O COMP.115	O FT.
				WA	TER LEVEL O	BSERVATIONS			<u> </u>
DATE	TIME	DEPTH OF HOLE	DEPTH OF CASING	DEPTH TO WATER	ELEVATION OF TIDE		CONDITIONS O	OBSERVATIO	)N
04/05/82	0750	57.0	10.0	4.4		Over weeken	d with dri]	ling mud	inside the hole
04/07/82	0800	105.0	105.0	4.5					side the hole
04/07/82	1045	115.0	10.0	4.5					
								· · · · · · · · · · · · · · · · · · ·	
									· · · · · · · · · · · · · · · · · · ·

DAILY	CASING		SAMP	LE	CAMBLE DECORIDATION		DEPTH	
ROGRESS	BLOWS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	(FT)	REMARKS
0830			-			0.3	0	*Asphalt
	21	1D	0.5	10-8	Dark gray c-f sand, sm cinders,	0.3	-	W = Water
	17		2.5	6-5	silt, tr gvl (Fill)(SM)	9 9	<u> </u>	content in %
	22					coarse	<b>-</b>	'
	13					coarse	5 _	
	21	2D	5.0	22-17	Black c-f sandy gravel, trace		<u> </u>	
	30		7.0	6-13	silt (Fill)(GP)	e ĭ	<b>-</b>	
	26					brown gravel	F -	·
į	30						├ <b>-</b>	'
	28					5, t		
		3D	10.0	17-13	Dark brown c-f sand, some	k gray cinders	10 -	
ģ.			12.0	9-5	cinders, trace gvl (Fill)(SP)	gray		
Windy						2 ti	Γ "	
· S		-				Li		
·		4.4					-15 -	**Attempted
		*ŘR	15.0	5-3	·	compact sand, se		sample twice.
Sunny,			17.0	1-3		pa d		No recovery.
ă		4D_	17.0	5-5	Black c-f sand, sm cndrs, tr	com san (Fi	اً ا	Sample 4D is
01			19.0	8-9	silt, gvl (Fill)(SP)			probably was
						ium ine	-20 -	probably was
2		5D_	20.0	4-1	Black c-f sand, sm cndrs, tr	Medium o fine ilt		
~ \ \			22.0	2-4	organic silty clay, gravel	Me to sil		
- i -					(Fill)(SP)			
04/02/82						23,0		
Ŭ  -			<u> </u>			rg Teg	-25 -	
-		6D	25.0	2-1	Medium black organic silty clay,	c org N Lay, tr d, veg		W = 71 🔩
}			27.0	1-2	trace fine sand, veg, wood (OH)	A 6 8	ᅵ	
}						ш - 1	ᆫᅴ	
-						Med sil fsa	LJ	

## MUESER, RUTLEDGE, JOHNSTON & DESIMONE WOODWARD-CLYDE CONSULTANTS, INC.

SHEET 2 of 3 BORING NO. MG 828

## MUESER, RUTLEDGE, JOHNSTON & DESIMONE WOODWARD-CLYDE CONSULTANTS, INC.

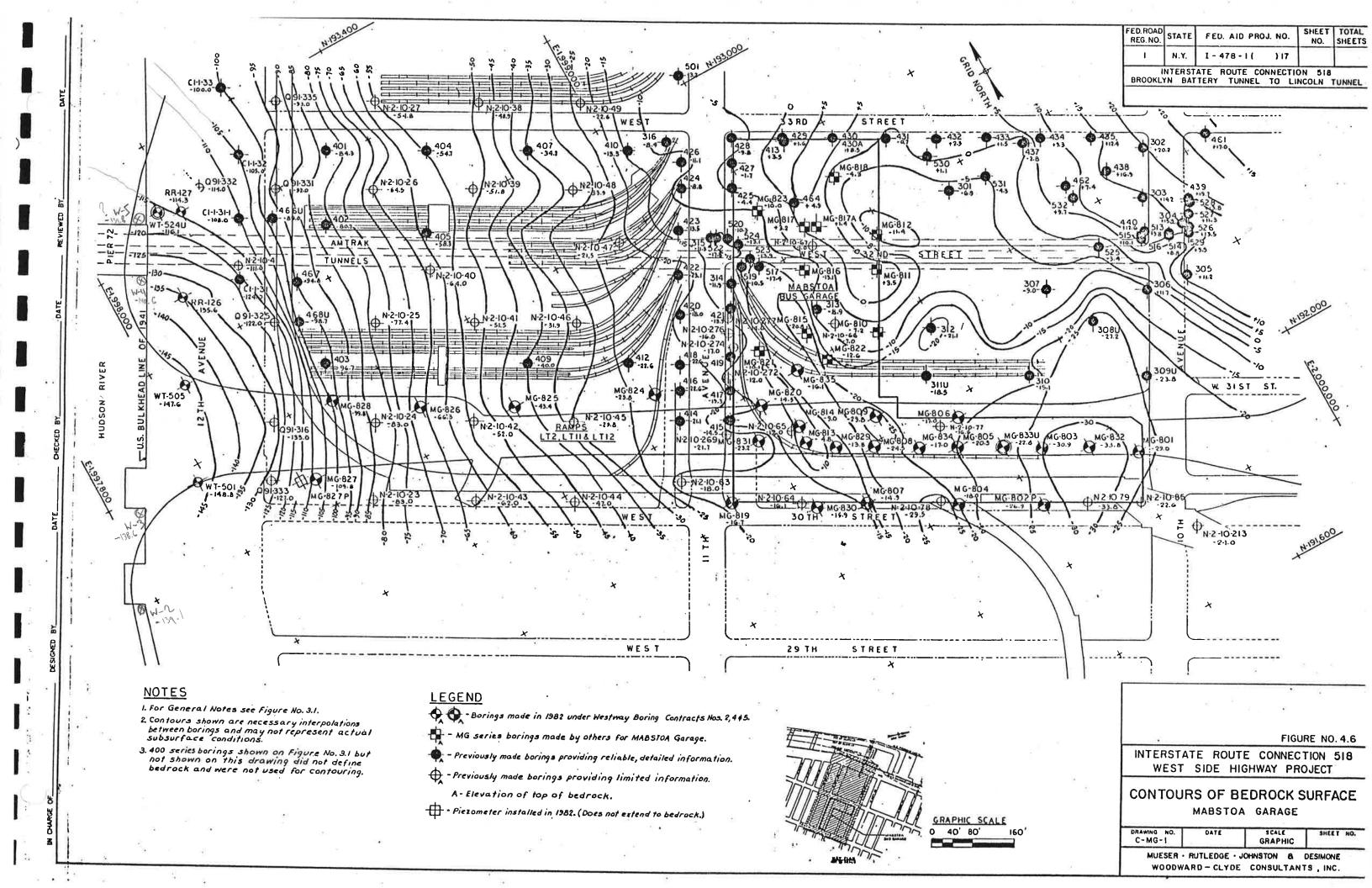
SHEET 3 of 3 BORING NO. MG-828

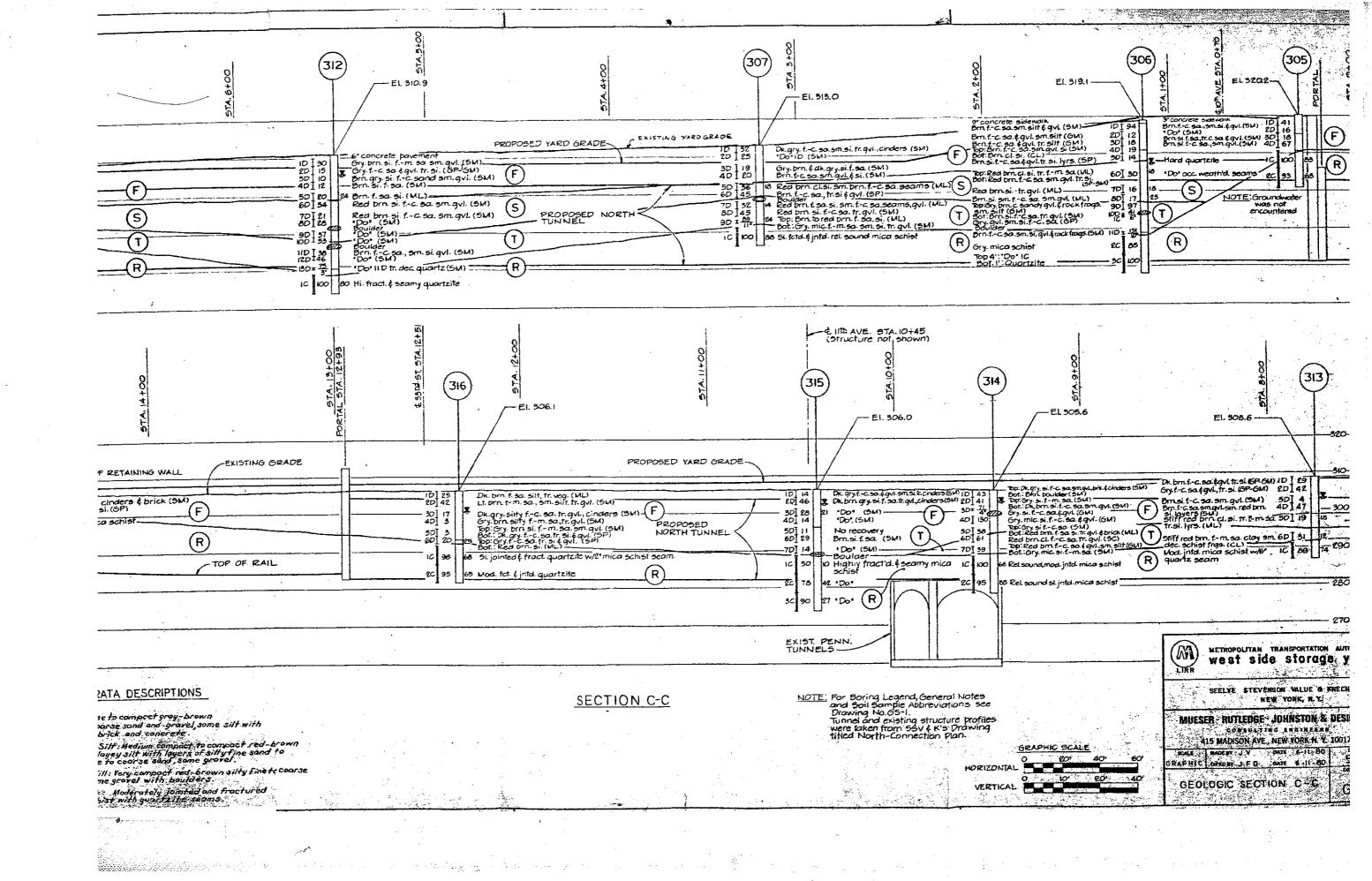
	· ·		0.0145		BORING LOG		FILE	NO. 4840
DAILY PROGRESS	CASING BLOWS	NO.	SAMP DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH (FT)	REMARKS
		7D	30.0	1-WH	Med dark gray organic silty		30	W = 62
			32.0	2-2	clay, tr fine sand, sls (OH)			
				<u> </u>	1			
					<u> </u>		<b>-</b> -	
		8D	35.0	1-WH	Do 7D, trace veg. (OH)		<b>-35</b> -	W = 69
			37.0	1-2	-	ß		
						shells	-	
		05	40.0			S C	40	
>		9D	40.0	5-4 1-1	Do 7D (OH)	S		-
Sunny			1210	<u> </u>		partings,	┝╶┤	
<u>ر</u> م						ärt		
}		100	45.0		Do 70 1 2		L ₄₅ –	
,82		100	47.0	1-WH 3-4	Do 7D, tr fine sand partings (OH)	sand	┝╺	W = 53
02/					(OII)		┝╶┤	
04/02/82				-		fine	F ]	
, [		11D	50.0	1-WH	Do 7D, tr fine sand partings		-50 -	W - F4:
1	-		52.0	5-4	(OH)	sand,	<b>-</b> -	W = 54
		$\dashv$		<del></del>				
. [						fine	├ -	
				WR - WH	Do 7D, tr fine sand partings		-55-	W = 53
1500 0700			57.0	2-4	(OH)	trace		
					•			
-						clay,		
-	<del></del>		60.0	2-3 5-7	Do 7D, tr fine sand partings	cla B	60 =	
			02.0	<u> </u>	(OH)	74		
						ilty		
<u> </u>						o o	<b>-</b> 65 <b>-</b>	
ð L		- 1	65.0 67.0	9-7 7-10	:	organic		
Windy		40	67.0	7-2	Med dk org silty clay, sm fine	r ga		W = 36
-			69.0	5-4	sand, tr sls, gvl, veg (OH)			
、上	1	.5D '	70.0	WR/24"	Med dk gray org silty clay, tr	gray	-70	м — 20
Sunny,			72.0		fine sand, sls (OH)			W = 39
ns –						dark		
			-+	<del></del>				
	1		75.0	WR/24"	Do 15D, tr fine sand partings	Medium	-75 -	W = 34
- E			77.0		(OH)	Me		
)2/s		_				-		
04/05/82						ŀ		
°	1		30.0 W		Med dk gray org silty clay, tr	Ĺ	80 -	W = 41
-		-   -	32.0	6-9	m-f sand, fine sand partings,		- 7	
					shells (OH)	-  -		·
							85	

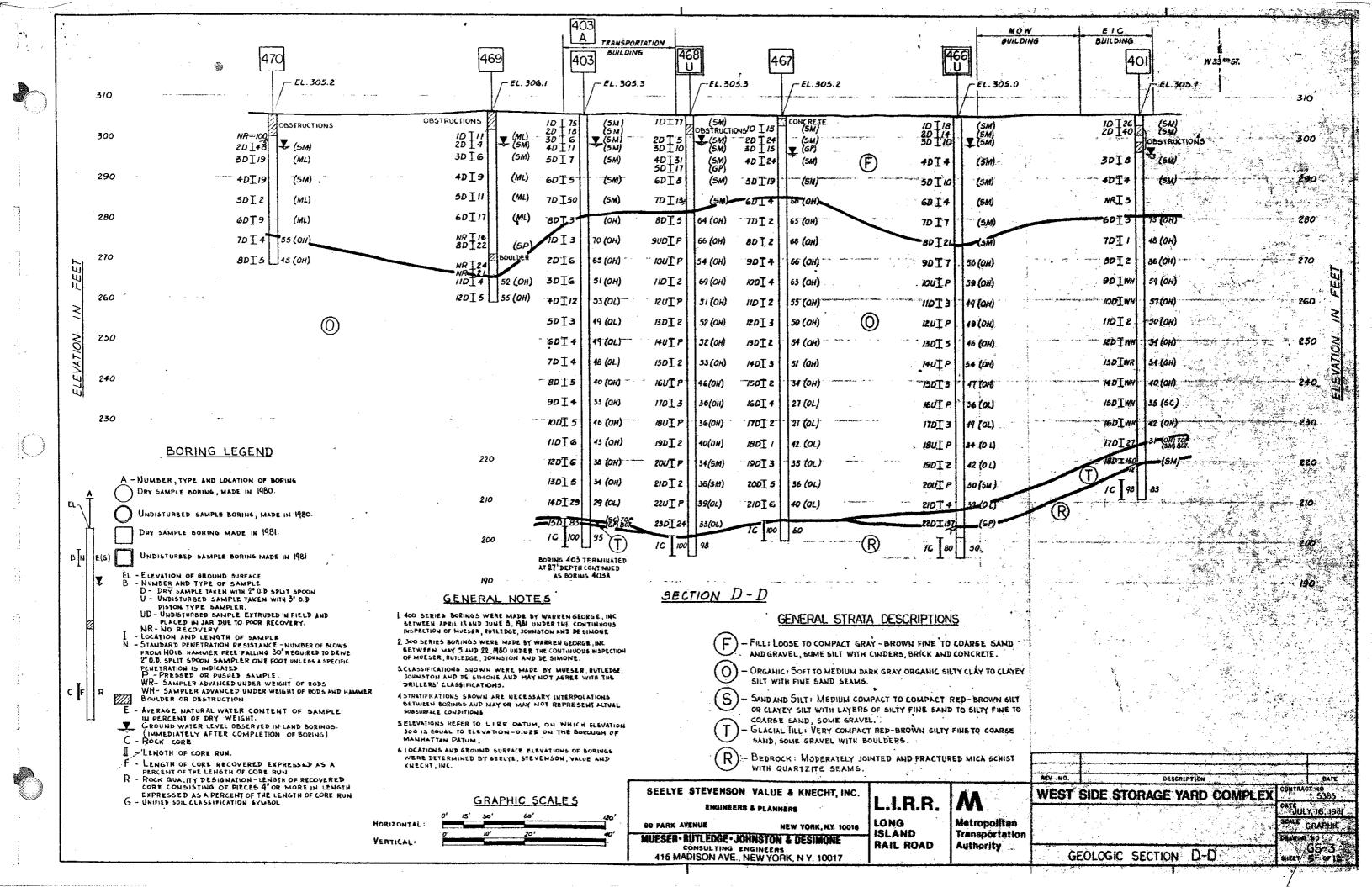
			-	-		BORING LOG	<b>.</b>		ING NO. <u>MG-828</u> NO. <u>4840</u>
DAIL		CASING	115	SAMP		SAMPLE DESCRIPTION	STRATA	DEPTH	REMARKS
PROGR	ESS	BLOWS	NO.	DEPTH				(FT)	REMARKS
		<del></del>	NR	85.0 87.0	5-12 11-14		ည်း ထို	_ ⁸⁵	
ļ			18D	87.0	9-6	Med dark gray organic silty	A H	<u> </u>	
				89.0	11-14	clay, sm m-f sand, tr shells	> E _		
						(011)			
	Windy		19D	1	WR - 6	Med dark gray corganic silty	유. [ [ [ ]	90-	W = 43
İ	Wi		<u> </u>	92.0	6-9	clay, some m-f sandy silt lyrs	Med si c tr s		
			<del></del>	ļ	<u> </u>	(OH)		_	
	2			<u> </u>		·	93.0 ≻		•
	Sunny		20D	95.0	11-18	Dark gray silty fine to medium	ge g	95	
	ω.			97.0	22-25	sand, tr mica (SM)	f-m f-m mica		3" dia casing
			:					_	was placed
	/82	——— <u> </u>					t si		inside hole.
	5		215	100.0			99.0	100	
	04/05/		71D	100.0 102.0	2-6 8-11	Stiff dark gray organic silty	Д		W = 53
	ŏ			102.U	0-1T	clay, tr f-m sand, veg (OH)	21D		
							103.0		
1530 0700							*	- 4	
0700	ļ			105.0	Rec=100%	Light gray garnet mica schist,	105.0	105	*Possible
	≥			110.0	RQD=84%	21.3 ee veen m.	. m [		decomposed
	Windy						7 de la la la la la la la la la la la la la	_	rock.
	3						lar.		
	7		2C	110.0	Rec=96%	Do 1C	ist	-110-	Highly
	//82				RQD=80%	20 10	t gry garnet schist, jtd kJts		micaceous rock.
-	04/07/						T X		
1130	8					·	Light mica UnWEx.	_ ]	
	<del>-</del>						4 8 5	-115	•
	-						15.0		[
							-		
							·		· ·
							·	- 1	
	Ļ	-	<b>-</b>  -					_120_	
	$\vdash$		-				. [		
	-								
			-		<del></del>		-		
							ŀ	125	
							F	- ⊢	
	_						ŀ		
	-		-		·				
	-		-					-130-	
	-	<del>-  </del> -	$\dashv$	<del></del> -		1	<u> </u>		
	1		_			<u> </u>	-		
						Į	-		
								_	
	-			]		f		135	
	-		-			Í		. ]	
		<del></del>	-+	<del></del>		İ	<u> </u>	- 4	
	上		-				-	140	
								エザひ ー	

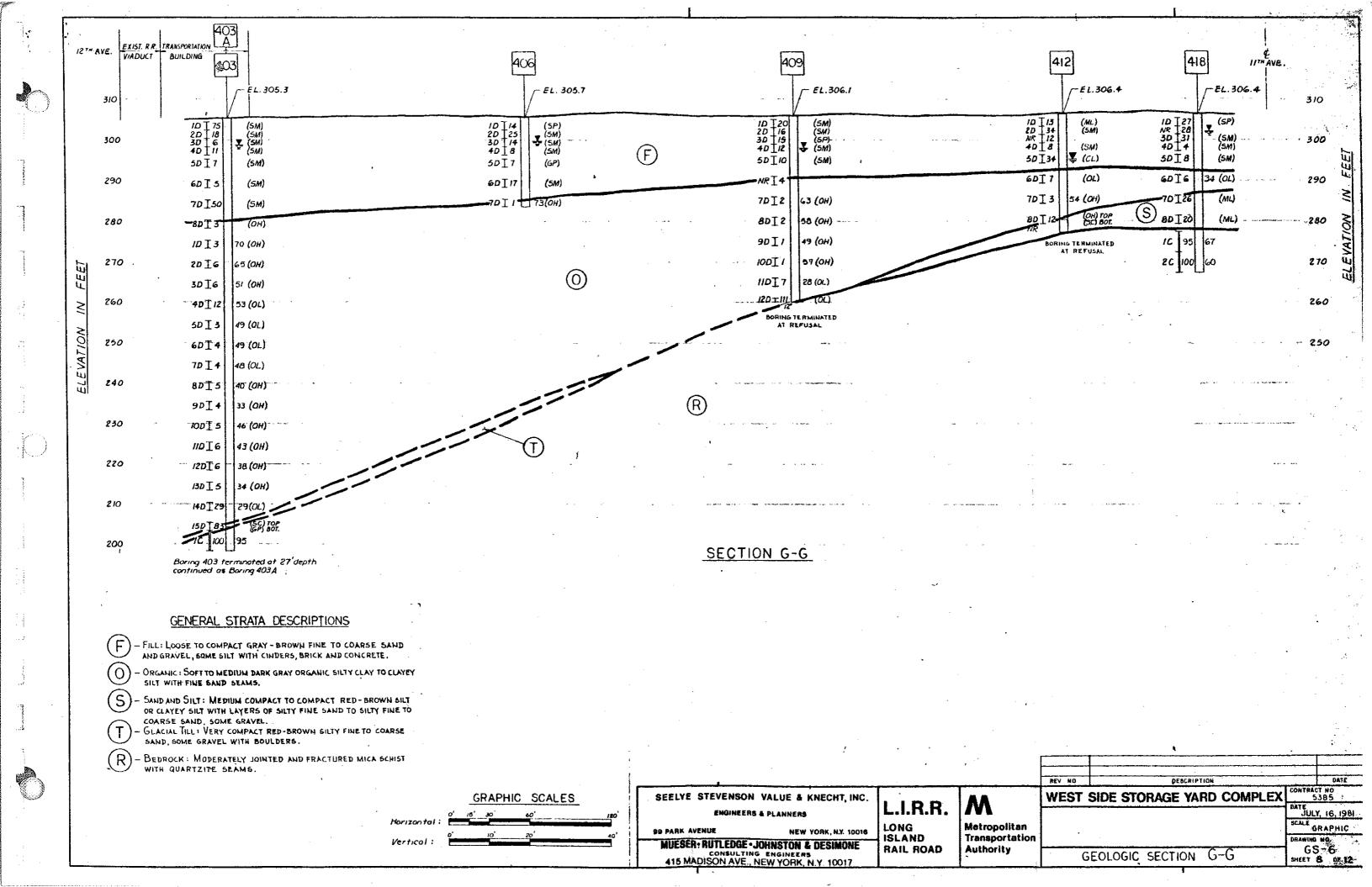
# MUESER, RUTLEDGE, JOHNSTON & DESIMONE WOODWARD-CLYDE CONSULTANTS, INC.

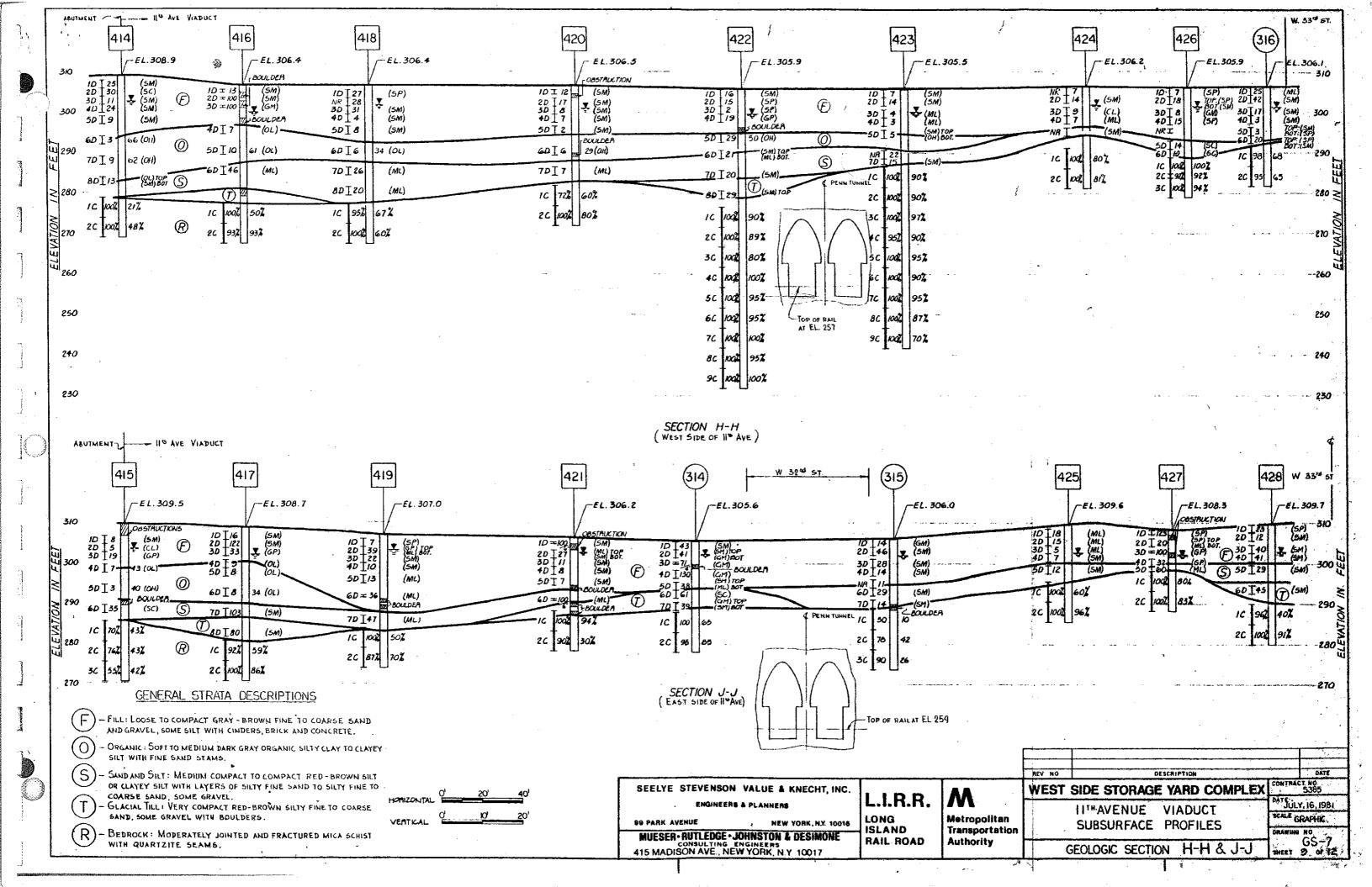
SHEET 1 of 2 BORING NO. MG-831


					BORII	NG LOG	FILE NO. 4840
PROJECT:				DC	OT. CONTR. NO	D.: D 250002	ELEVATION: +10.8
COORDINAT	ES: N	192313.3		Ε	1998985.	3	
BORING LOC				STOA Gar		<u> </u>	DATUM: Manhattan
INSPECTOR:		Y.K.	Chan (N	(R,TD)	490		DATE STARTED: 04/09/82
CONTRACTO	R:		n George		<del>_</del>		DATE COMP.: 04/12/82
DRILLER:				7 11101	·		
TYPE OF RIG	. TRUCK	J. Fa				HELPER: G McCartar	<b></b>
				RGE MOUNT		OD OTHER	
CASING: DIA	<u>· 4</u>	IN. FROM	0.0 10 5	.0 FT.; C	DIA. 3 1	N. FROM 0.0 TO 33.5	FT.
DRILLING MI	UD UTIL	IZED: MUD	TYPE	Quick-Ge	1		ROTARY BIT DIA. 3 7/8 IN.
SAMPLING E	OURPME	D-SA		Split Sp		O.D.	DRILL ROD NW
		111-54	MPLER: DIA		TYPE	<u></u>	INW
(I TPE )	SIZE)	CORE		amond, N			Tanan
EED DURIN	G CORIN	G: MECHAN	IICAL []		AULIC 🔀	07:15- 17	CORE BARREL Double Barrel
SAMPLER HA					YOU'C D	OTHER [	
CASING HAM				·		AVG. FALL 30 IN.	
NO. OF U-TU						AVG. FALL 18 IN.	
10. OF 0=10	BES	– NO.	OF VANE TI	STS -		D ROCK 33.0 FT. DE	РТН ТО СОМР. 44.0 FT.
				WA	TER LEVEL C	BSERVATIONS	
DATE	TIME	DEPTH OF	DEPTH OF	DEPTH TO	ELEVATION		
		HOLE	CASING	WATER	OF TIDE	CONDITIO	ONS OF OBSERVATION
04/12/82	0800	27.0	5.0	5.8		2 2 2 2	7.1
04/12/82	1410	44.0	5.0	11.5			ling mud in hole
04/12/82		44.0	0.0			At completion Wat	er in hole
,,		33.0	0.0	7.5			
		<u> </u>					


DAILY	CASING		SAMP	LE				
PROGRESS	BFOM2	NO.	DEPTH	BLOW\$/6"	SAMPLE DESCRIPTION	STRATA	DEPTH (FT)	REMARKS
1215		1D	0.5	12-11	Dark brown f-c sand, sm silt,	-o <del>*</del>	0	*Concrete
	4		2.5	6-4	gravel, cinders (Fill) (SM)	U.	├ <i>ॅ</i> -	W = Water
	8 .				(2-2)	۲ پ		content in %
	7		-			ı or :	<b>⊢</b> −	concent in a
	6					brn ndr		
		_2D	5.0	4-3	Gray-brown f-m sand, sm silt,	ı nəi	- 5 -	
	Ω		7.0	3-3	tr decomposed wood (Fill) (SM)	국 구		
	臼				(2222) (222)	dark %11		
	民							
	闰				:	loose lt,tr wood		
	3	30	10.0	7-1	Gray-brown f-m sand, sm silt,	100 1t,	-10 -	
≥	0		12.0	12-15	tr gravel (Fill) (SM)	I •~⊢ Ł	- 1	
Snow	H				. (1111) (614)	اۋ ب با	- 1	
ω [						റ. വ		
1						D 5 6	- 4	
		4D	15.0	4-4	Top: Do 3D (Fill)(SM)	Med cy sand, decom	-15 -	
82			17.0	4-2	Bot: Soft black organic silty			4D Bot: $W = 58$
6				}	clay, tr fine sand (OH)	16.5		•
04/09/82					(011)	4D Bottom		
4						4 4		
<u> </u>		NR	20.0	7-14		20.0	-20 <del>-</del>	
Ĺ			22.0	17-23		1		
		5D	22.0	29-29	Brown silty f-m sand, tr gravel	u l		
			24.0	38-44	(SM)	f t		
L					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-	•
-	_  _	6D	25.0	28-36	Red-brown f-c sand, sm silt,	ZZ -	-25 -	
<u> </u>			27.0	32-41	gravel (SM)	# # F		
<u> </u>					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	red-brn		
<u> </u>						Cpt r sand, grave		
	V			7		면많밥	-30 -	


### MUESER, RUTLEDGE, JOHNSTON & DESIMONE WOODWARD-CLYDE CONSULTANTS, INC. BORING LOG


SHEET 2 of 2 BORING NO. MG-831 FILE NO. 4840

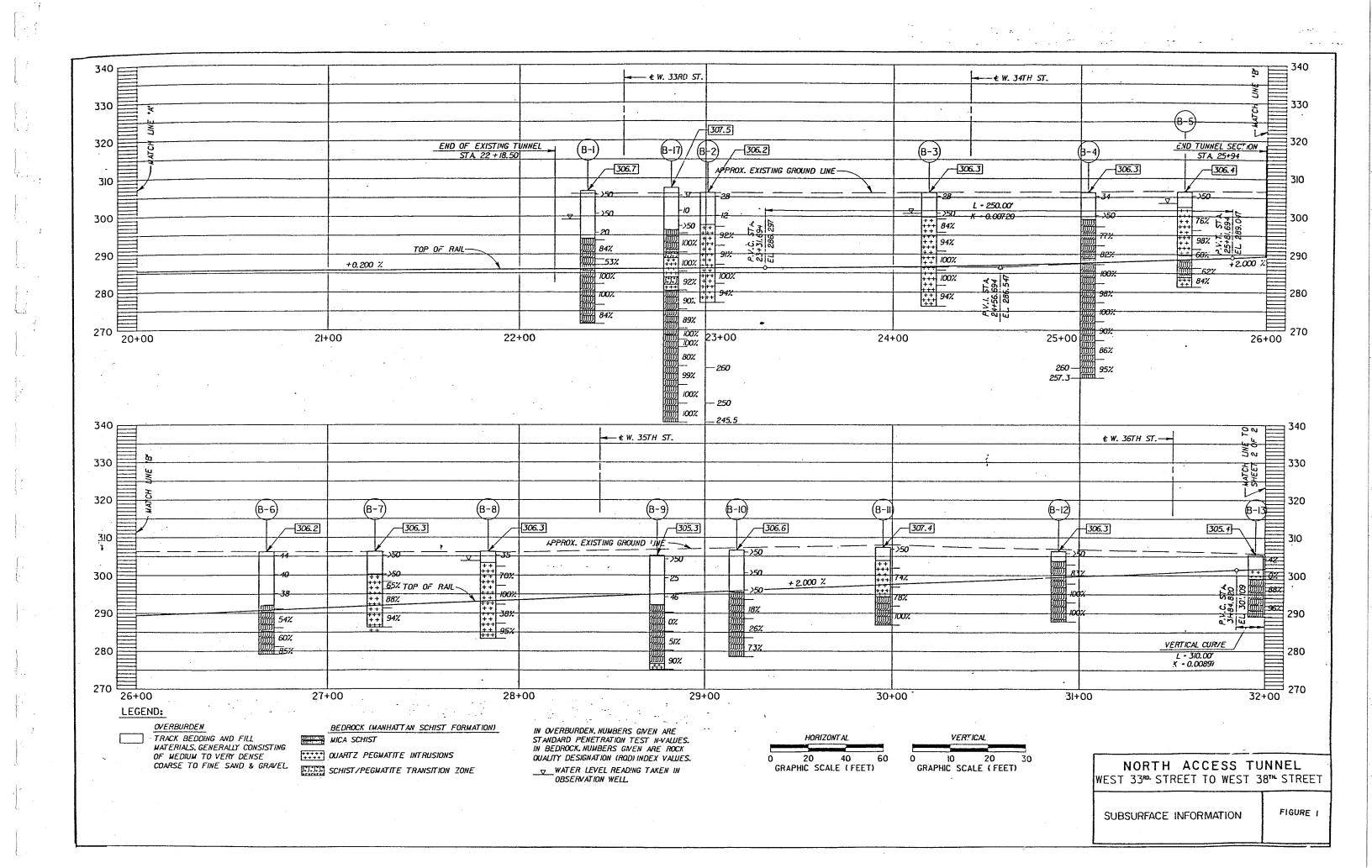

		<u>.</u> ,					·	BORIN	G L	JG			FILE	NO4840
DAILY PROGRESS	CAS		NO.	SAMPI DEPTH	BLOWS/6"		SA	MPLE D	ESCR	IPTION		STRATA	DEPTH (FT)	REMARKS
HOGHESS		775	7D	30.0		Dro	£	Cana		cil+	gravel		30	
1	$\vdash \vdash \mid$		10	32.0	62-37	PLOMII	T-G	Sana,	SIII	Sill,	(SM)	1		
	$\vdash$	-		32.0	02-31						(BPI)	V cpt	<b>-</b> -	
1	$\vdash \forall$							1				33.0		*
	<del></del>	$\dashv$	1C	34.0	Rec=98%	Light	t are	are-web i	ta 1	nicace	on G	34.0		*Decomposed rock
Sunny				39.0			t yra	bloc	LE 1	HDW HDW	Jus	it.	<b>—</b> 35 <del>—</del>	
l ng				33.0	102-30 8	quar	L21 LL	DIOC	~Y #	CIII		걸 .		Core barrel was
												ca schistω mass,		blocked at
73						-			-			∣ਲ ੬		35.5.
			2C	39.0	Rec=100%	Do	1C					mica te ma		
] []				44.0		-						H	40 -	
04/12/82												Lt gry mic Guartzite O UnW		
]. [	<u> </u>											; da ≥		
1530												다 등급		
1.						•			-			44.0	- 4r	•
1												İ	45	
		_												
1 .				· · · · · · · · · · · · · · · · · · ·										·
1 -	····												- 50-	
1 -		_										*		
		_			·					-				
1					·	-					÷			
1 -													L	
													- 55	
<b>!</b>		$\rightarrow$											L	
<b> </b>											•			,
1 -		$\dashv$							٠					
1				<del> </del>									<u> </u>	
1 -			-										- 60-	
<b>!</b>		$\neg$												
1 -		_	~										_	
1 -														
l t														
<b>!</b>		<del> </del> -	-							-		1	<b>-65</b> -	
<b>!</b>		$\dashv$											<del>-</del> -	
<b> </b>		+										}	<b>-</b> -	
		+											<del>-</del>	1
													<b>–</b> –	
											-		70-	1
Į ľ								•		-				
ŀ							•							
													<del>-</del> 75-	,
J. [		$\Box$ $\Box$												
1111		$\Box$				-						ŀ		
		$\Box$												
														*
													<del>-</del> 80-	
		$\perp$									i			1
		$\perp$										1		
l L														
Ļ					]								85	












		K No	rth Access	W	AF	RE FOO	T OF.	SEO JERSEY	' AVENUE	INC.		SHEET 1	
	Connec						RSEY (	CITY, N	.J. 07303			N 19921.73 W 15120.80	
	Yew Yo			FOR:				Brinck		/2/86		ROUND ELEVATION 306.7	
DEF	РТН <u></u>		FT FT. C	ASING ING OU	I TUO AO TI	DATE:		DATE,	START: _3/ FINISH: 9/	/13/86	_ G	ROUND WATER ELEVATION. 299.4	_
					1					00-140	LBS.	HAMMER FALL	
SAM	PLER 0.	D	NW 1.0. 2" 1.0.1- NX	3/8"	-  ,	NSIDE	LENGT	H OF SA	MPLER 2	4	_ ( N ₁	CASING 24" SAMPLER 3	0.
SURFACE	CASING BLOWS PER	SAMPLE	SAMPLE DEPTHS ELEV. / FEET		SAMPLE RECOVERY	ON	OWS PER	ER	DENSITY OR CONSIST.	1	FII	ELD IDENTIFICATION  OF  SOILS  REMARKS	
5 0	FOOT		01 1 11		<u>~</u> ∆"	0-6			MOISTURE	SS-1	Bro	wn Sandy medium to coarse	F
}		SS-1	0'-1.1'		4	.1				33-1	BAI	AVEL, very dense dry (FILL+ LLAST)	L
					3"	3-	2	50/0'		SS-2	Bro som den	wn medium to fine SAND, ne Gravel, little Clay very se west: (fill)	
		SS-2	51-61		3"	3-	_3=_	J. U U		0'-12.5	fine	ay coarse to fine SAND, little e Gravel, trace Silt, medium use, very moist	-
10										SS-3			
		SS-3	10'-12'		10"	5=	10-	1.0-	4	12.5'-1	3' So	ft rock	丰
									-	13'-35'	dar	nhattan Schist Formation, k gray Mica Schist 13.0'-	
		R1	13'-18'	·	4.75	R	D=84 D=5				13. wea	5', Highly to moderately athered low to moderate doncess	
20		R2	18'-19.5'		1.1	100	7 D - 0.						-
20					<u></u>				-			.5'-35.0' Slightly weat <del>h</del> - ed, moderate hardness,	-
• ]		R3	19.5'-24.8'		5.3'	- R	D=1	00%				ose to wide fracture acing.	-
													}
30		R4	24.8'-30'		5.2	R	QD=1	00%					
									<del>-</del>				
·  -		R5	30'-35'		4.9	' R	ပြ QD=8	4%		127-05	:   -		_
											19	ote: Pressure test at 14.0'- .6', 1 gpm at 24 psi, ezometer installed at 23'	
Ł,		-											
4(    _								Dr	iller:			reg Marney	
н.	oils Eng cillina		. Б	eter T	ani			He	lper:		No	orman Burgess	

Drilling Inspector: _

Connecti New Yor PEPTH	on Tu	th Access innel	WAI	7 <b>KL</b> F00	T OF J	ERSEY	AVENUE	INC.	LOCATION New York City B-2
Connecti New Yor PEPTH	on Tu	1		, 00	, 0, 5				
New Yor	k Cit	uuei			P. 0.	BOX 4	13		N 19986.60
EPTH		ì		. JEF	RSEY C	ITY, N.	J. 07303		W 15104.10
EPTH			FOR:		ns Brir				
EPTH		FT FT. C/	ASING OUT	DATE: _		DATE, S	START: _9/	<u> 10/86                                    </u>	GROUND ELEVATION 306.2 GROUND WATER ELEVATION 301.3
		FT. ALL CAS	NG OUT DA	TE:		DATE, I	-1 M 1 2 M :		
ASING O.	D	NW_1.0						<u>10-140</u> [	
AMPLER 0.1	D	2"1.0.1=1 NX	3/8"	INSIDE	LENGTH	OF SA	IPLER	24	
W CASING				BLO	OWS PER 6	5	DENS ITY	PROFILE	FIELD IDENTIFICATION OF
CASING BLOWS PER	SAMPLE	SAMPLE DEPTHS ELEV. / FEET	SAMPLE	ON	SAMPLE	R	OR CONSIST.	CHANGE DEPTH	SOILS
PER	SAN	•	SA	0-6	6-12	12-18	MOISTURE	Í	REMARKS
+ 1001					1.0	15 06	i	0'-85'	SS-1 Black brown coarse/fine SAND
	SS-1	0'-2'	11"	4-	13	13-20	1		and coarse/medium GRAVEL,
+									little CLay, slightly moist, very slightly plastic, very stiff, (Fill
		· · · · · · · · · · · · · · · · · · ·		<del> </del>			1		& Ballast)
	SS-2	5'-7'	4"	3-	5-	7-14	1		
				+			-	-	Black brown coarse/medium
							-	SS-2	GRAVEL, some medium/fine Sand, wet, stiff(Fill & Ball ast)
0					<del> </del>	<u> </u>	1	1	
							•	8.5'-9	Decomposed rock
	R1	9'-14'	4.6	3' RQI	)=92%. 	-			
							_		
						-	-	9'-29'	Manhattan Schist Formation
	R 2	14'-19'	4,	9' RQI	)=91%	-			light gray quartz pegmatite coarse to medium-grained,
20	102			_		<del> </del>	-		slightly weathered, hard to ver
	<del> </del>								hard moderately close to wide fracture spacing
			51	PO	D=100°	%	_		Tracture spacing
	R3	19'-24'	9.	Tr on	D-100	9			
					1				
						<u> </u>	<del>-</del>		
	R4	24'-29'	51	RQ	D=94%	5	-	\$1 21°	
30									10 11 1
	1						_		Note: Pressure test at 10-1'-1 no take at 30 psi
									10 0000 == == ==
·	-								
							_		
	+	<del> </del>	-						
	1								
-40									Greg Marney
Soils Engi	neer:.	7.:					iller: ilper:		NOrman Burgess

JOB LOCATION:  AMTRAK North Access  Connection Tunnel  New York Cfry  EPTH FT FT. CALL CAS	FOR:	FOO JE Pars DATE:	P. O RSEY (	JERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DERSEY DE	( AVENU 413 1.J. 07303 rhoff start:	9/11/86	G	SHEET	
ASING O.D. NW I.D	/8"	WEI GHT	OF HA	MER	300-140	24	LBS.	HAMMER FALL CASING 24" SAMPLER 30"	
CASING SAMPLE DEPTHS BLOWS PER SWIND FLET FOOT  TO SAMPLE DEPTHS ELEV. / FEET	SAMPLE RECOVERY 7		OWS PER SAMPLE	ER	DENSITY OR CONSIST. MOISTURE		FIE	LO IDENTIFICATION  OF  SOILS.  REMARKS	بسمود
SS-1 0'-2'	1"	12-	14-	14-8		SS-1:	and S	ht brown coarse CRAVEL, ILT, dry, medium dense ast & Fill)	
SS-2 5'-6.25'  R1 6.5'-10'			19- =84%	28/3"		0'-6.25' SS-2	coa	nt brown SILT, little rse/medium Sand, trace vel, Wet, Dense, decompose k	<u>а</u>
R2 10'-15'	4.81	RQD	=94%			6.25'-3	o <b>'</b>		
R3 15'-20.3'	5.31	RQD	=100%	0			Mon	hattan Schist Formation,	
R4 20/3'-24.2'	3.9'	RĄD	=100%				Ligh light	t gray quartz pegmatite, ly weathered, hard to very moderately close fracture	
R5 24.2'-30'	5.7	RQD	=97%	· ·		0.09-35	Note	: Pressure test at 14.4'-20.0	-
	-							gpm at 20 psi ometer installed at 30'	
orilling Inspector:	er Tani			Drill Helps		Greg Ma Norman		ess	



-														BORING	NUMBE	R: PE-27	3	
			D	<b>/</b> /\[	0)71	-			BC	DRIN	NG	L	OG	SHEET	NUMBER	:1_	of	2
			$\square$	7	IJΠ									PROJEC	T NUMB	ER:	19499B	
Ī							n Express	(THE	) Proje	ect				LOCATION			th St, NV	V
	LOCAT CLIEN					, N	lew York							COORD.	corno N• 699		E: 629,565	5.0
						B	Boring & I	Orilling	<u> </u>						CE ELEV.			<b>5.0</b>
ı	DRILLE	ER: J.	. Ku	ırzy	now	<b>ysk</b>	ci -		<u> </u>						Horizont			Plane
							/M. Tekin										atum-200 IME: 7:00	
							ary Wash ck-mount				v Ham	mer					IME: 7:00	
ł	1410 11	1 L.			sing		Split Spoon			Piston	Gra		Core Barrel			NDWATER		
	Type/S	ymbo	ı 🗀	I	IW		S	U		PΝ	G	<b>a</b>	С			Water	Casing	Hole
	I.D.				4"		1.375"	2.93	8"	2.938"		_	1.875"	Date	Time	Depth (ft)	Depth (ft)	Depth (ft)
	O.D.			4	.5"		2"	3"		3"			3"					
	Length				50"		24"	24"	'	24"			120"					
	Hamm		-		lbs.		140 lbs.		rill Rod S				WJ					
ŀ	Hamm	er Fal	11	1	4"		. 30"		.D. (O.E	).)	2	.25" (	2.625")					
	<b>⊕</b>	ا ق	_	L	5	SAN	MPLE	_	SOI	_ (Blows/6	6 in.)	_						
	(feet	CLO	ws/ft				(;	0/6	6/12	12/18	18/24	REC (in.						
80/	DEPTH (feet)	GRAPHIC LOG	G (Blo		띪	7	l (feel			CORING		(1111	/	FIELD CL	_ASSIFICAT	TON AND F	REMARKS	
ERSHIP EPE LAND (FINAL) 11-07-08.GLB 11/11/08	Ö	GR	CASING (Blows/ft)	TYPE	NUMBER	SYMBOL	DEPTH (feet)	RUN (in.)	REC. (in.)	REC.	L>4" (in.)	RQI %						
-08.GL		***************************************		╈		-	0.0 - 0.5	(111.)	(111.)	70	(111.)	70						
11-07	=	: D		G	1	1	0.5 - 6.0							Hand augere 0-0.5': Aspha	ed from 0.0'	to 6.0'.		-
NAL)	-	*		┨		$\setminus / \mid$								0.5-6.0': Bro Silt, brick &	wn, c-f SAN	ND, trace m-	f Gravel, tra	ce -
ND (F)	-	****		┨										ont, onex ex	concrete pic	ccs. (I ILL)		-
λE LA	-	***		1		M												=
<u>∃</u>	<del>-</del> 5	(a)		1		$ \cdot $												_
	_	*		]_				_	_	_								_
ARTI		<b>₩</b>		S	2		6.0 - 8.0	7	7	5	2	12		Brown, c-f S		(+) m-f Gra	vel, trace Si	lt,
뿔	_	* 4.		1										concrete. (FI	LL)			_
PARTNERSHIP BORING GDR (FINAL) 00 EPE ALL PACKAGES 4-30-08.GPJ THE PARTN	_	M . 12		S	3		8.0 - 10.0	3	5	5	4	6		Brown, c-f S	SAND, little	m-f Gravel,	trace Silt. (F	TILL)
4-30-0	-	**************************************		1														1
GES 4	<del>-</del> 10			S	4		10.0 - 12.0	2	4	29	71	5		Black and w		AVEL, som	e c-f Sand, t	race
ACKA	=			1										Silt with mic	ca. (GP)			=
ALL P	=			+														=
EPE	=	6 D.		+														-
\L) 00	_			+														-
(FIN/	<del>-</del> 15			$\perp$ _S	5		15.0 - 17.0	2	2	6	3	8		<b>.</b>	n	• .		_
GDR	_			<b>_</b>   ~			2 2,0	=	_		-			Brown, SILT	I, some f Sa	nd, trace c-f	Gravel. (MI	L) -
JRING	_																	_
IIP B(	_																	
<b>JERS</b>	_																	
ARTI	_	6. Q.		1														1
ш <b>!</b>		, U.											Davi	na No	PF-273	Shee	1 0	of 2

	ECT: TION:	Tra	ns–	Hu	ıds	on Expre	·	E) Proj		<b>NG</b> ntinued	LO	BORING NUMBER: PE-273 SHEET NUMBER: 2 of 2 PROJECT NUMBER: 19499B  CONTRACTOR: Jersey Boring & Drilling DRILLER: J. Kurzynowski INSPECTOR: R. Sidorski/M. Tekin
	(D		Γ		SAI	MPLE		SOIL	_ (Blows/	6 in.)		
(feet)	GRAPHIC LOG	ws/ft)	r			- CI	0/6	6/12	12/18	18/24	REC.	1
DEPTH (feet)	APHIC	G (Blo		H	ОГ	۲ (fee			CORING	}	()	FIELD CLASSIFICATION AND REMARKS
	GR	CASING (Blows/ft)	TYPE	NUMBER	SYMBOL	DEPTH (feet)	RUN (in.)	REC. (in.)	REC.	L>4" (in.)	RQD %	1
		_	S	6		20.0 - 22.0		WOH		20	4	Red & gray, c-f SAND, some c-f Gravel, trace (+) Silt. (SP)
PARINERSHIP BORING GDR (FINAL) 00 EPE ALL PACKAGES 4:30-08.GFJ THE PARINERSHIP EPE LAND (FINAL) 11-07-08.GFJ 11/11/08			S	7		25.0 - 27.0	24	9	11	15	11	Red brown, c-f SAND, some m-f Gravel, trace Silt. (SP)
- 30			S	8		30.0 - 32.0	2	1	1	2	18	Dark gray, CLAY & SILT, trace f Sand with marine shells. (CL)
NAL) 00 EPE AL PACKAGES 4-33	V.X.		S	9		35.0 - 37.0	WOH	1	2	9	4	Dark gray, c-f GRAVEL, trace Silt . (GP) Note: Gravel is stuck in tip. Hard drilling at 39.0'.
- 40			S	10		40.0 - 40.3	100/3"				3	Dark gray, m-f SAND, little m-f Gravel, trace Silt with mica. (SM) (Decomposed Rock)  Roller-bit to 41.5' depth and start rock coring.  Boring No. PE-273 Sheet 2 of 2

							BORING	NUM	BER:	PE-27	3		
ITH	E	PARTN	EX	4	D	CORING LOG	SHEET	NUMB	ER: _	1	0	f	9
				211 L			PROJEC	T NU	MBEF	R: 194	199B		
PROJEC	CT: T	rans-Hudson	Expr	ess (	ГНЕ	Project	LOCATION					, NW	
LOCATION	ON: N	New York, No			ĺ				orner				
CLIENT:							COORD.		-			9,565.	0
		R: Jersey B		& Dr	illing	3	SURFAC						
		Kurzynowski					DATUM:			: NJ YCT (		tate	Plane
		R. Sidorski/			D:		START [						
DIG TVD		THOD: Rota	ary wa Az mou	asn; l	Dian L An	tomatic Safety Hammer	FINISH						
INO III	L. C.	1 <b>111</b> 2-73, 11 uc	K-IIIOU	IIICU	ı, Au	tomatic Sarcty Hammer				WATER		11.00	
CORER	APP	EL DATA:			IOTE	:Q.				Water	Cas	ing	Hole
		Barrel, solid inne	or harral	_			Date	Tim		Depth (ft)	Dep (ft	oth	Depth (ft)
CORE S			oanci	With	VIICIIII		Date	1 11111	e	(11)	(11	.)	(11)
O.D.: 3'		11Q											
I.D.: 1.87							-						
		: 4" (4.5")											
CASING		+ (4.3 )								Die	CONTU	NUITY	ΠΔΤΔ
	CORING RATE (min/ft)	~ ~	Ë	(%				Ŋ	_	513	JONTH	10111	אות
DEPTH (feet)	<u>Б</u>	N E	RECOVERY (in)	RECOVERY (%)	(%			WEATHERING	STRENGTH	) ag)			et)
Ĕ	₽ F	ND I	VEF	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	RQD (%)	DESCRIPTION AND REMARKS	3	뿐	Ë	) :	٦	Ja	l (fe
E P	NG	ZE F			RG			ĒΑ	STR	ANGLE (deg)	7	ب	DEPTH (feet)
8/08	ORI	CORE RUN NO. AND DEPTH (#)	<u>%</u>	2				>	"	¥			
RSHIP EPE (FINAL) 10-24-08.GLB 10/24/08	O					C-1: 41.5-45.8': Dark gray SCHIST; f-c gr	ains of	П	R3/R4	*70	2.0	2.0	41.5
BISI-						biotite, quartz, muscovite, feldspar, and sr	arse		10/10/				
80-4-08						garnet; close to moderate fracture spacing, extremely close at 42.3-42.4'; slightly wea	except thered;			30 30	2.0 2.0	2.0 2.0	42.3 42.4
<u>6</u>						medium strong to strong: distinct wavy an	d			*60	2.0	2.0	42.4 42.8
Z -		C-1	61	100	70	crenulated schistosity dips 50-80 deg; oran staining on some fracture surfaces; no rock	wall			*80 *50	1.5 2.0	1.0 1.0	43.4 43.6
H)	4	41.5 - 46.6				contact at horizontal fracture at 44.1'; 1/2-quartz-feldspar pegmatites; parallel to sch	stosity at			0	1.0	6.0	44.1
<u>□</u>						43.6', 44.4', and 44.6'.	,			5 *70	2.0 1.5	2.0 1.0	44.6 44.8
TRS!						45.8-46.3': Medium gray GRANITE; med	um grains	_		15	3.0	2.0	45.4
Z -						of mostly quartz, with some muscovite and feldspar; moderate fracture spacing; unwe		I	R4	10 *70	3.0 1.5	2.0	45.6
<b>4</b> □ □						strong, upper contact is parallel to foliation	n in schist.	I/II	R4	'		1.0	46.3
<b>≐</b>						C-2: Dark gray SCHIST, with interlayered to light gray to light red GRANITE; altern	ating schist			*70	1.5	1.0	47
- B.G.						and granite bands are 1/4" to 8" thick; sch grains of biotite, quartz, muscovite, feldsp	ist has f-c						-
30-0						sparse garnet; granite has f-m grains of qu	artz,						
4 P						feldspar, and muscovite, with hematite at and 55.7-56.1'; moderate to wide fracture							-
EA LO						except close at 55.6-56.1'; unweathered to	slightly			25	3.0	1.0	49.7_
Š — 50						weathered; strong; schist has distinct plan schistosity dipping 50-70 deg; schist-gran	te contacts			23	3.0	1.0	72.7
TIL ALL		G.2				are intact and parallel to schistosity; pure (at 55.5-55.6'; pink PEGMATITE at 51.0-5							
EPE		C-2 46.6 - 56.1	114	100	95	at 33.3-33.0 , pink i EGWIYTITE at 31.0-3	,1.1.			*70	2.0	1.0	51.2
<u>ā</u>	5												-
PARTNERSHIP CORING GDR (FINAL) 00 EPE ALL PACKAGES 4-30-08.GPJ THE PARTNE C C C C C C C C C C C C C C C C C C C													
SDR -										*50	1.5	1.0	52.2
S S S S S S S S S S S S S S S S S S S										*50	1.5	1.0	53.3
COR													
- 55										*50 30	1.0 1.0	1.0 6.0	54.6 54.8
Z Z Z										30	3.0	1.0	55.5
PART						C-3: 56.1-61.0': Light red to light gray GR	ANITE	I	R4	*50	2.0	1.0	55.6
_							ing No.	PE-2		Shee	t 1	of	9

CORING LO (continued)

BORING NUMBER: PE-273
SHEET NUMBER: 2 of 9

PROJECT NUMBER: 19499B

PROJECT: Trans-Hudson Express (THE) Project

LOCATION: 11th Ave at 30th St, NW corner

CLIENT: NJ Transit

CONTRACTOR: Jersey Boring & Drilling

DRILLER: J. Kurzynowski

INSPECTOR: R. Sidorski/M. Tekin

ŀ		(#)								DIS	CONTI	NUITY	DATA
	DEPTH (feet)	CORING RATE (min/ft)	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS	WEATHERING	STRENGTH	ANGLE (deg)	٦	вL	DEPTH (feet)
TNERSHIP EPE (FINAL) 10-24-08.GLB 10/24/08	- - 60 -	5	C-3 56.1 - 66.0	119	100	97	with interlayered dark gray SCHIST; alternating granite and schist bands are 1/4" to 10" thick; granite has f-m grains of quartz, feldspar, muscovite, and sparse garnet, with hematite at 56.1-59.0'; schist has f-c grains of biotite, quartz, muscovite, and feldspar; moderate to wide fracture spacing; unweathered; strong; distinct planar schistosity in schist dips 50-60 deg; granite-schist contacts are intact and parallel to schistosity.  61.0-66.0': Dark gray SCHIST; f-c grains of biotite, quartz, muscovite, and feldspar; moderate fracture spacing; slightly weathered; strong; distinct wavy and crenulated schistosity dips 60-80 deg; no rock wall contact at 60 deg foliation fracture at 62.0', with smooth, polished surfaces and thin coating of brown clay; light gray granite intrusion along foliation at 63.3-63.8'; black, f-grained, and biotite-rich at 65.4-66.0'.	П	R4	20 25 0 20 *50 60 40	1.0 1.5 MB 2.0 1.5 1.0 MB	6.0 1.0 MB 2.0 6.0 MB	56 56.1 - - 59.4 60 - 61.3 62 - 63.4 - 64.4
PARTNERSHIP CORING GDR (FINAL) 00 EPE ALL PACKAGES 4-30-08.GPJ THE PARTNERSHIP EPE (FINAL) 10-24-08.GLB 10/24/08	- 65 - - - 70 -	5	C-4 66.0 - 76.0	118	98	86	C-4: Dark to medium gray SCHIST; f-c grains of quartz, biotite, muscovite, feldspar, and scattered garnets, up to 1/8" across; close to wide fracture spacing, except extremely close at 70.6-71.0'; slightly weathered; strong; wavy to crenulated schistosity dips 60-80 deg; strike-slip slickensides on 70 deg foliation fracture at 70.9', with thin (<0.1") coating of brown clay; near-vertical cross foliation fracture at 70.0-70.8' has thin coating of gray clay; thin brown clay coating also on smooth 70 deg foliation fracture at 71.0'; calcite coatings on fractures at 72.4-74.3'; orange iron staining on fractures at 75.3-76.0'; white near-vertical hairline veins of calcite, partly weathered out, at 72.4-76.0'; medium gray GRANITE at 71.0-72.4', with medium grains of quartz, feldspar, and muscovite and faint near-vertical banding; upper and lower granite contacts are along smooth foliation fractures.	П	R4	*60 60 *60 5 20 35 80 90 85 *70 *70 *60	1.5 1.0 MB 2.0 2.0 2.0 2.0 2.0 1.5 1.5 1.5 1.5 1.0 2.0 1.0	1.0 1.0 MB 1.0 1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0	65 — 65.6 — 66.5 — 67.3 — 70.2 — 70.2 — 70.9 — 71 — 72.4 — 73 — 74.3
PARTI	- 75									60	3.0	1.0	74.35_

Boring No. ___PE-273___ Sheet __2 __ of __9__

CORING L (continued)

BORING NUMBER: PE-273
SHEET NUMBER: ___3 ___ of ____9

CONTRACTOR: Jersey Boring & Drilling

PROJECT NUMBER: 19499B

PROJECT: Trans-Hudson Express (THE) Project

LOCATION: 11th Ave at 30th St, NW corner DRILLER: J. Kurzynowski

CLIENT: NJ Transit INSPECTOR: R. Sidorski/M. Tekin

ı													
Ī		n/ft)		(						DIS	CONTI	NUITY I	DATA
	DEPTH (feet)	CORING RATE (min/ft)	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS	WEATHERING	STRENGTH	ANGLE (deg)	Jr	вГ	DEPTH (feet)
İ										10	3.0	2.0	74.4
4/08	-						C-5: Medium to dark gray SCHIST; f-m grains of biotite, muscovite, quartz, feldspar, calcite, and garnets up to 1/4" across; moderate to wide fracture spacing; slightly weathered; strong; crenulated schistosity dips 50-70 deg; enriched in biotite at 82.1-82.3'; pure QUARTZ at 80.6-80.8'; scattered hairline calcite veins parallel to foliation; all fractures	П	R4	20 80 *60	3.0 1.5	2.0 1.0	75.3 76 - - 78.4
_B 10/2	_						are along foliation, most with thin (<(0.1") calcite coatings.						
38.GLE	<b>–</b> 80	80				30	2.0	2.0	79.3				
INAL) 10-24-08	-	5	C-5 76.0 - 86.1	121	100	100				*50 *50	1.5 MB	2.0 MB	80.5 80.8
PE (FI	_	3								20	3.0	1.0	81.6
보										*50	1.0	1.0	82.2
PARTNERSHIP CORING GDR (FINAL) 100 EPE ALL PACKAGES 4-30-08 GPJ THE PARTNERSHIP EPE (FINAL) 10-24-08 GLB 10/24/08	- - - 85									*50 *50 *70	1.5 2.0 2.0	1.0 2.0 1.0	84.5 85.3 85.7
PACKAGES 4-3	-						C-6: Medium to dark gray SCHIST; f-m grains of biotite, quartz, muscovite, feldspar, calcite, and scattered garnets, up to 1/4" across; rock is f-c grained below 90.7; moderate fracture spacing; unweathered; strong; planar to crenulated schistosity	I	R4	30	2.0	1.0	86.9
L) 00 EPE ALL	-						dips 50-80 deg, becoming near-vertical below 93.6'; contorted quartz-feldspar band, 1/2" thick, at 89.2'; thin (<0.1") calcite coatings on most fractures; scattered hairline veins of white calcite parallel to schistosity; core sides are slightly bulging at			*60	1.0	1.0	88.6
<b>JG GDR (FINA</b>	— 90 -		C-6 86.1 - 96.1	120	100	100	92.0-93.5'.			*50	1.0	1.0	90.2
ERSHIP CORIN	-	5								10	3.0	1.0	91.9
PARTN										*60	1.5	2.0	93.6

Boring No. ___**PE-273**___ Sheet __**3**__ of __**9**__

CORING LOG (continued)
------------------------

BORING NUMBER: PE-273

SHEET NUMBER: 4 of 9

PROJECT NUMBER: 19499B

PROJECT: Trans-Hudson Express (THE) Project

LOCATION: 11th Ave at 30th St, NW corner

CLIENT: NJ Transit

CONTRACTOR: Jersey Boring & Drilling

DRILLER: J. Kurzynowski

INSPECTOR: R. Sidorski/M. Tekin

CORING RATE (min/ft)  CORING RATE (min/ft)  RECOVERY (in)  RECOVERY (in)  RECOVERY (in)  RECOVERY (in)  RECOVERY (in)  RECOVERY (in)  RECOVERY (in)  RADD (%)  RADD (%)  RADD (%)  RADD (%)  RADD (%)  ANGLE (deg)  Jr	Ja DEPTH (feet)
SON ON R R R	
- 95 - C-7: Dark gray SCHIST; f-c grains of biotite, I R4 50 MB	MB 95.1 1.0 95.6 MB 96.1
muscovite, quartz, feldspar, calcite, and many garnets, up to 1/4" across; moderate to wide fracture spacing, except close at 105.1-105.8'; unweathered; strong; crenulated schistosity dips 50-80 deg, near-vertical at 96.1-97.2'; thin (<0.1") calcite coatings on some foliation fractures; no rock wall contact at near-horizontal fractures at 100.9', with rough, unweathered fracture surfaces.	1.0 98.1
100   40 MB	MB 99.7_ 1.0 100.2 6.0 100.9
#E	1.0 103.6 1.0 104.7_
C-8: Dark to medium gray SCHIST; f-m grains of muscovite, biotite, quartz, feldspar, calcite, and scattered garnets, up to 1/4" across; close to moderate fracture spacing; unweathered; strong; planar to crenulated schistosity dips 50-70 deg; thin (0.1") calcite coatings on many fractures; medium  *60 1.0	1.0 105.1 1.0 105.4 1.0 105.8 1.0 107.2 1.0 107.7
gray, pure QUARTŽ at 112.9-114.1'.  40 2.0  *70 1.5  *70 2.0  35 2.0  *50 1.5	1.0 108.6 1.0 109.2 1.0 109.3 1.0 109.9 1.0 110.1
15       3.0       0       2.0	1.0 111.3 1.0 112.1

Boring No. ___PE-273___ Sheet __4__ of __9__

CORING LOG (continued)
------------------------

BORING NUMBER: PE-273
SHEET NUMBER: ___5 of ____9

PROJECT NUMBER: 19499B

PROJECT: Trans-Hudson Express (THE) Project

LOCATION: 11th Ave at 30th St, NW corner

CLIENT: NJ Transit

CONTRACTOR: Jersey Boring & Drilling

DRILLER: J. Kurzynowski

INSPECTOR: R. Sidorski/M. Tekin

	(min/ft)		<u> </u>	<u> </u>		I			DIS	CONTI	NUITY	DATA
DEPTH (feet)	CORING RATE (m	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS	WEATHERING	STRENGTH	ANGLE (deg)	٦٢	ьl	DEPTH (feet)
_									*50 *60	1.0 1.5	1.0 1.0	112.2 112.8
- 115									10 *40	3.0 1.5	1.0 1.0	114.1 114.2
- -						C-9: 115.4-121.3' and 124.0-125.4': Medium to darl gray SCHIST; fm grains of quartz, biotite, muscovite, feldspar, calcite, and sparse garnet; close to moderate fracture spacing, except two very close foliation fractures at 121.1-121.3'; unweathered; strong; indistinct schistosity is wavy to crenulated, dips 60-80 deg; calcite coatings on many fracture surfaces; QUARTZ band parallel to schistosity at 124.9-125.35'; core sides bulging at 119.5-120.4'.	I	R4	30 40 30 0 *70	3.0 2.0 3.0 MB 1.5	1.0 1.0 1.0 MB 1.0	115.4 116.1 116.6 117 117.3
- - - - - - - - - - - -	5	C-9 115.4 - 125.4	120	100	94	121.3-124.0': Light gray GRANITE; indistinct f-m grains of quartz, feldspar, and muscovite, with some pink orthoclase; moderate fracture spacing; unweathered; strong; faint near-vertical banding; near-vertical inclusion of dark gray schist at 122.5-123.0'.			*60 *70 *80	1.5 1.5 1.0	1.0 1.0 1.0 1.0	118.4 120.5 121.1 121.3
-									90 50 *65	2.0 1.5 1.0	1.0 1.0 1.0	122.5 122.55 122.7
- 125 - - -						C-10: 125.4-132.4': Black and white pinstriped SCHIST; f-m grains of biotite, amphibole (?), quartz feldspar, and calcite; close to moderate fracture spacing; slightly weathered; strong; distinct planar schistosity and wavy banding dip 70-90 deg; planar bands of white calcite and quartz parallel to schistosity are hairline to 1/2" thick; some contorted bands of quartz-feldspar; thin (<0.1") coating of gra clay on 80 deg foliation fracture at 128.4'; calcite on most fracture surfaces.		R4	40 10 50 30 20 *80 5	2.0 MB 2.0 3.0 3.0	1.0 MB 1.0 1.0 2.0	125.4 126.1 126.5 127 127.5
- - 130 -	5	C-10 125.4 - 135.7	124	100	81	132.4-135.7': Light gray GRANITE; m grains of feldspar, quartz, muscovite, and sparse garnet; close to moderate fracture spacing, except extremely close at 135.0-135.6' (may be mechanical); unweathered; very strong; calcite on some fracture surfaces inclusion of dark gray schist at 133 1-133.4'.  Boring No.	PE-2		30 30 10	3.0 3.0 3.0 3.0	2.0 1.0 1.0	129.7- 130.3 130.7

Boring No. ___**PE-273**___ Sheet __**5**__ of __**9**__

CORING LOG (continued)
------------------------

BORING NUMBER: PE-273
SHEET NUMBER: 6 of 9

CONTRACTOR: Jersey Boring & Drilling

PROJECT NUMBER: 19499B

PROJECT: Trans-Hudson Express (THE) Project

LOCATION: 11th Ave at 30th St, NW corner DRILLER: J. Kurzynowski

CLIENT: NJ Transit INSPECTOR: R. Sidorski/M. Tekin

t		in/ft)		<u> </u>			<u> </u>			DIS	CONTI	NUITY	DATA
	DEPTH (feet)	CORING RATE (min/ft)	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS	WEATHERING	STRENGTH	ANGLE (deg)	٦	вL	DEPTH (feet)
								I	R5	*80 10 5 *90 50 80 60	1.5 3.0 2.0 2.0 2.0 1.5 1.0	4.0 1.0 2.0 2.0 2.0 2.0 1.0	131.2 131.3 - 131.4 131.6 131.8 - 132 133.1 -
NAL) 00 EPE ALL PACKAGES 4-30-08.GPJ THE PARTNERSHIP EPE (FINAL) 10-24-08.GLB 10/24/08	- 135						C-11: 135.7-141.5': Light gray GRANITE; f-m grains of feldspar, quartz, muscovite, and garnet; close to moderate fracture spacing, except very close low-angle fractures at 139.5-139.9'; unweathered to slightly weathered; very strong; becoming f-grained below 139.9', with faint banding dipping 50 deg; slight iron stains on fracture surfaces at 139.5-139.7' and at lower contact at 141.5'; calcite on some fracture surfaces; black schist inclusion at	I/II	R5	40 40 20 30 60 90 10 50 30 10	2.0 2.0 2.0 2.0 3.0 3.0 2.0 2.0 1.5 1.5	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	133.9 134.4 134.8 135.1 135.3 135.5 135.7 135.8 137.2 137.6
4-30-08.GPJ THE PARTNERSHIF	- 140	4	C-11 135.7 - 145.6	119	100	94	136.3-136.9'.  141.5-145.6': Black to dark gray SCHIST; f-m grains of biotite, quartz, feldspar, and muscovite; close to moderate fracture spacing; unweathered to slightly weathered; strong; planar schistosity dip 50 deg; calcite on all fracture surfaces; no rock wall contact and softened biotite on horizontal fracture at upper contact with granite; pure QUARTZ at 142.7-143.2'.	I/II	R4	10 5 10 15 50 0 *50	1.5 1.5 1.5 2.0 MB 1.0	1.0 1.0 1.0 1.0 MB 6.0	139.5 139.6 139.7 139.9 140.5 141.5
00 EPE ALL PACKAGES	- 145						C 12. Makimu ta dada may CCUICT, fan ansina af	ĭ	D4	*40 *50 *50	MB 1.5 MB	MB 1.0 MB	143.9 ⁻ 144.6 144.9
							C-12: Medium to dark gray SCHIST; f-m grains of quartz, biotite, feldspar, muscovite, calcite, and scattered garnets, up to 1/8" across; moderate fracture spacing, except very close foliation fractures at 150.1-150.7'; unweathered; strong; planar schistosty dips 50.60 deg calcite on meet fracture	Ι	R4	*50 55	1.0	1.0	145.7 _
PARINERSHIP CORING GDR (FI							schistosity dips 50-60 deg; calcite on most fracture surfaces; pure QUARTZ at 149.0-149.7' and 155.1-155.5', light gray APLITE at 149.8-149.9', 150.1-150.3', and 148.1-148.5, with some orange potassium feldspar.			*50 *60	1.0 1.5	1.0 1.0	147.8 - 148.5 _
PAKINE	- 150									*40	1.0	1.0	149.8—

Boring No. ___PE-273___ Sheet __6__ of __9__

BORING NUMBER: PE-273
SHEET NUMBER: 7 of 9

PROJECT NUMBER: 19499B

PROJECT: Trans-Hudson Express (THE) Project

LOCATION: 11th Ave at 30th St, NW corner

CLIENT: NJ Transit

CONTRACTOR: Jersey Boring & Drilling

DRILLER: J. Kurzynowski

INSPECTOR: R. Sidorski/M. Tekin

İ		iin/ft)		Ē	(9)			(D		DIS	CONTI	NUITY	DATA									
	DEPTH (feet)	CORING RATE (min/ft)	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS	WEATHERING	STRENGTH	ANGLE (deg)	٦	Ы	DEPTH (feet)									
			C-12 145.6 - 155.6	120	100	94				*50 *50 *50 *50	1.5 1.5 1.5 1.0	1.0 1.0 1.0 1.0	150.1 150.3 150.5 150.7									
										*60	1.0	1.0	152.3									
/24/08										0	3.0	1.0	152.9									
GLB 10	•									*60	1.0	1.0	154									
INAL) 10-24-08.	- 155						C-13: Medium to dark gray SCHIST; f-c grains of quartz, biotite, muscovite, feldspar, calcite, and scattered garnets, up to 1/4" across; moderate	I	R4	*50 45 15	1.5 2.0 2.0	1.0 1.0 1.0	155.1 155.2 155.6									
ERSHIP EPE (F							fracture spacing, except for two extremely close foliation fractures at 165.4-165.45'; unweathered; strong; planar to slightly crenulated schistosity dips 50-60 deg; most fractures are along schistosity; calcite on most fracture surfaces; irregular white			30	2.0	1.0	157.5									
J THE PARTN	- 160	160 C-13 155.6 - 10	155.6 - 165.6													granitic intrusions, 1" thick and near-vertical, at 160.0', 161.3', and 162.1'; 1/2" of adjacent schist is enriched in biotite.			*70	1.0	1.0	159.1
0-08.GP							120	100	97				*50	1.5	1.0	160.6						
3ES 4-3										*60	1.5	1.0	161.4									
- PACKA														_								
EPE ALI										*50	1.0	1.0	163.3									
IAL) 00 [	165							*50	1.0	1.0	164.2											
PARTNERSHIP CORING GDR (FINAL) 00 EPE ALL PACKAGES 4-30-08.GPJ THE PARTNERSHIP EPE (FINAL) 10-24-08.GLB 10/24/08	- 165						C-14: Medium gray SCHIST; f-m grains of muscovite, biotite, quartz, feldspar, and scattered garnets, up to 1/8" across; very close to moderate fracture spacing, except extremely close at 172.8-172.9' and 175.2-175.6'; slightly weathered; medium strong to strong; distinct wavy to planar schistosity dips 50-70 deg; clay and softened mica on fractures at 167.9', 172.9' and 173.1'.	П	R3/R4	*50 *60 *50 *60 *50 *60 15 *50	1.0 1.0 1.5 1.0 1.0 1.0 3.0	1.0 1.0 1.0 1.0 1.0 MB 1.0 4.0	165.4 165.45- 165.6 166.4 167.05 167.5 - 167.9									
Α							Roring No.			*70	1.0	4.0	168.2									

Boring No. ___**PE-273**___ Sheet __**7**__ of __**9**__

CORING LOG (continued)	CORING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCALING LOCAL
------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

BORING NUMBER: PE-273
SHEET NUMBER: 8 of 9

PROJECT NUMBER: 19499B

PROJECT: Trans-Hudson Express (THE) Project

LOCATION: 11th Ave at 30th St, NW corner

CLIENT: NJ Transit

CONTRACTOR: Jersey Boring & Drilling

DRILLER: J. Kurzynowski

INSPECTOR: R. Sidorski/M. Tekin

	(min/ft)					•			DIS	CONTI	NUITY I	DATA
DEPTH (feet)	CORING RATE (m	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS	WEATHERING	STRENGTH	ANGLE (deg)	Jr	Ы	DEPTH (feet)
- 170 - 175		C-14 165.6 - 175.6	120	100	72	169.9-172.6': Rock is gneissic, with irregular bands of quartz and orange potassium-feldspar; core surfaces is pitted; no rock wall contact at 170.8'; hard, green epidote (?) on weathered fracture surfaces at 170.8' and 171.6'.			*70 *60 *50 30 15 10 15 *60 20 *40 *50 80 *10 0	1.5 1.5 1.0 2.0 3.0 1.0 3.0 2.0 3.0 1.5 1.5 2.0 3.0 3.0	1.0 4.0 1.0 2.0 1.0 6.0 1.0 2.0 2.0 2.0 4.0 1.0 4.0 1.0 MB	169.1 169.3 169.5 170.05 170.2 170.8 – 171 171.5 171.6 172 172.8 – 172.9 173 173.1 – 173.4 174.6
175 — 175 — 180 — 180		C-15 175.6 - 185.3	116	100	89	C-15: 175.6-181.6': Dark gray SCHIST; f-m grains of biotite, muscovite, quartz, feldspar, and garnet; close to moderate fracture spacing, except for 2 extremely close intersecting high-angle fractures at 179.8-180.0'; slightly weathered; strong; planar to crenulated schistosity dips 50-70 deg; high angle cross-foliation fractures at 178.9-179.8 have orange and red iron staining, softened mica, and sandy clay coatings; softened mica on some foliation fractures; calcite on fracture surfaces at 176.8-178.1'.  181.6-183.4': Light gray GRANITE; f-c grains of white and pink feldspar, quartz, and muscovite; moderate fracture spacing; unweathered; very strong; healed hairline fracture dips 70 deg.  183.4-185.3': Medium gray, pure QUARTZ; close to moderate fracture spacing; unweathered; very strong; few small (<0.1") inclusions of white feldspar.	п	R4	*50 *50 *50 *40 *50 20 *50 *30 *60 25 90 40 80 *70 60 15	1.5 1.0 1.5 2.0 1.5 3.0 1.5 1.0 1.0 3.0 2.0 3.0 2.0 1.5 2.0 3.0	1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 2.0 4.0 1.0 4.0 4.0 2.0	175.2 175.3 175.35 175.5 175.6 175.7 176.8 177.9 178.3 178.6 178.9 179.2 179.8 180.3 180.3 180.9
							I	R5	20	1.5	1.0	- 183.8 - 184.6
- 185 - 185						C-16: 185.3-185.5': Medium gray QUARTZ, as above.  185.5-188.0': Light gray GRANITE; f-c grains of feldspar, quartz, and muscovite; close to moderate fracture spacing; slightly weathered; strong; coarse	II PE-2:	R4	10 40 *40 80 30 90 70	1.5 3.0 3.0 2.0 1.5 3.0 3.0	1.0 1.0 2.0 1.0 1.0 2.0 1.0	185.1 185.3 185.6 - 185.9 186 186.5 186.9

Boring No. ___**PE-273**___ Sheet __**8**__ of __**9**__

CORING LOG (continued)	Ì
------------------------	---

BORING NUMBER: PE-273
SHEET NUMBER: 9 of 9

PROJECT NUMBER: 19499B

PROJECT: Trans-Hudson Express (THE) Project

LOCATION: 11th Ave at 30th St, NW corner

CLIENT: NJ Transit

CONTRACTOR: Jersey Boring & Drilling

DRILLER: J. Kurzynowski

INSPECTOR: R. Sidorski/M. Tekin

١														
Ī		(min/ft)					-				DIS	CONTI	I YTIUV	DATA
	DEPTH (feet)	CORING RATE (mi	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS		WEATHERING	STRENGTH	ANGLE (deg)	٦٢	Ы	DEPTH (feet)
	-						grained at 186.1-187.4', with muscovite seams dipping 30 deg spaced 1/8" to 1/2" apart; vertic fracture at 186.5' has rough, orange iron-stained surface.	cal ed	I/II	R4	*60 *50	1.5	1.0	188 - 188.7 -
34/08	— 190 -		C-16 185.3 - 195.2	119	100	82	188.0-195.2': Dark gray SCHIST; f-m grains of biotite, muscovite, quartz, feldspar, calcite, and sparse garnet; close to moderate fracture spacin except very close at 194.6-195.2'; unweathered slightly weathered; strong; planar to wavy schis	d ng, d to			*45 50	3.0	1.0	189 189.8—
PARTNERSHIP CORING GDR (FINAL) 00 EPE ALL PACKAGES 4-30-08 GPJ THE PARTNERSHIP EPE (FINAL) 10-24-08 GLB 10/24/08	-						dips 50-60 deg; most fractures along foliation, 1 with calcite on surface; light gray granitic intrus at 189.5-190.0', 190.5-190.8', 191.2-191.5', and 192.3-192.9'; schistosity is contorted around gr contacts.	many usions nd			*60 *60	1.0 1.0	2.0	191.7 <b>-</b> 192.4 <b>-</b>
E (FINAL) 10	-										*50 *50	1.0 1.0	1.0 1.0	193.5 194.2
SHIP EPI	<del>-</del> 195										*50 30 40	1.0 3.0 3.0	1.0 1.0 1.0	194.6 194.7 195
ARTNER	-						End of Boring at 195.2'				40	2.0	1.0	195.2
PJ T퓨 P	_													-
4-30-08.G	-													
ACKAGES	– 200													
PE ALL P/	_													-
NAL) 00 E	=													-
3 GDR (FII	-													-
IP CORIN	- 205													-
RTNERSH	– 205 -													
A														

Boring No. ___**PE-273**___ Sheet __**9**__ of __**9**__

													BORING	NUMBER	R: <b>PE-27</b>	4	
			V7\ [	n F	F)	VERS		R/	JPII	NG	1 (	C	SHEET	NUMBER	1_	of	2
		1		K		MI KY		שו	JNII	10							
														T NUMB		19499B	
						n Express	(THE	) Proj	ect				LOCATION	ON: 11th		Oth St, NE	Ε
					, N	New York							COORD	corne .: N: 699,		F. 620 641	1 0
CLIEN					, T	Boring & 1	Drillina	т						IN: 099, CE ELEV.:			1.9
DRILL					_		DI IIIIII Ş	<u> </u>						Horizont			Plane
INSPE						M								Vertical:			) ft
DRILL	ING N	1ET	HOI	D: <b>F</b>	Rot	tary Wash	; Dian	nond (	Coring				_	DATE: 4/1			
RIG T	YPE: (	CM	E-7:	5, T	ru	ck-mount			ic Safet	y Ham	mer		FINISH [	DATE: 4/2	24/08 T	IME: 11:	30 am
				sing		Split Spoon	-		Piston	Gra	-	Core Barrel		GROU	NDWATER		
Type/S	Symbo	ol		W		S	U[		PΩ	G		С	_		Water Depth	Casing Depth	Hole Depth
I.D.				1"		1.375"	2.93		2.938"			1.875"	Date	Time	(ft)	(ft)	(ft)
O.D.				.5"		2"	3"		3"			3"	4/22/08	7:00 am	19.5	35.0	115.1
Length				0"		24"	24'	'	24"			120"	4/24/08	7:00 am	19.0	35.0	166.1
Hamn		-	300			140 lbs.		rill Rod			N	-					
Hamn	ner Fa	II	2.	4"		. 30"		I.D. (O.I	D.)	2	.25" (2	2.625")					
	(D			,	SAI	MPLE		SO	IL (Blows/	6 in.)							
711/08 DEPTH (feet)	GRAPHIC LOG	s/ft)	$\vdash$				0/6	6/12	12/18	18/24	REC						
E	일	Blow				eet)	0/0	0/12	12/10	10/24	(in.)	4	FIELD CI	LASSIFICAT	ION AND F	REMARKS	
11/08 DEP	RAP	92	I	BER	30L	<u>₩</u>			CORING	3							
11/8	Ō	CASING (Blows/ft)	TYPE	NUMBER	SYMBOL	DEPTH (feet)	RUN	REC.	REC.	L>4"	RQI %						
19.8C			╫	_	0)	0.0 - 6.0	(in.)	(in.)	70	(in.)	70		Hand augare	ad from 0.0'	to 6 0'		
-1-07-0		_	4										Hand-augere 0-0.5': Conc	rete			
4L) 1	* 4		1										0.5-6.0': Bro occasional b	wn, c-f SAN lack pebble.	ID, little c-f (FILL)	Gravel, little	e Silt, _
SHIP EPE LAND (FINAL) 11-07-08.GLB 11/11/08	***.													1	. ,		
LAND	**************************************		1														_
HH-	*## * • • • • • • • • • • • • • • • • • • •	-	1														-
ੂ _ 5	***	<u> </u>	+														_
Z -	ďΔ´	<u> </u>	- _S	1		6.0 - 8.0	3	3	4	4	3						_
PART	<b>₩</b>		၂ိ	1		0.0 - 8.0		,	*	•	3		Black brown organic silt.		little m-f C	Gravel, little (	( <del>-</del> )
^보	. ★. · a.												organic siit.	(1111)			
GB -	N - 10   S		S	2		8.0 - 10.0	7	9	14	12	4		Black brown	ı, c-f SAND	little m-f C	Gravel, little (	<del>-</del> )
- 0	<b>¾</b> 0 4	-	+										organic silt,				-
წ - 10	***		-	3		10.0 - 12.0	9	13	16	17	4						_
- AGE	****			٦		10.0 12.0	<b>_</b>			',	'		Dark brown, with brick fr	, c-f SAND, ragments. (F)	and c-f Gra ILL)	vel, little Sil	t,
PACI	7. □ 4													<i>J</i> (2 ·	,		
I I	*	<b>[</b>	1														_
<u> </u>	(DA)	<del> </del>	1														-
<u> </u>		-	$\dashv$														-
_V ⊢ 15				₁		15.0 - 17.0	2	2	2	2							_
SDR.			$\int_{0}^{S}$	4		13.0 - 17.0	3	3	3	3	6		Gray brown, Gravel, mica			ice (+) m-f	
9 N			7										Jiavei, IIIICa	iceous. (SIVI)	•		Ī
- BQR			1														-
HS:		_	+														-
PARTNERSHIP BORING GDR (FINAL) 00 EPE ALL PACKAGES 4-30-08.GPJ THE PARTNEI  T T T T T T T T T T T T T T T T T T T			4														_
PAR			$\perp$														
					_							Bori	ing No.	PE-274	Shee	t_1_c	of 2

PROJI	ECT: TION:	Tra	ns-	Hu	ıds	on Express 30th St, N	·	E) Proj	(cor	<b>NG</b> ntinued	LO )	G	BORING NUMBER: PE-274 SHEET NUMBER: 2 of 2 PROJECT NUMBER: 19499B  CONTRACTOR: Jersey Boring & Drilling  DRILLER: J. Kurzynowski  INSPECTOR: M. Tekin
₽ E	၂ ၅		L		SAI	MPLE		SOIL	. (Blows/	'6 in.)			
DEPTH (feet)	GRAPHIC LOG	CASING (Blows/ft)				et)	0/6	6/12	12/18	18/24	REC. (in.)		FIELD CLASSIFICATION AND REMARKS
	RAPE	NG (B	ļ.,,	BER	BOL	DEPTH (feet)		(	CORING	3			TILED GEAGGII IOATIGN AND NEWARKS
	9	CASI	TYPE	NUMBER	SYM		RUN (in.)	REC. (in.)	REC. %	L>4" (in.)	RQD %		
ND (FINAL) 11-07-08:GIB 11/11/08			S	6		20.0 - 22.0	14	29	6	8	6		Gray, c-f SAND, some (+) m-f Gravel, some Silt, micaceous. (SM)  Gray brown, c-f SAND, some (+) c-f Gravel, trace (+) Silt, wet. (SP)
08.GPJ THE PARTNERSHIP EPE LY			S	7		30.0 - 32.0	5	4	6	8	22		Gray, SILT & CLAY, trace (+) f Sand. (ML)
S - 35	XX		S	8		35.0 - 35.3	100/4"				4		Cray a f SAND trace Silt (Decomposed Sakiet)
PARINERSHIP BORING GDR (FINAL) 00 EPE ALL PACKAGES 4:30-08.GPJ THE PARINERSHIP EPE LAND (FINAL) 11-07-08.GLB 11/11/08  0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\											35.9'	Gray, c-f SAND, trace Silt . (Decomposed Schist)  Note: Start rock coring at 35.9' depth.

							BORING	NUM	IBER:	PE-27	4		
	F	DYVDYLY		TI	TD	CORING LOG	SHEET	NUME	BER: _	1	0	of	9
		MILMAN	Tave	2)11			PROJEC	יווא די	MDEE	)· 10 <i>4</i>	100D		
PROJE	СТ: Т	rans-Hudson	Expr	229	THE:	Project	LOCATION					NE.	
		New York, N		•	11112)	Troject	LOCATI		orner	re at 3	Jui St	, INE	
CLIENT	: <b>NJ</b> ]	Γransit					COORD		-			9,641.	.9
		DR: Jersey B		& Di	rilling	5	SURFAC						
		Kurzynowsk	i				DATUM:			: NJ YCT d		tate	Plane
		M. Tekin	XX/-		D:		START I						
		ETHOD: Rota ME-75, Truc				tomatic Safety Hammer	FINISH						
		,				•		G	ROUND	WATER	DATA		
CORE E	BARR	EL DATA:		1	NOTE	S:				Water Depth	Cas Der		Hole Depth
TYPE: I	Double	Barrel, solid inne	er barrel	with	wirelin	e	Date	Tim		(ft)	(ft		(ft)
CORE S	SIZE:	NQ					4/22/08	7:00	am	19.5	35	.0	115.1
O.D.: 3							4/24/08	7:00	am	19.0	35	.0	166.1
I.D.: 1.8											<u> </u>	$\rightarrow$	
CASING		4" (4.5")											
	(min/ft)		<u> </u>	(%				(J)		DISC	JUNTII	NUITY	DATA
DEPTH (feet)	<u>ц</u>	CORE RUN NO. AND DEPTH (ff)	RECOVERY (in)	RECOVERY (%)	(%			WEATHERING	STRENGTH	(ĝ			et)
¥	₹	NO.	VEF	VEF	RQD (%)	DESCRIPTION AND REMARKS	8	l 뿐	Ŭ,	(d	٦	<u>a</u>	1 (fe
H	NG	REF	ECC		X			VEA:	STR	ANGLE (deg)	7	,	DEPTH (feet)
24/08	CORING RATE	O N	<u> </u>	<u>~</u>				>		4			
RSHIP EPE (FINAL) 10-24-08.GLB 10/24/08						C-1, 35.9-37.6' and 38.5-40.7': Light gray	to medium	II	R3	*45	2.0	2.0	36.1
198.GL						gray PEGMATITE; medium to coarse gra quartz, white feldspar, muscovite, and bio	ite; close			70	3.0	2.0	36.5
7-24-0						to moderate fracture spacing, slightly wear	hered:			*20 *60	1.5 1.5	2.0 1.0	36.7
AL) -						medium strong; irregular seams of mica the orange iron-staining above 37.6'; schist inc	clusion at			20 *40	3.0 2.0	2.0	37.2 37.5
Ĭ.						36.8-37.0'. 37.6-38.5' and 40.7-43.5': Dark gray to br	own			*70 *50	2.0	4.0	37.8
		C 1				SCHIST; fine to medium grains of biotite, quartz, feldspar, and scattered garnets, up	muscovite, to 1/8"			*5	1.5 2.0	1.0	38.4 38.7
H 40		C-1 35.9 - 43.4	90	100	59	quartz, feldspar, and scattered garnets, up across; very close to moderate fracture spa	cing,			*40	1.5	1.0	39.5
	4					except extremely close at 43.1-43.5'; slight weathered, except moderately weathered a	t			15	2.0	1.0	40
PAR.						41.8-42.5'; medium strong, except weak a 41.8-42.5'; distinct wavy to laminated sch				*60 15	MB 1.5	MB 1.0	40.7 41
뷛						dips 50-75 degrees; orange iron staining a 41.8-43.0', with thin (<0.1") coatings of so	t						
GPJ.						mica and gray clay on fracture surfaces.	nicheu	III	R2	*50 *60	1.0 1.0	4.0 4.0	41.8
30-08								П	R3	*60 *70	1.5 2.0	4.0	42.2 42.5
ES 4-						C-2: 43.5-44.4': Tan to light gray PEGMA	TITE.	II	R3	30	2.0	2.0	42.55
A A A		C-2	21	100	57	coarse grains of quartz, white feldspar, and	f	111		*75 5	1.5 3.0	4.0 2.0	42.6 42.9
AE AE	4	43.5 - 45.3	21	100	57	muscovite, with gray schist inclusions; clo spacing; slightly weathered; medium stron				*60 *60	2.0 1.5	1.0 1.0	43.2 43.5
<u>-</u> 45	<u> </u>					iron staining throughout, with healed hairl fractures.		П	R3/R4	*60	2.0	2.0	43.8
- D ED						44.4-45.2': Dark gray SCHIST; fine to coa	rse grains			80 50	1.5 2.0	2.0	43.9 44
J A						of biotite, muscovite, quartz, feldspar, scat garnets, up to 1/8" across; close fracture s	pacing;			85 *60	3.0 1.5	1.0 1.0	44.3 44.7
<u> </u>						slightly weathered; medium strong; distinction crenulated schistosity dips 60-75 degrees.				85 30	3.0	1.0	45
AD CDR						C-3: Dark gray to medium gray SCHIST;				45	3.0 3.0	1.0	45.1 45.2
N N N N N N N N N N N N N N N N N N N						coarse grains of muscovite, biotite, quartz, and scattered garnets, up to 1/8" across; cl	ose to			50 *60	3.0 1.5	1.0 1.0	45.8 45.9
<u> </u>						moderate fracture spacing, slightly weather medium strong to strong, distinct crenulate	red;			30 30	2.0	2.0	47.2 47.9
RSHII						schistosity dips 50-80 degrees; medium gr	ay to tan			*50	1.5	2.0	48.3
PARTNERSHIP CORING GDR (FINAL) 00 EPE ALL PACKAGES 4-30-08.GPJ THE PARTNE CORING GDR (FINAL) 00 EPE ALL PACKAGES 4-30-08.GPJ THE PARTNE CORING GDR (FINAL) 00 EPE ALL PACKAGES 4-30-08.GPJ THE PARTNE CORING GDR (FINAL) 1		C-3 45.2 - 55.1	118	99	91	PEGMATITE; with muscovite seams, at 4 no rock wall contact, with increased weath	ering at			10 10	1.0 3.0	6.0 3.0	48.4— 48.5
PAF	5					fractures at 48.7' and 48.8'; clay and softer		<u> </u>		40	2.0	2.0	48.6
						Bor	ing No.	PE-2	74	Shee	t 1	of	9

CORING LOG (continued)
------------------------

BORING NUMBER: PE-274
SHEET NUMBER: 2 of 9

PROJECT NUMBER: 19499B

PROJECT: Trans-Hudson Express (THE) Project

LOCATION: 11th Ave at 30th St, NE corner

CLIENT: NJ Transit

CONTRACTOR: Jersey Boring & Drilling

DRILLER: J. Kurzynowski

INSPECTOR: M. Tekin

İ	_	nin/ft)			(%)			(n)		DIS	CONTI	NUITY I	DATA
	DEPTH (feet)	CORING RATE (min/ft)	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS	WEATHERING	STRENGTH	ANGLE (deg)	Jr	Ja	DEPTH (feet)
	-						on 50 degree fractures at 51.3' and 51.8'; quartz vein along schistosity at 50.1-50.2'.			0 30 *60 *60 *50 50 *60	MB 1.0 1.5 1.5 1.0 2.0 1.5	MB 6.0 4.0 2.0 3.0 4.0 4.0	48.7 48.8 49.3 49.7 50.1 51.3 51.8
ILB 10/24/08	- 55						C-4: Dark gray SCHIST; fine to coarse grains of	I/II	R4	*60 *60	2.0 1.5 2.0	1.0 2.0 1.0	53.8 - 54.6_ 55.1
JAL) 00 EPE ALL PACKAGES 4-30-08.GPJ THE PARTNERSHIP EPE (FINAL) 10-24-08.GLB 10/24/08	-						biotite, muscovite, quartz, feldspar, and many garnets, up to 1/4" across; close to moderate fracture spacing; unweathered to slightly weathered; strong; crenulated to wavy schistosity dips 40-80 degrees; no	1/11	K4	*70 10	2.0 2.0 1.0	1.0 1.0 6.0	55.4 55.5 -
SSHIP EPE (FIN	-						rock wall contact at near horizontal fracture at 55.5'; softened mica along foliation fractures at 62.6' and 64.7'; ptygmatically folded bands of quartz-feldspar ~1/2" thick, at 60.1-60.5'; slightly bulging core sides throughout; pure QUARTZ at 57.7-58.2' and			15 *40	2.0 1.0	2.0 2.0	57.8 <b>-</b> 58.2
THE PARTNE	- 60	5	C-4 55.1 - 65.1	120	100	97	62.6-64.6'; lower quartz has 1/8" seams of black mafic minerals and adjacent yellow metallic mineral (gold?).			*60 *60 *60	<ul><li>1.5</li><li>2.0</li><li>1.5</li></ul>	1.0 1.0 1.0	58.8 - 59.7_ 60.2
4-30-08.GPJ	-	3								*50	1.5	2.0	61.3
ALL PACKAGES	-									*55 20 *50 0	1.0 3.0 1.0 2.0	2.0 1.0 4.0 1.0	62.2 62.3 62.6 63.1
G GUR (FINAL) VV EFE,	65 -						C-5: Dark gray SCHIST; fine to coarse grains of muscovite, biotite, quartz, feldspar, and scattered garnets, up to 1/8" across; close to moderate fracture spacing, except very close at 69.7-69.8' and 71.6-71.7'; unweathered to slightly weathered;	I/II	R4	*50 0 20 20 *60	1.0 3.0 2.0 1.0 2.0	4.0 2.0 1.0 6.0 1.0	64.7 <u>—</u> 65.1 65.5 65.6 66
PARINERSHIP CORING GDR (FIN	-						strong; distinct crenulated to wavy schistosity dips 50-80 degrees; softened mica on foliation fractures at 69.7' and 69.8'; thin (<0.1") calcite coatings on foliation fractures at 73.1', 73.6' and 75.1'.			15 20 30	3.0 3.0 3.0	1.0 2.0 1.0	67.3 67.9 68.4
į							Roring No.		74				

Boring No. ___PE-274___ Sheet __2 __ of __9__

CORING LOG
------------

BORING NUMBER: PE-274
SHEET NUMBER: ___3 of ___9

CONTRACTOR: Jersey Boring & Drilling

PROJECT NUMBER: 19499B

PROJECT: Trans-Hudson Express (THE) Project

LOCATION: 11th Ave at 30th St, NE corner DRILLER: J. Kurzynowski

CLIENT: NJ Transit INSPECTOR: M. Tekin

	(£					L			DIS	CONTII	NUITY I	DATA
DEPTH (feet)	CORING RATE (min/ft)	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS	WEATHERING	STRENGTH	ANGLE (deg)	٦Ļ	ьl	DEPTH (feet)
<del>-</del> 70	4	C-5 65.1 - 75.5	120	96	90				*60 *60	1.5 1.5	4.0 4.0	69.7 <b>—</b> 69.8
-	7								*50	1.5	2.0	70.8 -
-									40 40	3.0 3.0	1.0 2.0	71.6 71.7
-									*60	1.5	2.0	73.1
- 75 -						C-6: Dark gray to medium gray SCHIST; fine to coarse grains of biotite, muscovite, quartz, feldspar, and scattered garnets, up to 1/4" across; moderate to	I/II	R4	*60 *60	1.0 1.0	2.0 2.0	74.6 75.1
-						wide fracture spacing; unweathered, except slightly weathered at 81.0-81.2'; strong; foliation defined by distinct crenulated schistosity and few 1/2" thick contorted bands of quartz-feldspar; orange iron staining at 81.0'; calcite coatings on all foliation fractures; core sides slightly bulging at 77.0-80.5'.			*60	1.5	1.0	78 -
<del>-</del> 80									*60 50	1.5 2.0	1.0	79 79.7 <b>—</b>
- 60	4	C-6 75.5 - 85.5	120	100	100				60 50 30	MB MB 3.0	MB MB 2.0	80.5 80.7 - 81
- - 85									*50	2.0	1.0	83.5
-						C-7: Dark gray SCHIST; fine to coarse grains of biotite, muscovite, quartz, feldspar and many garnets, up to 1/4" across; moderate to wide fracture spacing, except very close at 91.7-92.0', 94.0-94.2' and 94.8-95.6'; unweathered, except slightly weathered at 94.8-95.5'; strong; wavy to crenulated schistosity and scattered contorted quartz bands dip	I	R4	*60 40 50	2.0 2.0 3.0	2.0 1.0	85.5 85.9 - 87 -
						60-75 degrees; thin (<0.1") calcite coatings on	DF 2		Shoo			

Boring No. __PE-274__ Sheet __3__ of __9__

CORING LO (continued)

BORING NUMBER: PE-274
SHEET NUMBER: 4 of 9

PROJECT NUMBER: 19499B

PROJECT: Trans-Hudson Express (THE) Project

LOCATION: 11th Ave at 30th St, NE corner

CLIENT: NJ Transit

CONTRACTOR: Jersey Boring & Drilling

DRILLER: J. Kurzynowski

INSPECTOR: M. Tekin

	iin/ft)		(F	(9)			(D		DIS	CONTI	NUITY	DATA
DEPTH (feet)	CORING RATE (m	CORE RUN NO. AND DEPTH (ft)	RECOVERY (ir	%) KECOVERY	RQD (%)	DESCRIPTION AND REMARKS	WEATHERING	STRENGTH	ANGLE (deg)	Jr	ьU	DEPTH (feet)
-						foliation fractures at 89.0', 90.5', and 91.8'; no rock wall contact at weathered low-angle fracture at 95.2'			*50	1.0	1.0	89 -
- 90 -	4	C-7 85.5 - 95.5	120	100	93				*55 0 *60	1.0 3.0 1.0	1.0 1.0 1.0	89.9— 90 90.5 _
-									*60	1.5	1.0	91.8 -
- 05							π	P/I	*60	2.0	1.0	93.8 -
-						grains of biotite, muscovite, quartz, feldspar; moderate to wide fracture spacing; unweathered; strong; wavy to crenulated schistosity dips 60-80 degrees; calcite coating on foliation fracture at 96.1'; pure QUARTZ at 98.8-99.0'.	I	R4	*70 *70 10 *60 *80	1.5 2.0 1.0 2.0 2.0	2.0 1.0 6.0 2.0 1.0	95.1 95.15 95.2 - 95.5 96.1 _
- - - 100	4	C-8 95.5 - 104.7	110	100	96	99.1-104.7': Medium gray to light gray GRANITE; fine to medium grains of feldspar, quartz, and muscovite; wide fracture spacing; unweathered, except slightly weathered at horizontal fractures at 101.6' and 101.9'; very strong; faint near vertical banding; trace QUARTZ at 101.6-101.9', with no contact at horizontal fractures at upper and lower contacts.	I/II	R5	*60 *60	1.5 1.5	2.0	98.4 99.1
-									0	1.0 1.0	6.0 6.0	101.6 101.9 -
-									15	МВ	МВ	103.9
105 						C-9: 104.7-111.5': Light gray GRANITE; medium grains of feldspar, quartz, and muscovite; moderate to wide fracture spacing; unweathered, except slightly weathered at 40 degree fracture at 107.0'; strong to very strong; faint banding and thin (<0.1") muscovite seams at 107.8-109.6' are near vertical;	I/II	R4/R5	40	2.0	1.0	104.7
	- 95 	- 90 - 4 - 95 100 - 4	9) H140 PEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AN	B) HI AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH	99	9) HI A SON WE WAND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH AND DEPTH	DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMARKS  DESCRIPTION AND REMAR	DESCRIPTION AND REMARKS    Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Sec	DESCRIPTION AND REMARKS    Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sample   Sam	### ### ### ### ### ### #### ### ### #	Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect	Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part

Boring No. ___**PE-274**___ Sheet __**4**__ of __**9**__

CORING LOG (continued)
(continued)

BORING NUMBER: PE-274
SHEET NUMBER: ____5 of ____9

PROJECT NUMBER: 19499B

PROJECT: Trans-Hudson Express (THE) Project

LOCATION: 11th Ave at 30th St, NE corner

CLIENT: NJ Transit

CONTRACTOR: Jersey Boring & Drilling

DRILLER: J. Kurzynowski

INSPECTOR: M. Tekin

ł		n/ft)								DIS	CONTI	NUITY	DATA
	DEPTH (feet)	CORING RATE (min/ft)	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS	WEATHERING	STRENGTH	ANGLE (deg)	Jr	вГ	DEPTH (feet)
-		4	C-9 104.7 - 111.5	81	100	100	pure QUARTZ at 107.0-107.5', 108.1-108.4', and 110.9-111.5'; dark gray SCHIST inclusion at 110.2-110.9', with medium grains of biotite, other mafic minerals, muscovite, quartz, and feldspar; iron staining at horizontal fracture at 110.3'.			40 0 *80 20	3.0 MB 1.0 MB	2.0 MB 4.0 MB	107 - 108.3 108.9 - 109
3.GLB 10/24/08	– 110						C-10: 111.5-112.9': Medium gray QUARTZ, with	I	R4	0 20 *50	3.0 3.0 1.5	2.0 1.0 1.0	110.3 110.9 ⁻ 111.5
PE (FINAL) 10-24-08		4	C-10 111.5 - 115.5	48	100	100	biotite schist and feldspar pegmatite inclusions; moderate fracture spacing; unweathered; strong. 112.9-115.5': Dark gray to black SCHIST; fine to medium grains of biotite, muscovite, quartz, and feldspar; moderate fracture spacing, unweathered; strong; planar schistosity dips 60 degrees; all			*50	3.0	1.0	112.9
TNERSHIP EF	- 115	·					fractures have thin (<0.1") calcite coatings.			*60 *50	1.0	1.0	114
AL) 00 EPE ALL PACKAGES 4-30-08.GPJ THE PARTNERSHIP EPE (FINAL) 10-24-08.GLB 10/24/08							C-11: Dark gray SCHIST; fine to medium grains of biotite, muscovite, quartz, and feldspar; wide fracture spacing; unweathered, except slightly weathered at near vertical fracture at 122.0'; strong; faint wavy schistosity dips 60-90 degrees; orange iron staining on rough, near vertical cross-foliation fracture at 122.0'; contorted intrusions of light gray GRANITE at 116.5-117.0', 119.3-120.7' and 123.1-124.2'; schistosity parallels contorted contacts.	I/II	R4	*60	1.5 MB	1.0 MB	115.5
-) 00 EPE ALL PACKA	- 120	4	C-11 115.5 - 125.3	117	100	100				20	2.0	1.0	120.6
PARTNERSHIP CORING GDR (FINAL										85	2.0	2.0	122
IERSHIP COF	- 125									*60	1.5	1.0	124.6_
PARTN							C-12: Dark gay to black SCHIST; fine to medium	I	R4	20	3.0	1.0	125.3

Boring No. ___**PE-274**___ Sheet __**5**__ of __**9**__

THE PARTNERSHIP COI	RING LOG
I HANKIINIEKSIIIP COI	(continued)

BORING NUMBER: PE-274
SHEET NUMBER: 6 of 9

PROJECT NUMBER: 19499B

PROJECT: Trans-Hudson Express (THE) Project

LOCATION: 11th Ave at 30th St, NE corner

CLIENT: NJ Transit

CONTRACTOR: Jersey Boring & Drilling

DRILLER: J. Kurzynowski

INSPECTOR: M. Tekin

ŀ		in/ft)									DIS	CONTI	NUITY	DATA
	DEPTH (feet)	CORING RATE (min/ft)	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS		WEATHERING	STRENGTH	ANGLE (deg)	٦Ļ	вL	DEPTH (feet)
10/24/08	-						grains of biotite, muscovite, quartz, feldspar, and sparse garnets, up to 1/8" across; wide fracture spacing; unweathered; strong; faint, wavy schistodips 60-90 degrees; pure QUARTZ, with vertical contacts at 125.3-126.0'; light gray GRANITE, w near-vertical muscovite seams, with vertical contacts at 126.5-129.0'.	osity			*60	1.5	1.0	126.5
JAL) 00 EPE ALL PACKAGES 4-30-08.GPJ THE PARTNERSHIP EPE (FINAL) 10-24-08.GLB 10/24/08	- 130 - - -	5	C-12 125.3 - 135.3	120	100	100					45	3.0	1.0	130.2
IE PAR	- 135										*80	2.0	2.0	134.6
08.GPJ TH	-						C-13: Dark gray SCHIST; fine to medium grains biotite, muscovite, quartz, feldspar, and sparse medium grained garnet; close to moderate fracture.	re	I/II	R4	0 30	2.0 3.0	1.0 1.0	135.3 135.6 _
CKAGES 4-30-	-						spacing; unweathered to slightly weathered; strong; indistinct schistosity dips 60-90 degrees; contorted 1/2" band of quartz-feldspar at 142.4-142.6', parallel to schistosity; no rock wall contact and orange iron staining at low-angle fracture at 136.6'; thin (<0.1")	ed allel on			20 10	1.0	6.0	136.6 _
PE ALL PA	-						calcite coating on foliation fracture at 142.8'; softened mica on smooth foliation fracture at 143	5.9'.			40	MB	МВ	138.9
	- 140		C-13 135.3 - 145.4	121	100	93					30	3.0	1.0	139.9
PARTNERSHIP CORING GDR (FIN	-	4									*50	2.0	1.0	141
CORING	-													-
SHIP (	-										*60 40	2.0 3.0	1.0 1.0	142.8 <b>-</b> 143.1
PARTNEF	-										*50 *70	1.5 1.0	2.0 4.0	143.7 <b>–</b> 143.9
							Paring No		DE 2'		Shoo			

Boring No. ___**PE-274**___ Sheet __**6**__ of __**9**__

THE PARTNERSHIP COI	RING LOG
I HANKIINIEKSIIIP COI	(continued)

BORING NUMBER: PE-274
SHEET NUMBER: ___7 of ___9

PROJECT NUMBER: 19499B

PROJECT: Trans-Hudson Express (THE) Project

LOCATION: 11th Ave at 30th St, NE corner

CLIENT: NJ Transit

CONTRACTOR: Jersey Boring & Drilling

DRILLER: J. Kurzynowski

INSPECTOR: M. Tekin

DESCRIPTION AND REMARKS    The standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the		(min/ft)		<u> </u>	<u> </u>					DIS	CONTI	NUITY	DATA
C-14	DEPTH (feet)	RATE	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS	WEATHERING	STRENGTH	ANGLE (deg)	Jr	ьU	
C-14	<b>– 145</b>												144.2 <u> </u>
Section   10   10   10   10   10   10   10   1	-	6		17	94	22	grains of quartz, feldspar, and muscovite; closely fractured; slightly weathered; strong; healed hairline fractures dip 70 degrees.	II/III	R2/R3	*40 40 *70 *60	1.5 2.0 2.0 1.0	1.0 1.0 1.0 4.0	145.3 145.4 - 145.8 146.1
The content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the	- - - - - - - - - - - - - - - - - - -	6		35	83	60	grains of biotite and other mafic minerals, quartz, muscovite and feldspar; very close to extremely close fracture spacing; slightly weathered at 146.0-146.9'; moderately weathered at 146.2-146.9'; weak to medium strong; softened mica on foliation fractures below 146.0'; irregular, broken pieces are pitted and weathered.  C-15: 146.9-147.8': Dark gray SCHIST; as above,			10 80 0 *50 75 15 10 *60	3.0 1.5 1.5 1.0 1.5 2.0 3.0 1.0	2.0 2.0 3.0 2.0 2.0 2.0 2.0 2.0	146.3 146.4 146.5 146.55 146.6 146.65 146.7 146.8
C-17: 156.1-158.6': Dark to medium gray SCHIST; as above, except close fracture spacing and extremely close foliation fractures at 157.6-157.8'.    158.6-164.2': Black to dark green AMPHIBOLITE; fine to medium grains of hornblende, quartz, biotite, and sparse calcite; close to wide fracture spacing; unweathered to slightly weathered; very strong; faint schistosity and quartz bands dip ~ 50 degrees; biotite-rich at 160.2-160.7', where core sides are slightly bulging; calcite on most fracture surfaces; extremely dense.    100	10-00-00-00-00-00-00-00-00-00-00-00-00-0	4			100	100	moderately weathered; some overdrilled pieces; recovery loss likely at 146.9-147.6'; 147.8-150.4': Dark gray SCHIST; fine to coarse grains of biotite, muscovite, quartz, feldspar; many garnets, up to 1/2" across; close to moderate fracture spacing; slightly weathered; strong; crenulated schistosity dips 60-80 degrees.  C-16: Dark gray to medium gray SCHIST; fine to coarse grains of biotite, muscovite, quartz, feldspar, sparse calcite, and many garnets, up to 3/8" across; moderate fracture spacing; slightly weathered; strong; distinct crenulated schistosity dips 60-70	П	R4	75 15 *60 10 *70 15 20 *60 *70 *65 *65	2.0 2.0 1.5 2.0 2.0 2.0 3.0 1.5 2.0 MB 1.5	2.0 2.0 1.0 2.0 4.0 2.0 2.0 1.0 4.0 MB 1.0	147.65 147.68- 147.7 147.72 148.15 149.9 150.1 150.4 151.4
	1	4		120	100	91	as above, except close fracture spacing and extremely close foliation fractures at 157.6-157.8'.  158.6-164.2': Black to dark green AMPHIBOLITE; fine to medium grains of hornblende, quartz, biotite, and sparse calcite; close to wide fracture spacing; unweathered to slightly weathered; very strong; faint schistosity and quartz bands dip ~ 50 degrees; biotite-rich at 160.2-160.7', where core sides are slightly bulging; calcite on most fracture surfaces; extremely dense.  164.2-166.1': Dark to medium gray SCHIST; fine to medium grains of biotite, muscovite, quartz, and feldspar; moderate fracture spacing; unweathered;			*60 20 45 *50 *60 *30 40 30 *50	1.5 3.0 2.0 1.5 1.5 1.0 1.5 1.5 2.0	1.0 2.0 2.0 4.0 1.0 2.0 1.0 1.0 1.0	156.8 - 157.4 157.6 - 157.65 157.8 158.2 - 158.7 159 160 160.3

Boring No. <u>PE-274</u> Sheet <u>7</u> of <u>9</u>

CORING LOC (continued)
------------------------

BORING NUMBER: PE-274
SHEET NUMBER: 8 of 9

PROJECT NUMBER: 19499B

PROJECT: Trans-Hudson Express (THE) Project

LOCATION: 11th Ave at 30th St, NE corner

CLIENT: NJ Transit

CONTRACTOR: Jersey Boring & Drilling

DRILLER: J. Kurzynowski

INSPECTOR: M. Tekin

L													
		(min/ft)		(						DIS	CONTI	NUITY	DATA
	DEPTH (feet)	CORING RATE (mi	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS	WEATHERING	STRENGTH	ANGLE (deg)	٦Ļ	ьl	DEPTH (feet)
-	- 165							I	R4	0 *50	2.0 1.5	1.0 2.0	164.2 164.7
10/24/08	-						C-18: 166.1-170.8': Dark gray SCHIST; as above; near vertical healed hairline fractures have orange, weathered calcite fillings.	I	R4	*50 *50 50 *60	1.5 2.0 2.0 1.5	1.0 1.0 2.0 4.0	165.3 165.9 - 166.1 166.8 -
AL) 10-24-08.GLB	-						170.8-172.0': Black and white pinstriped HORNBLENDE-BIOTITE-SCHIST; fine to medium grains of hornblende, biotite, quartz, and thin (<0.1" bands of calcite; moderate fracture spacing; unweathered; very strong; distinct planar schistosity			*60 *70	1.0	2.0	167.2 - 168.2
RSHIP EPE (FIN	<b>– 170</b>		C-18 166.1 - 175.4	112	100	89	and banding dip 60-70 degrees; very dense.  172.0 ft to 175.4 ft: Dark to medium gray SCHIST; fine to medium grains of biotite, muscovite, quartz, feldspar, and sparse garnets, up to 1/4" across;		7.5	20 *70	MB 1.5	MB 1.0	169.8— 170.6
8.GPJ THE PARTNERSH	-	4	133.1				moderate fracture spacing; unweathered to slightly weathered; strong; wavy schistosity dips 70-80 degrees; calcite coatings on most fracture surfaces; pure, medium gray QUARTZ at 174.2-175.0', with yellow metallic flakes (pyrite?) on fracture surface at 174.9'.	I I/II	R5	*70 *70	2.0	2.0	170.8
CKAGES 4-30-0	- - 175						C-19, Dark gray SCHIST; fine to coarse grains of	П	R4	*50 *40 5 *70	2.0 1.5 3.0 2.0	1.0 1.0 1.0 1.0	174.1 174.3 174.9 175.2
PARTNERSHIP CORING GDR (FINAL) 00 EPE ALL PACKAGES 4-30-08 GPJ THE PARTNERSHIP EPE (FINAL) 10-24-08 GLB 10/24/08	-	6	C-19 175.4 - 179.1	44	100	biotite, quartz, muscovite, feldspar, and medium grained garnet; close to moderate fracture spacing, except very close to extremely close at 175.7-179.1'; slightly weathered, except moderately weathered along fractures at 175.7-179.1'; strong, except weak to medium strong at 175.7-179.1'; foliation defined by distinct wavy schistosity and wavy bands and nodules of quartz; strike-slip slickensides on 80 degree foliation fracture at 177.1'; thick (>0.1")	III	R2/R3	*70 20 *50 *70 *80 30 *70 *70 *70	1.0 4.0 4.0 1.0 0.5 3.0 1.0 1.5	1.0 1.0 4.0 2.0 4.0 4.0 4.0 4.0	175.3 _ 175.4   176.3   176.8 - 177.1   177.5   177.6 - 177.7   177.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9   178.9	
PARTNERSHIP CORING (	180 -	5					coatings of gray clay and calcite on all fractures at 177.1-179.1', most of which are along foliation. C-20: Dark to medium gray SCHIST; fine to medium grains of muscovite, biotite, quartz, feldspar, and calcite; close to moderate fracture spacing, except very close foliation fractures at 185.0-185.1'; slightly weathered; medium strong to strong; distinct planar schistosity dips 60-70 degrees; calcite coatings on	П	R3/R4	*60 *70 50 *70 *70 30 *70 0	1.0 1.5 2.0 1.0 1.0 2.0 1.0 3.0	4.0 4.0 2.0 4.0 4.0 3.0 4.0 2.0	178 178.3 178.6 179 179.05 179.1 - 179.9 180.5

Boring No. ___**PE-274**___ Sheet __**8**__ of __**9**__

CORING LO (continued)

BORING NUMBER: PE-274
SHEET NUMBER: 9 of 9

PROJECT NUMBER: 19499B

PROJECT: Trans-Hudson Express (THE) Project

LOCATION: 11th Ave at 30th St, NE corner

CLIENT: NJ Transit

CONTRACTOR: Jersey Boring & Drilling

DRILLER: J. Kurzynowski

INSPECTOR: M. Tekin

	n/ft)					1	ĺ		DIS	CONTI	NUITY	DATA
DEPTH (feet)	CORING RATE (min/ft)	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS	WEATHERING	STRENGTH	ANGLE (deg)	Jr	ВL	DEPTH (feet)
-	4	C-20 179.1 - 185.7	79	100	89	almost all fractures; silt coatings on horizontal fractures at 180.5' and 184.3'; pitted horizontal healed hairline fracture at 184.35'.			*70 15 20	1.0 1.5 MB	2.0 2.0 MB	180.7 181 182.8 -
PARTNERSHIP CORING GDR (FINAL) 00 EPE ALL PACKAGES 4-30-08.GPJ THE PARTNERSHIP EPE (FINAL) 10-24-08.GLB 10/24/08	5	C-21 185.7 - 195.8	121	100	94	C-21: 185.7-186.4': Dark gray SCHIST, as above.  186.4-191.2': Light to medium gray GRANITE; fine to medium grains of quartz, feldspar, muscovite, and sparse medium grained garnet; moderate fracture spacing; unweathered; very strong; faint banding dips 50 degrees; quartz-feldspar PEGMATITE at 187.4 ft, 187.8 ft, 190.0-190.3', and 190.7-191.1';; dark gray schist at 188.1-188.6'.  191.2-194.0': Dark to medium gray SCHIST; fine to medium grains of biotite, muscovite, quartz, and feldspar; wide fracture spacing; slightly weathered; strong; distinct planar schistosity dips 50 degrees.  194.1-195.8': Light gray GRANITE, as above except close to moderate fracture spacing; slightly weathered; strong; schist inclusion at 195.3-195.6';	п	R3/R4 R5	0 *70 *70 *60 *60 *60 *50 10 *50	2.0 1.0 2.0 1.0 1.0 1.0 1.0 MB 1.0	3.0 4.0 4.0 2.0 1.0 1.0 4.0 1.0 MB 1.0	184.3 185 185.1 185.5 - 185.7 185.8 185.9 - 186.4 186.7 188.1
DR (FINAL) 00 EPE ALL PACKAGES 4:30-08:G						very close horizontal fractures at 194.8-194.9' have orange iron staining and silt coatings.  End of Boring at 195.8'			45 0 5 0 10 80 15	3.0 1.5 1.5 2.0 2.0 3.0 2.0	1.0 3.0 3.0 1.0 1.0 1.0 1.0	194.1 194.8 194.9 195.4 195.5 195.7 195.8
PARTNERSHIP CORING G						Boring No.	PE-2	274	Shee	et 9	of	9

Boring No. PE-274 Sheet 9 of 9

		The	Ga	tev	va	У							BORING	NUMBE	R:SEG-				
			Pa	rtn	er	ship	B	OR	ING	LC	)G		SHEET	NUMBER	:1_	of	3		
		100		alesso.		STV 100								CT NUMB					
	_					ludson Ya th Ave., N		ul- NX	J				LOCATI	ON: <b>30th</b>   <b>NY</b>	St., 11th	Ave., Ne	w York		
CLIEN					111	ın Ave., IN	ew ro	гк, м	Ĺ				COORD	. N: 1,915	5.821.2 E	E: 14.802.	907.7		
CONT													STN. NO			DFFSET:			
						e, George	Rayn	nond						CE ELEV.	306.5 fc	eet			
INSPE													DATUM				_		
						otary Was			4• 1	rr				DATE: 8/2					
RIG T	YPE:			Ŀ-7 sing		truck mo			Pitcher	Hamm Gra		Core Barrel	FINISH	DATE: 8/2	10/15 I	IME: 2:30	) pm		
Type/S	Symbo	,		Siriy [W		S	U		P	G	-	C =		GROUN	Water	Casing	Hole		
I.D.	Syllibo	וי		1 vv 4"		1.375"	2.938		<u> </u>	G		2.155"	Date	Time	Depth	Depth (ft)	Depth		
O.D.				.5"		2"	3"	-	"	,,,	-			7:15:00 AM	(ft) 10.9	65	(ft) 70		
Length	,	-		. <i>5</i> 55		24"	-		"			2.98"	8/20/2013	7.13.00 AW	10.9	03	70		
Hamm		.  -		lb lb		140 lbs	30'	rill Rod		<u> </u>	N								
Hamm		-		10 10 )" in.		30 in.	1	I.D. (O.I		2	2.25" (2								
T Idillini			T		_					-	25 (2	1.023 )							
eet)	507	s/ft)	H		SA	MPLE	0/6	6/12	L (Blows/	18/24	REC	_							
DEPTH (feet)	GRAPHIC LOG	CASING (Blows/ft)		2		DEPTH (feet)	0/6		CORING		(in.)	D REMARKS							
DEF	3RA	NI G	ľ۳	NUMBER	SYMBOL	Ŧ						┨╴┈							
		CAS	TYPE	Ž	S	DEF	RUN (in.)	REC. (in.)	REC. %	L>4" (in.)	RQE %	Depth Elev.							
	₩.		G	1	\	0.0 - 6.0							Excavated to Mud at 3' to	op 6' soil to c	lear utilitie	S.			
	≪\				$\mathbb{N}$								wind at 5 to	4.					
	****				١V														
L	*				$ \Lambda $														
<b>-</b> 5	***		1		$   \rangle$														
"	107		1								_								
_	* 4		S	1		6.0 - 8.0	2	1	1	1	8			rown medium ine Gravel, v					
} -	4 4 4		S	2		8.0 - 10.0	2	8	14	5	24			coarse to fine little Silt,med					
10	***		$\frac{1}{s}$	3		10.0 - 12.0	5	6	6	4	10		S_3: Brown	medium to fi	ne SAND	some mediu	m to		
3	* 45	ļ	- "	3		10.0 - 12.0	)	0		4	10			trace Silt, me					
- - -			1																
	*****		1																
_ 15	k Z		$\frac{1}{s}$	4		15.0 - 17.0	5	3	2	2	0		S-4: No Rec	overv					
5 -	*		- "	4		13.0 - 17.0	3	3	2	2		<u> </u>							
<u> </u>																			
20			$\frac{1}{S}$	5		20.0 - 22.0	6	3	5	8	9			coarse to fine			to		
<u> </u>													fine Gravel,	little Silt, loo	se, wet (SN	M).			
I			1				I					1							

### **BORING LOG**

**BORING NUMBER: SEG-3-1T** 

SHEET NUMBER: 2 of ___

PROJECT NUMBER: 4016879

AECOM PARSONS STV 100

(continued)

CONTRACTOR: ADT

DRILLER: Dominick Pepe, George Raymond

INSPECTOR: Juan Zapata Jr.

PROJECT:	Al	V	Τ	RA	K	ŀ	Iu	dson	Y	ards	S

LOCATION: 30th St., 11th Ave., New York, NY

-				_									<u> </u>				
		Ō			,	SAN	MPLE		SOIL	. (Blows/	6 in.)						
DEPTH (feet)		GRAPHIC LOG	CASING (Blows/ft)				et)	0/6	6/12	12/18	18/24	REC. (in.)	FIELD CLASSIFICATION AND REMARKS				
FPT F		ЗАРН	1G (B)		3ER	3OL	H (fe			CORING	;		FIELD CLASSIFICATION AND REMARKS				
^		9	CASIN	TYPE	NUMBER	SYMBOL	DEPTH (feet)	RUN (in.)	REC. (in.)	REC.	L>4" (in.)	RQD %	Depth Elev.				
				S	6		25.0 - 27.0	5	11	10	7	0	S-6: No Recovery.				
  -  -																	
- 30				S	7		30.0 - 32.0	5	3	4	5	13	S-7: Brown coarse to fine SAND, little Silt, trace				
-													medium to fine Gravel, loose, wet (SM).				
-																	
35				S	8		25.0 27.0	2	7	0	6	11	S-8A: 35' to 35.7': Same as above;				
-	<u>:.</u>			3	8		35.0 - 37.0	2	/	8	0	11	S-8A: 35 to 35.7. Same as above, S-8B: 35.7' to 37': Dark gray Clayey SILT, stiff, wet (ML).				
-																	
-																	
<del>-</del> 40				S	9		40.0 - 42.0	8	4	3	4	0	S-9: No Recovery.				
_																	
- F2/7																	
45				S	10		45.0 - 47.0	3	3	2	4	24	S-10: Gray Fat CLAY, trace fine Gravel, medium				
- -													stiff, wet (CH).				
{ - 50				<u></u>			500 500				•						
- -				S	11		50.0 - 52.0	3	2	2	2	11	S-11: Gray Fat CLAY, soft, wet (CH). Spoon is getting jammed and rods are getting jammed which hold back sampling efficiency.				
- -													g children,				
55				S	12		55.0 - 57.0	2	2	3	2	2	S-12 Gray Fat CLAY and Organic CLAY, trace medium to fine Gravel, medium stiff, wet (CH-OH).				
ы 5 -													median to the Graver, median sun, wet (CII-C				
- L																	
2																	

### **BORING LOG**

**BORING NUMBER: SEG-3-1T** 

SHEET NUMBER: 3 of

AECOM PARSONS STV 100

(continued)

CONTRACTOR: ADT

DRILLER: Dominick Pepe, George Raymont

INSPECTOR: Juan Zapata Jr.

PROJECT NUMBER: 4016879

PROJECT: AMTRAK Hudson Yards
LOCATION: 30th St., 11th Ave., New York, NY
l

1		SAMPLE							inter 20101tt out 24pt to 17				
	_	Ŋ	Slows/ft)				MPLE		SOIL	. (Blows/	'6 in.)		
	DEPTH (feet)	IC TO	ows/ft)				et)	0/6	6/12	12/18	18/24	REC. (in.)	FIELD OF ACCILICATION AND DEMARKS
	EP	ЗАРН	NG (B)	l	BER	30L	DEPTH (feet)			CORING	}		FIELD CLASSIFICATION AND REMARKS
'		ß	CASI	TYPE	NUMBER	SYMBOL	DEPT	RUN (in.)	REC. (in.)	REC.	L>4" (in.)	RQD %	Depth Elev.
F				S	13		60.0 - 62.0	WOH	WOH	WOH	WOH	22	S-13: Gray Fat CLAY, frequent marine material, very soft, wet (CH).
$\mathbf{I}$													-
ļ													
- 6	35			S	14		65.0 - 67.0	WOR	WOR	WOR	WOR	18	S-14: Same as above.
ļ													
-													-
<u> </u>	'O			S	1.5		70.0 72.0	WOR	WOII	WOII	2	0	C 15. No Document
+				3	15		70.0 - 72.0	WOR	WOH	WOH	2	0	S-15: No Recovery.
<b>-</b>													-
7	'5			S	16		75.0 - 77.0	WOR	WOH	WOH	1	20	S-16: Gray Silty CLAY, frequent marine material, very soft, wet (CL).
116													-
LB 2/29													-
9.  - 8	80			S	17		80.0 - 81.3	40	35	50/4"	-	0	S-17: No Recovery.
- GLB - (		//////											
SIE-LIB													End of soil at 83' bgs.
8 — 8	35												Start rock coring at 83' bgs
OIL.GPJ													-
TEST BOREING SEG 3 BORING LOGS SOIL.GPJ CANARSIE-LIB.GLB - COPY.GLB 2/29/16  COPY.GLB 2/29/16  COPY.GLB 2/29/16													
DRING L													-
986 - -	90												
EING S													-
ST BOR!													
Ĕ <b>I</b>													

#### **BORING NUMBER: SEG-3-1T** The Gateway Trans-Hudson SHEET NUMBER: 1 **CORING LOG Partnership** A=COM PARSONS STV 100 PROJECT NUMBER: 4016879 PROJECT: AMTRAK Hudson Yards LOCATION: LOCATION: 30 St., 11 Ave., New York, NY COORD. CLIENT: AMTRAK STN. NO.: OFFSET: CONTRACTOR: ADT DRILLER: Dominick Pepe, George Raymond SURFACE ELEV .: INSPECTOR: Juan Zapata Jr. DATUM: DRILLING METHOD: MUD ROTARY START DATE: 8/24/15 TIME: 1:00 pm RIG TYPE: CME-75 (truck mounted), Automatic Hammer FINISH DATE: 8/26/15 TIME: 2:30 pm **GROUNDWATER DATA** Water Casing **CORE BARREL DATA:** NOTES: Depth Depth Depth TYPE: Double Tube Swivel Date Time (ft) (ft) CORE SIZE: NO O.D.: 2.98" I.D.: 1.875" CASING SIZE: 3" (3.5") **DISCONTINUITY DATA** CORING RATE (ft/min % **DESCRIPTION AND REMARKS** RECOVERY (in) CORE RUN NO. AND DEPTH (ft) WEATHERING DEPTH (feet) STRENGTH (Lithology, Structure, Weathering, DEPTH (feet) RECOVERY 8 ANGLE (deg) Continuity, Strength, Color, Grain Size) ROD 느 a * - Denotes discontinuity along foliation MB - Denotes mechanical break C-1: Gray Garnet-Mica SCHIST, coarse to fine grains II R3 $0_{\text{MB}}$ 83 *60_{MB} 1 of quartz, feldspar, biotite, muscovite and garnet, 83.4 *60_{MB} slightly weathered, medium strong, close to moderate 1 84.1 85 fracture spacing, schistosity dips 55° to 65°, recovery loss assumed at 85.1'-85.7', granitic band at *60_{MB} 3 84.3 C-1 1 53 88 68 83.0 - 88.0 $10_{MB}$ 85 $80_{MB}^{\cdot}$ 84.1'-84.3'. 6 85.05 $10_{\mathrm{MB}}^{\mathrm{MB}}$ 85.1 6 2 2 1 2 1 85.7 1 $10_{MB}$ 1.5 *65_{MB} 86.65 C-2: Gray SCHIST, medium to fine grains of quartz, $\Pi$ R3 15_{MB} *55_{MB} 86.95 feldspar, biotite, muscovite and garnet, slightly 1 87.7 weathered, medium strong, close to moderate fracture $20_{MB}$ - 90 88 spacing, granitic bands at 88.7'-88.9', and 89.2' to 3 C-2 60 100 87 1.5 *60_{MB} 88.3 88.0 - 93.0 89.3', schistosity dips 60° to 65°. CANARSIE-LIB.GLB - COPY.GLB 10/25/15 *60_{MB} 1 89.5 15_{MB} 1.5 1.5 1 90.4 91.5 *60_{MB} 1 1 *65_{MB} 92.7 1 C-3: Gray gneissic SCHIST, medium to fine grains of П R3 93 $10_{MB}$ quartz, feldspar, biotite, muscovite and sparse garnet, slightly weathered, medium strong, moderate to wide 95 fracture spacing except very close fracture spacing at C-3 93 100 60 93.3' to 93.45' and 97.8' to 98', schistosity and gneissic bandings dip 70° to 80°, indistinct schistosity band at 95.7', granitic band at 95.7' to 93.0 - 98.0 $60_{MB}$ 1.5 2 96.3 $10_{\mathrm{MB}}$ 2 96.45 2 2 2 1 $10_{MB}$ 97.8 C-4: Gray SCHIST, medium to fine grains of quartz, П R3 1.5 98 $15_{MB}$ feldspar, biotite, muscovite and sparse garnet, slightly 98.6 **HUDSON YARD ROCK.GPJ** *70_{MB} weathered, medium strong, close to moderate fracture 100 C-4spacing except extremely close to very close fracture spacing at 102.15' to 102.3', schistosity dips 65° to 98.0 -60 100 95 $10_{\mathrm{MB}}$ 2 2 1.5 100.35 103.0 1.5 101 $*70_{MB}$ *70_{MB} 1 101.7 102.15 *65_{MB} 1 *70_{MB} 102.2 C-5: Gray SCHIST, medium to fine grains of quartz, $\Pi$ R3/R4 1 1 $10_{\mathrm{MB}}$ 2 1 102.3 feldspar, biotite, muscovite and sparse garnet, slightly 3 2 weathered, medium strong to strong, close to $10_{\mathrm{MB}}$ 103 CORING LOG C-5 105 *60_{MB} 1 104.4moderate fracture spacing except extremely close to 103.0 -85 58 97 very close fracture spacing at 106.3' to 106.5', schistosity dips 60° to 65°, quartz band at 106' to 106.4', loss of recovery assumed at 106.4' to 106.6',

multiple healed fractures.

108.0

 $30_{MB}$ 

 $10_{MB}$ 

 $80_{MB}$ 

3

3

2

1

2

105.55

106.3

106.4

# CORING LOG

<b>BORING</b>	NUMBER	R: <b>SEG-3-1</b> T

SHEET NUMBER: 2 of _

PROJECT NUMBER: 4016879

PROJECT: AMTRAK Hudson Yards

LOCATION: 30th St., 11th Ave., New York, NY

CLIENT: AMTRAK

CONTRACTOR: ADT

DRILLER: Dominick Pepe, George Raymond

INSPECTOR: Juan Zapata Jr.

	CLILINI.	I NIVE	114411					INOI LO	1 O1 (. )	o uun	Zuput	. 01.		
		min)					DECORURTION AND DEMARKS				DISC	CONTI	VUITY	DATA
	DEPTH (feet)	CORING RATE (ft/min)	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS (Lithology, Structure, Weathering Continuity, Strength, Color, Grain S  * - Denotes discontinuity along folia  MB - Denotes mechanical break	g, Bize) ation	WEATHERING	STRENGTH	ANGLE (deg)	٦Ļ	Ja	DEPTH (feet)
	-		C-6 108.0 - 109.9	23	100	100	C-6: Gray gneissic SCHIST, medium to fine quartz, feldspar, biotite, muscovite and sparslightly weathered, strong, moderate fracture schistosity dips 65° to 70°. End of boring at 109.9' bgs.	e grains of rse garnet, e spacing,	II	R4	*60 _{MB} 85 _{MB} 65 _{MB}	1 3 3	2 2 1	106.6 107 - 107.6
	<del></del>						schistosity dips 65° to 70°. End of boring at 109.9' bgs.				65 _{MB} *60 _{MB} 40 _{MB}	3 3 3	2 2	108 109.9 - - -
	- - - - 120 -													- - - - -
3 10/25/15	- - 125 - -													- - - - -
PB CORING LOG HUDSON YARD ROCK.GPJ CANARSIE-LIB.GLB - COPY.GLB 10/25/15	- - 130 - -													-
ON YARD ROCK.GPJ CAN	- 135 - -													- - - -
PB CORING LOG HUDSO	- 140 - -													- - - -

													BORING	· NII INADE	D. SEC 3	2 2T				
	Tra	The	Ga -Hu	itev	va on	y ship					_		SHEET				3			
		uns	Pa	rtn	er	ship	BO	ORI	NG	LC	)G		SHEELL	NUMBER	K1	01	<u> </u>			
A	ECOV	N S	RINCH	NS ERHO	FF	STV 100							PROJEC	T NUME	RFR:4016	879				
PROJE	ECT: 4	AM	TR	AK	Н	udson Ya	rds						LOCATION				w York			
LOCA	TION:	301	th S	t., 1		h Ave., No		rk, NY	7					NY						
CLIEN													COORD.				845.3			
CONT							D						STN. NC		_	FFSET:				
INSPE					-	e, George ita Jr	Kayn	iona					DATUM:		30 / .3 10	ec.				
						tary Was	h						START [		10/15 T	IME: 11:0	)0 am			
RIG T					5 (	truck mo	unted)		matic I	Hamm	er		FINISH [			IME: 10:3				
			Ca	sing		Split Spoon	-		Pitcher	Gra		Core Barrel		GROU	NDWATER					
Type/S	Symbo	ol		IW		S	U	_	P	G	1	С			Water Depth	Casing Depth	Hole Depth			
I.D.				4"		1.375"	2.938	3"	"	"		2.155"	Date	Time	(ft)	(ft)	(ft)			
O.D.				.5"		2"	3"		"	"		2.98"								
Length				50		24"	30'		"	"		60"								
Hamm		-	140		_	140 lbs		rill Rod S			N'									
Hamm	er ra	II	30	)" in.		30 in.		.D. (O.E		1	.23" (2	2.625")	<u> </u>							
<b>₽</b>	၂ ဗွ		L		SAI	MPLE		SOIL	(Blows/	6 in.)										
(feet		ws/ft				t)	0/6	6/12	12/18	18/24	REC (in.)		ELD OLACOIEIOATION AND DEMARKS							
DEPTH (feet)	GRAPHIC LOG	(Blo		2	ب	(feei		<u> </u>	CORING	<u> </u>	(111.)	Image: square of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property o	IELD CLASSIFICATION AND REMARKS							
	GRA	CASING (Blows/ft)	ĺй	NUMBER	MBO	DEPTH (feet)	RUN REC. REC. L>4" RQD					J _D								
		CAS	TYPE		SYI		(in.)	(in.)	REC.	L>4" (in.)	RQL %	Elev.								
	****		G	1	$\setminus$	0.0 - 5.0							Excavated to	p 5' soil to	clear utilities	S				
-	******		4		V															
-			4		Į į															
-	***		-		$\  \ $															
<del>-</del> 5	***		- _S	1	/_\ 	5.0 - 7.0	3	3	3	4	8		S-1: Brown a	and red brow	vn coarse to	fine SAND	-			
-			-  "	1		5.0 7.0				•			some mediur (SM)-Fill.	n to fine Gr	avel, some S	Silt, loose, m	oist			
92	* -4		- _S	2		7.0 - 9.0	7	7	4	4	3		S-2: Same as	s above.						
7/29/	*****		+																	
9.5. -	**		-s	3		9.0 - 11.0	2	11	3	4	0		S-3: No Reco	overy.						
10			1														_			
- STB - 1	* 49																			
- LIB.C	**											L								
7. 1.0. 1.0.																				
§   15								_					a				_			
E .			S	4		15.0 - 17.0	3	7	4	4	1		S-4: Dark brown coarse to fine SAND, little Silt, trace fine Gravel, medium dense, wet (SM).							
			_										auce fine Graves, freedam donne, wet (G11).							
350 -			-																	
			+																	
<u></u>			- _S	5		20.0 - 22.0	5	8	10	6	0		S-5: No Reco	overy.			-			
SEG.			$\dashv$							-			Gravel jamm		tip.					
S 2 7.0 - 9.0 7 7 4 4 3 S-2: Same as above.  9.0 - 11.0 2 11 3 4 0 S-3: No Recovery.  S 4 15.0 - 17.0 3 7 4 4 1 S-4: Dark brown coarse to fine SAND, lit trace fine Gravel, medium dense, wet (SM Gravel jammed at spoon tip.																				
BOK H																				
TEST			1																	



# BORING LOG

BORING NUMBER: SEG-3-2T

SHEET NUMBER: 2 of ___

of 3

AECOM PARSONS BRINCKERHOFF STV 100

PROJECT: AMTRAK Hudson Yards

CONTRACTOR: ADT

LOCATION: 30th St., 11th Ave., New York, NY

DRILLER: Dominick Pepe, George Raymond

CLIENT: AMTRAK

INSPECTOR: Juan Zapata Jr.

PROJECT NUMBER: 4016879

			Г		_							T
et)	90	(£	L	;	SAI	MPLE		SOIL	. (Blows/	6 in.)	DEC	4
DEPTH (feet)	GRAPHIC LOG	CASING (Blows/ft)				et)	0/6	6/12	12/18	18/24	REC. (in.)	FIELD CLASSIFICATION AND REMARKS
)EPT	RAPI	NG (B		NUMBER	BOL	DEPTH (feet)			CORING	6		
	9	CASI	TYPE	N	SYM	DEP	RUN (in.)	REC. (in.)	REC. %	L>4" (in.)	RQD %	Depth Elev.
			S	6		25.0 - 27.0	11	7	9	7	0	S-6: No Recovery.
			S	7		27.0 - 29.0	12	7	4	6	3	S-7: Brown coarse to fine SAND, trace medium to fine Gravel, little Silt, medium dense, wet (SM).
30			S	8		30.0 - 32.0	6	10	11	10	9	S-8: Brown coarse to fine SAND, little Silt, some medium to fine Gravel, medium dense, wet (SM).
35			S	9		35.0 - 37.0	21	8	9	18	3	S-9: Same as above.
0			S	10		40.0 - 42.0	6	7	8	8	21	S-10: Gray Fat CLAY, trace medium to fine Sand, frequent marine material, stiff, wet (CH).
5			S	11		45.0 - 47.0	WOH	WOH	WOH	2	23	S-11: Gray Fat CLAY, trace medium to fine Sand, frequent marine material, very soft, wet (CH).
0			S	12		50.0 - 52.0	WOR	WOH	WOH	WOH	23	S-12: Gray Silty CLAY, trace medium to fine Sand, frequent marine material, very soft, wet (CL).
55			S	13		55.0 - 57.0	WOR	WOH	WOH	3	24	S-13: Gray fine SAND, some Clayey Silt, frequent marine material, very soft, wet (SM).

The Gateway Trans-Hudson Partnership
Trans-Hudson

PROJECT: AMTRAK Hudson Yards

### **BORING LOG**

BORING NUMBER: SEG-3-2T

PROJECT NUMBER: 4016879

SHEET NUMBER: 3 of __

AECOM PARSONS STV 100

LOCATION: 30th St., 11th Ave., New York, NY

(continued)

CONTRACTOR: ADT

DRILLER: Dominick Pepe, George Raymond

CLIEN ⁻	T: AN	1TR	Aŀ	<b>(</b>				. <b></b>					NSPECTOR: Juan Zapata Jr.
t)	90				SAN	MPLE		SOIL	(Blows/	6 in.)			
DEPTH (feet)	GRAPHIC LOG	CASING (Blows/ft)				eet)	0/6	6/12	12/18	18/24	REC. (in.)	FIELI	D CLASSIFICATION AND REMARKS
DEPT	3RAP!	ING (E	Щ	NUMBER	/BOL	DEPTH (feet)			CORING				
		CAS	TYPE	14	SYI	60.0 - 61.8	RUN (in.)	REC. (in.)	REC. %	L>4" (in.)	RQD %	Depth Elev.	14 D
			3	14		00.0 - 01.8	6	8	,	00/4	0	fine De Enc	14: Brown coarse to fine SAND, some coarse to the Gravel, some Silt, medium dense, wet (SM) - the composed SCHIST.  d of soil at 63' bgs.  art rock coring at 63' bgs.
												Sta	art rock coring at 63° bgs.
- 65													
- 70													
- 75													
73													
- 80													
- 85													
- 90													

#### **BORING NUMBER: SEG-3-2T** The Gateway Trans-Hudson Partnership SHEET NUMBER: 1 **CORING LOG** AECOM PARSONS STV 2100 PROJECT NUMBER: 4016879 PROJECT: AMTRAK Hudson Yards LOCATION: LOCATION: 30 St., 11 Ave., New York, NY COORD. CLIENT: AMTRAK STN. NO.: OFFSET: CONTRACTOR: ADT DRILLER: Dominick Pepe, George Raymond SURFACE ELEV .: INSPECTOR: Juan Zapata Jr. DATUM: DRILLING METHOD: MUD ROTARY START DATE: 8/10/15 TIME: 11:00 am RIG TYPE: CME-75 (truck mounted), Automatic Hammer TIME: 10:30 am FINISH DATE: 8/15/15 **GROUNDWATER DATA** Water Casing **CORE BARREL DATA:** NOTES: Depth Depth Depth TYPE: Double Tube Swivel Date Time (ft) (ft) CORE SIZE: NO O.D.: 2.98" I.D.: 1.875" CASING SIZE: 3" (3.5") **DISCONTINUITY DATA** CORING RATE (ft/min % **DESCRIPTION AND REMARKS** RECOVERY (in) CORE RUN NO. AND DEPTH (ft) WEATHERING DEPTH (feet) STRENGTH (Lithology, Structure, Weathering, DEPTH (feet) RECOVERY 8 ANGLE (deg) Continuity, Strength, Color, Grain Size) ROD 느 a * - Denotes discontinuity along foliation MB - Denotes mechanical break C-1: Gray Garnet-Mica SCHIST, coarse to fine grains II/III R3 63 $0_{MB}$ C-1 2 4 2 6 63.5 20 83 46 of quartz, feldspar, biotite, muscovite, garnet and $55_{MB}$ 63.0 - 65.0 $0_{\rm MB} \\ *80_{\rm MB}$ chlorite, slightly to moderately weathered, medium 10 63.95 65 strong, very close to close fracture spacing, schistosity dips 65° to 75°, recovery loss assumed at 1.5 64.3 П/Ш R3 3 $50_{MB}$ 64.6 10_{MB} 64.7'-65.7 1 64.7 C-2: Gray Garnet-Mica SCHIST, coarse to fine grains $20_{\mathrm{MB}}^{\mathrm{MB}}$ 1 65.3 6 6 6 3 3 2 2 2 2 2 2 1 1 C-2 65.0 - 70.0 93 52 *70_{MB} of quartz, feldspar, biotite, muscovite, garnet and 65.6 1 chlorite, slightly to moderately weathered from 65' to $30_{MB}$ 65.85 $10_{MB}$ 66.9', slightly weathered from 66.9' to 70', medium 1.5 66.9 1.5 1.5 3 3 strong, very close to moderate fracture spacing, *85_{MB} 67.1 schistosity dips 70° to 85°, recovery loss assumed at $50_{MB}$ - 70 67.3 П R3 65'-65.3'. $30_{MB}$ 68.25 CANARSIE-LIB.GLB - COPY.GLB 10/25/15 $30_{MB}$ C-3: Gray Garnet-Mica SCHIST, coarse to fine grains 68.5 of quartz, feldspar, biotite, muscovite, garnet and *80_{MB} 13 68.55 C-3 chlorite, slightly weathered, medium strong, very $10_{MB}$ 68.75 60 100 93 70.0 - 75.0 *80_{MB} close to moderate fracture spacing, schistosity dips 1 68.9 $50_{MB}$ 3 75°, quartz band at 73.8' to 74.6'. 69.1 $10_{MB}$ 69.7 69.8 $20_{MB}$ 3 75 *85_{MB} C-4: Gray SCHIST, medium to fine grains of quartz, II R4 1 69.9 45_{MB} *75_{MB} feldspar, biotite, muscovite and garnet, slightly 3 $\begin{array}{c} 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 1 \end{array}$ 70 weathered, strong, moderate to wide fracture spacing 1.5 70.1 3 except close fracture spacing at 75' to 75.4', $10_{MB}$ 70.6 C-4 100 88 60 $10_{\mathrm{MB}}$ 1.5 schistosity dips 75° to 85°. 71.25 75.0 - 80.0 *75_{MB} 1 72 1.5 72.15 $10_{\mathrm{MB}}$ **HUDSON YARD ROCK.GPJ** $25_{MB} \\$ 3 73.15 80 $\overline{20}_{MB}$ 73.5 74 C-5: Gray SCHIST, medium to fine grains of quartz, II/I1.5 1 $15_{MB}$ feldspar, biotite, muscovite and garnet, slightly $20_{MB}^{\cdot}$ 74.1 1 1 weathered to fresh, strong, wide fracture spacing 75 75.4 $20^{-1}_{\mathrm{MB}}$ 3 1 2 2 1 except close fracture spacing at 84.4' to 85', C-5 *85_{MB} 60 100 100 1 80.0 - 85.0 schistosity dips 70° to 85°. $30_{MB}$ 3 77.6 78.5 $15_{\mathrm{MB}}$ 25_{MB} 15_{MB} 80

C-6: Gray SCHIST, medium to fine grains of quartz,

feldspar, biotite, muscovite and garnet, slightly weathered to fresh, strong, wide fracture spacing,

schistosity dips 70° to 85°

CORING LOG

85

C-6

58

100

100

R4

I

3

 $10_{MB}$ 

1

1

84.4

85



#### **CORING LOG**

(continued)

BORING NUMBER: SEG-3-2T
SHEET NUMBER: 2 of 2

PROJECT NUMBER: 4016879

PROJECT: AMTRAK Hudson Yards

AECOM PARSONS BRINCKERHOFF STV

LOCATION: 30th St., 11th Ave., New York, NY

CLIENT: AMTRAK

CONTRACTOR: ADT

DRILLER: Dominick Pepe, George Raymond

INSPECTOR: Juan Zapata Jr.

	CLIENT:	AIVI	INTIL					INSPEC	ı Oix.	guaii .	Zapai	a 91.		
		min)	·. ·				DESCRIPTION AND DEMARKS				DIS	CONTI	VUITY	DATA
	DEPTH (feet)	CORING RATE (ff/min)	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS (Lithology, Structure, Weathering Continuity, Strength, Color, Grain S  * - Denotes discontinuity along folia  MB - Denotes mechanical break	g, ŝize) ation	WEATHERING	STRENGTH	ANGLE (deg)	٦٢	ВL	DEPTH (feet)
	- 90						End of boring at 89.8' bgs.				40 _{MB}	3	2	89.8
-							End of boring at 89.8 bgs.				40 _{MB}	3	2	89.8 - - - - - - -
-	- 100 - - -													- - - -
E-LIB.GLB - COPY.GLB 10/25/15	- 105 - - - -													- - - -
GPJ CANARSIE-LIB.GLB -	- 110 - - - - 115													- - - -
PB CORING LOG HUDSON YARD ROCK.GPJ CANARSI	115    120													-
PB CORING LC	-							na No. S			Choo			-

						ship	В	ORI	NG	LC	G		SHEET I	NUMBE NUMBER	: 1	of	3
LOCA CLIEN		30t 1TF	h S RAI	t., 1 K		udson Ya h Ave., No		rk, NY	7				COORD: STN. NO	ON: 30th NY . N: 1,915	St., 11th 5,923.2 E	Ave., Ne 2: 14,802, DFFSET:	
INSPE	ECTOF	R: J: 1ET	uan HO	<b>Z</b> a D:	ipa Ro	e, George ta Jr. tary Was truck mo	h		matic ]	Hamm	ner		DATUM:	DATE: <b>8</b> /1	19/15 T		
		T		sing		Split Spoon			Pitcher	Gra		Core Barrel			NDWATER		•
Type/	Symbo	ا _ا		IW		S 🛮	U	_	PN	G	-	С			Water	Casing	Hole
I.D.	Cymbo	"  -		4"		1.375"	2.938		"	"		2.155"	Date	Time	Depth (ft)	Depth (ft)	Depth (ft)
O.D.				.5"		2"	3"		"	"		2.98"		7:10:00 AM		68	93
Lengtl	h	$\vdash$		58		24"	30'	,	"	"		60"	2.2.2013		0.0		
_	ner Wt		140		os l	140 lbs		rill Rod S	Size		N'						
	ner Fal	-		)" in.	_	30 in.		I.D. (O.E		2		2.625")					
			T			MPLE			(Blows/	-			•			1	1
(feet)	0 TOG	ws/ft)	卜			ıt)	0/6	6/12	12/18	18/24	REC						21.6
DEPTH (feet)	GRAPHIC LOG	CASING (Blows/ft)		BER	30L	DEPTH (feet)		ı	CORING	3	. ()	T FII	ELD CLAS	SSIFICAT	ION ANI	) REMAF	RKS
	GF	CASIN	TYPE		SYMBOL		RUN (in.)	REC. (in.)	REC. %	L>4" (in.)	RQE %	Depth Elev.					
-	***************************************		G	1	$\setminus$	0.0 - 6.0							Excavated to Mud from 0'	pp 6' soil to c to 6'.	elear utilities	5.	
ŀ	** 4		1		V												
-	1.4° ₩ □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.4° × □ 1.		$\downarrow$														
<del>-</del> 5	***				$   \rangle$												-
, -	***************************************		S	1		6.0 - 8.0	5	3	3	3	10		S-1: Black co			me medium	to
	<b>1</b> ₩ 5		S	2		8.0 - 10.0	7	5	3	2	10		S-2: Black co	oarse to fine	SAND, sor	me medium	to
10	₩ _Δ - 2		- _S	3		10.0 - 12.0	3	3	3	1	7		S-3: Black co			me medium	to -
	**************************************		<u> </u>			12.0					,		fine Gravel,				
	***		1														
ANARY -			+														
5 – 15 5 -	* 0		S	4		15.0 - 17.0	1	WOH	1	1	16		S-4: Black C Gravel, very			Sand, trace f	ine
	* 5		+														
			1														
	**		-S	5		20.0 - 22.0	4	4	4	4	0		S-5: No Reco	overy.			-
- - -			1														
			+														
<u> </u>			1														

### **BORING LOG**

BORING NUMBER: SEG-3-3T

SHEET NUMBER: 2 of ___

AECOM PARSONS STV 100

PROJECT: AMTRAK Hudson Yards

(continued)

CONTRACTOR: ADT

DRILLER: Dominick Pepe, George Raymond

INSPECTOR: Juan Zapata Jr.

PROJECT NUMBER: 4016879

LO	CATIC	N: 30	)th St	., 11th	Ave.,	New	York,	NY
l								

$\widehat{}$	O	_		,	SAN	MPLE		SOIL	(Blows/	6 in.)		
DEPTH (feet)	GRAPHIC LOG	CASING (Blows/ft)				et)	0/6	FIELD CLASSIFICATION AND REMARKS				
EPT	RAPH	NG (BI		BER	30L	DEPTH (feet)		(	CORING	6		FIELD CLASSIFICATION AND REWARKS
	อิ	CASII	TYPE	NUMBER	SYMI	DEP	RUN (in.)	REC. (in.)	REC. %	L>4" (in.)	RQD %	Depth Elev.
			S	6		25.0 - 27.0	3	4	3	5	5	S-6: Brown coarse to fine SAND, some medium to fine Gravel, little Silt, loose, wet (SM).
30			S	7		30.0 - 32.0	2	3	2	3	0	S-7: No Recovery.
35			S	8		35.0 - 37.0	WOH	WOH	WOH	WOH	21	S-8: Gray Fat CLAY, occasional marine material, very soft, wet (CH).
40			S	9		40.0 - 42.0	WOR	WOH	WOH	WOH	18	S-9: Gray Fat CLAY, trace fine Sand, trace fine Gravel, very soft, wet (CH).
45			S	10		45.0 - 47.0	WOR	WOH	WOH	WOH	24	S-10: Gray Fat CLAY, occasional marine material, very soft, wet (CH).
50			S	11		50.0 - 52.0	1	1	WOH	WOH	24	S-11: Same as above.
55			S	12		55.0 - 57.0	2	1	WOH	WOH	24	S-12: Gray Fat CLAY, some medium to fine Sand, occasional marine material, very soft, wet (CH).

### **BORING LOG**

BORING NUMBER: SEG-3-3T

SHEET NUMBER: 3 of

AECOM PARSONS STV 100

PROJECT: AMTRAK Hudson Yards

(continued)

CONTRACTOR: ADT

DRILLER: Dominick Pepe, George Raymond

INSPECTOR: Juan Zapata Jr.

PROJECT NUMBER: 4016879

LOCATION: 30th	St	11th	Ave	New	Vork	NV
LOOK HON. SUL	. 5	,	11100	11011	10113	111

						241	MPLE		9011	. (Blows/	G in )		<u> </u>	
eet)	907		s/ft)	$\vdash$	,			0/6	6/12	12/18	18/24	REC.		
DEPTH (feet)	GRAPHIC LOG		CASING (Blows/ft)		٣		(feet)	0/6				(in.)	FIEL	D CLASSIFICATION AND REMARKS
DEF	GRAI		SING	TYPE	NUMBER	SYMBOL	DEPTH (feet)	RUN	REC.	CORING REC.	L>4"	RQD	Depth	
	///			ΔI	13	SΥ	60.0 - 62.0	(in.)	(in.)	%	(in.)	% 10	Elev.	12. Cray Fot CLAV accessional marina material
-				S	13		00.0 - 02.0	2	2	2	3	10	sof	3: Gray Fat CLAY, occasional marine material, rt, wet (CH).
-														
-														
<del>-</del> 65				s	14		65.0 - 66.1	WOR	5	50/1	-	13	S-1	14: Gray Clayey SILT, some medium to fine Sand, quent decomposed SCHIST, hard, wet (ML).
-														
-													Sta	d of soil at 68' bgs. art rock coring at 68'.
- - 70														
' ⁰		-												
-		H												
-														
<del>-</del> 75														
L														
-														
-		$\mid$												
- 80 -														
-		-												
<u> </u>		t												
– 85		ŀ												
-		H												
- - - - - - - - - - - - - - - - - - -														
-		-												
<del>-</del> 90														-
ŀ														
}		+												
L														

#### **BORING NUMBER: SEG-3-3T** The Gateway Trans-Hudson Partnership SHEET NUMBER: 1 **CORING LOG** AECOM PARSONS BRINCKERHOFF STV 100 PROJECT NUMBER: 4016879 PROJECT: AMTRAK Hudson Yards LOCATION: LOCATION: 30 St., 11 Ave., New York, NY COORD. CLIENT: AMTRAK STN. NO.: OFFSET: CONTRACTOR: ADT DRILLER: Dominick Pepe, George Raymond SURFACE ELEV .: INSPECTOR: Juan Zapata Jr. DATUM: DRILLING METHOD: MUD ROTARY START DATE: 8/19/15 TIME: 2:00 pm RIG TYPE: CME-75 (truck mounted), Automatic Hammer FINISH DATE: 8/24/15 TIME: 12:00 pm **GROUNDWATER DATA** Water Casing **CORE BARREL DATA:** NOTES: Depth Depth Depth TYPE: Double Tube Swivel Date Time (ft) (ft) CORE SIZE: NO O.D.: 2.98" I.D.: 1.875" CASING SIZE: 3" (3.5") **DISCONTINUITY DATA** CORING RATE (ft/min % **DESCRIPTION AND REMARKS** RECOVERY (in) CORE RUN NO. AND DEPTH (ft) WEATHERING DEPTH (feet) STRENGTH (Lithology, Structure, Weathering, RECOVERY DEPTH (feet) 8 ANGLE (deg) Continuity, Strength, Color, Grain Size) ROD 느 a * - Denotes discontinuity along foliation MB - Denotes mechanical break C-1: Gray Garnet-Mica SCHIST, coarse to fine grains II $\overline{10}_{MB}$ 68 R3 *80_{MB} of quartz, feldspar, biotite, muscovite and garnet, 1.5 3 68.7 slightly weathered, medium strong, extremely close to *75_{MB} 2 1.5 69.6 - 70 moderate fracture spacing, schistosity dips 70° to 80°, C-1 58 97 72 *80_{MB} 1.5 2 70.3 pyrite on multiple fractures, recovery loss assumed at 68.0 - 73.0 *75_{MB} 1.5 1 71.3 *80_{MB} 1 1 72.2 *80_{MB} 2 6 72.55 C-2: Gray Garnet-Mica SCHIST, coarse to fine grains П R3 $10_{\rm MB}$ 72.65 of quartz, feldspar, biotite, muscovite and garnet, 72.7 72.8-6 $85_{MB}$ 1 slightly weathered, medium strong, moderate fracture - 75 $10_{MB}$ 1 C-2 spacing except very close to close fracture spacing at 57 95 92 73.25 75.2 1 6 $15_{MB}$ 73.0 - 78.0 77.8' to 78', schistosity dips 70° to 80°. CANARSIE-LIB.GLB - COPY.GLB 10/25/15 $30_{MB}$ 1.5 *75_{MB} 77.15 1 1 $40_{\rm MB}$ 3 2 77.8 C-3: 78' to 81.35': Gray Garnet-Mica SCHIST, coarse П R4 $20_{MB}$ 78 to fine grains of quartz, feldspar, biotite, muscovite and garnet, slightly weathered, strong, wide fracture 80 C-3 spacing schistosity dips 70° to 80°; 100 100 60 \$1.35' to 83'. Light gray-green Muscovite GRANITE, coarse to fine grains of quartz, feldspar, muscovite, epidote (?) and garnet, slightly weathered, strong, 78.0 - 83.0 $60_{MB}$ 1.5 2 81.35 close to moderate fracture spacing, high-angle healed $75_{MB}$ 3 82.4 fractures. $10_{\mathrm{MB}}$ П R3/R4 2 83 C-4: 83' to 85': Light gray-green Muscovite GRANITE, coarse to fine grains of quartz, feldspar, $70_{MB}$ 85 muscovite, epidote (?) and garnet, slightly weathered, 2 84.6 C-4 *70_{MB} 60 100 82 strong, close to moderate fracture spacing; 1 85 83.0 - 88.0 85' to 88': Gray Garnet-Mica SCHIST, coarse to fine $10_{MB}$ 3 2 2 2 85.96 grains of quartz, feldspar, biotite, muscovite and 1.5 $45_{MB}$ 86.05 garnet, slightly weathered, medium strong to strong, $50_{MB}$ 1.5 86.4 very close to moderate fracture spacing, schistosity $\Pi$ R3/R4 $20_{MB}$ 3 1 88 dips 60° to 75° C-5: Gray Garnet-Mica SCHIST, coarse to fine grains $60_{MB}$ 89 1.5 1 of quartz, feldspar, biotite, muscovite and garnet, $40_{MB}$ 89.45 90 3 1 C-5 slightly weathered, medium strong to strong, very 60 100 75 *75_{MB} 2 89.55 88.0 - 93.0

close to moderate fracture spacing, schistosity dips

65° to 75°.

CORING LOG HUDSON YARD ROCK.GPJ

*70_{MB}

*65_{MB}

*65_{MB}

90.1

90.6

91

1

### **CORING LOG**

(continued)

BORING NUMBER:	SEG-3	-3T		
SHEET NUMBER:	2	of	2	

PROJECT NUMBER: 4016879

PROJECT: AMTRAK Hudson Yards

AECOM PARSONS STV 100

LOCATION: 30th St., 11th Ave., New York, NY

CLIENT: AMTRAK

CONTRACTOR: ADT

DRILLER: Dominick Pepe, George Raymond

INSPECTOR: Juan Zapata Jr.

اکارا	LIVI. AN	<b>VI I I X</b> 2 3						IIVOI LO	. 0	<i>-</i>	Zuput	011		
	nin)	Ì .			<u> </u>		DECORPTION AND DEMARK				DIS	CONTI	NUITY	DATA
	DEPTH (feet)	CORE RUN NO	AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARK: (Lithology, Structure, Weatherin Continuity, Strength, Color, Grain S  * - Denotes discontinuity along folia MB - Denotes mechanical brea	g, Bize) ation	WEATHERING	STRENGTH	ANGLE (deg)	٦٢	Ja	DEPTH (feet)
- - 95 - -							End of boring at 93' bgs.				*70 _{MB} 30 _{MB}	1 3	1	91.6 93 - - -
- 10 - - -	00													- - - -
- - 10 - -	05													- - - -
OPY.GLB 10/25/15	10													- - - -
PB CORING LOG HUDSON YARD ROCK GPJ CANARSIE-LIB.GLB - COPY.GLB 10/25/15														- - - - -
HUDSON YARD ROCK.GF														- - - -
PB CORING LOG	25								EC 3					-

		The	Ge	ites	Na	v	_						BORING	NUMBE	R: SEG-	3-4T					
						y ship	B	ORI	NG	LC	)G		SHEET	NUMBER	R:1_	of	2				
-	AECO/	A BA	RSO	ERHO	FF	STV 100							PROJEC	CT NUMB	ER:401	6879					
	_					udson Ya			•				LOCATION	ON: 30th	St., 11th	Ave., Ne	w York				
LOCA CLIEN					llt	h Ave., N	ew Yo	rk, NY	-				COORD	NY N: 1.91 <i>6</i>	5.164 6 F	· 14.802.	800 5				
CONT													COORD. N: 1,916,164.6 E: 14,802,800.5 STN. NO.: OFFSET:								
						e, George	Rayn	nond					SURFACE ELEV.: 308.6 feet								
	INSPECTOR: Juan Zapata Jr. DRILLING METHOD: Rotary Wash													DATUM: START DATE: 8/13/15 TIME: 11:00 ar							
DRILL RIG T						tary Was truck mo		Auto	matic ]	Hamm	or			DATE: <b>8</b> /1 DATE: <b>8</b> /1		IME: 11:0					
IXIO I	<u> п с.</u>			sing		Split Spoon			Pitcher	Gra		Core Barrel	1		NDWATER		орш				
Type/S	Svmbo	ol 📙		W		s 🛮	U P			G	a t	С			Water	Casing	Hole				
I.D.	,			1"		1.375"	2.938" "					2.155"	Date	Time	Depth (ft)	Depth (ft)	Depth (ft)				
O.D.			4	.5"		3"	3"		"			2.98"	8/17/2015	9:00:00 AM	11.5	35	35				
Length	ı		3	35		24"	30'	,	"			60"	8/18/2015	10:00:00 AN	<b>1</b> 11	35	35				
Hamm	er Wt	.	14	0 lb		140 lbs	Di	rill Rod S	Size		N	V	8/19/2015	7:00:00 AM	9.3	35	35				
Hamm	er Fa	II	3	30"		30 in.		I.D. (O.E	D.)	2	2.25" (2	.625")									
	(D				SAI	MPLE		SOIL	_ (Blows/	6 in.)											
eet)		s/ft)	r				0/6 6/12 12/18			18/24	REC	.									
DEPTH (feet) GRAPHIC LOG CASING (Blows/ft) TYPE NUMBER SYMBOL						eet)				10/24	18/24   (in )		IELD CLASSIFICATION AND REMARKS								
EP.	RAP	) DN	<b>I</b>	BER	BOL	H (t			CORING	}											
	9	CASI	TYPE	NUMBER	SYMBOL	DEPTH (feet)	RUN (in.)	REC. (in.)	REC. %	L>4" (in.)	RQD %	Depth Elev.									
_	***************************************		G	1	\ /	0.0 - 6.0							Excavated to	op 6' soil to c	clear utilitie	S.					
	***************************************				$\mathbb{N}$																
					I V																
	4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +		1		$ \Lambda $																
- 5	***		1														-				
			s	1	/ \	6.0 - 8.0	9	9	8	5	16		S-1: Brown,	green and d	ark brown (	poarse to fin	9				
	** -4		3	1		0.0 - 8.0	,	,	0	3	10		SAND, and	Silt, little co							
	**************************************		S	2		8.0 - 10.0	5	8	11	8	10		dense, moist S-2: Same as								
			<del> </del>	-		0.0 10.0			''												
- 10	**		S	3		10.0 - 12.0	3	2	1	3	1		S-3: Brown	and green co	arse to fine	SAND, trac	ce -				
	**************************************		1										Silt, very loc	ose, moist (S	P)-Fill.	•					
			1																		
	****		1																		
4	<b>₩</b> Δ		1																		
- 15	* - 4		S	4		15.0 - 17.0	1	1	1	2	15		S-4: Brown	medium to f	ine SAND,	trace Silt, v	ery				
	(2) (												loose, moist	(Sr <i>)</i> -Fill.							
	* -																				
- 20										_			~ -		_		_				
			S	5		20.0 - 22.0	1	1	1	2	17		S-5: Gray Fa Gravel, very	nt CLAY, son soft wet (CI	me fine Sar H)	nd, trace fine	•				
			1										. ,	`							
			-																		
			1																		
					1																

The Gateway Trans-Hudson Partnership
--------------------------------------------

PROJECT: AMTRAK Hudson Yards

# BORING LOG (continued)

BORING NUMBER: SEG-3-4T

SHEET NUMBER: 2 of

AECOM PARSONS STV 100

PROJECT NUMBER: 4016879 CONTRACTOR: ADT

DRILLER: Dominick Pepe, George Raymont

INSPECTOR: Juan Zapata Jr.

LOCATION: 30th St., 11th Av	ve., New York, NY
-----------------------------	-------------------

02.2.	11.111			-								mior Eo Forti vana Empiria viv
	ŋ			s	A۱	//PLE		SOIL	. (Blows/	'6 in.)		•
DEPTH (feet)	GRAPHIC LOG	CASING (Blows/ft)				et)	0/6	6/12	12/18	18/24	REC. (in.)	FIELD OF A COLFICATION AND DEMARKS
EPT.	ZAPH	NG (B)		BER	Z Z	DEPTH (feet)			CORING	}		FIELD CLASSIFICATION AND REMARKS
	l i	CASI	TYPE	NUMBER	SYMBOL	DEP1	RUN (in.)	REC. (in.)	REC. %	L>4" (in.)	RQD %	Depth Elev.
-			S	6		25.0 - 27.0	WOH	WOH	WOH	2	23	S-6: Dark green-gray Fat CLAY, some fine Sand, trace fine Gravel, very loose, wet (CH).
-												
-												
- 30 -			S	7		30.0 - 32.0	WOH	1	1	1	5	S-7: Dark gray Clayey SILT, trace fine Sand, occasional marine material, very soft, wet (ML).
- -												End of soil at 35' bgs. Start rock coring at 35' bgs.
- - 35												-
-												
-												
- 40												
F 40												
ŀ												
-												
− 45 -												-
-												
-												
<b>–</b> 50												-
-  -												
-												
- 55												_
-												
-												
- - 45 - - - 50 - - - 55 - -												

#### **BORING NUMBER: SEG-3-4T** The Gateway Trans-Hudson Partnership SHEET NUMBER: 1 **CORING LOG** AECOM PARSONS STV 100 PROJECT NUMBER: 4016879 PROJECT: AMTRAK Hudson Yards LOCATION: LOCATION: 30 St., 11 Ave., New York, NY COORD. CLIENT: AMTRAK STN. NO.: OFFSET: CONTRACTOR: ADT DRILLER: Dominick Pepe, George Raymond SURFACE ELEV .: INSPECTOR: Juan Zapata Jr. DATUM: DRILLING METHOD: MUD ROTARY START DATE: 8/13/15 TIME: 11:00 am RIG TYPE: CME-75 (truck mounted), Automatic Hammer FINISH DATE: 8/19/15 TIME: 2:00 pm **GROUNDWATER DATA** Water Casing **CORE BARREL DATA:** NOTES: Depth Depth Depth TYPE: Double Tube Swivel Date Time (ft) (ft) CORE SIZE: NO O.D.: 2.98" I.D.: 1.875" CASING SIZE: 3" (3.5") **DISCONTINUITY DATA** CORING RATE (ft/min **DESCRIPTION AND REMARKS** RECOVERY (in) % CORE RUN NO. AND DEPTH (ft) WEATHERING DEPTH (feet) STRENGTH (Lithology, Structure, Weathering, DEPTH (feet) RECOVERY 8 ANGLE (deg) Continuity, Strength, Color, Grain Size) ROD a 늑 * - Denotes discontinuity along foliation MB - Denotes mechanical break II 35.25 C-1: Gray SCHIST, coarse to fine grains of quartz, R4 $0_{MB}$ feldspar, biotite, muscovite and sparse garnet, slightly *65_{MB} 36.3 2 1 2 weathered, medium strong, very close to moderate *65_{MB} 36.7 C-1 fracture spacing, schistosity dips 60° to 65°, 57 100 91 *60_{MB} 35.3 - 40.0 37.5 occasional banding parallel to schistosity. *65_{MB} 1 38 *60_{MB} 38.9 40 *60_{MB} 39 C-2: Gray Garnet-Mica SCHIST, coarse to fine grains П R4 *60_{MB} 39.5 *60_{MB} of quartz, feldspar, biotite, muscovite and garnet, 39.9 slightly weathered, strong, close to moderate fracture spacing, schistosity dips 55° to 65°, occasional *60_{MB} 40 *60_{MB} C-2. 40.7 97 83 58 banding parallel to foliation. 40.0 - 45.0 *60_{MB} 41.5 *60_{MB} 1.5 41.85 *65_{MB} 42.8 $*55_{MB}$ 1 43.5 - 45 *55_{MB} C-3: Gray Garnet-Mica SCHIST, coarse to fine grains R4 44 $\Pi$ *55_{MB} 44.2 1 of quartz, feldspar, biotite, muscovite and garnet, *55_{MB} slightly weathered, strong, very close to moderate 1.5 44.6 *60_{MB} 45 C-3 fracture spacing. 59 98 58 *60_{MB} 1.5 45.25 45.0 - 50.0 *60_{MB} 45.5 $*50_{MB}$ 46.7 *55_{MB} 47 *60_{MB} 50 47.35 C-4: Gray Garnet-Mica SCHIST, coarse to fine grains $\Pi$ R4 *65_{MB} 47.6 1 of quartz, feldspar, biotite, muscovite and garnet, *65_{MB} 1 47.8 slightly weathered, strong, close to moderate fracture *65_{MB} 47.9 1 6 2 1 C-4 spacing, schistosity dips 50° to 65°. *65_{MB} 59 100 92 1.5 47.95 50.0 - 54.9 $30_{MB}$ 48 $30_{MB}$ 1.5 48.9 35_{MB} 3 49 50.8 *65_{MB} 1 1 - 55 C-5: 54.9' to 57.7': Gray Garnet-Mica SCHIST, I/IIR4 $20_{MB}$ 1.5 51.2 1 2 2 coarse to fine grains of quartz, feldspar, biotite, *50_{MB} 1.5 52.9 muscovite and garnet, slightly weathered, strong, $65_{MB}$ 3 53.2 C-5 close to moderate fracture spacing, schistosity dips $45_{MB}$ 54.3 59 98 68 2 1 54.9 - 59.9 55° to 60°: *60_{MB} 54.9 57.7' to 58.6': QUARTZ, fresh, strong, moderate 20_{MB} *55_{MB} 1.5 55.2 fracture spacing; 2 1.5 55.5

58.6' to 59.9': Gray Garnet-Mica SCHIST, medium to

fine grains of quartz feldspar biotite muscovite and

CORING LOG HUDSON YARD ROCK.GPJ CANARSIE-LIB.GLB - COPY.GLB

60

 $35_{MB}$ 

1

56.5



#### **CORING LOG**

BORING NUMBER: SEG-3-4T

SHEET NUMBER: 2 of 2

(continued)

AECOM PARSONS BRINCKERHOFF STV 100

PROJECT: AMTRAK Hudson Yards CON

LOCATION: 30th St., 11th Ave., New York, NY

CLIENT: AMTRAK

CONTRACTOR: ADT

DRILLER: Dominick Pepe, George Raymond

INSPECTOR: Juan Zapata Jr.

PROJECT NUMBER: 4016879

	(ff/min)					<u> </u>			DIS	CONTI	VUITY	DATA
DEPTH (feet)	CORING RATE (ft/r	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS (Lithology, Structure, Weathering, Continuity, Strength, Color, Grain Size)  * - Denotes discontinuity along foliation MB - Denotes mechanical break	WEATHERING	STRENGTH	ANGLE (deg)	٦٢	Ja	DEPTH (feet)
0.5		C-6 59.9 - 64.9	60	100	93	garnet, slightly weathered, strong, very close to moderate fracture spacing, schistosity dips 55° to 60°. C-6: Gray Garnet-Mica SCHIST, coarse to fine grains of quartz, feldspar, biotite, muscovite and garnet, slightly weathered, strong, close to moderate fracture spacing, schistosity dips 55° to 60°, quartz band at 64.1' to 64.35'.	II	R4	40 _{MB} *55 _{MB} 60 _{MB} 10 _{MB} 30 _{MB} 15 _{MB} 55 _{MB}	1 1 3 1.5 1 1.5 1.5 1.5	2 1 2 1 2 2 1 1	56.7 57 57.5 58.1 58.9 59.05 59.9 60.4
- 65		C-7 64.9 - 69.9	59	98	88	C-7: Gray Garnet-Mica SCHIST, coarse to fine grains of quartz, feldspar, biotite, muscovite and garnet, slightly weathered, strong, moderate to wide fracture spacing except close fracture spacing at 69.6' to 69.9', schistosity dips 60° to 70°.	П	R4	*60 _{MB} 10 _{MB} *55 _{MB} 55 _{MB} 30 _{MB}	1 3 1 3 3 3	2 2 2 2 2 1	61.7 63.7 64.1 64.9 67.55
- <b>7</b> 0		C-8 69.9 - 74.9	58	97	93	C-8: Gray Garnet-Mica SCHIST, coarse to fine grains of quartz, feldspar, biotite, muscovite and garnet, slightly weathered, medium strong to strong, very close to moderate fracture spacing, schistosity dips 65°, muscovite granite bands at 70.9' to 71.8', and 73.55' to 73.75' with coarse to fine grains of quartz, feldspar, muscovite and garnet.	II	R3/R4	$^{*70_{MB}}_{10_{MB}}_{10_{MB}}_{25_{MB}}_{*65_{MB}}_{40_{MB}}_{40_{MB}}_{40_{MB}}$	1.5 1 3 1 3 1.5 1.5	2 6 6 2 2 1 1 1	69.5 69.8 70.1 70.25 70.7 71.5 72.15 72.6 73.25
- 75		C-9 74.9 - 79.9	55	92	60	C-9: Gray Garnet-Mica SCHIST, coarse to fine grains of quartz, feldspar, biotite, muscovite and garnet, slightly weathered, medium strong, very close to moderate fracture spacing, schistosity dips 65° to 70°, loss of recovery assumed at 74.9' to 75.35'.	II	R3	40 _{MB} *65 _{MB} *65 _{MB} *65 _{MB} *65 _{MB} *65 _{MB} 30 _{MB} 30 _{MB}	1 1 1 1 1 1 3 3	3 6 2 6 1 2 2	74.3 74.35 74.4 74.9 77 77.35 77.7 78.55
- 80						End of boring at 79.9' bgs.			$\begin{matrix} 35_{\mathrm{MB}} \\ 10_{\mathrm{MB}} \\ 30_{\mathrm{MB}} \end{matrix}$	3 1.5 3	2 2 2	79.4 79.6 79.9
- 85												
- 90												
- 95												

		The	<u> </u>										BORING	NUMBE	R:SEG-3	3-5T	
	Tra	The ans-	Hu	uds	on	ship	BO	DRI	NG	LC	)G		SHEET	NUMBEF	R: <u>1</u>	of	2
		100		Alesso.		STV									BER: 4016		
						ludson Ya			<del>,</del>				LOCATION		St., 11th	Ave., Ne	w York
CLIEN					LIt	th Ave., N	ew Yo	rk, NY	•				COORD	NY N: 1.91	6,066.0 E	: 14.802	889 8
CONT													STN. NC			)FFSET:	002.0
					<b>e</b> p	e, George	Raym	ond					SURFAC	CE ELEV	::306.6 fe	eet	
INSPE													DATUM:				
		/IETI	НО	D:	Ro	tary Was	h								28/15 T		
RIG T	YPE:					truck mo						O DI	FINISH [			IME: 2:0	) pm
T 16	S la .a			sing		Split Spoon	-		Pitcher	Gra		Core Barrel		GROU	NDWATER Water	Casing	Hole
Type/S	symbo	)  -		IW		S	U [	_	P 🛚	G		2.155"	┨╻.		Depth	Depth	Depth
I.D.				4"		1.375"	2.938	5"					Date	Time	(ft)	(ft)	(ft)
O.D.	_			.5"		3"	3"		"			2.98"					
Length				35		24"	30"		"			60"					
Hamm		-		0 lb		140 lbs		ill Rod S		_	N						
Hamm	er Fa	II	Т	30"		30 in.	l	.D. (O.E	•		2.25" (	2.625")					
æ()	90	£	L	,	SA	MPLE		SOIL	. (Blows	/6 in.)	T = = =	_					
DEPTH (feet)	3RAPHIC LOG	CASING (Blows/ft)				eet)	0/6	6/12	12/18	18/24	REC (in.	١ .	ELD CLAS	SSIFICAT	ΓΙΟΝ ΑΝΙ	) REMAR	RKS
EPT	RAPI	NG (B	l	BER	30	H (f			CORING	3					110117111	5 1 (LIVI) (I	
	- E	CASI	TYPE	NUMBER	SYMBOL	DEPTH (feet)	RUN (in.)	REC. (in.)	REC.	L>4" (in.)	RQI %	Depth Elev.					
	***************************************		G		\ ,	0.0 - 6.0	,	,					Excavated to	op 6' soil to	clear utilities	S.	
	*		1		$\mathbb{N}$												
					l V												
	* 7		1		$ \lambda $												
- 5	1		1		$   \rangle$												-
	6		۱,	١.		60.00	_						0.1.0	1:	CAND	1:	
	* 4		S	1		6.0 - 8.0	2	6	4	4	7		S-1: Gray me fine Gravel,	edium to fin loose, moist	ie SAND, tra i-Fill.	ace medium	to
	1 <u>#</u> 5			1		0.0 10.0	10	0	0	1.4	1		C 2. C	4- 6	CDAVEL		
	4 O□ ≯		S	2		8.0 - 10.0	10	8	9	14	1		S-2: Gray co moist-Fill.	oarse to fine	GKAVEL, 1	meurum den	se,
<del>-</del> 10	**		$\frac{1}{s}$	3		10.0 - 12.0	15	10	8	9	9		S-3: Gray Co	narse to fina	SAND and	Silt some	-
	***		┨"			10.0 - 12.0	13	10					coarse to fin				)-Fill.
			┨														
<u> </u>	*****		1														
	***		┨														
- 15	***		$\frac{1}{8}$	4		15.0 - 17.0	1	2	5	2	6		S-4: Brown	medium to t	fine SAND	loose moist	-Fill
	±27√. (		┨			10.0 17.0		_		_			S Brown		51 11 (12)	10000, 111010	
	** -5		┨														
	**		ł														
	A OUN		1														
- 20	₩ 4		_S	5		20.0 - 22.0	WOH	1	1	1	1		S-5: Brown			little coarse	to
	1 *** D		1										fine Gravel,	very loose,	wet-Fill.		
			1														
•	**		1														
			1														

#### **BORING LOG**

BORING NUMBER: SEG-3-5T

PROJECT NUMBER: 4016879

SHEET NUMBER: 2 of

AECOM PARSONS STV 100

(continued)

CONTRACTOR: ADT

DRILLER: Dominick Pepe, George Raymond

INSPECTOR: Juan Zapata Jr.

PROJECT: AMTRAK Hudson \	Yards
LOCATION: 30th St., 11th Ave.,	New York, NY

	(D				SAI	MPLE		SOIL	(Blows/	6 in.)		
DEPTH (feet)	GRAPHIC LOG	CASING (Blows/ft)				et)	0/6	6/12	12/18	18/24	REC. (in.)	FIELD CLASSIFICATION AND REMARKS
EPTF	RAPH	NG (BI	l	BER	30L	DEPTH (feet)	CORING					FIELD CLASSIFICATION AND REMARKS
Ц	ַ פֿ	CASII	TYPE	NOM	SYMBOL	DEP	RUN (in.)	REC. (in.)	REC. %	L>4" (in.)	RQD %	Depth Elev.
			S	6		25.0 - 27.0	WOH	1	1	3	24	S-6: Dark gray Fat CLAY and Organic CLAY, very soft, wet (CH-OH).
- 30			S	7		30.0 - 32.0	1	1	WOH	1	24	S-7: Dark gray Fat CLAY and Organic CLAY, occasional marine material, very soft, wet (CH-OH).
35			S	8		35.0 - 37.0	2	1	1	1	20	S-8: Dark gray Fat CLAY and Organic CLAY, occasional marine material, very soft, wet (CH-OH).
- 40			S	9		40.0 - 42.0	WOH	1	WOH	1	23	S-9: Brown medium to fine SAND, and Clayey Silt, occasional marine material, very loose, wet (SM).
45			S	10		45.0 - 47.0	WOH	1	1	6	20	S-10: Same as above.
- 50			S	11		50.0 - 52.0	15	9	19	17	4	S-11: Dark brown coarse to fine GRAVEL, and coarse to fine Sand, little Silt, medium dense, wet (GM).
- 55	· Nº		S	12		55.0 - 57.0	24	24	21	13	4	S-12: Dark brown medium to fine SAND, some medium to fine Gravel, dense, wet (SP).
	-											End of soil at 58' bgs. Start rock coring at 58' bgs.

	The Gateway							BORING NUMBER: SEG-3-5T  SHEET NUMBER: 1 of 1							
		Tra	he Gatev ns-Hudso Partno	vay on ership		C	ORING LOG	SHEET	NUME	BER:_	1	1 of			
	AEC	сом	PARSONS BRINCKERHOI			C	JKING LOG	PROJECT NUMBER: 4016879							
	PROJEC	T: A	MTRAK	Hudso	n Ya	rds		LOCATION:							
			30 St., 11	Ave., N	lew Y	York, N	NY								
	CLIENT:				COORD. STN. NO.: OFFSET:										
	CONTRA		minick P	ono C	00800	Down	and			E\/·	(	וכרזו	⊏1.		
			Juan Za			Kayıı	iona	SURFACE ELEV.: DATUM:							
			ETHOD:			ARY		START DATE: 8/28/15 TIME: 2:00 pm							
	RIG TYP	E: <b>C</b>	ME-75 (t	ruck m	ount	ed), A	utomatic Hammer	FINISH DATE: 8/30/15 TIME: 2:00 pm							
									GF	ROUND	WATEF				
	CORE B	4RRI	EL DATA:			NOTE	S:				Water Depth	Cas		Hole Depth	
			Tube Swivel					Date	Tim		(ft)	(fi		(ft)	
	CORE S		NQ												
	O.D.: 2.9														
	I.D.: 1.87														
	CASING		E: 3" (3.5")									001171		D	
		۲mir	o.∉.	(u	(%		DESCRIPTION AND REMARK		G	_	DISCONTINUI		NULLA	ITDATA	
	(feet	re (1	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	(%)	(Lithology, Structure, Weathering, Continuity, Strength, Color, Grain Size)  * - Denotes discontinuity along foliation			STRENGTH	eg)			eet)	
	DEPTH (feet)	RA.	I RL	)VEI	)VE	RQD (%)				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	E (d	5	_a	¥	
	DEF	NG	OR N	ECC		Ř			WEATHERING	STF	ANGLE (deg)		,	DEPTH (feet)	
		CORING RATE (ft/min)	υ∢	<u>~</u>	<u>~</u>		MB - Denotes mechanical brea	ik	>		<del> </del>				
							C-1: Light gray to pink intermixed PEGMA Muscovite GRANITE, coarse to fine grain	II	R3/R4		3	- 1	58 58.35		
	_ _ 60						feldspar, muscovite and sparse biotite, slig	htly			$10_{\mathrm{MB}}$ $10_{\mathrm{MB}}$	3	2	58.75	
	- 60		C-1 58.0 - 63.0	53	88	55	weathered, medium strong to strong, very omoderate fracture spacing except wide fracture.			85 _{MB} 10 _{MB}	1 1.5	2 2	58.85 59		
							spacing at 61' to 63 [†] .				10 _{MB} 85 _{MB}	1.5 1.5	$\frac{1}{2}$	59.1 59.2	
	_										$60_{MB}$	1	6	59.4	
	_				100		C-2: Light gray to pink intermixed PEGMA Muscovite GRANITE, coarse to fine grain	ATITE and s of quartz.	II	R4	60 _{MB} 55 _{MB}	3 1.5	3 2	60.1 60.5	
	— 65		C-2 63.0 - 68.0	60		83	feldspar, muscovite and sparse biotite, slig weathered, strong, close to moderate fractu	htly			$\frac{25_{\mathrm{MB}}}{10_{\mathrm{MB}}}$	3 1.5	2	61 63 -	
15	_ 00						weathered, strong, close to moderate fractu			15 _{vm}	1.5	1	64.3 64.5		
0/25/	0/25/1										$\begin{array}{c} 20_{\mathrm{MB}}^{\mathrm{MB}} \\ 10_{\mathrm{MB}} \end{array}$	1.5	1 2	65.6	
SLB 1	_										25 _{MB} 85 _{MB}	1.5 1.5	2 2	65.8	
PY.G	-						C-3: Light gray Muscovite GRANITE, coagrains of quartz, feldspar, biotite, muscovi		I/II	R4	$10_{\mathrm{MB}}^{\mathrm{MB}}$ $10_{\mathrm{MB}}$	1.5 1.5	1 1	66.9 68	
3-C	<del>-</del> 70		C-3	<b>.</b>	100	0.0	sparse biotite, fresh to slightly weathered, strong, close to moderate fracture spacing.				10 _{MB}	1.3	1	69.6-	
3.GLE	-		68.0 - 72.7	56		88					$0_{\mathrm{MB}}$ $10_{\mathrm{MB}}$	1 1	1	70.2 70.7	
E-LII	_										80 _{vm}	1.5	2	71	
NARS	-						C-4: Light gray Muscovite GRANITE with	1	I/II	R4	$20_{\mathrm{MB}}^{\mathrm{MB}}$ $5_{\mathrm{MB}}$	1 1	1 1	71.6 72.1	
) CA	-						PEGMATITE lenses, coarse to fine grains feldspar, biotite, muscovite and sparse biot				15 _{MB} 10 _{MB}	1.5 1.5	1 2	72.6 73.2	
K.GP.	<del>-</del> 75		C-4	61	100	74	to slightly weathered, strong, very close to				$80_{\mathrm{MB}}$	1	2	73.4_	
ROC	-		72.7 - 77.8	01	100	/-	fracture spacing.				$10_{\mathrm{MB}}$ $80_{\mathrm{MB}}$	1.5 1	2 2	73.45 73.55	
ARD	-										15 _{MB} 80 _{MB}	1.5 1	1 2	73.7 73.8	
NO.	_						C-5: Light gray Muscovite GRANITE with	1	I	R4	$10_{\mathrm{MB}}$	1.5	$\begin{bmatrix} \frac{1}{2} \\ 2 \end{bmatrix}$	73.9	
HUDS	-						PEGMATITE lenses, coarse to fine grains feldspar, biotite, muscovite and sparse biot	of quartz,			$45_{\mathrm{MB}}$ $80_{\mathrm{MB}}$	1.5	2	74.1	
.0G	<del>-</del> 80		C-5 77.8 - 82.4	55	100	100	strong, wide fracture spacing.	aw, 115311,			$10_{MB} \\ 10_{MB}$	MB 1 1	1 1	74.9 76.4	
INGL	-		11.0 - 02.4								$30_{\mathrm{MB}}^{\mathrm{MB}}$	1.5	1	77.8	
PB CORING LOG HUDSON YARD ROCK.GPJ CANARSIE-LIB.GLB - COPY.GLB 10/25/15	_						T. 1. (1					1.5			
퓝							End of boring at 82.4' bgs.				25м	1.5		82.4	

Boring No. SEG-3-5T Sheet 1 of 1

,							y ship	В	ORI	NG	LC	G		SHEET	NUMBER	:1	of	2			
	PROJECT: AMTRAK Hudson Yards													ON: 30th			w Voul				
							uuson xa h Ave., N		rk NV	7				LOCATION	NY NY	St., 11th	Ave., Ne	W YORK			
CLIEN						···	11 11 100, 110	CW IU	I N, 1 1 I	-				COORD	N: 1,916	5,207.5 E	E: 14,802,	887.9			
CONT														STN. NO.: OFFSET: SURFACE ELEV.: 307.5 feet							
DRILL	ER:	Do	mir	nic	k P	<b>'ep</b>	e, George	Rayn	ond												
INSPE						_								DATUM:							
							tary Was							START DATE: 8/26/15 TIME: 4:00 pm FINISH DATE: 8/28/15 TIME: 12:00 pm							
RIG T	YPE	:					truck mo										IME: 12:0	00 pm			
			_		sing		Split Spoon			Pitcher	Gra		Core Barrel		GROUN	NDWATER		Hala			
Type/	Syml	bol			W		S	υ[		P	G	XI	с⊟	Date		Water Depth	Casing Depth (ft)	Hole Depth			
I.D.				4	<b>!"</b>		1.375"	2.938	3"	"			2.155"		Time	(ft)		(ft)			
O.D.				4.	5"		3"	3"		"			2.98"	8/28/2015	7:10:00 AM	9.7	33	83			
Lengtl	h			3	5		24"	30"		"			60"								
Hamn	ner V	۷t.		140	0 lb	T	140 lbs	Dr	ill Rod S	Size		N	N								
Hamn	<u>ner</u> F	all		3	0"		30 in.	I	.D. (O.E	D.)	2	2.25" (2	2.625")								
	ניו	GRAPHIC LOG				SAI	MPLE		_ (Blows	6 in.)											
(feet)	0 FOC		ws/ft)				it)	0/6	6/12	12/18	18/24	REC									
DEPTH (feet)	APHIC		G (Blo		ER	٥٢	4 (fee	CORIN			;	. ()	→   FII	FIELD CLASSIFICATION AND REM							
Ö	GR		CASING (Blows/ft)	TYPE	NUMBER	SYMBOL	DEPTH (feet)	RUN (in.)	REC.	REC.	L>4" (in.)	RQE	Depth Elev.								
	*	. <b>⊲</b> .	G 1			1	0.0 - 6.0	\'''· <i>)</i>	(111.)	/0	\''' <i>'</i>	/0	_10 v.	Excavated top 6' soil to clear utilities. Mud at around 2'.							
	1					$  \rangle /  $								ivida at atou	2 .						
	*					V															
	4 <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del>					$ \Lambda $															
_ F	<b>₽</b>	4				/															
- 5	<del>X</del> 4					$  \  $	\											•			
	80/	4		S	1		6.0 - 8.0	4	5	2	2	13		S-1: Black co	oarse to fine	SAND, loc	ose, moist-Fi	11.			
	⊢ ⊡∆								10	9	10	13		S-2: Brown coarse to fine GRAVEL, son							
	<b>1</b> → OI	4		S	2		8.0 - 10.0	4													
	₩.													fine Sand, trace Silt, medium dense, moist (GW							
- 10		- M		- S 3			10.0 - 12.0	6	6	10	9	22		S-3: Brown medium to fine SAND, trace fine Gr				ravel,			
	*	***												medium den							
	1. 7	" ·   _																			
	**																				
								WOH	WOH			22									
- 15				S	4		15.0 - 17.0			1	1			S-4: Gray Fat CLAY, very soft, wet (CH).							
					Ċ									on and the Chiti, very soit, wer (Cit).							
				U	1		17.0 - 19.0					8		Shelby Tube	L.						
					•		17.0								•						
		-		S	5		19.0 - 21.0	WOR	WOH	WOH	WOH	17		S-5: Gray Cl	ayey SILT. v	ery soft. w	ret (ML).				
- 20														- <i></i> , 5.	J J , ,	J =, **	, ,-				

## The Gateway Trans-Hudson Partnership

## **BORING LOG**

BORING NUMBER: SEG-3-6T

SHEET NUMBER: 2 of ___

AECOM PARSONS STV 100

PROJECT: AMTRAK Hudson Yards

(continued)

CONTRACTOR: ADT

DRILLER: Dominick Pepe, George Raymont

INSPECTOR: Juan Zapata Jr.

PROJECT NUMBER: 4016879

LOCATION: 30th St.,	11th Ave., New York, NY
CLIENT: AMTRAK	

CLIENT: AMTRAK

												mior Eo Forti vana Empara viv
	g			S	SAN	MPLE		SOIL	. (Blows/	'6 in.)		
DEPTH (feet)	GRAPHIC LOG	CASING (Blows/ft)				et)	0/6	6/12	12/18	18/24	REC. (in.)	
EPT	RAPH	NG (BI		BER	30	DEPTH (feet)			CORING	}		FIELD CLASSIFICATION AND REMARKS
	15	CASII	TYPE	NUMBER	SYMBOL	DEPT	RUN (in.)	REC. (in.)	REC.	L>4" (in.)	RQD %	Depth Elev.
-			S	6		25.0 - 27.0	WOH	WOH	WOH	WOH	24	S-6: Gray Fat CLAY, occasional marine material, very soft, wet (CH).
-												
- -												
<b>– 30</b>			S	7		30.0 - 31.0	WOH	WOH	60/0	-	4	S-7: Gray Clayey SILT, very soft, wet (ML).
-												
-												End of soil at 33' bgs. Start rock coring from 33' bgs.
- 35												
-												
- -												
-												
- 40 -												
-												
- -												
<del>-</del> 45												
-												
-			$\  \ $									
- 50												
-												
- -												
-			$\  \ $									
— 55 -												
-			$\  \ $									
- 45 - 45 50 55 												

		-	0-4					BORING	NUN	IBER:	SEG-	3-6T		
		Trai	he Gatev	vay on		C(	ORING LOG	SHEET I	NUME	BER:_	1	c	of	2
				ership		C	JRING LOG							
			PARSONS BRINCKERHOI		0			PROJEC	T NU	MBE	R: 401	5879		
	PROJEC							LOCATION	:NC					
	LOCATIO			Ave., N	lew Y	ork, N	NY	COORD						
	CLIENT:							STN. NC			C	FFSI	=т.	
	DRILLER			ene. Ge	orge	Ravm	and	SURFAC		EV.:		) i Oi	- ' '	
	INSPECT					, italy in		DATUM:						
	DRILLING					ARY		START [	DATE	: 8/26/	/15 T	IME:	4:00	pm
	RIG TYPI	<b>E</b> : <b>C</b> ]	ME-75 (t	ruck m	ount	ed), Aı	ıtomatic Hammer	FINISH [	DATE	8/28/	15 T	IME:	12:00	) pm
									GF	ROUND	WATER	DATA		
	CORE BA	RRE	EL DATA:			NOTE	S:				Water Depth	Cas		Hole Depth
	TYPE: Do	uble	Tube Swivel					Date	Tim		(ft)	(ft		(ft)
	CORE SI	ZE:	NQ											
	O.D.: 2.9													
	I.D.: 1.875													
	CASING		<b>:</b> 3" (3.5")											
		RATE (ft/min)	o; €	<u> </u>	<u> </u>		DESCRIPTION AND REMARK	c	40		DIS	CONTI	NUITY	DATA
	DEPTH (feet)	= (#	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	(9)	(Lithology, Structure, Weatherin	g,	WEATHERING	I	<u>6</u>			<del>£</del>
	Ŧ.	₹AΤI	RUN	ÆR	ER.	(%) Q	Continuity, Strength, Color, Grain S	Size)	里		g)		_	(fee
	EPT	JG F	ARE O D	00	9	RQD	* - Denotes discontinuity along foli	ation	≣AT	STRENGTH	ANGLE (deg)	그	Ja	DEPTH (feet)
	Ω	CORING	A C	RE	쀭		MB - Denotes mechanical brea	k	ૅ	0)	AN			DEF
		ŏ					C-1: 33' to 33.5' and 35' to 38': Gray SCHI	ST coarse	II	R3/R4				
	-						to fine grains of quartz, feldspar, biotite, m	uscovite	"	103/104	*55, m	1 1	6	33.3 -
	<b>- 35</b>		C-1	56	93	78	and sparse garnet, slightly weathered, medi- very close to moderate fracture spacing, scl	nistosity			*50 _{MB} 40 _{MB}	1.5 1.5	2	33.5 <u>—</u> 34.3
	-		33.0 - 38.0	30	93	/8	dips 50° to 65°, recovery loss assumed at 3 33.5' to 35': Light gray, white and pink Mu	3' to 33.3':			*60 _{MB}	1.5	2	35 -
	-						GRANITE; gneissic towards the bottom, co fine grains of quartz, feldspar, biotite and r	parse to			*55 _{MB}	1.5	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	35.3 35.9
	-						slightly weathered, strong, moderate fractu C-2: 38' to 42.05': Gray SCHIST, coarse to	re spacing.	I/II	R3/R5	*60 _{MB} *60 _{MB}	1	2 2 2 3 2 2	36 - 37.3
	-						C-2: 38' to 42.05': Gray SCHIST, coarse to grains of quartz, feldspar, biotite and musc	fine ovite	1,11	10,10	$*60_{MB}$	1		38 -
	<del>- 40</del>		C-2	60	100	98	slightly weathered, medium strong, modera spacing except extremely close fracture spa	te fracture			*60 _{MB}	1 1	2 2	38.7_
5/15	-		38.0 - 43.0	00	100	90	38.7' to 38.75';	· ·			$*60_{MB} \ 20_{MB}$	1 3	1 1	39.6 - 40.7
PB CORING LOG HUDSON YARD ROCK.GPJ CANARSIE-LIB.GLB - COPY.GLB 10/25/15	-						42.05' to 43': Gray QUARTZ, coarse to find of quartz, fresh, very strong, close fracture	ne grains spacing.			$30_{\mathrm{MB}}$	1.5	1	42.05
GLB.	-						C-3: 43' to 43.95': Gray SCHIST, coarse to		II	R3	$30_{\rm MB}$	1	1	42.5 -
SOPY	-						grains of quartz, feldspar, biotite and musc slightly weathered, medium strong, modera	ovite,			$30_{\mathrm{MB}}$ $30_{\mathrm{MB}}$	1.5 1	1 6	43 43.1
LB-(	<del></del> 45		C-3	58	97	97	spacing except extremely close fracture spa				$\frac{30}{40_{\mathrm{MB}}}$	1.5 1	2 6	43.15_ 43.95
-IB.G	-		43.0 - 48.0	50	"	"	to 43.15', schistosity dips 60°; 43.95' to 48': Light gray-green to pink Mus	covite			$30_{\mathrm{MB}}$	1	6	44 -
SIE-I	-						GRANITE, medium to fine grains of quart	z, feldspar,			25 _{MB}	1.5	1	45.5
ANAF							muscovite and sparse garnet, in some areas grained, fresh, strong, moderate to wide fra	cture	I/II	R4	15 _{MB}	1.5	1	48 -
J. C.	-						spacing, healed fractures dipping 55°. C-4: 48' to 50': Light gray-green to pink M.	luscovite			- WID			-
K.G	<del>- 50</del>		C-4	60	100	97	GRANITE, medium to fine grains of quart	z, feldspar,			$10_{\mathrm{MB}}$	1.5	2.	50
) ROC	-		48.0 - 53.0	00	100	97	muscovite and sparse garnet, in some areas grained, fresh, strong, wide fracture spacin	g;			*55 _{MB}	1	2 2	50.1 -
YAR	-						50' to 53': Gray SCHIST, coarse to fine gra quartz, feldspar, biotite and muscovite, slig				*65 _{MB}	1.5	1	51.4
SON	-						weathered, strong, moderate fracture spacing	ng except	П	R3	*60 _{MB} 30 _{MB}	1 1	2 6	52.2
HUD	-						extremely close fracture spacing at 50' to 5 schistosity dips 55° to 65°.		"		*65 _{MB}	1	2	53.1 -
10G	<b>- 55</b>		C-5	59	98	67	C-5: Gray SCHIST, coarse to fine grains of feldspar, biotite and muscovite, slightly we	f quartz, athered			"55 _{MB} 20 _{MB}	1 2	1 2	53.9 54.45
SING	-		53.0 - 58.0	39	98	0/	medium strong, very close to moderate frac	ture			*65 _{MB} 85 _{MB}	1 3	1 2	54.8 _ 56.1
COR	-						spacing, schistosity dips 55°, quartz-feldsp 56.8' to 57.3'.	ar band at				_		-
В											*65 _{MB}	1.5	4	57.2

## The Gateway Trans-Hudson Partnership

## **CORING LOG**

BORING NUMBER: SEG-3-6T

SHEET NUMBER: 2 of





(continued)

CONTRACTOR: ADT

DRILLER: Dominick Pepe, George Raymon

INSPECTOR: Juan Zapata Jr.

PROJECT NUMBER: 4016879

PROJECT: AMTRAK Hudson Yards

LOCATION: 30th St., 11th Ave., New York, NY

CLIENT: AMTRAK

PB CORING LOG HUDSON YARD ROCK.GPJ CANARSIE-LIB.GLB - COPY.GLB 10/25/15

	min)	-: 🔾				DECODIDETION AND DEMARKS			DIS	CONTI	NUITY	DATA
DEPTH (feet)	CORING RATE (ft/min)	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS (Lithology, Structure, Weathering, Continuity, Strength, Color, Grain Size)  * - Denotes discontinuity along foliation  MB - Denotes mechanical break	WEATHERING	STRENGTH	ANGLE (deg)	Ļ	Jа	DEPTH (feet)
- 60 -		C-6 58.0 - 63.0	58	97	92	C-6: Gray SCHIST, coarse to fine grains of quartz, feldspar, biotite, muscovite and sparse garnet with quartz and feldspar lenses up to 1" thick, slightly weathered, medium strong, moderate fracture spacing except close fracture spacing at 58' to 58.5'.	II	R3	$\begin{array}{c} 10_{\text{MB}} \\ 10_{\text{MB}} \\ *65_{\text{MB}} \\ 85_{\text{MB}} \\ 30_{\text{MB}} \\ 20_{\text{MB}} \\ 75_{\text{MB}} \\ *60_{\text{MB}} \end{array}$	1.5 1.5 1.5 3 1 1 2 1.5	2 2 4 2 6 6 2 2 2	57.35 57.5 - 57.6 57.8 - 58 - 58.2 58.5 - 59.6
- 65 -		C-7 63.0 - 68.0	60	100	77	C-7: Gray SCHIST, coarse to fine grains of quartz, feldspar, biotite, muscovite and sparse garnet with quartz and feldspar lenses up to 1" thick, slightly weathered, medium strong except medium strong to weak at 65.4' to 65.8', very close to moderate fracture spacing except extremely close fracture spacing at 65.6' to 65.8', schistosity dips 65° to 70°.	П	R2/R3	65 _{MB} 30 _{MB} 55 _{MB} 65 _{MB} 10 _{MB} 30 _{MB} 40 _{MB}	1.5 1.5 1.5 3 1 1 1	2 2 2 6 6 6 6	61.2 - 63 - 63.3 - 64.9 - 65.4 - 65.6 65.65 - 65.7
- - 70 -		C-8 68.0 - 73.0	59	98	90	C-8: 68' to 72.5': Gray SCHIST, coarse to fine grains of quartz, feldspar, biotite, muscovite and sparse garnet with quartz and feldspar lenses up to 1" thick, slightly weathered, medium strong, moderate to wide fracture spacing except close fracture spacing at 68' to 68.4', schistosity dips 65° to 75°, quartz bands at 71.9' to 72.5'; 72.5' to 73': Light gray-Muscovite GRANITE,	П	R3/R4	$\begin{array}{c} 40_{\text{MB}} \\ 25_{\text{MB}} \\ 50_{\text{MB}} \\ 20_{\text{MB}} \\ 40_{\text{MB}} \\ 0_{\text{MB}} \\ 50_{\text{MB}} \end{array}$	1.5 1.5 3 2 1 15 1.5	2 2 2 1 6 2 1	65.75 - 66 - 67.8 - 68.1 - 68.4 - 70.8 -
- - 75 -		C-9 73.0 - 78.0	59	98	93	medium to fine grains of quartz, feldspar, muscovite and sparse garnet, slightly weathered, strong, close fracture spacing.  C-9: 73' to 76.2': Gray SCHIST, coarse to fine grains of quartz, feldspar, biotite, muscovite and garnet, slightly weathered, strong. wide fracture spacing except very close fracture spacing at 76' to 76.2', schistosity dips 45° to 50°; granitic band at 73.2' to	I/II	R4	40 _{MB} 50 _{MB}	1.5	1 1	72.5 - 73 - - -
- 80 - -		C-10 78.0 - 83.0	60	100	100	73.5'. 76.2' to 78': Light green-gray Muscovite GRANITE, coarse to fine grained quartz, feldspar, muscovite, epidote (?), chlorite and sparse garnet, slightly weathered to fresh, strong, close to moderate fracture spacing. C-10: 78' to 78.8': Light green-gray Muscovite GRANITE, coarse to fine grained quartz, feldspar, muscovite, epidote (?), chlorite and sparse garnet,	I/II	R4				- - - -
- 85 - -						slightly weathered to fresh, strong, moderate fracture spacing; 78.8' to 83': Gray SCHIST, coarse to fine grains of quartz, feldspar, biotite, muscovite and garnet, slightly weathered, strong, close to wide fracture spacing, schistosity dips 70° to 75°. End of boring at 83' bgs.						- - - - -
- 90 - -												- - -

													BORING	NUMBE	R:SEG 4	I-4T	
PA	R	50	N	Ş		HOFF	<b>.</b> B0	ORI	NG	i LC	)G			NUMBER			3
BR	IN	CI		=	31	HOFF							PROJEC	CT NUMB	ER:4016	6879	
	_					ds Phase I			- <del></del>				LOCATION	ON: 30th	St., 12th	Ave., Ne	w York
					12t	h Ave., No	ew Yo	rk, NY					COORD	NY			
CLIEN ^T													STN. NO		C	FFSET:	
DRILLE						ne								) CE ELEV.:	_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
						nolly/Jua	n Zapa	ata					DATUM:		-		
						tary Was							START	DATE: <b>3</b> /1	9/15 T	TME: 9:00	0 am
RIG TY	PE:	C	M	E-7		truck mo			matic !	Hamm	er		FINISH I	DATE: 3/2	4/15 T	IME: 10:	00 am
			Ca	sing	1	Split Spoon	Shelby	Tube	Pitcher	Gra	-	Core Barrel		GROUN	NDWATER		
Type/S	ymbo	ol 📙	Н	IW		S	U [		PΩ	G [		С			Water Depth	Casing Depth	Hole Depth
I.D.			4	4"		1.375"	2.93	8	"			2.155"	Date	Time	(ft)	(ft)	(ft)
O.D.			4	.5"		2"	3		"			2.98"	3/23/2015	7:26:00 AM	11.1	35	93
Length			9	94		24"	30		"			60"	4/7/2015	7:23:00 AM	8	94	133
Hamme	er Wi	t.	14	0 lb		140 lbs	Dı	ill Rod S	Size		NV	V					
Hamme	er Fa	II 🗌	3	30"		30 in.		.D. (O.D	).)	2	2.25" (2	.625")					
	ניז				SA	MPLE		SOIL	. (Blows	/6 in.)							
DEPTH (feet)	3RAPHIC LOG	ws/ft)	Γ			t)	0/6	6/12	12/18	18/24	REC						
EPTH	APHI	G (Blo		ËE	ا ا	н (fee			CORING	3	()	┫ FII	ELD CLAS	SSIFICAT	ION ANI	O REMAF	RKS
ă	GR	CASING (Blows/ft)	TYPE	NUMBER	SYMB	DEPTH (feet)	RUN (in.)	REC. (in.)	REC.	L>4" (in.)	RQE	Depth Elev.					
			G		\	0.0 - 6.0	()	()	,,,	(,	,,	1	Hand augere	ed to 6'.			
-			1		$\mathbb{N}$								0-0.5': Asph 0.5'-5.5': Bro fragments, o	alt. own SAND, :	some Silt, f	requent bric	k
-			1		IV								fragments, o fragments (F	ccasional fab	oric, occasio	onal wood	
-			1		I Å								5.5'-6.0': Bri	ck fragments	s (Fill).		
			1														
<del>-</del> 5			1		1												-
-			S	1		6.0 - 8.0	76	3	3	3	12		S-1: Brown				
-			1										brick fragments, lo			occasional w	rood
-			S	2		8.0 - 10.0	5	4	4	2	4		Note: Brick	layer at first	6". [´]	C:14	-4
-			1										S-2: Brown a brick fragme				
<del></del> 10			$\frac{1}{S}$	3		10.0 - 12.0	5	2	5	6	4		moist (Fill). S-3: Brown	fine GR AVE	T and fine	to coarse S	and
_			1										trace Silt, fre	equent brick t	fragments,	occasional v	vood
-			1										fragments, lo	oose, moist (l	Fill).		
_			ł														
-			┨														
<del></del> 15			$\frac{1}{s}$	4		15.0 - 17.0	WOH	WOH	WOH	WOH	14		S-4: Brown	SILT. some S	Sand. verv	soft, moist (	ML).
-			┨	'		17.0	511						2101111	, 501110 1	, <b>, , , ,</b>	,	<i>)</i> .
-			+														
-			ł														
-			$\dagger$														
— 20 -			s	5		20.0 - 22.0	WOH	WOH	WOH	WOH	24		S-5: Gray an very soft, we		y CLAY, tı	race fine Sar	nd,
_			U	1		22.0 - 24.0							U-1: Shelby	tube.			
<b>-</b>			$\left.\right _{\mathrm{S}}$	6		24.0 - 26.0	WOH	WOH	WOH	WOH	20						
- - 10 - - - - 15 - - - - 20 - -			Ľ	L		23 20.0	011	., 011	,, 011	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							

## PARSONS BRINCKERHOFF **BORING LOG** (continued)

BORING NUMBER: SEG 4-4T

SHEET NUMBER: 2 of

PROJECT: Hudson Yards Phase II

LOCATION: 30th St., 12th Ave., New York, NY

CLIENT: AMTRAK

PROJECT NUMBER: 4016879 CONTRACTOR: ADT

**DRILLER:** Dominick Pepe

INSPECTOR: Brian Connolly/Juan

DEPTH (feet)	.s/ft)	$\downarrow$	_	5	SAN	MPLE		SOIL	(Blows/	6 in.)				
TH (fee	),   ,	- 1	SAMPLE SOIL (Blows/6 in.)  0/6 6/12 12/18 18/24 REC.							,				
<u>_</u>	2   8	(in.)										FIELD CLASSIFICATION AND REMARKS		
EP.	(B) 5			BER	30L	гн (fe		(	CORING	6		FIELD CLASSIFICATION AND REWARKS		
	CASING (	Ž	7	∑ O N	SYMI	DEP	RUN (in.)	REC. (in.)	REC. %	L>4" (in.)	RQD %	Depth Elev.		
		1										S-6: Gray and brown Silty CLAY, trace fine Sand, very soft, wet (CL).		
- 30	S 7 30.0 - 32.0 WOH WOH WOH 20								S-7: Dark gray Clayey SILT, trace fine Sand, very soft, wet (CL).					
- 35			S	8		35.0 - 37.0	WOH	WOH	WOH	WOH	24	S-8: Dark gray Silty CLAY, trace fine Sand, frequent decomposed marine material, very soft, wet (CH/OH).		
40			S	9		40.0 - 42.0	WOH	WOH	WOH	WOH	24	S-9: Dark gray Silty CLAY, trace fine Sand, occasional decomposed marine material, very soft, wet (CH/OH).		
45			S	10		45.0 - 47.0	WOH	WOH	WOH	WOH	24	S-10: Dark gray Silty CLAY, little fine Sand, occasional decomposed marine material, very soft, wet (CH/OH).		
50			S	11		50.0 - 52.0	WOH	WOH	WOH	2	22	S-11: Dark gray Silty CLAY, little fine Sand, occasional decomposed marine material, very soft,		
												wet (CH/OH).		
55		S 12 55.0 - 57.0 WOH WOH WOH WOH 24						WOH	WOH	S-12: Dark gray Silty CLAY, trace fine Sand, occasional decomposed marine material, very soft, wet (CH/OH).				

## PARSONS BRINCKERHOFF **BORING LOG** (continued)

BORING NUMBER: SEG 4-4T

SHEET NUMBER: 3 of

PROJECT NUMBER: 4016879

PROJECT: Hudson Yards Phase II

LOCATION: 30th St., 12th Ave., New York, NY

CLIENT: AMTRAK

CONTRACTOR: ADT

**DRILLER:** Dominick Pepe

INSPECTOR: Brian Connolly/Juan

			_									Zapata
æ	ပ္ခ			;	SAI	MPLE		SOIL	(Blows/	6 in.)		
DEPTH (feet)	GRAPHIC LOG	(Blows/ft)				et)	0/6	6/12	12/18	18/24	REC. (in.)	
EPT	SAPH	1G (B)		3ER	30L	H (fe		(	CORING	;		FIELD CLASSIFICATION AND REMARKS
	G.	CASING (	TYPE	NUMBER	SYME	DEPTH (feet)	RUN (in.)	REC. (in.)	REC.	L>4" (in.)	RQD %	Depth Elev.
			S	13		60.0 - 62.0	WOH	WOH	WOH	WOH	24	S-13: Dark gray Silty CLAY, trace fine Sand, occasional decomposed marine material, very soft, wet (CH/OH).
- 65			S	14		65.0 - 67.0	WOH	WOH	WOH	WOH	24	S-14: Dark gray Silty CLAY, trace fine Sand, occasional decomposed marine material, very soft,
- 70			S	15		70.0 - 72.0	WOH	WOH	WOH	WOH	24	wet (CH/OH).  S-15: Dark gray Silty CLAY, trace fine Sand,
- 75												occasional decomposed marine material, very soft, wet (CL/OL).
75			S	16		75.0 - 77.0	WOH	WOH	WOH	WOH	21	S-16: Dark gray Silty CLAY, trace fine Sand, occasional decomposed marine material, very soft, wet (CL/OL).
80			S	17		80.0 - 82.0	1	2	2	7	24	S-17: Dark gray Silty CLAY, trace fine Sand, medium stiff, wet (CL-ML).
85			S	18		85.0 - 87.0	2	6	6	9	0	S-18: No recovery.
- 90			S	19		90.0 - 90.5	100/6"				3	S-19: Dark gray to black fine to coarse SAND, and fine to coarse Gravel, very dense, moist (Completely weathered bedrock).
									End of boring at 93'.			

								BORING	NUM	BER:	SEG 4	4-4T		
	PAF	25	ONS			C(		SHEET	NUME	BER:_	1	0	f	2
	BRI	NC	KEF	RHO	F		ORING LOG	PROJEC	T NU	MBFI	R: 4016	6879		
	PROJEC	T: H	udson Ya	rds Ph	ase I	I		LOCATION				3077		
			30th St., 1				rk, NY							
	CLIENT:							COORD						
	CONTRA							STN. NC			(	OFFSI	ΞT:	
			minick P	-		-		SURFAC		EV.:				
			: <b>Brian C</b> o ETHOD:				ta	DATUM:		2/10	/1 <i>=</i> T	-1845.	0.00	
							ıtomatic Hammer	START I						
	NIG I II	L. C.	WIE-75 (t	I UCK III	ount	cuj, A	itomatic Hammer	I IIVIOITE			WATER			am
	COPE B	۱DDI	EL DATA:			NOTE	:e.				Water	Cas		Hole
			Tube Swivel			NOIL		Date	Time		Depth (ft)	Dep (ft	oth	Depth (ft)
	CORE S							Date	11111	E	(11)	(11	<del>)</del>	(11)
	O.D.: 2.9		INA											
	I.D.: 2.16											-		
			E: 3" (3.5")											
	CASING		<u>=: 3" (3.5")</u>								DIC	CONTU	U UTV	DATA
	_	(ft/min)	o,€	(u	( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (		DESCRIPTION AND REMARK	S	(D		DISC	CONTI	NUITY	DATA
	DEPTH (feet)	E (#	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	(%)	(Lithology, Structure, Weatherin Continuity, Strength, Color, Grain	ig, Sizo)	WEATHERING	STRENGTH	(g			) <del>(i</del>
	) H	₹AT	RUI	VER	ÆR	() Q	• •	·	里	NEN O	ep)			(fec
	EPT	<u>6</u>	A O	S	8	RQD	* - Denotes discontinuity along foli	ation	EAT	STR	ANGLE (deg)	٦	Ja	DEPTH (feet)
		CORING RATE	SA	R	"		MB - Denotes mechanical brea	ık	≥	0,	Ā			DE
		ŏ					C-1: Gray SCHIST, medium to coarse grai	nad frash						
	-						medium strong to strong, very close to mod	derate						
	<del>-</del> 95		C-1				fracture spacing, foliation dips 25°-70°, robreak along foliation, quartz and feldspar b	ck tends to						-
	=		93.0 - 98.0	56	93	80	96.6'-96.9'.							
	-													
	-						C. 2. C. CCUHCT. II. 4	1.6.1						
	_						C-2: Gray SCHIST, medium to coarse grain medium strong to strong, very close to wid	e fracture						
	<b>– 100</b>		C-2				spacing, foliation dips generally 70°, rock break along foliation, quartz and feldspar b	tends to						_
	-		98.0 - 103.0	60	100	92	2" thick.	ands up to						
	_		105.0											
/15	_													
5/13	_						C-3: 103'-103.7' & 105.7'- 108.0': Light gr gray garnet-biotite-muscovite SCHIST, me	ay and						
GLB	- 105		C-3				grained, fresh, medium strong, close to mo	derate						
GLB.	_ 105		103.0 -	59	98	92	fracture spacing except extremely close fra spacing at 106.1'-106.25'.	cture						
:-LIB	-		108.0				103.7'-105.7': Light brown granitic GNEIS	SS, fresh,						
RSIE	_						strong, moderate fracture spacing.							
CANA	_						C-4: Gray SCHIST, medium to coarse grain	ned, fresh,						
3PJ (	-						medium strong to strong, close to wide frac spacing, foliation dips 65°-75°, rock tends							
O.X	<del></del> 110		C-4 108.0 -	60	100	97	along foliation.							-
D RC	_		113.0											
YAR	-													
PB CORING LOG HUDSON YARD ROCK.GPJ CANARSIE-LIB.GLB.GLB 5/13/15	-						C-5: Gray SCHIST, medium to coarse grai	ned, fresh,						
HUL	_						medium strong to strong, close to moderate spacing, foliation dips 60°-65°, rock tends	e fracture						
LOG	<del></del> 115		C-5 113.0 -	60	99	90	along foliation.	W DIEAK						-
SING	_		118.0	00	"	30								
COR	_													
В														

Boring No. SEG 4-4T Sheet 1 of 2

## PARSONS BRINCKERHOFF CORING LOG (continued)

BORING NUMBER: SEG 4-4T
SHEET NUMBER: 2 of 2

PROJECT NUMBER: 4016879

PROJECT: Hudson Yards Phase II

LOCATION: 30th St., 12th Ave., New York, NY

CLIENT: AMTRAK

CONTRACTOR: ADT

DRILLER: Dominick Pepe

INSPECTOR: Brian Connecy/Juan

									<b>Zapat</b>	a	•		
	nin)										CONTI	NUITY	DATA
DEPTH (feet)	CORING RATE (ft/min)	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARK: (Lithology, Structure, Weatherin Continuity, Strength, Color, Grain \$  * - Denotes discontinuity along folia  MB - Denotes mechanical break	g, Size) ation	WEATHERING	STRENGTH	ANGLE (deg)	Jr	Ja	DEPTH (feet)
- 120 - -		C-6 118.0 - 123.0	60	100	85	C-6: Gray SCHIST, medium to coarse grain slightly weathered to fresh, medium strong, moderate fracture spacing except at 122.0-foliation dips 60°-65°, rock tends to break a foliation planes.	, close to 122.35',						-
- - 125 - -		C-7 123.0 - 128.0	60	100	86	C-7: Gray and light gray garnet-biotite-mus SCHIST, medium to coarse grained, fresh, strong, very close to moderate fractrue space foliation dips 50°-65°, rock tends to break a foliation planes, 1-1/4′ thick quartz band at	medium eing, along						- - - -
- - 130 - -		C-8 128.0 - 133.0	60	100	97	C-8: Gray SCHIST, medium to coarse grain medium strong to strong, close to moderate spacing, foliation dips 45°-65°, rock tends along foliation planes.	fractrue						- - - -
- - 135 - -		C-9 133.0 - 138.0	60	100	72	C-9: Gray SCHIST, medium to coarse grain medium strong to strong, close to moderate spacing, foliation dips 45°-65°, rock tends along foliation planes, frequent quartz and bands and lenses up to 1" thick.	fractrue to break						- - - -
E-LIB.GLB.GLB 5/13/15		C-10 138.0 - 141.0	35	97	75	C-10: Dark to light gray garnet-biotite-mus SCHIST, medium to coarse grained, fresh, strong, very close to moderate fractrue space pegmatite band at 138.95'-139.75', foliation observed, dips 45°-65° (centered in places). End of coring at 141'.	medium eing,						_ _ 
PB CORING LOG HUDSON YARD ROCK.GPJ CANARSIE-LIB.GLB.GLB.GLB.GLB.GLB.GLB.GLB.GLB.GLB.GL													-
PB CORING LOG HUDSON													-

Г					arso	ons							BORING	NUMBE	R: <b>NW-5</b>	В	
				=		kerhoff	D/	)DI	ING	10	2		SHEET	NUMBER	::1	of	2
					Quac		יט		IING		JG						
Ļ			100 YEARS			las, Inc.								T NUMB			
						hase II ırds, New Y	Vork 1	NV					LOCATION	ON: Unde betw	er 11th A 30th an	ve. overj d 33th Si	pass,
	CLIENT			usu	11 1 2	iius, new	1 UI K, 1	11					COORD	. not surv		u som si	.,, 1110
	ONTF			: W	ΊGΙ								STN. NC		•	FFSET:	
	RILLE													CE ELEV.	:		
						amoglu							DATUM:				
						otary Was		ia)					1	DATE: 1/1 DATE: 1/1			
۲	iiG i i	Г <u>С.</u> Ј	JK.		sing	Split Spoon	_	-	Piston	Gra	ab (	Core Barrel	FINISH		NDWATER		o piii
$   _{T}$	ype/Sy	vmbo			9	S	U		PΝ	G		С			Water	Casing	Hole
	D.	,		3	3"	1.375"			- Ц			2.16"	Date	Time	Depth (ft)	Depth (ft)	Depth (ft)
	).D.			3.	.5"	2"						2.98"	1/9/15	6:20 pm	5.6	10.0	10.0
- 1	ength					24"						5'	1/19/15	10:15 am	6.0	44.0	58.2
	lamme	er Wt		N	/A	140 lbs	Dı	rill Rod	Size		N						
Ιн	lamme	er Fa	II 🗀	N	I/A	30 in.		I.D. (O.I	D.)		2" (2.3	75")					
					S	AMPLE		SOII	L (Blows/	6 in.)			•				•
	eet)	OG	)/ft)	H			0.10	0/40	10/10	10/04	REC.	_					
	Ή.	$\stackrel{\square}{=}$	Slows			eet)	0/6	6/12	12/18	18/24	(in.)		ELD CLAS	SSIFICAT	ION AND	) REMAF	RKS
	DEPTH (feet)	GRAPHIC LOG	NG (E	l	BER	H (fe			CORING	}							
		9	CASING (Blows/ft)	TYPE	NUMBER	DEPTH (feet)	RUN (in.)	REC. (in.)	REC.	L>4" (in.)	RQD %	Depth Elev.					
				T			, ,	,		,			Cleared for u	itilities with	by hand/vac	etron to 10'	bgs.
Ī																	
23/15	5					0.0 - 10.0											_
- B						0.0 10.0											
68.G																	
Ü.				1													
ENC				1													
ARD	10			-									N. D.				_
<u></u>				S	1	10.0 - 12.0	41	41	50	40	0		No Recovery	/.			
STRE				┨									S-2A: Gray S	Siler CLAV	at tan 1" at	iff maist (C	ч )
18TH				S	2	12.0 - 14.0	10	16	9	7	3		S-2B: Gray t	o grayish br	own, fine to	coarse SAN	√Ď,
<u>2</u>				┨									some fine gr (SM) at botte				t
AY.G	15			┨									S-3 Gray CL	AY soft m	oist (CL)		-
ATEM				S	3	15.0 - 17.0	2	3	5	7	24		19': possible		0150 (02).		
				┨													
۳ ۳				1													
SCAI				1													
EH-	20			1									S-4 Brown to	o light grayis	sh brown SI	LT, stiff, m	oist –
GRA				S	4	20.0 - 22.0	8	9	13	12	12		(ML).				
0/M				1													
PB BORING W/O GRAPHIC SCALE NEW GATEWAY.GPJ 148TH STREET YARD FENCE LOGS.GLB 1/23/15				1													
PB BK				1													

Boring No. NW-5B Sheet 1 of 2

	Parsons
	Brinckerhoff
	Quade &
100 YEARS ®	Douglas, Inc.

# BORING LOG (continued)

BORING NUMBER: NW-5B

SHEET NUMBER: 2 of

PROJECT NUMBER: 187625A

RACTOR: WGI ER: C. Moreira

INSPECTOR: Baris Imamoglu

PROJECT: Gateway, Phase II	CONTRA
LOCATION: Hudson Yards, New York, NY	DRILLER

CLIENT: TPC

	Ō	_		;	SAI	MPLE		SOIL	. (Blows/	6 in.)		
DEPTH (feet)	GRAPHIC LOG	CASING (Blows/ft)				et)	0/6	6/12	12/18	18/24	REC. (in.)	
EPTF	RAPH	NG (BI	ļ	BER	BOL	DEPTH (feet)			CORING	}		FIELD CLASSIFICATION AND REMARKS
Ц	g	CASII	TYPE	NUMBER	SYMBOL	DEP'	RUN (in.)	REC. (in.)	REC. %	L>4" (in.)	RQD %	Elev.
			S	5		25.0 - 27.0	24	30	27	29	16	S-5 Reddish brown fine to coarse SAND, and silt, trace fine gravel; medium dense, moist (SM).
- 30			S	6		30.0 - 31.3	43	78	100/3"	-	14	S-6 Brown to reddish brown, fine to coarse SAND, some(+) fine to coarse gravel, trace silt, some rock fragments; very dense, moist (SP).
												End of Boring at 32.0'
- 35			$\ $									
- 40			1									
- 45												
			ł									
- 50												
			1									
- 55												

erpass,
ernass.
rnass.
St., NYC
_
Γ:
.00
:00 am 1:10 am
1.10 am
Hole
Depth (ft)
10.0
58.2
30.2
 JITY DATA
JIII DAIA
et)
Ja TH (fe
Ja DEPTH (feet)
_
-
-
_

Boring No.

NW-5B

Sheet 1

of

<b>NA</b>	Parsons
	Brinckerhoff
	Quade &
100 YEARS ®	Douglas, Inc.

LOCATION: Hudson Yards, New York, NY

PROJECT: Gateway, Phase II

CLIENT: TPC

# CORING LOG (continued)

BORING NUMBER: NW-5B SHEET NUMBER: 2 of __

PROJECT NUMBER: 187625A

CONTRACTOR: WGI DRILLER: C. Moreira

INSPECTOR: Baris Imamoglu

	OLILIVI.							""		24115		- 8		
		)/ft)						•			DIS	CONTI	VUITY	DATA
	DEPTH (feet)	CORING RATE (min/ft)	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARK (Lithology, Structure, Weatherin Continuity, Strength, Color, Grain S	ng, Size)	WEATHERING	STRENGTH	ANGLE (deg)	٦L	Ja	DEPTH (feet)
	60 - -						slightly undulating. Four 0°-30° cross joint to slightly rough, planar to wavy with fresh 56'-58.16': Light gray to light brown, Quar Feldspar PEGMATITE; fresh, very strong, fracture spacing. No joints. End of coring at 58.2' bgs.	s, smooth n surfaces. tz and moderate						-
	- 65 - -													- - -
/15	- 70 - -													- - - -
148TH STREET YARD FENCE LOGS.GLB 1/23/15	- 75 - -													- - - -
_	Γ													- - - -
55TH STREET CORING LOG (PB) NEW GATEWAY.GP.	- 85 - - -													-
55TH STREET CORING LO	- 90 - -								NINY A		- Ci			- - -

														•				
				F	ars	sor	าร							BORING				
				=			erhoff	R	)RI	NG	10	C		SHEET	NUMBER	R:1_	of	2
			100		Qua					110								
			100 YEARS			_	as, Inc.							PROJEC				
	PROJE						ase II ds, New Y	Jouls N	IV/					LOCATION			ve. overp d 33th St	
	CLIENT			uso	II Y	ar	us, new	tork, I	N I					COORD.			u ssii si	., 1110
	CONTR			: W	GI									STN. NC		•	FFSET:	
	DRILLE													SURFAC	E ELEV	:306.3 fe	eet	
	INSPE	CTO	۲: L	. Se	pul	ve	da							DATUM:				
							tary Was							START [				
	RIG TY	PE: I	DK:		_	_	el fueled t				T -			FINISH [				80 am
			.  -	Cas	sing	-	Split Spoon			Piston	Gra	-	Core Barrel		GROUI	NDWATER Water		Hole
	Type/S	ymbo	)  -			_	S	U		PΩ	G	<u> </u>	C	-		Depth	Casing Depth	Depth
	I.D.				;"		1.375"						2.16"	Date	Time	(ft)	(ft)	(ft)
	O.D.			3.	5"		2"						2.98"	12/22/14	7:55 am	6.7	9.0	9.0
	Length					4	24"						5'	12/22/14	7:00 pm	6.6	9.0	9.0
	Hamme				/A		140 lbs		ill Rod S			N						
	Hamme	er Fa	II	N	/A		30 in.	I	.D. (O.E	0.)		2" (2.3	75")					
	_	ני			5	SAN	MPLE		SOIL	(Blows/	6 in.)							
	feet)	ΡŎ	/s/ft)				_	0/6	6/12	12/18	18/24	REC.	1					
	) H	일	Blow				feet)	0,0	0,			(in.)	- FIE	ELD CLAS	SIFICAT	ION AND	REMAR	RKS
	DEPTH (feet)	GRAPHIC LOG	NG (	<b>.</b>	BEF	B	.) H			CORING	<b>;</b>							
		Ŋ	CASING (Blows/ft)	TYPE	NUMBER	SYMBOL	DEPTH (feet)	RUN (in.)	REC. (in.)	REC. %	L>4" (in.)	RQD %	Depth Elev.					
	_																	_
GLB 1/23/15	<del>-</del> 5																	
B 1/																		-
3S.GI	_																	
∃ LOC	_																	-
ENCI																		-
RD F	<del>-</del> 10			-S	1		9.0 - 11.0	16	3	4	4	13		S-1 Top 5": 0 trace fine gra	Gray fine to vel. wet (SI	medium SA √).	ND, some s	ilt,
≘T Υ	_ 10				Î		7.0 11.0	10	3			15		Bottom 8": R interlayered	ed brown S	ILT, little(+	) fine sand,	ice(-)
TRE	_													fine to medic	ım gravel (N	ЛL).	ie(+) siit, tra	.ce(-)
зтн §	_													Note: Drove	casing to 14	ľ.		-
J 148	_																	
Y.GP	<del>-</del> 15			-S	2		14.0 - 16.0	18	12	15	17	0		S-2 No recov	ery due to o	coarse GRA	VEL lodged	ın _
-EWA	-						- 110				-,			•	arr == 11. 1			
V GAT	_			-S	3		16.0 - 18.0	2	6	8	9	6		S-3 Dark gra trace shell fra			(+) fine san	d, -
NEV	L				-				-					PP up to 0.25		*		-
PB BORING W/O GRAPHIC SCALE NEW GATEWAY.GPJ 148TH STREET YARD FENCE LOGS.	-			- _S	4		19.0 - 19.4	100/5"	_	_	_	2		S-4 Dark gra	vCI AV 16	ttle gilt som	e fine sand	trace .
HICS	<del>-</del> 20			$ \tilde{\ } $								_		shell fragmer	nts, wet (CL	<i>a</i> ).		
3RAP	-			+										Note: Rolled 3-inch casing	g and set at	depth 19.5'	nent, telescop	bed .
0//0	-			- _S	5		21.5 - 23.5	12	14	19	20	10		19.4-20.5' Bo S-5 Brown fi	oulder (2.75	mins/ft).	ense wet	-
ING \	-			+ ³	J		21.3 - 23.3	12	14	19	20	10		micaceous (S		siit, de	, 1101,	-
BOR	-			+														-
뷥				1	1			Ī			l	1	1					

	Parsons
	Brinckerhoff
	Quade &
100	Douglas, Inc.

LOCATION: Hudson Yards, New York, NY

PROJECT: Gateway, Phase II

# BORING LOG (continued)

BORING NUMBER: WW-2

SHEET NUMBER: 2

PROJECT NUMBER: 187625A

CONTRACTOR: WGI DRILLER: C. Moreira

SAMPLE   SOIL (Blows/6 in.)   Tolk   SOIL (Blows/6 in.)   Tolk   SOIL (Blows/6 in.)   Tolk   SOIL (Blows/6 in.)   Tolk   SOIL (Blows/6 in.)   Tolk   SOIL (Blows/6 in.)   Tolk   SOIL (Blows/6 in.)   Tolk   SOIL (Blows/6 in.)   Tolk   SOIL (Blows/6 in.)   Tolk   SOIL (Blows/6 in.)   Tolk   SOIL (Blows/6 in.)   Tolk   SOIL (Blows/6 in.)   Tolk   SOIL (Blows/6 in.)   Tolk   SOIL (Blows/6 in.)   Tolk   SOIL (Blows/6 in.)   Tolk   SOIL (Blows/6 in.)   Tolk   SOIL (Blows/6 in.)   Tolk   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil   Soil	CLIEN			450			us, 1 (0 ()	- <b>01 11,</b> 1	, 1					INSPECTOR: L. Sepulveda
S   E   Z   E   B   C(IN)   C(IN)   R/W   Elevi   S-6 Brown SILT, little fine to coarse sand, very dense, moist, slightly micaecous (ML).   Start coring at 30' bgs.		g			;	SAN	MPLE		SOIL	(Blows/	/6 in.)			
S   E   Z   E   B   C(IN)   C(IN)   R/W   Elevi   S-6 Brown SILT, little fine to coarse sand, very dense, moist, slightly micaecous (ML).   Start coring at 30' bgs.	۲ (feet	IC LO	ows/ft)				et)	0/6	6/12	12/18	18/24	REC. (in.)		ILD CLASSIFICATION AND DEMARKS
S   E   Z   E   B   C(IN)   C(IN)   R/W   Elevi   S-6 Brown SILT, little fine to coarse sand, very dense, moist, slightly micaecous (ML).   Start coring at 30' bgs.	DEPT	RAPH	NG (B		BER	BOL	тн (fe			CORING				LED CLASSIFICATION AND REMARKS
S 6 25.0 - 26.0 12 50/6° - 12 S-6 Brown SILT, little fine to coarse sand, very dense, moist, slightly micaceous (ML).  Start coring at 30/bgs.  End of Boring at 30.0'  40 - 45 - 50 - 50		G	CASI	TYPE	NON	SYM	DEP.	RUN (in.)	REC. (in.)	REC. %	L>4" (in.)	RQD %	Elev.	
30 End of Boring at 30.0°  - 40 45 50				S	6		25.0 - 26.0	12	50/6"	-	-	12		S-6 Brown SILT, little fine to coarse sand, very dense, moist, slightly micaceous (ML).
- 40													:	Start coring at 30' bgs.
- 40				$\  \ $										
- 40	-30												End of B	foring at 30.0'
40 45 50				$\  \ $										
- 40														
45 - 50	35			$\  \cdot \ $										
- 45														
- 45														
- 50	- 40			$\  \cdot \ $										
- 50				1										
- 50				$\  \cdot \ $										
- 50	- 45													
	.0			$\  \cdot \ $										
				$\left  \cdot \right $										
- 55	- 50			1										
- 55				$\left\  \cdot \right\ $										
- 55														
	- 55			$\left\  \cdot \right\ $										

		Pars	sons				BORING	NUM	IBER:	WW-	2		
		Brin Qua	ckerho de &		C	ORING LOG	SHEET					of	2
			glas, Ir				PROJEC	T NU	MBE	R: 1870	525A		
LOCATI	ON: I	Sateway, 1 Hudson Y			York, I	NY	LOCATION	b	etw. 3	0th an	ve. o	verpa h St.	ass, NYC
CLIENT							COORD		urve				
		DR: WGI					STN. NC		<b>⊏\</b>		)FFSI	EI:	
		Moreira					SURFAC DATUM:		EV.:3	00.5 10	eet		
		: L. Sepul ETHOD: 1		Was	h		START I		. 12/2	2/1/ T	-IN 11= ·	7.20	n.m
		K 525 (di				ig)	FINISH [	DATE:	12/2	6/14 T	IME:	10:30	
CORE F	ARR	EL DATA:			NOTE	-s.·		GR		WATER Water	Cas		Hole
		Tube Swivel				<del> </del>	Date	Tim		Depth (ft)	Dep (ft		Depth (ft)
CORES							12/22/14	7:55 8		6.7	9.		9.0
O.D.: 2		- 14 5					12/22/14	7:00		6.6	9.		9.0
I.D.: 2.1							12/22/17	7.00	P211	0.0	<del>                                     </del>		7.0
		E: 3" (3.5")											
	(min/ft)						•			DIS	CONTI	NUITY	DATA
et)	E.	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)				WEATHERING	_E	<u> </u>			_ <u>₽</u>
DEPTH (feet)	RATE	NUN FPT	ERY	A	RQD (%)	DESCRIPTION AND REMARK (Lithology, Structure, Weathering)		ÆR	STRENGTH	deg			feet
Ė.	(D)	RE R	ΛOΩ		20 Z	Continuity, Strength, Color, Grain	ig, Size)	ΑŢ	씸	Ē	౼	ے a	Ŧ
	CORING	AND	REC	H				WE	ြ	ANGLE (deg)			DEPTH (feet)
	8												
-						C-1 Gray and white, fine to coarse grained moderately weathered, medium strong to s	SCHIST; trong, close	III	R4				
L		C-1	39	78	46	to moderate fracture spacing. 30'-30.2': coarse gravel sized rock fragmen	_						
		30.0 - 34.2	39	/6	40	30-30.2 . coarse graver sized fock fragmen	IIS.						
157 - 35 - 35						C-2 Gray and white, fine to coarse grained	SCHIST;	II	R4				_
272						slightly weathered, strong, very close to me fracture spacing.	oderate						
3.GLE		C-2 34.2 - 39.2	59	98	80	-							
ÖÖ		34.4 - 39.2											
NOE _													
				$\vdash$		C-3 Gray and white, fine to coarse grained		I	R4				
₩ 40						fresh, strong, close to moderate fracture sp	acing.						_
TEET -		C-3	57	95	95								
TST.		39.2 - 44.2											
48T													
<u>-</u>				$\vdash$		C-4 Dark gray, medium to coarse grained	SCHIST.	Ī	R4				
⁰ / _₹ – 45						fresh, strong, moderate to wide fracture sp	acing.	•					-
- TEW		C-4		0.5	0.5								
V GA		44.2 - 49.2	51	85	85								
Ä-													
(PB)						C 5 Dark gray madium to assume arrived	есшет.	Ī	R4				
[∞] – 50						C-5 Dark gray, medium to coarse grained fresh, strong, moderate fracture spacing.	эспізт;	1	K4				_
- NING		C-5											
00 -		49.2 - 54.2	56	93	93								
- RE													
55TH STREET CORING LOG (PB) NEW GATEWAY.GPJ 148TH STREET YARD FENCE LOGS.GLB 1/23/15  C						C ( Davida annua V )	COLUCT	7/17	D 4				
22.						C-6 Dark gray, medium to coarse grained	SCHIST;	I/II	R4				

Sheet

Boring No.

AA	Parsons
	Brinckerhoff
	Quade &
100 YEARS ®	Douglas, Inc.

LOCATION: Hudson Yards, New York, NY

PROJECT: Gateway, Phase II

# CORING LOG (continued)

BORING NUMBER: WW-2 SHEET NUMBER: 2

PROJECT NUMBER: 187625A

CONTRACTOR: WGI DRILLER: C. Moreira

	CLIENT:			,		- ,		INSPEC ⁻				a		
		in/ft)	-: ~								DIS	CONTI	VUITY	DATA
	DEPTH (feet)	CORING RATE (min/ft)	CORE RUN NO. AND DEPTH (ft)	RECOVERY (in)	RECOVERY (%)	RQD (%)	DESCRIPTION AND REMARKS (Lithology, Structure, Weathering Continuity, Strength, Color, Grain S	S g, Size)	WEATHERING	STRENGTH	ANGLE (deg)	٦٢	Jа	DEPTH (feet)
	- - -		C-6 54.2 - 59.2	56	93	80	fresh to slightly weathered, strong, close to fracture spacing.	moderate						-
	60 - -						End of coring at 59.2'.							- - - -
	- 65 - -													- - - - -
: LOGS.GLB 1/23/15	- 70 - -													- - - -
TH STREET YARD FENCE	- 75 - -													-
NEW GATEWAY.GPJ 148	- 80 - -													- - - - -
55TH STREET CORING LOG (PB) NEW GATEWAY.GPJ 148TH STREET YARD FENCE LOGS.GLB 1/23/15	- 85 - -													-
55TH									**/**/					

## Mueser, Rutledge, Johnston & Desimone Woodward—Clyde Consultants, Inc. Boring Log

SHEET 1 of 4 BORING NO. WE-501 FILE NO. 4840 MUESER, RUTLEDGE, JOHNSTON & DESIMONE WOODWARD-CLYDE CONSULTANTE, INC.

SHEET 3 4 4 BORING NO. NT-501

<b>A</b>							loo	BORIN T CONTR NO	G LOG				HO	4840		-
	110	1	17XE N 197 77	1.0					1.997.98	0.5		DATE		. 5.1 Mactai		1
1		_	نگ ۱۲۰۰	LI,	14.14			749				DATE	STAPTED	11/0		1
CONTRACT					OIGO.							BATE	CDWF	11/10	3/80	-
TABLES A				_	D Take			00	PELFER. F	- Gau	ghen, ?	, 5 <b>,</b> 2	i.h			1
CAMPS D	5	111	PPG#	٥.	0 10 1	٩.	D PT. D	14. 3 6	D 67HEAD	o 154	O #7.					1
Parrame			D-14	w,	.3P: e		ck Gel	20 0 Z 0	h	-		- 44 - 44	<u>14.3-3/</u>	4-2/	111.	1
BAUM MI	6 100°		. U-14	3	28 014	-	, la	1701 -								ĺ
7110 OUR			WICHAI	v.		4.	44 D 10	AULICE	OTHER ()		CDA:	4234	, portp	is Tubi	· ·	ł
6 = 1 = 4 = 1 1 = 4 = 1 = 4						_	300		AVE FALL 30					· · · · ·		1
₩0 01 u-	71/866	0	**	٠	YARD TE	671	0	SIFT F	AOC# 154.0		04PTH T	COM	170.5	4		1
<b>-</b>	_	Т,	427= D/	T.	1 F T 11 D P	<b>B1</b>		ALIVATION	SHOIF AVATES							Į
Days.	7-1	٦.	-014	Į.	ABM6		#16 <b>3</b>	OF TIES			11044 01		4A7104		•	ľ
11/10/6			170.5 170.5	t	153	1	13.2 6.11	-0.1	After cas				t			ł
ļ	Τ.	+		F	-											1
				Ĺ												l
<b>!</b>																
7.414.0 11.400.04	8494		Q   DEP	-	E, Corp.		1	MULI	DEICHUTTON		STRATA	BRPTH	A1	ranig		1
1000	۵	Τ	¥   F			<u>-</u>	<b>;==</b>			<u> </u>		(#3)				ł
1	N W	N			50/0*	_	Conc	zetk.			j	F 2	W - Waj		tapt	
l		Τ.					toul	der			1.8	E :	qu = po		ene-	]
	-2	1	D 3.0	=	45 - 2	14		_	ol bricks.	black	6.3	F 3-		trangth	ia i	ſ
'		Ŧ	7.0		11	Ü,	111	Pice .	el, bricks,	0,11	I all	<u> </u>		er i		
Ī	-17		$\perp$				1				A TE	├ -	* Aspin		oe k	•
Ē	298 23	-	D 10.1		12 - 7	_	L		ayay atle.			10.				l
	12.	7	12		91		red i us	sand, v	g lendes,or	ganic	128	ב ב	H = 53			ĺ
11/05/80 Percly manny.	1	+				_	j		layny aile, ng lembem,or	(HL)	gravel.	┝╶┪				l
8 E .	. 25	١,	0 13.1		a - 3	_			y clay, trac			F 29-	W = 24		•	l
11,725,720		1					in a	and atch	organica	(CIT)	3 %	<b>Է</b> ‡	Use of	drill	lny	l
# 2	$\vdash$			$\dashv$		-		_			177 0	┝╶	#40	it 15'		ļ
!	=	110					<u> </u>				17 .	20-				1
İ		1	72.	,	5 - 2	_	trace	gvl, coal	to wedion : , wd, brick	Fand, (MS)	분홍	<u> </u>	Use of such at	drilli. : 15'	πq	ļ
		+	7-	-		ļ	ł				Organic fine ser	- 7	Attemp	ted up		
	$\equiv$	#	1				•					L 25	¥r 3,	- Ialu	sel	l
1		42	25.1 27.1	Н	1 - 1	-	İ				3	- "-				i
d A	$\sqsubseteq$	- 57	2. 27.4	Ĺ	5 - 4	_	GET,	gray all	, some fine	a arks .	Soft,	- 1	w = 20			
. ,	-	160	29.4	- 1	4 - 3	- 1	•	grayel, c			2 1	⊦ ₃₀ ⊣			:	
ł		Ľ	10.0		9 - 5			trace qu Land, Bhe	ise, modium ils	CC.	Į.	Ի -			. i	ı
		╀	╫	+		$\dashv$					1= 0	F =			į	١.
·		Ţ		1		_		<del></del>	·····		1 4	-35			:	1
		<del>  "</del>			$\frac{1-3}{1-3}$	_	Soft, Súme w	black or-	anic silty :	clay.	4	F -	W = 52	:	;	1
1		-		+		ᆔ	mend			. (OII)	0.0	Γ:	[		-	١.
ţ				1		╛			enic milty (		T OF	t			į	١,
ŀ		41	42.1	4	M8/34	7	Soft,	black or	enic milty :	clay, inh	į į	F":	¥ = 54		:	1
- 1	······	L.	$\top$	7		7		*******	****	.,_	Ħŧ.	ב ב			i	ľ
		<u>t-</u>	$\pm$	<u>+</u>		Ⅎ					≏ جئا	<b>-</b> -	• Dril	At the		l
1530		Į.	1		4 - 1 1 - 1	4	Top: f	X) 6D	ay organic	(CH	12 a e	-65 -		Top		<b>l</b> :
6100		Г	1	1		i	clay,	SP f sand	ay organic     pareings,	60284	1	t :	W - 50	344	•	ľ
. <u>t</u>				t		$\exists$	trace	apejia		(CH		├			}	
		int	50 ( 52 (		4 - 4				genic allty		ł	_∞_	H = 47			ſ'
ļ			1	#	4 - 5		ehells		ckess, bats	inge, (Cii	Į2	<u> </u>	dn = 0		:	Ι.
ŀ			<del> </del>	╀		$\dashv$	•			-	]\$	<b>⊢</b> -			:	ĺ
F		ш	55.0		1 . 1				ganio milty		2	<b>-</b> 55 -	W - 48		i ,	Ι.
ţ			1	1	1.1	I	FIRES	CIDA BAM	, Englis	(OH		<b>Ի</b> -	ļ		•	1 .
ŀ		$\vdash$	<del></del>	+		4					olay, some vegatation	F 1			•	١.
Ţ.		120			1 <u>-1</u>	╛	00 110	, stiff		108	1 2	-60 -	H = 50		1	ĺ
7 1		<del> </del>	-65-0	4	1-1	4						Ε -	qu = 1	.0		١,
2 8				1		ゴ					P.S.	ב ב			!	;
11/06/80 Berny, cool		110	65.0	╁	MŘ/24*	┩	St141	Auch ord	y organic e	(21-	silty shells,	-65 <del>-</del> -	₩ <b>~</b> 43		i	
ž i F		П	67.5						and, amplie		2 2	Ι.	qu ≥ 1		!	
ĭ				İ		j					trace (	┝╶┥				1
· [		341	10.0	ŀ	1 - 1	4	DO 135	). #F***	ins sandpar	4 10		70-	W - 51		j '	
ļ		[	73.0		4 5	╛	4JL		see par	lOit.		t d	dn = 0		)	
Ł				ታ		┨						F 7			1	:
F		130	75.0	Ţ		1		_			semme. le	75			,	1 :
			12.0	. 7	1.1	Ⅎ	uò 1)p	,		KOH	3 2	<u> </u>	# + 55 gv + 1			1
- E		$\vdash$	<del></del>	ł		4								'		١,
) F		Ļ		Ţ		7					Hedita Layers					ľ
L		160	80.0		) - 2 1 - 4	J	to 130	, dark gi	**Y	(OH		_~~_	# = 46		•	
}	<del></del> -		<del>                                     </del>	Ŧ		7						F' 7	qu = 1		.	i
			1_	1		1						85				ı

### Canada along					MO	DOWARD-CLYDE CONSULTANTS, IN BORING LOG	C.		ING NO NT-501
176   5.0   10.212   20   20   20   20   20   20   20	DAILY	CASING							
151.0   1   1   1   1   1   1   1   1   1	PROGR <b>I</b> SS	arows.					258937		Į.
15.5 St. 0. 1. 2. 2.   Northern, dark prey operation sites   12.5 St. 0. 1. 2. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.   1. 2.			141				1	├°" -	
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100							ŀ		
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100		<del>                                     </del>			<del></del>		1	<b>├</b> -	
32.0 2 - 4   Clay, set feend, feath death,   20 - 25   100   101   102   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103			1911	90.0	4 - 2	Medium, dark gray organic milty	}	<b>-</b> 0 -	w = 40
191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191	-			92.0	2-4	clay, am f wand, f sand seams,	l	FI	
100   100.0   10.6   100   18D   100   18D   100   18   3   100   18   3   100   18   3   100   18   3   100   18   3   100   18   3   100   18   3   100   18   3   100   18   3   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100				-		lanses, tr shells, mics (OH)		<b>├</b> 4	1
100   100.0   10.6   100   18D   100   18D   100   18   3   100   18   3   100   18   3   100   18   3   100   18   3   100   18   3   100   18   3   100   18   3   100   18   3   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100						İ	l t	L.	j
200   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100			190			00 180 (041)	1 &	F"-	W = 39
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100		Ī	L	41.0	7 7 11	i	l	├ -	qu = 0.75
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100			Ţ	_			1		l
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	1		20.0	100.0	1 - 6	no SBD (OH)	*	-100-	W - 34
21		ĺ				,_,	3		
122   110.0   11-16   Grey sitty fine sand, trace   110.0   110-110-117.0   121-13.4   Clay, mich   121-15   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4			-	—	<del> </del>		l		
122   110.0   11-16   Grey sitty fine sand, trace   110.0   110-110-117.0   121-13.4   Clay, mich   121-15   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4   121-13.4			211	105.0	4.7.4	Medium, dark gray organic miley	1	L.,.:	
200 11.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1.			-	107.0	5 6	clay, some f sand, tr shells (CH	4	-103-	qv = 0,5
200 11.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1.				•			1.	<u>-</u>	ł
200 11.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1.							l		1
117.0   1114   Clay, mich   (EN)   1   1   1   1   1   1   1   1   1			775	110 0	21 - 15	Gray gilty fine gand frac-	110.4	-110	1
132   132   133   134   135   134   135   134   135   134   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135			Ľ	117 0	22 - 74	clay, mica (SK)	l l	Г -	1
131   15.0   1.   1   1   1   1   1   1   1   1	أبوا	<del></del>	-		<del></del>		2 2 3	⊪ -	1
	%						Ū ++ É	£.,	
	8		7.70	محدد	R a.A.	Gray milty fine mand, some clay	8 2	F''-	ì
211 200, 10 - 12 Stiff, gray silty clay, trace   120, 0   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   12	न		<u> </u>	متس	111 - 12	tayerm, trace vegetation, mica (SM)	F 7	<u>-</u>	ţ
21   120   10   12   3tiff, gray slity clay, trace   130.0			匚			,	ğ ĝ.	生 ]	]
122 Glis_1] fine eard seams, f and phts,   Ccl   1		<del></del>	710	120.0	10 - 15	Stiff gray allies also	₹ <del>6</del> •	-120-	lv - 11
1320   125.0   1-2   12.0   10-8   12.0   12.0   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.1   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0			<u> </u>	122.0	15 - 17	fine eard means, f sand pkts.	140.0	Έ :	j" <i>-"</i>
1300   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0		ļ				regetation, mica (CL)		F. I	Į
1300   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0						1	-	<b>F</b> -	1 ·
1300   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0			250	125.0	1 - 2	00 24p (CL)	T 2	F125	N - 37
1300   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0		<del>                                     </del>	-	7376	10 B		충선	⊢ -	ł ·
1300   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0   130.0									1
130   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150		_	20-	170.0	LD /4 F- 6	F4155	1	-130-	
0700 080 080 080 080 080 080 080 080 080	1530		-617		13-17		6	E :	
170   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2   113.0   2			F				2.5	F :	ļ · · · · ·
## 137.0 9 - 10    137.0 9 - 10    137.0 9 - 10    137.0 9 - 10    137.0 9 - 10    137.0 9 - 10    137.0 9 - 10    147.0 5 - 5    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    147.0 5 - 8    140.0 5 - 8    140.0 5 - 8    140.0 5 - 8    140.0 5 - 8    140.0 5 - 8    140.0 5 - 8    140.0 5 - 8    140.0 5 - 8    140.0 5 - 8	_ \f	_		L		_	2 4	1	}
### 180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.	8 8		770.				9.5.	<u>_</u> ;;;	{ }# ⇒ 3#
### 180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.   180.	6 5		-	137-0	9 - 10				qu = 0.75
142.C   1   2   3   4   4   4   4   4   4   4   4   4	= 4						F A		1
142.6 3 - 8   (CL			280	140-0	5 - 5	Stiff, gray clay, trace mica	<del> </del>	140	N - 36
145.0   25		$\sqsubseteq$						_	
193   145.0   25   8ed-brown silty fine to coakes   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0   145.0		<b></b>		_			3 - 4	'├ <b>-</b>	٠.
143. 1 100/4" as, as gravel, mice (SM 5 of 1	!							<u></u>	
1530 2. 155. \$ Rec=814 Gray she mick sehiet, broken 154.0 155. \$ Rec=814 Gray she mick sehiet, broken 2. 154.0 155. \$ Rec=814 Gray she mick sehiet, broken 2. 2. 155. \$ Rec=814 Gray she mick sehiet, broken 2. 2. 155. \$ Rec=814 Gray she mick sehiet, broken 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	_	$\vdash \vdash$	790			Red-brown slity Fine to Coakee	E		146_8 possi-
1530 2. 155. \$ Rec=814 Gray she mick sehiet, broken 154.0 155. \$ Rec=814 Gray she mick sehiet, broken 2. 154.0 155. \$ Rec=814 Gray she mick sehiet, broken 2. 2. 155. \$ Rec=814 Gray she mick sehiet, broken 2. 2. 155. \$ Rec=814 Gray she mick sehiet, broken 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	Ě		$\sqsubseteq$	177.1		, 37-144, 2008 (58		ב ב	ble cobbles
1530 2. 155. \$ Rec=814 Gray she mick sehiet, broken 154.0 155. \$ Rec=814 Gray she mick sehiet, broken 2. 154.0 155. \$ Rec=814 Gray she mick sehiet, broken 2. 2. 155. \$ Rec=814 Gray she mick sehiet, broken 2. 2. 155. \$ Rec=814 Gray she mick sehiet, broken 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	Ę	<del></del>	⊢−	<u> </u>				FΞ	or bouldern
1510 2 150. Sec-811 Gray she mick ashist, broken 154.0 159. 160. Sec-801 Gray she mick ashist, broken 2 2 2 160. Sec-801 Gray she mice schiat, broken 2 3 3 165. Sec-801 165. Sec-801 Gray she mice schiat, broken 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	=		ממר	150.0	19 - 23		ET.	L150-	
15.0 15.1 Sec-81s Gray six mick ashist, broken 154.0 159. 159. 159. 160. 209. 165. 200-121 165. 200-122 165. 200-122 165. 200-122 169. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170.			_	151-6	50-50/1		1 2 8	₽ =	1
15.0 15.1 Sec-81s Gray six mick ashist, broken 154.0 159. 159. 159. 160. 209. 165. 200-121 165. 200-122 165. 200-122 165. 200-122 169. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170. 200-122 170.						<u> </u>	, <del>7</del> 1	Ŀ~	•
1530			100			many also at a file and a	154.5	1	!
1530 2C 150.5 Rec=501 Gray alw mics schiat, broken 2 3 3 150 155.3 ROD-124 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			F.C.	155.5	Rec=814 ROD=204	with aim ares subjet, proper	1_	<b>-</b> -	
170.5						· ·	4 _		}
170.5	1520	<del></del>	<del> </del>	<b></b> -	<del> </del>		12 %		
170.5	0700		20			Gray alw mice schist, broken	5 7	160	}
170.5		<u> </u>	<u> </u>	165,5	MOD-13F		23	<b>├</b> -	
170.5	E :						4 5	F 2	1
170.5	8 4		-	TAE .	Recance	Light pray the wise sabist	à É	165	(
170.5	976					orline Armi cata mine scuraci	<b>#</b> ,	t :	1
170.5	13世	$\vdash$			<b>.</b>	·	돌급	<b> -</b>	
170.5							38	r	1
186					ļ		170.5		ł
- 188 - 188 - 189 - 196 		<del></del>							l
185 - 186 - 196 - 195								ር :	<b>[</b>
-189 -196 -195			$\vdash$				1	171	į
- 180 - 180 - 180 - 196 - 195								<b>t</b> -	1
- 18b								F 1	
- 18b	·						l	اا	ļ '
181			-			_	1	F."	1
- 18b					<del>                                     </del>		1	⊦⊣	
188						·	1		• •
- 196					····		1	189	·
-196 -195	! I							ב -	
- 196 								Fi	
- 196 	·	$\Box$	Н					┝╶┤	
T195								196	*
Tips Tips Tips Tips Tips Tips Tips Tips	Ţ				<b></b>	<u>[</u>	1	<b>⊢</b> ⊣	
[195]					1				
							İ	Εđ	



# APPENDIX E Axial Load Test Memo



## **Technical Memorandum**

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C.

21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001 T: 212.479.5400 F: 212.479.5444

**To:** Dave Pereira, Jim Strobel, Mark Townsend – Related

From: Michael Paquette, Saul Shapiro, Marc Gallagher

Info: Sitotaw Fantaye, Aleksandr Krutovskiy – MRCE

Dan Weaver, Robin Fitzgerald-Green - KPF

**Date:** 4 April 2018

Re: Updated Caisson Design Parameters - WRY Platform

Hudson Yards-West Rail Yards, Manhattan, New York

Langan Project No.: 170444101

This memorandum updates our recommended geotechnical design parameters for the WRY Platform caissons. The design parameters consider the results of three recently completed Osterberg Cell (Ocell) load tests performed in Terra Firma. The tests were located in the eastern, central and western parts of Terra Firma (Figure 1) to capture the variable depth to bedrock. Details and results of the load tests are included in LoadTest Inc.'s reports provided by East Coast Drilling and Related.

#### **DESIGN PARAMETERS**

We recommend the following geotechnical parameters for design of caissons for the WRY. Because the compressive side shear value exceeds the NYC Building Code maximum allowable value, a variance (CCD1) will be required:

- Allowable side shear:
  - o Compression = 300 psi
  - Tension = 100 psi
- Allowable end bearing:
  - 80 ksf basic value per NYC Building Code*
  - o 10% increase per foot up to 160 ksf maximum @ 10-foot embedment

*This end-bearing value assumes that the bottom of the sockets will be clean of sediment and will be at least Building Code Class 1b rock. We anticipate that cleaning the sockets will be difficult, especially on the west half of the site where the caissons will be over 100 feet deep. Where the contractor cannot achieve a clean bottom or where the video inspection cannot verify the bottom, the contractor could lengthen the rock sockets so the caissons rely on side shear only. The required overdrill length would vary from about 0.5 to 1 times the diameter of the socket as determined by:

 $L_{over-drill} = (0.0463x + 0.463)D \le D$ 

where:  $L_{over-drill} = Length of over-drilling (feet)$ 

x = embedment below top of rock (feet)

D = Rock socket diameter (feet)

## Technical Memorandum

Updated Caisson Design Parameters - WRY Platform Hudson Yards-West Rail Yards, Manhattan, New York Langan Project No.: 170444101

4 April 2018 – Page 2 of 2

#### **INCREASED SIDE SHEAR DISCUSSION**

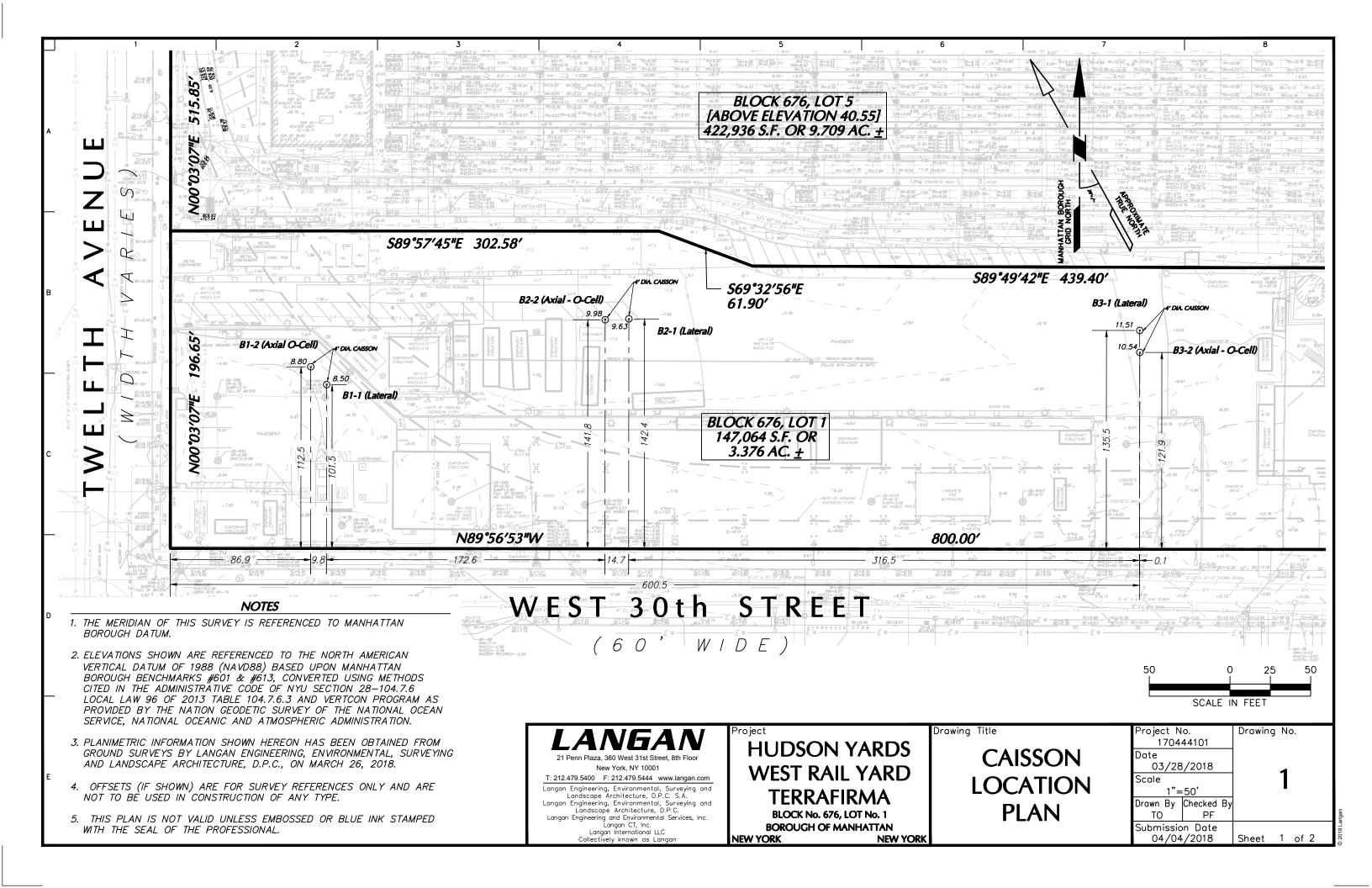
The O-cell load tests proved a significantly higher shear capacity than the Building Code presumptive value. The tests reached maximum side shear values varying from about 850 to 880 pounds per square inch (psi) at movements of about 0.09 to 0.33 inch (Figure 2). The maximum capacity of the load cells (jacks) was reached before the ultimate skin friction was reached in all three tests; however, as shown in Figure 2, the slope of the skin friction curve noticeably decreases at around 550 to 700 psi in all three tests.

The response of Test 1 (western test) was stiffer (less movement) than the other two tests—this test caisson was constructed in an area of known granite intrusions (refer to Langan 2005 boring G-17). The test caisson was observed to have slower drilling and the rock quality was better as shown during video inspection.

We recommend using an allowable side shear of 300 psi in compression to remain within the elastic portion of the stress-strain response and to account for variability in bedrock quality. At 300 psi, the corresponding deflection reported during the tests was about 1/100 of an inch.

We recommend using an allowable skin friction of 100 psi in tension (per geotechnical report). The capacity in tension is more influenced by rock mass conditions rather than grout-to-rock bond, particularly near the top of the bedrock surface.

### **END BEARING DISCUSSION**


The three load tests reached maximum end bearing values varying from about 750 to 800 kips per square foot (ksf) before the jack limit was reached. While this is substantially higher than the recommended design value, the tests indicate a caisson would settle 0.25 to 1.25 inches to reach the capacity (Figure 2). The test caissons likely had "soft bottoms" or poor-quality grout below the Ocell, as evidenced by the movement at the beginning of the test (left side of curve), particularly in Tests 2 and 3 (Figure 2).


We believe trying to eliminate "soft bottoms" by cleaning the socket bottoms will be difficult, especially on the side west of the site where proposed caissons depths are over 100 feet. Verification of hard bottoms via video inspection will also be difficult because of murky water, possibly necessitating use of a shaft inspection device (SID) to measure the sediment on the bottom. Note that the caisson construction will be more challenging than the East Rail Yard, where the shafts (1) were shallow, (2) could be vacuum-cleaned, and (3) could be dewatered for video inspection to confirm the clean bottom.

The inability to adequately clean and inspect socket bottoms, particularly in larger diameter caissons, can lead to significant additional time spent cleaning and inspecting the sockets. We believe that ignoring end bearing (design for side shear only) and drilling a few feet of additional rock socket in each caisson would likely be faster and less risky than trying to clean and confirm the bottom. The pros and cons of using a side-shear-only design approach to limit delays related to cleaning should be discussed with the foundation contractor to determine the most cost-effective approach. Field changes could also be made to adjust lengths on a case-by-case basis.

If you have any questions or require any additional information, please contact us.







T: 212.479.5400 F: 212.479.5444 www.langan.com 1: 212.479.5400 F: 212.479.5444 www.langan.com angan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C. S.A. angan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C. Langan Engineering and Environmental Services, Inc. Langan CT, Inc. Langan International LLC Collectively known as Langan

**HUDSON YARDS WEST RAIL YARDS** 

MANHATTAN

**NEW YORK** 

**Unit Side Shear and Unit End Bearing** 

Project No.	Drawing No.
170444101	
Date	
4 April 2018	
Scale	2
AS SHOWN	4
Drawn By	
MP	
Submission Date	
4 April 2018	Sheet 2 of 2



# APPENDIX F Lateral Load Test Memo



## **Technical Memorandum**

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C. 21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001 T: 212.479.5400 F: 212.479.5444

**To:** Dave Pereira, Jim Strobel, Mark Townsend – Related

From: Michael Paquette, Saul Shapiro, Marc Gallagher

Info: Sitotaw Fantaye, Aleksandr Krutovskiy – MRCE

Dan Weaver, Robin Fitzgerald-Green - KPF

**Date:** 17 July 2018

**Re:** Updated Caisson Design Parameters – Lateral Loads

Hudson Yards-West Rail Yards, Manhattan, New York

Langan Project No.: 170444101

This memorandum updates our recommended geotechnical design parameters for WRY Platform caissons. The design parameters consider the results of three lateral load tests performed in Terra Firma. The tests were in the eastern, central and western parts of Terra Firma (Figure 1) to evaluate how the variable depth to bedrock and thickness of the fill impact the caisson lateral response. Details and results of the load tests are included in LoadTest Inc.'s reports provided by East Coast Drilling.

### LATERAL LOAD TEST DATA

We evaluated the caisson lateral response using strain gage and inclinometer data provided by LoadTest. The following key considerations were used to develop our recommended design parameters:

- 1. We excluded data from the upper 5 feet of the test caissons because this zone was excavated to clear for utilities and then backfilled with imported soil and therefore does not represent the historical fill.
- 2. We modeled the lateral caisson response using the p-y (mobilized soil reaction-deflection) procedure where the soil and rock are modeled as a series of discrete resistances (springs) with nonlinear behavior.
- 3. We evaluated both the strain gauge and inclinometer data and determined that the inclinometer gave more reliable readings. There were multiple instances in the strain gauge data where the force couple between the leading (loaded) and trailing faces of the caisson were not reliable (i.e. the data had erroneous spikes and valleys that could not be used to create a meaningful induced moment profile). The inclinometers produced a more accurate moment profile and were used to develop p-y curves.
- 4. Load Test 2 (center of the site) had incomplete inclinometer readings because of recording errors and erroneous strain gauge readings; therefore, p-y curves were not developed for this load test; however, the top load versus deflection was compared to the other two tests.

## Technical Memorandum

Updated Caisson Design Parameters – Lateral Loads Hudson Yards-West Rail Yards, Manhattan, New York Langan Project No.: 170444101

17 July 2018 - Page 2 of 3

- 5. We used the inclinometer measurements along the length of the caisson to develop profiles of moment versus depth and mobilized soil reaction versus depth for each load increment. The mobilized soil reaction values at each load increment are combined to produce p-y curves at each inclinometer interval.
- 6. The p-y curves were relatively "noisy", possibly from the heterogeneous nature of the historical fill. We determined soil properties using published p-y curves to fit the site-specific p-y data. The predicted caisson top load versus deflection developed using our modeled parameters (Figure 2) provide a reasonable approximation of the load test results.
- 7. We modeled a caisson in each of the six platform zones to evaluate the variability of the fill density and thickness (Figure 3).

#### **CONCLUSIONS**

We have the following general conclusions:

- 1. The lateral caisson response is primarily controlled by the historical fill (thickness and density), even where the fill was thinnest (fill at the west test was about 35 feet thick and at the east test was about 18 feet thick based on borings).
- 2. The modeled caisson response is not sensitive to the assigned strength parameters in the clay (below the fill) because the mobilized soil reaction below the fill is relatively small. In addition, the mobilized reaction in the clay during the load tests was small and representative p-y curves could not be developed.
- 3. The depth and type of bedrock did not have a significant impact on the test results because the mobilized reaction below the fill is relatively small, even on the east load test where the fill was thinnest and rock shallowest.
- 4. The results of the three lateral load tests show relatively similar top load versus deflection responses (Figure 2).
- 5. Using published p-y models to fit the p-y curves developed from the load tests produced a reasonable approximation of the response of all three load tests (Figure 2).
- 6. The predicted responses of caissons across the six project zones show about a 10 to 15 percent difference in the load and deflection response in the general anticipated range of working loads (corresponding to less than ½ inch deflection); therefore, for simplicity in design we recommend using an average response for the entire WRY.

#### **DESIGN PARAMETERS**

The attached tables present our recommended p-y curves for the fill, clay and bedrock, and include curves for 24 to 96 inch diameter caissons.

- Historical Fill
  - o For the fill layer we recommend using an average response from the six zones.

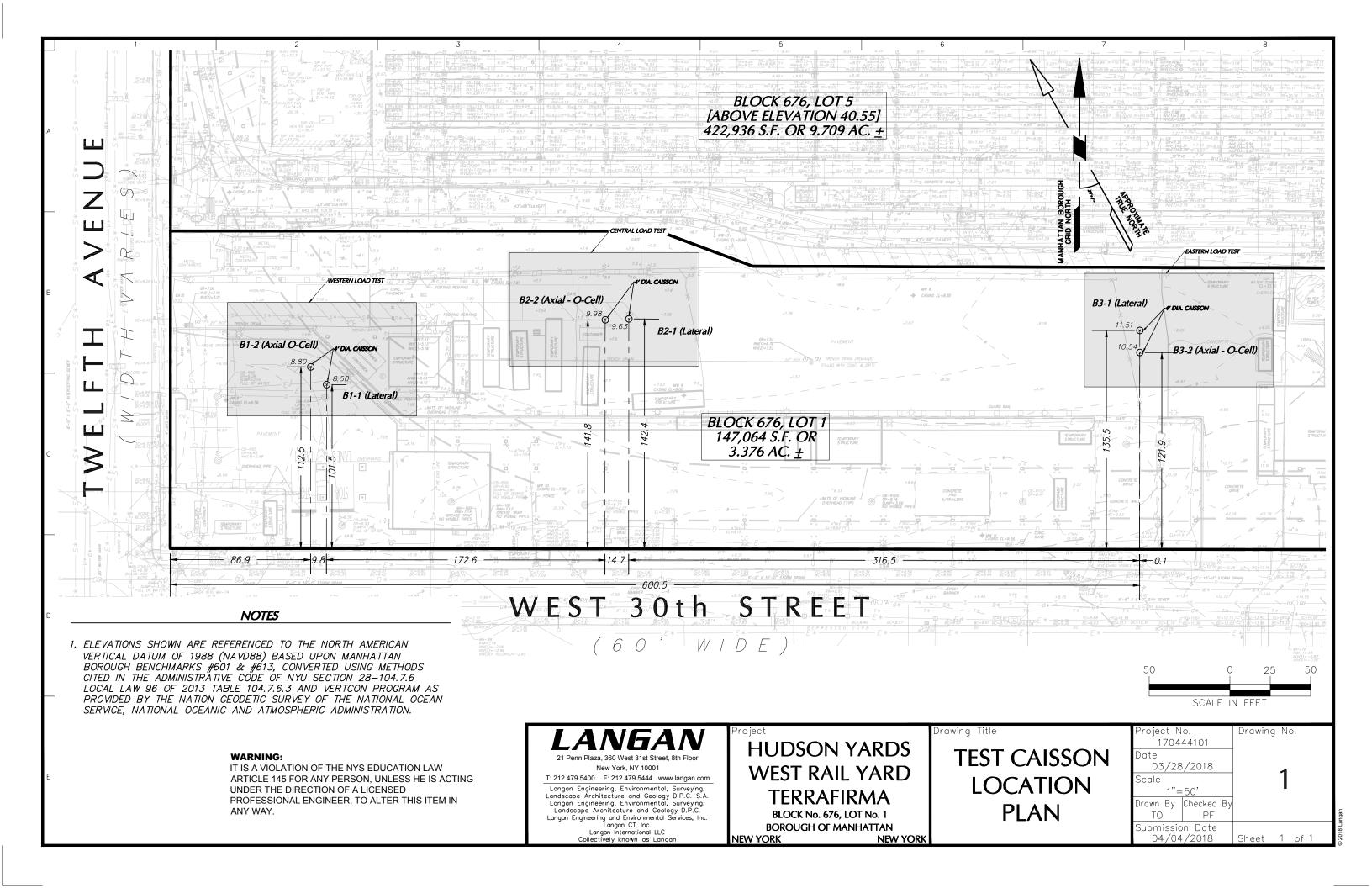


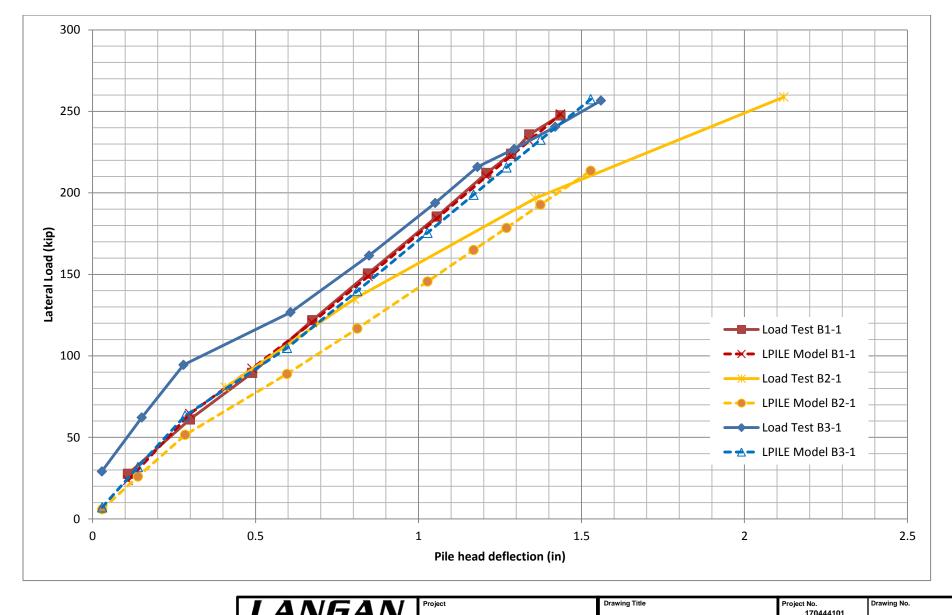
## Technical Memorandum

Updated Caisson Design Parameters – Lateral Loads Hudson Yards-West Rail Yards, Manhattan, New York Langan Project No.: 170444101 17 July 2018 – Page 3 of 3

- o The attached tables include p-y curves as a function of depth of fill for each caisson diameter.
- o The typical depth of fill for each zone can be obtained from our previously issued geotechnical parameter summary for each zone.
- o Below the depth of fill for each project zone, the p-y curve for clay are used.

## Clay


- o P-y curves for the clay are presented as a function of undrained shear strength.
- o Undrained shear strength and thickness of the clay for each zone can be obtained from our previously issued geotechnical parameter summary for each zone.


#### Bedrock

o Bedrock was not significantly mobilized during the load tests to produce p-y curves; therefore the attached tables are a repeat of the previously recommended p-y curves.

If you have any questions or require any additional information, please contact us.



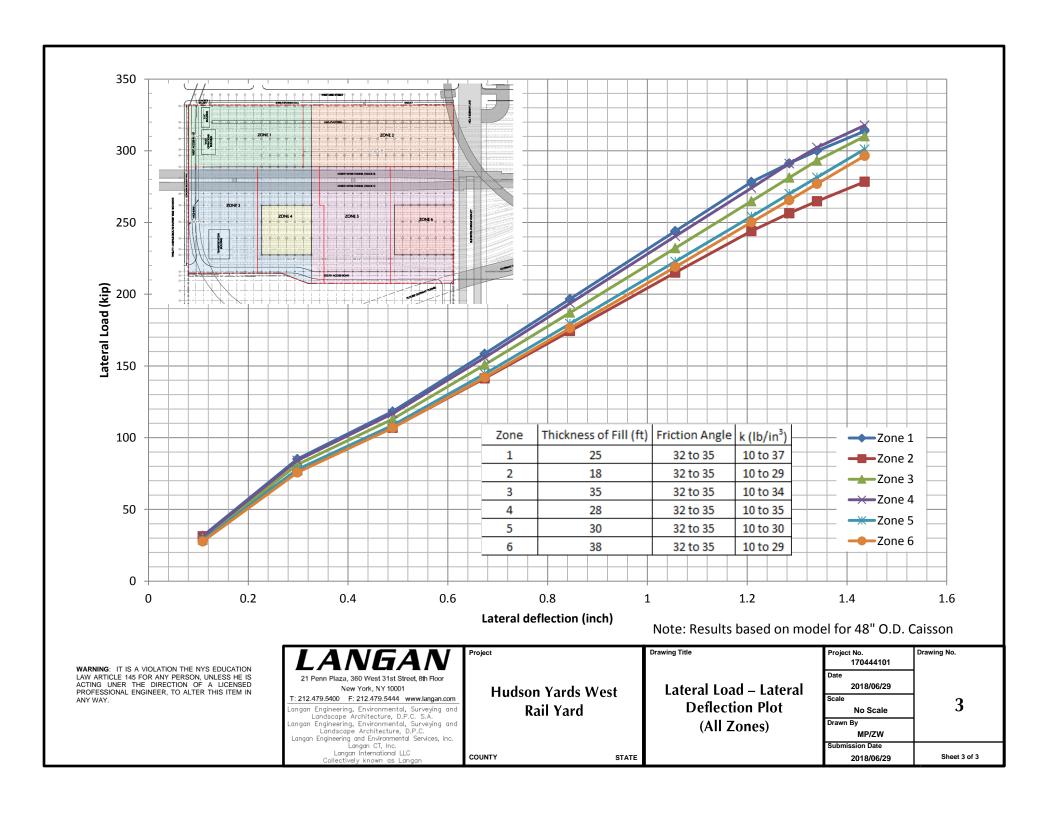




WARNING: IT IS A VIOLATION THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

# LANGAN 21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001

T: 212.479.5400 F: 212.479.5444 www.langan.com


1.212.419.3400 F. 212.419.3444 Www.langant.com
Langan Engineering, Environmental, Surveying and
Landscape Architecture, D.P.C. S.A.
Langan Engineering, Environmental, Surveying and
Landscape Architecture, D.P.C.
Langan Engineering and Environmental Services, Inc.
Langan C., Inc.
Langan C., Inc.
Collectively known as Langan

## Hudson Yards West Rail Yard

NEW YORK NEW YORK

Lateral Load – Lateral Deflection Plot (Load Tests vs LPILE Model)

Project No. 170444101	Drawing No.
Date	
2018/06/29	
Scale	<b>n</b>
No Scale	2
Drawn By	
MP/ZW	
Submission Date	
2018/06/29	Sheet 2 of 3



Zone	Depth						•		•	Cu	rve Points								
	ft		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	0.5	У	0.00	0.11	0.22	0.33	0.44	0.56	0.67	0.78	0.89	1.00	1.11	1.22	1.33	1.45	1.56	1.87	2.18
	0.5	р	0	7	13	20	27	33	40	47	53	60	67	73	80	87	93	93	93
	1.5	У	0.00	0.13	0.25	0.38	0.51	0.64	0.76	0.89	1.02	1.15	1.27	1.40	1.53	1.65	1.78	2.14	2.49
	1.5	р	0	23	46	69	92	115	137	160	183	206	229	252	275	298	321	321	321
	2.5	У	0.00	0.13	0.27	0.40	0.53	0.67	0.80	0.94	1.07	1.20	1.34	1.47	1.60	1.74	1.87	2.24	2.62
	2.5	р	0	40	80	120	160	200	240	281	321	361	401	441	481	521	561	561	561
	3.5	У	0.00	0.13	0.27	0.40	0.54	0.67	0.80	0.94	1.07	1.20	1.34	1.47	1.61	1.74	1.87	2.25	2.62
	3.3	р	0	56	112	169	225	281	337	393	450	506	562	618	675	731	787	787	787
	4.5	У	0.00	0.13	0.26	0.39	0.52	0.65	0.78	0.91	1.04	1.17	1.30	1.43	1.56	1.69	1.82	2.19	2.55
	4.5	р	0	70	141	211	282	352	422	493	563	633	704	774	845	915	985	985	985
	5.5	У	0.00	0.44	0.48	0.51	0.55	0.58	0.62	0.65	0.69	0.72	0.76	0.79	0.83	0.86	0.90	1.08	1.26
	5.5	р	0	987	1019	1050	1081	1112	1143	1174	1205	1236	1267	1298	1329	1360	1391	1391	1391
	6.5	У	0.00	0.36	0.36	0.37	0.37	0.37	0.38	0.38	0.38	0.39	0.39	0.40	0.40	0.65	0.90	1.08	1.26
	0.5	р	0	948	952	957	961	965	969	974	978	982	986	990	995	1260	1525	1525	1525
	7.5	У	0.00	0.29	0.30	0.31	0.32	0.33	0.34	0.35	0.36	0.37	0.38	0.39	0.40	0.65	0.90	1.08	1.26
	8.5	р	0	876	892	907	923	938	953	968	982	996	1010	1024	1038	1367	1697	1697	1697
	9.5 y 10.5 y 11.5	У	0.00	0.24	0.26	0.27	0.29	0.30	0.31	0.33	0.34	0.36	0.37	0.39	0.40	0.65	0.90	1.08	1.26
(uo		р	0	843	871	898	925	951	976	1001	1026	1050	1074	1097	1120	1519	1918	1918	1918
aiss		У	0.00	0.25	0.26	0.27	0.29	0.30	0.32	0.33	0.34	0.36	0.37	0.39	0.40	0.65	0.90	1.08	1.26
5		р	0	954	986	1018	1048	1078	1107	1136	1165	1193	1220	1247	1274	1748	2221	2221	2221
FILL (24 inch Caisson)		У	0.00	0.26	0.27	0.29	0.30	0.31	0.32	0.34	0.35	0.36	0.37	0.39	0.40	0.65	0.90	1.08	1.26
П (2		р	0	1124	1157	1188	1219	1250	1280	1310	1339	1368	1397	1425	1453	2005	2557	2557	2557
Œ	11 5	У	0.00	0.29	0.30	0.31	0.32	0.33	0.34	0.35	0.36	0.37	0.38	0.39	0.40	0.65	0.90	1.08	1.26
		р	0	1382	1409	1436	1462	1489	1515	1540	1566	1591	1616	1640	1665	2297	2930	2930	2930
	12.5	У	0.00	0.33	0.34	0.34	0.35	0.36	0.36	0.37	0.37	0.38	0.39	0.39	0.40	0.65	0.90	1.08	1.26
	12.5	р	0	1680	1700	1720	1739	1759	1778	1797	1816	1835	1854	1872	1891	2609	3328	3328	3328
	13.5	У	0.00	0.37	0.37	0.37	0.38	0.38	0.38	0.39	0.39	0.39	0.39	0.40	0.40	0.65	0.90	1.08	1.26
		р	0	2024	2034	2044	2053	2063	2073	2083	2092	2102	2112	2121	2131	2941	3751	3751	3751
	14.5	У	0.00	0.41	0.45	0.48	0.52	0.56	0.60	0.64	0.67	0.71	0.75	0.79	0.82	0.86	0.90	1.08	1.26
		р	0	2416	2553	2690	2827	2965	3102	3239	3376	3513	3650	3787	3925	4062	4199	4199	4199
	15.5	У	0.00	0.45	0.49	0.52	0.56	0.59	0.62	0.66	0.69	0.73	0.76	0.80	0.83	0.87	0.90	1.08	1.26
		р	0	2861	3005	3144	3283	3422	3561	3700	3838	3977	4116	4255	4394	4533	4672	4672	4672
	16.5	У	0.00	0.50	0.53	0.56	0.59	0.62	0.65	0.68	0.72	0.75	0.78	0.81	0.84	0.87	0.90	1.08	1.26
		р	0	3362	3520	3657	3795	3932	4070	4207	4345	4483	4620	4758	4895	5033	5170	5170	5170
	17.5	У	0.00	0.55	0.58	0.60	0.63	0.66	0.68	0.71	0.74	0.77	0.79	0.82	0.85	0.87	0.90	1.08	1.26
		р	0	3925	4104	4237	4369	4502	4634	4766	4899	5031	5164	5296	5429	5561	5694	5694	5694
	18.5	У	0.00	0.08	0.16	0.24	0.32	0.40	0.48	0.56	0.64	0.72	0.80	0.88	0.96	1.04	1.12	1.35	1.57
		р	0	446	892	1338	1784	2229	2675	3121	3567	4013	4459	4905	5351	5797	6242	6242	6242
	19.5	У	0.00	0.08	0.17	0.25	0.33	0.42	0.50	0.58	0.67	0.75	0.83	0.92	1.00	1.08	1.17	1.40	1.63
	-	р	0	487	974	1461	1947	2434	2921	3408	3895	4382	4869	5355	5842	6329	6816	6816	6816
	ay = Lateral p																		
	bp = Lateral p	pile	resistance	in pounds	per inch														

T: 212.479.5400 F: 212.479.5444 www.langan.com

T: 212.479.5400 F: 212.479.5444 www.langan.com
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C. S.A.
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C.
Langan Engineering and Environmental Services, inc.
Langan Cri, Inc.
Langan Cri, Inc.
Collectively known as Langan

Project

MANHATTAN

## **Hudson Yards West**

Drawing Title

Fill p-y Table 24-inch Diameter

Project No.	Table No.
170444101	
Date	
2018/07/02	
Scale	1
No Scale	Į.
Drawn By / Checked By	
ZW / MGP	
Submission Date	
2018/07/02	Sheet 1 of 11

**Rail Yard** 

**NEW YORK** 

Zone	Depth									Cu	rve Points								
	ft		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	20.5	у	0.00	0.09	0.17	0.26	0.34	0.43	0.52	0.60	0.69	0.78	0.86	0.95	1.03	1.12	1.21	1.45	1.69
	20.5	р	0	530	1059	1589	2119	2648	3178	3707	4237	4767	5296	5826	6356	6885	7415	7415	7415
		у	0.00	0.09	0.18	0.27	0.36	0.45	0.53	0.62	0.71	0.80	0.89	0.98	1.07	1.16	1.25	1.50	1.74
	21.5	р	0	574	1148	1723	2297	2871	3445	4019	4594	5168	5742	6316	6890	7464	8039	8039	8039
		y	0.00	0.09	0.18	0.28	0.37	0.46	0.55	0.64	0.74	0.83	0.92	1.01	1.10	1.20	1.29	1.54	1.80
	22.5	p	0	621	1241	1862	2482	3103	3723	4344	4964	5585	6205	6826	7446	8067	8688	8688	8688
		у	0.00	0.09	0.19	0.28	0.38	0.47	0.57	0.66	0.76	0.85	0.95	1.04	1.14	1.23	1.33	1.59	1.86
	23.5	$\vdash$	0.00	669	1337	2006		3343	4012				6687		8024	8693	9362	9362	9362
		p v	0.00	0.10	0.20	0.29	2675 0.39	0.49	0.59	4681 0.68	5349 0.78	6018 0.88	0.98	7356 1.08	1.17	1.27	1.37	1.64	1.92
	24.5	р	0.00	719	1437	2156	2874	3593	4312	5030	5749	6468	7186	7905	8623	9342	10061	10061	10061
		V	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.81	0.91	1.01	1.11	1.21	1.31	1.41	1.69	1.97
	25.5	p	0	770	1541	2311	3081	3852	4622	5392	6163	6933	7704	8474	9244	10015	10785	10785	10785
	26.5	У	0.00	0.10	0.21	0.31	0.41	0.52	0.62	0.73	0.83	0.93	1.04	1.14	1.24	1.35	1.45	1.74	2.03
	26.5	р	0	824	1648	2472	3295	4119	4943	5767	6591	7415	8239	9063	9886	10710	11534	11534	11534
(uc	27.5	у	0.00	0.11	0.21	0.32	0.43	0.53	0.64	0.75	0.85	0.96	1.07	1.17	1.28	1.39	1.49	1.79	2.09
Caisson)	27.5	р	0	879	1758	2638	3517	4396	5275	6154	7033	7913	8792	9671	10550	11429	12309	12309	12309
ဒ	27.5	У	0.00	0.11	0.22	0.33	0.44	0.55	0.66	0.77	0.88	0.99	1.10	1.20	1.31	1.42	1.53	1.84	2.15
FILL (24 inch	20.5	р	0	936	1873	2809	3745	4681	5618	6554	7490	8427	9363	10299	11236	12172	13108	13108	13108
(24	29.5	У	0.00	0.11	0.22	0.34	0.45	0.56	0.67	0.79	0.90	1.01	1.12	1.24	1.35	1.46	1.57	1.89	2.20
ij		р	0	995	1990	2986	3981	4976	5971	6966	7962	8957	9952	10947	11942	12937	13933	13933	13933
_	30.5	У	0.00	0.12	0.23	0.35	0.46	0.58	0.69	0.81	0.92	1.04	1.15	1.27	1.38	1.50	1.62	1.94	2.26
		р	0	1056	2112	3168	4224	5279	6335	7391	8447	9503	10559	11615	12671	13726	14782	14782	14782
	31.5	У	0.00	0.12	0.24	0.36	0.47	0.59	0.71	0.83	0.95	1.07	1.18	1.30	1.42	1.54	1.66	1.99	2.32
		p v	0.00	1118 0.12	2237 0.24	3355 0.36	4473 0.49	5592 0.61	6710 0.73	7829 0.85	8947 0.97	10065	11184	12302	13420 1.46	14539 1.58	15657 1.70	15657 2.04	15657 2.38
	32.5	p p	0.00	1183	2365	3548	4731	5913	7096	8279	9461	10644	11826	13009	14192	15374	16557	16557	16557
		V	0.00	0.12	0.25	0.37	0.50	0.62	0.75	0.87	0.99	1.12	1.24	1.37	1.49	1.62	1.74	2.09	2.44
	33.5	p	0	1249	2497	3746	4995	6244	7492	8741	9990	11238	12487	13736	14985	16233	17482	17482	17482
	24.5	у	0.00	0.13	0.25	0.38	0.50	0.63	0.75	0.88	1.00	1.13	1.25	1.38	1.50	1.63	1.75	2.10	2.45
	34.5	р	0	1296	2591	3887	5183	6479	7774	9070	10366	11661	12957	14253	15549	16844	18140	18140	18140
	35.5	у	0.00	0.12	0.25	0.37	0.50	0.62	0.75	0.87	1.00	1.12	1.25	1.37	1.50	1.62	1.75	2.10	2.44
	33.3	р	0	1328	2656	3985	5313	6641	7969	9297	10625	11954	13282	14610	15938	17266	18594	18594	18594
	36.5	У	0.00	0.12	0.25	0.37	0.50	0.62	0.75	0.87	0.99	1.12	1.24	1.37	1.49	1.62	1.74	2.09	2.44
	30.3	р	0	1361	2721	4082	5443	6803	8164	9524	10885	12246	13606	14967	16328	17688	19049	19049	19049
	37.5	У	0.00	0.12	0.25	0.37	0.50	0.62	0.74	0.87	0.99	1.11	1.24	1.36	1.49	1.61	1.73	2.08	2.43
	a	р 	0	1393	2786	4179	5572	6965	8359	9752	11145	12538	13931	15324	16717	18110	19503	19503	19503
	^a y = Lateral				!														
	^b p = Lateral	piie	resistance	in pounds	perinch														

T: 212.479.5400 F: 212.479.5444 www.langan.com

T: 212.479.5400 F: 212.479.5444 www.langan.com
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C. S.A.
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C.
Langan Engineering and Environmental Services, inc.
Langan Cri, Inc.
Langan Cri, Inc.
Collectively known as Langan

Project

MANHATTAN

**Hudson Yards West Rail Yard** 

Drawing Title

**NEW YORK** 

Fill p-y Table

Project No.	Table No.
170444101	
Date	
2018/07/02	
Scale	1
No Scale	I
Drawn By / Checked By	
ZW / MGP	
Submission Date	
2018/07/02	Sheet 1 of 11

24-inch Diameter

Zone	Depth									Cu	rve Points								
	ft		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	0.5	у	0.00	0.16	0.32	0.48	0.64	0.81	0.97	1.13	1.29	1.45	1.61	1.77	1.93	2.10	2.26	2.71	3.16
	0.3	р	0	10	19	29	39	48	58	68	77	87	97	106	116	126	135	135	135
	1.5	у	0.00	0.18	0.36	0.54	0.72	0.91	1.09	1.27	1.45	1.63	1.81	1.99	2.17	2.35	2.53	3.04	3.55
	1.5	р	0	33	65	98	130	163	196	228	261	293	326	358	391	424	456	456	456
	2.5	у	0.00	0.19	0.39	0.58	0.77	0.97	1.16	1.35	1.55	1.74	1.93	2.13	2.32	2.51	2.71	3.25	3.79
	2.5	р	0	58	116	174	232	290	348	406	464	522	580	638	696	754	812	812	812
	3.5	у	0.00	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.35	3.91
	3.3	р	0	84	168	252	335	419	503	587	671	755	839	922	1006	1090	1174	1174	1174
	4.5	у	0.00	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.36	3.92
	4.5	р	0	108	216	324	432	540	649	757	865	973	1081	1189	1297	1405	1513	1513	1513
	5.5	у	0.00	0.75	0.80	0.84	0.89	0.93	0.98	1.03	1.07	1.12	1.17	1.21	1.26	1.30	1.35	1.62	1.89
	5.5	р	0	1681	1729	1767	1806	1845	1883	1922	1961	1999	2038	2077	2115	2154	2193	2193	2193
	6.5	у	0.00	0.64	0.70	0.75	0.81	0.86	0.92	0.97	1.02	1.08	1.13	1.19	1.24	1.30	1.35	1.62	1.89
	0.5	р	0	1709	1760	1810	1860	1910	1960	2011	2061	2111	2161	2211	2262	2312	2362	2362	2362
	7.5	у	0.00	0.55	0.55	0.56	0.56	0.57	0.57	0.58	0.58	0.59	0.59	0.60	0.60	0.98	1.35	1.62	1.89
	7.5 8.5	р	0	1684	1689	1693	1698	1703	1707	1712	1717	1721	1726	1730	1735	2108	2481	2481	2481
	9.5 10.5	у	0.00	0.48	0.49	0.50	0.51	0.52	0.53	0.54	0.56	0.57	0.58	0.59	0.60	0.98	1.35	1.62	1.89
Ē		р	0	1654	1668	1682	1696	1710	1724	1737	1751	1764	1777	1790	1803	2226	2649	2649	2649
FILL (36 inch Caisson)		у	0.00	0.41	0.43	0.45	0.47	0.48	0.50	0.52	0.53	0.55	0.57	0.58	0.60	0.98	1.35	1.62	1.89
5		р	0	1606	1633	1659	1685	1710	1735	1759	1783	1806	1829	1851	1873	2360	2847	2847	2847
ji 9	10.5	у	0.00	0.36	0.38	0.41	0.43	0.45	0.47	0.49	0.51	0.54	0.56	0.58	0.60	0.98	1.35	1.62	1.89
T (3	10.5	р	0	1554	1596	1637	1677	1716	1754	1791	1827	1862	1896	1930	1963	2533	3103	3103	3103
	11.5	у	0.00	0.30	0.33	0.35	0.38	0.41	0.44	0.46	0.49	0.52	0.55	0.57	0.60	0.98	1.35	1.62	1.89
	11.5	р	0	1402	1468	1531	1592	1651	1708	1763	1817	1870	1921	1971	2020	2681	3342	3342	3342
	12.5	у	0.00	0.26	0.29	0.32	0.35	0.39	0.42	0.45	0.48	0.51	0.54	0.57	0.60	0.98	1.35	1.62	1.89
	12.5	р	0	1341	1427	1510	1589	1665	1739	1811	1880	1947	2013	2077	2140	2897	3654	3654	3654
	13.5	у	0.00	0.27	0.30	0.33	0.36	0.39	0.42	0.45	0.48	0.51	0.54	0.57	0.60	0.98	1.35	1.62	1.89
	13.3	р	0	1468	1563	1654	1741	1826	1908	1987	2065	2140	2213	2285	2355	3212	4070	4070	4070
	14.5	у	0.00	0.27	0.30	0.33	0.36	0.39	0.42	0.45	0.48	0.51	0.54	0.57	0.60	0.98	1.35	1.62	1.89
	14.5	р	0	1593	1697	1797	1894	1987	2078	2166	2251	2335	2417	2496	2575	3539	4503	4503	4503
	15.5	У	0.00	0.28	0.31	0.34	0.37	0.40	0.43	0.46	0.48	0.51	0.54	0.57	0.60	0.98	1.35	1.62	1.89
	13.3	р	0	1790	1898	2003	2105	2203	2299	2392	2482	2571	2658	2743	2826	3900	4974	4974	4974
	16.5	у	0.00	0.31	0.34	0.36	0.39	0.42	0.44	0.47	0.49	0.52	0.55	0.57	0.60	0.98	1.35	1.62	1.89
	10.3	р	0	2086	2192	2295	2396	2493	2588	2681	2772	2861	2948	3034	3118	4302	5487	5487	5487
	17.5	у	0.00	0.34	0.36	0.39	0.41	0.43	0.46	0.48	0.50	0.53	0.55	0.58	0.60	0.98	1.35	1.62	1.89
	17.3	р	0	2417	2519	2618	2715	2810	2903	2993	3082	3170	3256	3340	3423	4724	6025	6025	6025
	18.5	У	0.00	0.81	0.85	0.89	0.93	0.98	1.02	1.06	1.10	1.14	1.18	1.23	1.27	1.31	1.35	1.62	1.89
	16.5	р	0	4487	4692	4850	5008	5166	5324	5482	5640	5798	5956	6114	6272	6430	6588	6588	6588
	10.5	У	0.00	0.88	0.92	0.95	0.99	1.02	1.06	1.10	1.13	1.17	1.21	1.24	1.28	1.31	1.35	1.62	1.89
	19.5	р	0	5144	5356	5530	5680	5829	5979	6129	6278	6428	6578	6727	6877	7026	7176	7176	7176

T: 212.479.5400 F: 212.479.5444 www.langan.com

T: 212.479.5400 F: 212.479.5444 www.langan.com
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C. S.A.
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C.
Langan Engineering and Environmental Services, inc.
Langan Cri, Inc.
Langan International LLC
Collectively known as Langan

## **Hudson Yards West**

Project

MANHATTAN

**Rail Yard** 

**NEW YORK** 

Drawing Title

Project No.	Table No.
170444101	
Date	
2018/07/02	
Scale	2
No Scale	4
Drawn By / Checked By	
ZW / MGP	
Submission Date	
2018/07/02	Sheet 2 of 11

Fill p-y Table 36-inch Diameter

^ay = Lateral pile deflection in inches ^bp = Lateral pile resistance in pounds per inch

Zone	Depth							•		Cu	rve Points					•	•	•	
	ft		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	20.5	у	0.00	0.95	0.98	1.01	1.05	1.08	1.11	1.14	1.17	1.20	1.23	1.26	1.29	1.32	1.35	1.62	1.89
	20.5	р	0	5867	6054	6242	6423	6560	6696	6833	6969	7106	7243	7379	7516	7653	7789	7789	7789
		у	0.00	1.03	1.06	1.08	1.11	1.13	1.15	1.18	1.20	1.23	1.25	1.28	1.30	1.33	1.35	1.62	1.89
	21.5	р	0	6662	6819	6977	7134	7291	7449	7599	7717	7836	7954	8072	8191	8309	8427	8427	8427
		у	0.00	1.12	1.13	1.15	1.17	1.19	1.21	1.22	1.24	1.26	1.28	1.30	1.31	1.33	1.35	1.62	1.89
	22.5	p	0	7532	7654	7775	7897	8018	8140	8262	8383	8505	8626	8748	8869	8991	9091	9091	9091
		У	0.00	1.20	1.21	1.23	1.24	1.25	1.26	1.27	1.28	1.29	1.30	1.32	1.33	1.34	1.35	1.62	1.89
	23.5	p	0	8482	8562	8642	8721	8801	8880	8960	9040	9119	9199	9279	9358	9438	9518	9779	9779
		٧	0.00	1.29	1.30	1.30	1.31	1.31	1.32	1.32	1.32	1.33	1.33	1.34	1.34	1.35	1.35	1.62	1.89
	24.5	p	0	9516	9548	9579	9610	9641	9673	9704	9735	9766	9798	9829	9860	9891	9923	10493	10493
	25.5	у	0.00	0.10	0.21	0.31	0.42	0.52	0.63	0.73	0.84	0.94	1.05	1.15	1.26	1.36	1.47	1.76	2.06
	25.5	р	0	802	1604	2407	3209	4011	4813	5616	6418	7220	8022	8825	9627	10429	11231	11231	11231
	26.5 27.5	У	0.00	0.11	0.22	0.32	0.43	0.54	0.65	0.75	0.86	0.97	1.08	1.19	1.29	1.40	1.51	1.81	2.11
	20.3	р	0	857	1714	2570	3427	4284	5141	5998	6854	7711	8568	9425	10282	11138	11995	11995	11995
(uc	27.5	у	0.00	0.11	0.22	0.33	0.44	0.55	0.66	0.77	0.89	1.00	1.11	1.22	1.33	1.44	1.55	1.86	2.17
iss	27.5 <b>-</b> 28.5 <b>-</b>	р	0	913	1826	2739	3653	4566	5479	6392	7305	8218	9131	10045	10958	11871	12784	12784	12784
FILL (36 inch Caisson)		У	0.00	0.11	0.23	0.34	0.45	0.57	0.68	0.80	0.91	1.02	1.14	1.25	1.36	1.48	1.59	1.91	2.23
ing		р	0	971	1943	2914	3885	4856	5828	6799	7770	8742	9713	10684	11655	12627	13598	13598	13598
(36		У	0.00	0.12	0.23	0.35	0.47	0.58	0.70	0.82	0.93	1.05	1.17	1.28	1.40	1.51	1.63	1.96	2.28
i≓		р	0	1031	2062	3094	4125	5156	6187	7218	8250	9281	10312	11343	12375	13406	14437	14437	14437
_	30.5	У	0.00	0.12	0.24	0.36	0.48	0.60	0.72	0.84	0.96	1.08	1.19	1.31	1.43	1.55	1.67	2.01	2.34
		р	0	1093	2186	3279	4372	5465	6558	7651	8743	9836	10929	12022	13115	14208	15301	15301	15301
	31.5	У	0.00	0.12	0.24	0.37	0.49	0.61	0.73	0.86	0.98	1.10	1.22	1.35	1.47	1.59	1.71	2.06	2.40
		р	0.00	1156 0.13	2313 0.25	3469 0.38	4626	5782 0.63	6939 0.75	8095 0.88	9252 1.00	10408	11565 1.25	12721	13877	15034 1.63	16190 1.75	16190 2.11	16190 2.46
	32.5	y p	0.00	1222	2444	3665	0.50 4887	6109	7331	8552	9774	1.13	1.25	13439	1.50 14661	15883	17105	17105	17105
		У	0.00	0.13	0.26	0.38	0.51	0.64	0.77	0.90	1.03	1.15	1.28	1.41	1.54	1.67	1.80	2.15	2.51
	33.5	p	0.00	1289	2578	3867	5155	6444	7733	9022	10311	11600	12889	14177	15466	16755	18044	18044	18044
		٧	0.00	0.13	0.26	0.39	0.52	0.66	0.79	0.92	1.05	1.18	1.31	1.44	1.57	1.71	1.84	2.20	2.57
	34.5	p	0	1358	2716	4073	5431	6789	8147	9504	10862	12220	13578	14935	16293	17651	19009	19009	19009
		У	0.00	0.13	0.27	0.40	0.54	0.67	0.80	0.94	1.07	1.21	1.34	1.48	1.61	1.74	1.88	2.25	2.63
	35.5	p	0	1428	2857	4285	5714	7142	8571	9999	11427	12856	14284	15713	17141	18570	19998	19998	19998
	26.5	У	0.00	0.14	0.27	0.41	0.55	0.69	0.82	0.96	1.10	1.23	1.37	1.51	1.64	1.78	1.92	2.30	2.69
	36.5	р	0	1501	3002	4503	6004	7505	9005	10506	12007	13508	15009	16510	18011	19512	21013	21013	21013
	37.5	у	0.00	0.14	0.28	0.42	0.56	0.70	0.84	0.98	1.12	1.26	1.40	1.54	1.68	1.82	1.96	2.35	2.74
	37.3	р	0	1575	3150	4726	6301	7876	9451	11026	12601	14177	15752	17327	18902	20477	22053	22053	22053

## 21 Penn Plaza, 360 West 31st Street, 8th Floor

New York, NY 10001 T: 212.479.5400 F: 212.479.5444 www.langan.com

T: 212.479.5400 F: 212.479.5444 www.langan.com
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C. S.A.
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C.
Langan Engineering and Environmental Services, inc.
Langan Cri, Inc.
Langan International LLC
Collectively known as Langan

**Hudson Yards West** 

Project

Fill p-y Table 36-inch Diameter

Drawing Title

Project No. 170444101 Date 2018/07/02 2 No Scale Drawn By / Checked By ZW / MGP Submission Date Sheet 2 of 11 2018/07/02

Rail Yard

MANHATTAN **NEW YORK** 

^ay = Lateral pile deflection in inches ^bp = Lateral pile resistance in pounds per inch

Zone	Depth									Cu	rve Points								
	ft		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	0.5	у	0.00	0.21	0.42	0.63	0.84	1.06	1.27	1.48	1.69	1.90	2.11	2.32	2.53	2.74	2.96	3.55	4.14
	0.5	р	0	13	25	38	51	63	76	89	101	114	127	139	152	165	177	177	177
	1.5	У	0.00	0.23	0.46	0.70	0.93	1.16	1.39	1.63	1.86	2.09	2.32	2.56	2.79	3.02	3.25	3.91	4.56
	1.5	р	0	42	84	126	167	209	251	293	335	377	418	460	502	544	586	586	586
	2.5	У	0.00	0.25	0.50	0.75	0.99	1.24	1.49	1.74	1.99	2.24	2.49	2.73	2.98	3.23	3.48	4.18	4.87
	2.0	р	0	75	149	224	298	373	447	522	597	671	746	820	895	970	1044	1044	1044
	3.5	У	0.00	0.26	0.52	0.78	1.04	1.30	1.56	1.81	2.07	2.33	2.59	2.85	3.11	3.37	3.63	4.36	5.08
	5.5	р	0	109	218	327	436	544	653	762	871	980	1089	1198	1307	1415	1524	1524	1524
	4.5	У	0.00	0.27	0.53	0.80	1.06	1.33	1.59	1.86	2.12	2.39	2.66	2.92	3.19	3.45	3.72	4.46	5.20
		р	0	143	287	430	574	717	860	1004	1147	1290	1434	1577	1721	1864	2007	2007	2007
	5.5	У	0.00	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.43	1.49	1.56	1.62	1.68	1.74	1.80	2.16	2.52
		р	0	2255	2317	2366	2415	2464	2513	2562	2611	2660	2709	2758	2808	2857	2906	2906	2906
	6.5	У	0.00	0.90	0.96	1.03	1.10	1.17	1.24	1.31	1.38	1.45	1.52	1.59	1.66	1.73	1.80	2.16	2.52
		р	0	2375	2440	2503	2565	2627	2690	2752	2814	2877	2939	3001	3064	3126	3189	3189	3189
	7.5	у	0.00	0.81	0.88	0.96	1.04	1.11	1.19	1.27	1.34	1.42	1.49	1.57	1.65	1.72	1.80	2.16	2.52
		р	0	2471	2546	2622	2698	2774	2849	2925	3001	3077	3152	3228	3304	3380	3455	3455	3455
	8.5 9.5	У	0.00	0.73	0.74	0.74	0.75	0.75	0.76	0.77	0.77	0.78	0.79	0.79	0.80	1.30	1.80	2.16	2.52
(uo	9.5	р	0	2527	2535	2542	2550	2557	2564	2571	2578	2586	2593	2600	2607	3146	3686	3686	3686
aiss	9.5	У	0.00	0.66	0.67	0.68	0.70	0.71	0.72	0.73	0.75	0.76	0.77	0.79	0.80	1.30	1.80	2.16	2.52
FILL (48 inch Caisson)		р	0	2546	2563	2580	2597	2613	2629	2645	2661	2676	2692	2707	2722	3300	3877	3877	3877
. <u>.</u>	10.5	У	0.00	0.59	0.61	0.63	0.65	0.67	0.69	0.71	0.72	0.74	0.76	0.78	0.80	1.30	1.80	2.16	2.52
L (4	10.0	р	0	2532	2561	2589	2616	2643	2670	2696	2721	2746	2771	2795	2819	3445	4071	4071	4071
□ □	11.5	у	0.00	0.53	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	1.30	1.80	2.16	2.52
	11.0	р	0	2481	2524	2566	2607	2647	2686	2725	2762	2798	2834	2869	2904	3593	4283	4283	4283
	12.5	У	0.00	0.48	0.51	0.53	0.56	0.59	0.62	0.65	0.68	0.71	0.74	0.77	0.80	1.30	1.80	2.16	2.52
	12.5	р	0	2428	2488	2547	2603	2658	2712	2764	2814	2863	2911	2958	3004	3774	4544	4544	4544
	13.5	у	0.00	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	1.30	1.80	2.16	2.52
		р	0	2389	2469	2546	2620	2691	2761	2828	2893	2956	3018	3079	3137	4010	4883	4883	4883
	14.5	У	0.00	0.38	0.42	0.46	0.50	0.53	0.57	0.61	0.65	0.69	0.72	0.76	0.80	1.30	1.80	2.16	2.52
		р	0	2268	2375	2476	2573	2666	2756	2843	2928	3009	3089	3166	3242	4225	5208	5208	5208
	15.5	У	0.00	0.32	0.37	0.41	0.45	0.50	0.54	0.58	0.63	0.67	0.71	0.76	0.80	1.30	1.80	2.16	2.52
	15.5	р	0	2047	2188	2322	2449	2571	2688	2800	2909	3015	3117	3216	3313	4414	5516	5516	5516
	16.5	У	0.00	0.29	0.34	0.38	0.43	0.48	0.52	0.57	0.62	0.66	0.71	0.75	0.80	1.30	1.80	2.16	2.52
	10.5	р	0	1964	2134	2294	2446	2591	2730	2863	2992	3117	3238	3356	3471	4695	5919	5919	5919
	17.5	У	0.00	0.30	0.34	0.39	0.43	0.48	0.52	0.57	0.62	0.66	0.71	0.75	0.80	1.30	1.80	2.16	2.52
		р	0	2111	2294	2467	2631	2788	2939	3084	3225	3361	3493	3621	3747	5096	6446	6446	6446
	18.5	У	0.00	0.63	0.65	0.66	0.68	0.69	0.71	0.72	0.74	0.75	0.77	0.78	0.80	1.30	1.80	2.16	2.52
	10.5	р	0	3504	3554	3603	3652	3700	3748	3796	3843	3890	3936	3982	4028	5510	6992	6992	6992
	19.5	У	0.00	0.65	0.67	0.68	0.69	0.71	0.72	0.73	0.75	0.76	0.77	0.79	0.80	1.30	1.80	2.16	2.52
	19.5	р	0	3815	3862	3909	3955	4001	4047	4092	4137	4182	4226	4270	4314	5936	7557	7557	7557

T: 212.479.5400 F: 212.479.5444 www.langan.com T: 212.479.5400 F: 212.479.5444 www.langan.com
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C. S.A.
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C.
Langan Engineering and Environmental Services, inc.
Langan Cri, Inc.
Langan International LLC
Collectively known as Langan

## **Hudson Yards West**

Project

MANHATTAN

**Rail Yard** 

**NEW YORK** 

Fill p-y Table 48-inch Diameter

Project No.	Table No.
170444101	
Date	
2018/07/02	
Scale	3
No Scale	<b>.</b>
Drawn By / Checked By	
ZW / MGP	
Submission Date	
2018/07/02	Sheet 3 of 11

Drawing Title

^ay = Lateral pile deflection in inches ^bp = Lateral pile resistance in pounds per inch

Zone	Depth									Cu	rve Points								
	ft		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	20.5	у	0.00	0.69	0.70	0.71	0.72	0.73	0.74	0.75	0.76	0.77	0.78	0.79	0.80	1.30	1.80	2.16	2.52
	20.5	р	0	4233	4271	4308	4346	4383	4420	4457	4494	4530	4566	4602	4638	6401	8163	8163	8163
		у	0.00	0.74	0.75	0.75	0.76	0.76	0.77	0.77	0.78	0.78	0.79	0.79	0.80	1.30	1.80	2.16	2.52
	21.5	р	0	4784	4805	4825	4846	4867	4887	4908	4928	4948	4969	4989	5009	6913	8816	8816	8816
		у	0.00	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	1.30	1.80	2.16	2.52
	22.5	p	0	5385	5386	5387	5388	5389	5389	5390	5391	5392	5393	5393	5394	7444	9494	9494	9494
		у	0.00	0.86	0.93	1.00	1.07	1.15	1.22	1.29	1.36	1.44	1.51	1.58	1.65	1.73	1.80	2.16	2.52
	23.5	p	0.00	6040	6363	6683	7002	7322	7641	7961	8280	8599	8919	9238	9558	9877	10197	10197	10197
		٧	0.00	0.92	0.99	1.05	1.12	1.19	1.26	1.33	1.39	1.46	1.53	1.60	1.66	1.73	1.80	2.16	2.52
	24.5	р	0	6751	7086	7406	7726	8046	8366	8686	9006	9326	9645	9965	10285	10605	10925	10925	10925
	25.5	у	0.00	0.98	1.05	1.11	1.17	1.23	1.30	1.36	1.42	1.49	1.55	1.61	1.67	1.74	1.80	2.16	2.52
	25.5	р	0	7521	7876	8193	8510	8826	9143	9460	9777	10094	10411	10727	11044	11361	11678	11678	11678
	26.5	у	0.00	1.05	1.11	1.17	1.22	1.28	1.34	1.40	1.45	1.51	1.57	1.63	1.68	1.74	1.80	2.16	2.52
	20.3	р	0	8353	8736	9046	9356	9666	9976	10286	10596	10906	11216	11526	11836	12146	12456	12456	12456
(uo	27.5	У	0.00	1.12	1.17	1.23	1.28	1.33	1.38	1.43	1.49	1.54	1.59	1.64	1.70	1.75	1.80	2.16	2.52
aiss	28.5	р	0	9250	9672	9971	10270	10569	10868	11167	11466	11765	12064	12363	12662	12960	13259	13259	13259
FILL (48 inch Caisson)		У	0.00	1.19	1.24	1.29	1.33	1.38	1.43	1.47	1.52	1.57	1.61	1.66	1.71	1.75	1.80	2.16	2.52
i.		р	0	10215	10613	10972	11255	11539	11822	12105	12388	12672	12955	13238	13521	13805	14088	14088	14088
(48	29.5	У	0.00	1.27	1.31	1.35	1.39	1.43	1.47	1.52	1.56	1.60	1.64	1.68	1.72	1.76	1.80	2.16	2.52
∄		р	0	11250	11610	11970	12317	12579	12842	13104	13367	13629	13891	14154	14416	14679	14941	14941	14941
	30.5	y p	0.00	1.35 12360	1.39 12676	1.42 12992	1.45 13308	1.49 13624	1.52	1.56 14167	1.59 14403	1.63 14640	1.66 14876	1.70 15112	1.73 15348	1.77 15584	1.80 15820	2.16 15820	2.52 15820
		У	0.00	1.43	1.46	1.49	1.52	1.55	1.57	1.60	1.63	1.66	1.69	1.72	1.74	1.77	1.80	2.16	2.52
	31.5	g	0.00	13546	13813	14079	14346	14612	14878	15145	15411	15678	15909	16113	16316	16520	16723	16723	16723
		٧	0.00	1.52	1.54	1.56	1.58	1.61	1.63	1.65	1.67	1.69	1.71	1.74	1.76	1.78	1.80	2.16	2.52
	32.5	p	0	14813	15024	15234	15445	15655	15866	16076	16287	16497	16708	16918	17129	17339	17550	17652	17652
	22.5	у	0.00	1.61	1.62	1.64	1.65	1.67	1.68	1.70	1.71	1.73	1.74	1.76	1.77	1.79	1.80	2.16	2.52
	33.5	р	0	16164	16312	16460	16608	16756	16905	17053	17201	17349	17497	17645	17794	17942	18090	18606	18606
	34.5	у	0.00	1.70	1.71	1.72	1.72	1.73	1.74	1.75	1.75	1.76	1.77	1.78	1.78	1.79	1.80	2.16	2.52
	34.3	р	0	17601	17680	17759	17838	17918	17997	18076	18155	18234	18313	18393	18472	18551	18630	19585	19585
	35.5	у	0.00	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	2.16	2.52
		р	0	19128	19131	19135	19138	19141	19144	19148	19151	19154	19157	19160	19164	19167	19170	20589	20589
	36.5	У	0.00	0.14	0.28	0.42	0.56	0.71	0.85	0.99	1.13	1.27	1.41	1.55	1.69	1.83	1.97	2.37	2.76
		р	0	1544	3088	4632	6177	7721	9265	10809	12353	13897	15442	16986	18530	20074	21618	21618	21618
	37.5	У	0.00	0.14	0.29 3239	0.43	0.58	0.72	0.86 9717	1.01	1.15	1.30	1.44	1.58	1.73	1.87	2.02	2.42	2.82
		р	U	1619	3239	4858	6478	8097	9/1/	11336	12956	14575	16195	17814	19434	21053	22672	22672	22672

# 21 Penn Plaza, 360 West 31st Street, 8th Floor

New York, NY 10001 T: 212.479.5400 F: 212.479.5444 www.langan.com

T: 212.479.5400 F: 212.479.5444 www.langan.com
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C. S.A.
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C.
Langan Engineering and Environmental Services, inc.
Langan Cri, Inc.
Langan International LLC
Collectively known as Langan

**Hudson Yards West** 

Project

Fill p-y Table 48-inch Diameter

Drawing Title

Project No.	Table No.
170444101	
Date	
2018/07/02	
Scale	3
No Scale	3
Drawn By / Checked By	
ZW / MGP	
Submission Date	
2018/07/02	Sheet 3 of 11

**Rail Yard** 

MANHATTAN **NEW YORK** 

^ay = Lateral pile deflection in inches ^bp = Lateral pile resistance in pounds per inch

The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The	Zone	Depth	epth Curve Points																	
15		ft		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
P		0.5	у	0.00	0.31	0.62	0.93	1.24	1.55	1.86	2.17	2.48	2.80	3.11	3.42	3.73	4.04	4.35	5.22	6.09
1.5		0.5	р	0	19	37	56	75	93	112	130	149	168	186	205	224	242	261	261	261
P		1 5	У	0.00	0.33	0.67	1.00	1.33	1.67	2.00	2.33	2.67	3.00	3.34	3.67	4.00	4.34	4.67	5.60	6.54
P   0   106   212   318   424   530   636   742   848   954   1060   1166   1272   1378   1484   1484   1484   3.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7		1.5	р	0	60	120	180	240	300	360	420	480	540	600	660	720	781	841	841	841
P		2.5	у	0.00	0.35	0.71	1.06	1.41	1.77	2.12	2.47	2.83	3.18	3.53	3.89	4.24	4.59	4.95	5.94	6.93
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page			р	0	106	212	318	424	530	636	742	848	954	1060	1166	1272	1378	1484	1484	1484
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page		3.5	у	0.00	0.37	0.74	1.11	1.48	1.85	2.22	2.59	2.96	3.33	3.69	4.06	4.43	4.80	5.17	6.21	7.24
P			р	0	155	310	466	621	776	931	1086	1242	1397	1552	1707	1862	2017	2173	2173	2173
P		4.5	у	0.00	0.38	0.76	1.15	1.53	1.91	2.29	2.67	3.05	3.44	3.82	4.20	4.58	4.96	5.35	6.41	7.48
P		4.5	р	0	206	412	619	825	1031	1237	1443	1649	1856	2062	2268	2474	2680	2887	2887	2887
P   O   3238   3322   3395   3467   3540   3613   3685   3758   3831   3903   3976   4048   4121   4194   4194			у	0.00	1.44	1.54	1.64	1.73	1.83	1.93	2.02	2.12	2.22	2.31	2.41	2.51	2.60	2.70	3.24	3.78
Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Pari		5.5	р	0	3238	3322	3395	3467	3540	3613	3685	3758	3831	3903	3976	4048	4121	4194	4194	4194
P		6.5	у	0.00	1.32	1.43	1.53	1.64	1.75	1.85	1.96	2.06	2.17	2.28	2.38	2.49	2.59	2.70	3.24	3.78
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page			р	0	3505	3598	3687	3777	3867	3956	4046	4136	4225	4315	4405	4494	4584	4673	4673	4673
P		7.5	у	0.00	1.23	1.34	1.45	1.57	1.68	1.79	1.91	2.02	2.13	2.25	2.36	2.47	2.59	2.70	3.24	3.78
Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Pari		7.5	р	0	3752	3859	3965	4071	4177	4284	4390	4496	4603	4709	4815	4921	5028	5134	5134	5134
P		8.5	у	0.00	1.14	1.15	1.15	1.16	1.16	1.17	1.17	1.18	1.18	1.19	1.19	1.20	1.95	2.70	3.24	3.78
11.5	Ē		р	0	3959	3965	3970	3976	3981	3987	3993	3998	4004	4009	4015	4020	4789	5559	5559	5559
11.5	aisso	9.5	у	0.00	1.07	1.08	1.10	1.11	1.12	1.13	1.14	1.15	1.17	1.18	1.19	1.20	1.95	2.70	3.24	3.78
11.5	5		р	0	4155	4169	4183	4197	4210	4224	4237	4251	4264	4277	4291	4304	5141	5978	5978	5978
11.5	ž.	10.5	у	0.00	1.01	1.03	1.05	1.06	1.08	1.10	1.12	1.13	1.15	1.17	1.18	1.20	1.95	2.70	3.24	3.78
11.5	2) ]		р	0	4344	4367	4389	4412	4434	4456	4477	4499	4520	4541	4562	4582	5491	6399	6399	6399
P   O   4480   4514   4547   4579   4612   4643   4674   4705   4736   4766   4795   4824   5801   6778   6778     12.5	₫ [	11.5	у	0.00	0.95	0.98	1.00	1.02	1.04	1.07	1.09	1.11	1.13	1.16	1.18	1.20	1.95	2.70	3.24	3.78
12.5			р	0	4480	4514	4547	4579	4612	4643	4674	4705	4736	4766	4795	4824	5801	6778	6778	6778
P   O   4592   4637   4682   4725   4768   4810   4852   4892   4932   4972   5010   5048   6089   7131   7131     13.5		12.5	у	0.00	0.90	0.93	0.95	0.98	1.01	1.04	1.06	1.09	1.12	1.15	1.17	1.20	1.95	2.70	3.24	3.78
13.5			р	0	4592	4637	4682	4725	4768	4810	4852	4892	4932	4972	5010	5048	6089	7131	7131	7131
P   O   4683   4741   4798   4853   4907   4960   5012   5063   5112   5161   5209   5256   6357   7458   7458     14.5		13.5	у	0.00	0.85	0.88	0.91	0.95	0.98	1.01	1.04	1.07	1.10	1.14	1.17	1.20	1.95	2.70	3.24	3.78
14.5 p 0 4714 4787 4858 4927 4994 5059 5123 5185 5246 5305 5363 5420 6575 7730 7730 7730 7730 7730 7730 7730 7			р	0	4683	4741	4798	4853	4907	4960	5012	5063	5112	5161	5209	5256	6357	7458	7458	7458
P   O   4714   4787   4858   4927   4994   5059   5123   5185   5246   5305   5363   5420   6575   7730   7730     15.5		14.5	у	0.00	0.80	0.83	0.87	0.91	0.94	0.98	1.02	1.05	1.09	1.13	1.16	1.20	1.95	2.70	3.24	3.78
15.5 p 0 4724 4814 4901 4985 5066 5146 5223 5298 5371 5442 5512 5580 6805 8030 8030 8030    16.5 p 0 0 4724 4814 4901 4985 5066 5146 5223 5298 5371 5442 5512 5580 6805 8030 8030 8030    16.5 p 0 0 4711 4821 4927 5029 5128 5223 5316 5406 5493 5578 5661 5742 7058 8375 8375    17.5 y 0.00 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.95 2.70 3.24			р	0	4714	4787	4858	4927	4994	5059	5123	5185	5246	5305	5363	5420	6575	7730	7730	7730
P   O   4724   4814   4901   4985   5066   5146   5223   5298   5371   5442   5512   5580   6805   8030   8030     16.5			у	0.00	0.75	0.79	0.83	0.87	0.91	0.95	0.99	1.04	1.08	1.12	1.16	1.20	1.95	2.70	3.24	3.78
16.5 p 0 4711 4821 4927 5029 5128 5223 5316 5406 5493 5578 5661 5742 7058 8375 8375 17.5 y 0.00 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.95 2.70 3.24			р	0	4724	4814	4901	4985	5066	5146	5223	5298	5371	5442	5512	5580	6805	8030	8030	8030
p 0 4711 4821 4927 5029 5128 5223 5316 5406 5493 5578 5661 5742 7058 8375 8375 17.5 y 0.00 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.95 2.70 3.24		16.5	У	0.00	0.70	0.75	0.79	0.84	0.88	0.93	0.97	1.02	1.06	1.11	1.15	1.20	1.95	2.70	3.24	3.78
17.5			р	0	4711	4821	4927	5029	5128	5223	5316	5406	5493	5578	5661	5742	7058	8375	8375	8375
		17.5	У	0.00	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00	1.05	1.10	1.15	1.20	1.95	2.70	3.24	3.78
			р	0	4624	4758	4887	5011	5130	5245	5355	5463	5567	5668	5766	5861	7270	8679	8679	8679
y 0.00 1.01 1.03 1.05 1.06 1.08 1.10 1.12 1.13 1.15 1.17 1.18 1.20 1.95 2.70 3.24		18.5	У	0.00	1.01	1.03	1.05	1.06	1.08	1.10	1.12	1.13	1.15	1.17	1.18	1.20	1.95	2.70	3.24	3.78
18.5 p 0 5622 5660 5698 5735 5772 5809 5845 5881 5916 5952 5987 6021 7545 9068 9068			р	0	5622	5660	5698	5735	5772	5809	5845	5881	5916	5952	5987	6021	7545	9068	9068	9068
y 0.00 0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20 1.95 2.70 3.24		19.5	у	0.00	0.98	1.00	1.02	1.04	1.06	1.08	1.10	1.12	1.14	1.16	1.18	1.20	1.95	2.70	3.24	3.78
P 0 5713 5764 5813 5863 5912 5960 6007 6055 6101 6147 6193 6239 7904 9569 9569			р	0	5713	5764	5813	5863	5912	5960	6007	6055	6101	6147	6193	6239	7904	9569	9569	9569

T: 212.479.5400 F: 212.479.5444 www.langan.com

T: 212.479.5400 F: 212.479.5444 www.langan.com
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C. S.A.
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C.
Langan Engineering and Environmental Services, inc.
Langan Cri, Inc.
Langan International LLC
Collectively known as Langan

**Hudson Yards West** 

**Rail Yard** 

Project

MANHATTAN

Drawing Title

**NEW YORK** 

Fill p-y Table 72-inch Diameter

Project No.	Table No.
170444101	
Date	
2018/07/02	
Scale	1
No Scale	4
Drawn By / Checked By	
ZW / MGP	
Submission Date	
2018/07/02	Sheet 4 of 11

^ay = Lateral pile deflection in inches ^bp = Lateral pile resistance in pounds per inch

Zone	Depth									Cu	rve Points								
	ft		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	20.5	У	0.00	0.93	0.96	0.98	1.01	1.03	1.05	1.08	1.10	1.13	1.15	1.18	1.20	1.95	2.70	3.24	3.78
FILL (72 inch Caisson)	20.5	р	0	5742	5809	5875	5940	6004	6067	6129	6191	6252	6312	6372	6431	8245	10060	10060	10060
		у	0.00	0.88	0.91	0.94	0.97	1.00	1.03	1.06	1.08	1.11	1.14	1.17	1.20	1.95	2.70	3.24	3.78
	21.5	р	0	5696	5784	5871	5956	6040	6123	6204	6285	6364	6442	6519	6596	8567	10538	10538	10538
		v	0.00	0.82	0.86	0.89	0.93	0.96	0.99	1.03	1.06	1.10	1.13	1.17	1.20	1.95	2.70	3.24	3.78
	22.5	р	0	5559	5676	5789	5901	6011	6119	6225	6329	6432	6533	6632	6730	8866	11003	11003	11003
		У	0.00	0.75	0.79	0.83	0.88	0.92	0.96	1.00	1.04	1.08	1.12	1.16	1.20	1.95	2.70	3.24	3.78
	23.5	p	0	5313	5466	5615	5761	5904	6044	6181	6316	6448	6579	6706	6832	9141	11450	11450	11450
		V	0.00	0.72	0.77	0.81	0.85	0.90	0.94	0.98	1.03	1.07	1.11	1.16	1.20	1.95	2.70	3.24	3.78
	24.5	p	0	5315	5492	5665	5833	5998	6160	6318	6473	6625	6775	6922	7067	9551	12035	12035	12035
	25.5	у	0.00	0.74	0.78	0.82	0.87	0.91	0.95	0.99	1.03	1.07	1.12	1.16	1.20	1.95	2.70	3.24	3.78
	25.5	р	0	5671	5851	6027	6199	6367	6532	6694	6853	7010	7164	7315	7464	10125	12785	12785	12785
	26.5	У	0.00	0.76	0.80	0.84	0.88	0.92	0.96	1.00	1.04	1.08	1.12	1.16	1.20	1.95	2.70	3.24	3.78
	20.5	р	0	6039	6221	6399	6574	6745	6914	7079	7242	7402	7559	7714	7867	10711	13555	13555	13555
on)	27.5	У	0.00	0.78	0.82	0.85	0.89	0.93	0.97	1.01	1.05	1.08	1.12	1.16	1.20	1.95	2.70	3.24	3.78
aiss		р	0	6417	6601	6782	6959	7133	7303	7472	7637	7800	7961	8120	8276	11310	14345	14345	14345
5	28.5	У	0.00	0.80	0.83	0.87	0.91	0.94	0.98	1.02	1.05	1.09	1.13	1.16	1.20	1.95	2.70	3.24	3.78
i		р	0	6807	6992	7174	7353	7528	7702	7872	8040	8206	8369	8530	8689	11921	15153	15153	15153
(2)	29.5	У	0.00	0.81	0.85	0.88	0.92	0.95	0.99	1.02	1.06	1.09	1.13	1.16	1.20	1.95	2.70	3.24	3.78
<u> </u>		p	0.00	7208 0.85	7393 0.88	7576 0.91	7756 0.94	7933 0.98	8108 1.01	8280 1.04	8450 1.07	8617 1.10	8783 1.14	8946 1.17	9108 1.20	12544 1.95	15980 2.70	15980 3.24	15980 3.78
	30.5	y p	0.00	7749	7926	8101	8274	8444	8612	8777	8941	9103	9263	9421	9578	13218	16857	16857	16857
		У	0.00	0.89	0.92	0.95	0.98	1.01	1.03	1.06	1.09	1.12	1.14	1.17	1.20	1.95	2.70	3.24	3.78
	31.5	p	0.00	8456	8615	8771	8926	9079	9231	9380	9529	9676	9821	9965	10108	13949	17790	17790	17790
		V	0.00	0.94	0.97	0.99	1.01	1.04	1.06	1.08	1.11	1.13	1.15	1.18	1.20	1.95	2.70	3.24	3.78
	32.5	p	0	9209	9346	9482	9616	9750	9882	10013	10143	10272	10399	10526	10652	14700	18747	18747	18747
	22.5	у	0.00	1.00	1.01	1.03	1.05	1.07	1.09	1.11	1.13	1.14	1.16	1.18	1.20	1.95	2.70	3.24	3.78
	33.5	р	0	10009	10122	10234	10346	10456	10566	10675	10784	10891	10998	11105	11210	15470	19730	19730	19730
	34.5	У	0.00	1.05	1.06	1.08	1.09	1.10	1.12	1.13	1.15	1.16	1.17	1.19	1.20	1.95	2.70	3.24	3.78
	34.3	р	0	10859	10945	11031	11116	11201	11285	11369	11453	11536	11619	11701	11783	16261	20738	20738	20738
	35.5	У	0.00	1.10	1.11	1.12	1.13	1.14	1.15	1.16	1.17	1.17	1.18	1.19	1.20	1.95	2.70	3.24	3.78
		р	0	11760	11816	11872	11928	11984	12039	12095	12150	12205	12260	12315	12370	17070	21771	21771	21771
	36.5	У	0.00	1.16	1.16	1.17	1.17	1.18	1.18	1.18	1.19	1.19	1.19	1.20	1.20	1.95	2.70	3.24	3.78
		p v	0.00	12713 1.22	12737 1.33	12760 1.45	12784 1.56	12807 1.68	12831 1.79	12854 1.90	12878 2.02	12901 2.13	12924 2.24	12948 2.36	12971 2.47	17900 2.59	22829	22829 3.24	22829 3.78
	37.5	-	0.00	13722	1.33	15290	16074	16857	17641	1.90	19209	19993	2.24	2.36	2.47	2.59	23912	23912	23912
		р 		13/22	14500	13290	10074	1000/	1/041	10423	19209	19993	20///	21301	22344	23170	25912	23912	23912

T: 212.479.5400 F: 212.479.5444 www.langan.com

T: 212.479.5400 F: 212.479.5444 www.langan.com
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C. S.A.
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C.
Langan Engineering and Environmental Services, inc.
Langan Cri, Inc.
Langan International LLC
Collectively known as Langan

Project

MANHATTAN

**Hudson Yards West Rail Yard** 

**NEW YORK** 

Drawing Title

Fill p-y Table 72-inch Diameter

Project No.	Table No.
170444101	
Date	
2018/07/02	
Scale	1
No Scale	7
Drawn By / Checked By	
ZW / MGP	
Submission Date	
2018/07/02	Sheet 4 of 11

^ay = Lateral pile deflection in inches ^bp = Lateral pile resistance in pounds per inch

15	Zone	Depth									Cu	rve Points								
15		ft		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
P		0.5	У	0.00	0.41	0.82	1.23	1.64	2.05	2.46	2.87	3.28	3.69	4.10	4.51	4.92	5.33	5.74	6.89	8.04
15		0.5	р	0	25	49	74	98	123	148	172	197	221	246	271	295	320	344	344	344
P 0 0 78 156 224 312 300 468 547 625 703 781 859 937 1015 1033 1033 1  2.5		15	У	0.00	0.43	0.87	1.30	1.73	2.17	2.60	3.04	3.47	3.90	4.34	4.77	5.20	5.64	6.07	7.29	8.50
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page		1.3	р	0	78	156	234	312	390	468	547	625	703	781	859	937	1015	1093	1093	1093
P		2 5	У	0.00	0.46	0.91	1.37	1.82	2.28	2.73	3.19	3.64	4.10	4.55	5.01	5.46	5.92	6.37	7.65	8.92
1987   P   0   199   398   597   797   996   1195   1394   1593   1792   1991   2191   2390   2589   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788   2788		2.5	р	0	137	273	410	546	683	819	956	1092	1229	1365	1502	1638	1775	1912	1912	1912
P		2 5	У	0.00	0.47	0.95	1.42	1.90	2.37	2.84	3.32	3.79	4.27	4.74	5.22	5.69	6.16	6.64	7.97	9.29
1.5		5.5	р	0	199	398	597	797	996	1195	1394	1593	1792	1991	2191	2390	2589	2788	2788	2788
P		4.5	У	0.00	0.49	0.98	1.47	1.96	2.45	2.94	3.43	3.92	4.41	4.90	5.39	5.88	6.37	6.86	8.24	9.61
P		4.5	р	0	265	530	794	1059	1324	1589	1853	2118	2383	2648	2912	3177	3442	3707	3707	3707
P			У	0.00	1.82	1.96	2.10	2.23	2.37	2.51	2.64	2.78	2.92	3.05	3.19	3.33	3.46	3.60	4.32	5.04
P		5.5	р	0	4092	4196	4293	4390	4487	4584	4681	4778	4875	4972	5069	5166	5263	5360	5360	5360
P		6.5	У	0.00	1.68	1.83	1.98	2.13	2.27	2.42	2.57	2.72	2.86	3.01	3.16	3.31	3.45	3.60	4.32	5.04
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page		0.5	р	0	4467	4586	4704	4822	4940	5058	5176	5294	5412	5530	5648	5766	5884	6002	6002	6002
P		7.5	у	0.00	1.58	1.58	1.58	1.58	1.59	1.59	1.59	1.59	1.59	1.60	1.60	1.60	2.60	3.60	4.32	5.04
10.5   P		7.5	р	0	4831	4833	4835	4837	4838	4840	4842	4844	4845	4847	4849	4850	5743	6635	6635	6635
P		0.5	у	0.00	1.50	1.51	1.51	1.52	1.53	1.54	1.55	1.56	1.57	1.58	1.59	1.60	2.60	3.60	4.32	5.04
11.5 p 0 0 6115 6153 6191 6229 6266 6302 6339 6374 6409 6444 6478 6512 7761 9010 9010 9010 9010 9010 9010 9010 90	Ē	0.5	р	0	5188	5198	5207	5217	5227	5236	5246	5255	5265	5274	5283	5293	6277	7260	7260	7260
11.5 p 0 6115 6153 6191 6229 6266 6302 6339 6374 6409 6444 6478 6512 7761 9010 9010 9010 9010 9010 9010 9010 90	aisso	0.5	У	0.00	1.43	1.44	1.46	1.47	1.49	1.51	1.52	1.54	1.55	1.57	1.58	1.60	2.60	3.60	4.32	5.04
11.5 p 0 0 6115 6153 6191 6229 6266 6302 6339 6374 6409 6444 6478 6512 7761 9010 9010 9010 9010 9010 9010 9010 90	5	9.5	р	0	5532	5550	5568	5586	5604	5621	5639	5656	5674	5691	5708	5725	6799	7873	7873	7873
11.5 p 0 6115 6153 6191 6229 6266 6302 6339 6374 6409 6444 6478 6512 7761 9010 9010 9010 9010 9010 9010 9010 90	e ii	10.5	у	0.00	1.36	1.39	1.41	1.43	1.45	1.47	1.49	1.51	1.54	1.56	1.58	1.60	2.60	3.60	4.32	5.04
11.5 p 0 0 6115 6153 6191 6229 6266 6302 6339 6374 6409 6444 6478 6512 7761 9010 9010 9010 9010 9010 9010 9010 90	ı6) T	10.5	р	0	5843	5871	5898	5926	5952	5979	6005	6031	6057	6083	6108	6133	7296	8459	8459	8459
P   0   6115   6153   6191   6229   6266   6302   6339   6374   6409   6444   6478   6512   7761   9010   9010   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910   910		11.5	у	0.00	1.30	1.33	1.36	1.38	1.41	1.44	1.47	1.49	1.52	1.55	1.57	1.60	2.60	3.60	4.32	5.04
12.5		11.5	р	0	6115	6153	6191	6229	6266	6302	6339	6374	6409	6444	6478	6512	7761	9010	9010	9010
P   0   6385   6485   6483   6531   6579   6625   6671   6716   6761   6805   6848   6890   8228   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566   9566		12.5	У	0.00	1.25	1.28	1.32	1.35	1.38	1.41	1.44	1.47	1.51	1.54	1.57	1.60	2.60	3.60	4.32	5.04
13.5 p 0 6659 6720 6780 6838 6896 6953 7008 7063 7117 7170 7222 7273 8705 10137 10137 1  14.5 p 0 6888 6962 7034 7105 7175 7243 7309 7375 7439 7502 7564 7625 9148 10671 10671 1  15.5 p 0 7066 7155 7242 7326 7409 7490 7569 7646 7722 7796 7869 7940 9552 11164 11164 1  16.5 p 0 7066 7155 7242 7326 7409 7490 7569 7646 7722 7796 7869 7940 9552 11164 11164 1  16.5 p 0 7230 7335 7436 7535 7631 7725 7817 7906 7993 8079 8163 8245 9942 11639 11639 1  17.5 p 0 7387 7507 7624 7737 7847 7954 8058 8159 8258 8355 8449 8542 10320 12098 12098 1  18.5 p 0 8758 8762 8766 8770 8773 8777 8781 8784 8788 8792 8796 8799 10654 12508 12508 12508 1		12.5	р	0	6385	6435	6483	6531	6579	6625	6671	6716	6761	6805	6848	6890	8228	9566	9566	9566
P   0   6659   6720   6780   6838   6896   6953   7008   7063   7117   7170   7222   7273   8705   10137   10137   1   14.5   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5   7   14.5		12.5	У	0.00	1.21	1.24	1.28	1.32	1.35	1.39	1.42	1.46	1.49	1.53	1.56	1.60	2.60	3.60	4.32	5.04
14.5 p 0 6888 6962 7034 7105 7175 7243 7309 7375 7439 7502 7564 7625 9148 10671 10671 1 115.5 p 0 0 7066 7155 7242 7326 7409 7409 7569 7646 7722 7796 7869 7940 9552 11164 11164 1 116.5 p 0 0 7066 7155 7242 7326 7409 7409 7569 7646 7722 7796 7869 7940 9552 11164 11164 1 116.5 p 0 0 7230 7335 7436 7535 7631 7725 7817 7906 7993 8079 8163 8245 9942 11639 11639 1 1639 1 17.5 p 0 7230 7335 7436 7535 7631 7725 7817 7906 7993 8079 8163 8245 9942 11639 11639 1 17.5 p 0 7387 7507 7624 7737 7847 7954 8058 8159 8258 8355 8449 8542 10320 12098 12098 1 18.5 p 0 8758 8762 8766 8770 8773 8773 8781 8784 8788 8792 8796 8799 10654 12508 12508 1 10 10 10 10 10 10 10 10 10 10 10 10 1		13.5	р	0	6659	6720	6780	6838	6896	6953	7008	7063	7117	7170	7222	7273	8705	10137	10137	10137
P   0   6888   6962   7034   7105   7175   7243   7309   7375   7439   7502   7564   7625   9148   10671   10671   1     15.5		145	У	0.00	1.16	1.20	1.24	1.28	1.32	1.36	1.40	1.44	1.48	1.52	1.56	1.60	2.60	3.60	4.32	5.04
15.5 p 0 7066 7155 7242 7326 7409 7409 7569 7646 7722 7796 7869 7940 9552 11164 11164 1  16.5 p 0 7230 7335 7436 7535 7631 7725 7817 7906 7993 8079 8163 8245 9942 11639 11639 1  17.5 p 0 7387 7507 7624 7737 7847 7954 8058 8159 8258 8355 8449 8542 10320 12098 12098 1  18.5 p 0 8758 8762 8766 8770 8773 8777 8781 8784 8788 8792 8796 8799 10654 12508 12508 1  18.5 p 0 8758 8762 8766 8770 8773 8777 8781 8784 8788 8782 8796 8799 10654 12508 12508 1		14.5	р	0	6888	6962	7034	7105	7175	7243	7309	7375	7439	7502	7564	7625	9148	10671	10671	10671
P   0   7066   7155   7242   7326   7409   7490   7569   7646   7722   7796   7869   7940   9552   11164   11164   1   16.5		15.5	У	0.00	1.12	1.16	1.21	1.25	1.29	1.34	1.38	1.42	1.47	1.51	1.56	1.60	2.60	3.60	4.32	5.04
16.5 p 0 7230 7335 7436 7535 7631 7725 7817 7906 7993 8079 8163 8245 9942 11639 11639 1  17.5 y 0.00 1.03 1.09 1.14 1.19 1.24 1.29 1.34 1.39 1.45 1.50 1.55 1.60 2.60 3.60 4.32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0		15.5	р	0	7066	7155	7242	7326	7409	7490	7569	7646	7722	7796	7869	7940	9552	11164	11164	11164
P   0   7230   7335   7436   7535   7631   7725   7817   7906   7993   8079   8163   8245   9942   11639   11639   1   17.5		16.5	У	0.00	1.07	1.12	1.17	1.22	1.27	1.31	1.36	1.41	1.46	1.50	1.55	1.60	2.60	3.60	4.32	5.04
17.5 p 0 7387 7507 7624 7737 7847 7954 8058 8159 8258 8355 8449 8542 10320 12098 12098 1  18.5 y 0.00 1.58 1.58 1.58 1.58 1.59 1.59 1.59 1.59 1.59 1.60 1.60 1.60 2.60 3.60 4.32 1  18.5 p 0 8758 8762 8766 8770 8773 8777 8781 8784 8788 8792 8796 8799 10654 12508 12508 1  18.5 y 0.00 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.58 1.59 1.60 2.60 3.60 4.32 1  18.5 p 0 8758 8762 8766 8770 8773 8777 8781 8784 8788 8792 8796 8799 10654 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12508 12		10.5	р	0	7230	7335	7436	7535	7631	7725	7817	7906	7993	8079	8163	8245	9942	11639	11639	11639
p     0     7387     7507     7624     7737     7847     7954     8058     8159     8258     8355     8449     8542     10320     12098     12098     1       18.5     y     0.00     1.58     1.58     1.58     1.59     1.59     1.59     1.59     1.59     1.59     1.60     1.60     1.60     2.60     3.60     4.32     1.50       p     0     8758     8762     8766     8770     8773     8777     8781     8784     8788     8792     8796     8799     10654     12508     12508     1       y     0.00     1.51     1.52     1.53     1.54     1.54     1.55     1.56     1.57     1.58     1.58     1.59     1.60     2.60     3.60     4.32     1		17 5	У	0.00	1.03	1.09	1.14	1.19	1.24	1.29	1.34	1.39	1.45	1.50	1.55	1.60	2.60	3.60	4.32	5.04
18.5 p 0 8758 8762 8766 8770 8773 8777 8781 8784 8788 8792 8796 8799 10654 12508 12508 1		1/.5	р	0	7387	7507	7624	7737	7847	7954	8058	8159	8258	8355	8449	8542	10320	12098	12098	12098
p 0 8758 8762 8766 8770 8773 8777 8781 8784 8788 8792 8796 8799 10654 12508 12508 1		10.5	У	0.00	1.58	1.58	1.58	1.58	1.59	1.59	1.59	1.59	1.59	1.60	1.60	1.60	2.60	3.60	4.32	5.04
y 0.00 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.58 1.59 1.60 2.60 3.60 4.32		18.5	р	0	8758	8762	8766	8770	8773	8777	8781	8784	8788	8792	8796	8799	10654	12508	12508	12508
		10.5	У	0.00	1.51	1.52	1.53	1.54	1.54	1.55	1.56	1.57	1.58	1.58	1.59	1.60	2.60	3.60	4.32	5.04
		19.5	р	0	8839	8855	8871	8887	8903	8919	8935	8951	8966	8982	8998	9014	10939	12864	12864	12864

T: 212.479.5400 F: 212.479.5444 www.langan.com T: 212.479.5400 F: 212.479.5444 www.langan.com
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C. S.A.
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C.
Langan Engineering and Environmental Services, inc.
Langan Cri, Inc.
Langan International LLC
Collectively known as Langan

**Hudson Yards West** 

**Rail Yard** 

Project

MANHATTAN

**NEW YORK** 

Drawing Title

Fill p-y Table 96-inch Diameter

Project No.	Table No.
170444101	
Date	
2018/07/02	
Scale	5
No Scale	3
Drawn By / Checked By	
ZW / MGP	
Submission Date	
2018/07/02	Sheet 5 of 11

^ay = Lateral pile deflection in inches ^bp = Lateral pile resistance in pounds per inch

Zone	Depth								•	Cu	rve Points								
	ft		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	20.5	У	0.00	1.45	1.46	1.48	1.49	1.51	1.52	1.53	1.55	1.56	1.57	1.59	1.60	2.60	3.60	4.32	5.04
FILL (96 inch Calsson)	20.3	р	0	8926	8955	8984	9012	9041	9069	9097	9125	9153	9180	9208	9235	11252	13270	13270	13270
		у	0.00	1.40	1.42	1.44	1.45	1.47	1.49	1.51	1.53	1.55	1.56	1.58	1.60	2.60	3.60	4.32	5.04
	21.5	р	0	9025	9068	9109	9151	9192	9233	9274	9314	9354	9394	9433	9472	11609	13745	13745	13745
		v	0.00	1.34	1.37	1.39	1.41	1.44	1.46	1.48	1.51	1.53	1.55	1.58	1.60	2.60	3.60	4.32	5.04
	22.5	р	0	9056	9114	9173	9230	9287	9344	9400	9455	9510	9564	9618	9671	11927	14183	14183	14183
		у	0.00	1.28	1.31	1.34	1.37	1.39	1.42	1.45	1.48	1.51	1.54	1.57	1.60	2.60	3.60	4.32	5.04
	23.5	p	0	9009	9088	9166	9244	9320	9395	9469	9543	9615	9687	9758	9828	12205	14581	14581	14581
		٧	0.00	1.23	1.26	1.30	1.33	1.36	1.40	1.43	1.47	1.50	1.53	1.57	1.60	2.60	3.60	4.32	5.04
	24.5	p	0	9038	9136	9233	9329	9423	9516	9608	9698	9787	9875	9961	10047	12572	15098	15098	15098
	25.5	у	0.00	1.20	1.23	1.27	1.31	1.34	1.38	1.42	1.45	1.49	1.53	1.56	1.60	2.60	3.60	4.32	5.04
	25.5	р	0	9168	9284	9398	9510	9620	9728	9835	9940	10044	10146	10247	10347	13053	15759	15759	15759
	26.5	У	0.00	1.16	1.20	1.24	1.28	1.32	1.36	1.40	1.44	1.48	1.52	1.56	1.60	2.60	3.60	4.32	5.04
	20.5	р	0	9243	9379	9513	9645	9774	9901	10026	10149	10271	10390	10508	10623	13518	16412	16412	16412
(uo	27.5	У	0.00	1.12	1.17	1.21	1.25	1.30	1.34	1.38	1.43	1.47	1.51	1.56	1.60	2.60	3.60	4.32	5.04
aiss		р	0	9254	9415	9573	9728	9880	10030	10177	10321	10463	10603	10740	10875	13966	17056	17056	17056
	28.5	У	0.00	1.07	1.12	1.17	1.22	1.27	1.31	1.36	1.41	1.46	1.50	1.55	1.60	2.60	3.60	4.32	5.04
i.		p	0	9191	9382	9570	9753	9933	10109	10281	10451	10618	10781	10942	11101	14395	17688	17688	17688
(6)	29.5	У	0.00	1.02 9043	1.07 9271	1.13 9494	1.18 9711	1.23 9923	1.28 10131	1.34 10335	1.39 10535	1.44 10730	1.49 10923	1.55 11112	1.60 11298	2.60 14802	3.60 18307	4.32 18307	5.04 18307
글		p v	0.00	0.96	1.02	1.08	1.14	1.19	1.25	1.31	1.37	1.43	1.48	1.54	1.60	2.60	3.60	4.32	5.04
	30.5	р	0.00	8798	9070	9335	9593	9845	10091	10331	10567	10797	11024	11246	11464	15188	18911	18911	18911
		У	0.00	0.89	0.96	1.02	1.09	1.15	1.21	1.28	1.34	1.41	1.47	1.54	1.60	2.60	3.60	4.32	5.04
	31.5	p	0	8441	8767	9082	9389	9688	9980	10264	10542	10814	11080	11341	11598	15548	19499	19499	19499
	22.5	у	0.00	0.86	0.93	1.00	1.07	1.13	1.20	1.27	1.33	1.40	1.47	1.53	1.60	2.60	3.60	4.32	5.04
	32.5	р	0	8428	8788	9137	9476	9806	10127	10440	10746	11046	11339	11626	11908	16087	20265	20265	20265
	33.5	у	0.00	0.88	0.95	1.01	1.08	1.14	1.21	1.27	1.34	1.40	1.47	1.53	1.60	2.60	3.60	4.32	5.04
	33.3	р	0	8863	9229	9585	9931	10268	10597	10918	11232	11539	11841	12136	12427	16833	21239	21239	21239
	34.5	У	0.00	0.90	0.96	1.03	1.09	1.15	1.22	1.28	1.35	1.41	1.47	1.54	1.60	2.60	3.60	4.32	5.04
		р	0	9308	9680	10042	10395	10739	11075	11404	11725	12040	12349	12653	12951	17592	22233	22233	22233
	35.5	y p	0.00	0.92	0.98	1.04	1.10	1.17	1.23	1.29	1.35	1.41	1.48	1.54	1.60	2.60	3.60	4.32	5.04
		·	0.00	9763 0.93	10141 0.99	10509	10868	11218	11561 1.24	11897 1.30	12226 1.36	12548	12865 1.48	13176 1.54	13482	18364 2.60	23246 3.60	23246 4.32	23246 5.04
	36.5	y p	0.00	10228	10611	10984	11349	11706	12055	12397	12733	13062	13386	13704	14017	19148	24279	24279	24279
		v	0.00	0.95	1.01	1.07	1.13	1.19	1.25	1.31	1.36	1.42	1.48	1.54	1.60	2.60	3.60	4.32	5.04
	37.5	p	0	10702	11090	11469	11839	12201	12557	12905	13247	13583	13914	14239	14559	19945	25330	25330	25330
$\overline{}$				10,02		05			,						555	223 13			

T: 212.479.5400 F: 212.479.5444 www.langan.com

T: 212.479.5400 F: 212.479.5444 www.langan.com
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C. S.A.
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C.
Langan Engineering and Environmental Services, inc.
Langan Cri, Inc.
Langan International LLC
Collectively known as Langan

Project

MANHATTAN

**Hudson Yards West** Rail Yard

**NEW YORK** 

Drawing Title

Project No. 170444101 Date 2018/07/02 5 No Scale Drawn By / Checked By ZW / MGP Submission Date Sheet 5 of 11

2018/07/02

Fill p-y Table 96-inch Diameter

^ay = Lateral pile deflection in inches ^bp = Lateral pile resistance in pounds per inch

Zone	Su									Cu	rve Points								
Zone	psf	Ħ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	650	у	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
	030	р	0	66	133	199	265	331	398	464	530	596	663	729	795	861	928	994	994
	675	У	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
	0/3	р	0	69	138	206	275	344	413	481	550	619	688	756	825	894	963	1031	1031
	700	У	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
		р	0	71	143	214	285	356	428	499	570	641	713	784	855	926	998	1069	1069
	725	У	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
		р	0	74	148	221	295	369	443	516	590	664	738	811	885	959	1033	1106	1106
	750	У	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
		р	0	76	153	229	305	381	458	534	610	686	763	839	915	991	1068	1144	1144
	775	У	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
		р	0	79	158	236	315	394	473	551	630	709	788	866	945	1024	1103	1181	1181
	800	У	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
		р	0	81	163	244	325	406	488	569	650	731	813	894	975	1056	1138	1219	1219
	825	У	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
		р	0	84	168	251	335	419	503	586	670	754	838	921	1005	1089	1173	1256	1256
	850	У	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
		р	0	86	173	259	345	431	518	604	690	776	863	949	1035	1121	1208	1294	1294
	875	У	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
		р	0	89	178	266	355	444	533	621	710	799	888	976	1065	1154	1243	1331	1331
	900	У	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
		р	0	91	183	274	365	456	548	639	730	821	913	1004	1095	1186	1278	1369	1369
	925	У	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
Ê		р	0	94	188	281	375	469	563	656	750	844	938	1031	1125	1219	1313	1406	1406
CLAY (24 inch Caisson)	950	У	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
h Ca		р	0	96	193	289	385	481	578	674	770	866	963	1059	1155	1251	1348	1444	1444
in	975	У	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
(54		р	0	99	198	296	395	494	593	691	790	889	988	1086	1185	1284	1383	1481	1481
LA.	1000	У	0.0000	0.0007	0.0057	0.0192	0.0455	0.0889	0.1536	0.2439	0.3641	0.5184	0.7111	0.9465	1.2288	1.5623	1.9513	2.4000	2.5500
		р	0	101	203	304	405	506	608	709	810	911	1013	1114	1215	1316	1418	1519	1519
	1025	У	0.0000	0.0007	0.0057	0.0192	0.0455	0.0889	0.1536	0.2439	0.3641	0.5184	0.7111	0.9465	1.2288	1.5623	1.9513	2.4000	2.5500
		р	0	104	208	311	415	519	623	726	830	934	1038	1141	1245	1349	1453	1556	1556
	1050	У	0.0000	0.0007	0.0057	0.0192	0.0455	0.0889	0.1536	0.2439	0.3641	0.5184	0.7111	0.9465	1.2288	1.5623	1.9513	2.4000	2.5500
		р	0	106	213	319	425	531	638	744	850	956	1063	1169	1275	1381	1488	1594	1594
	1075	У	0.0000	0.0007	0.0057	0.0192	0.0455	0.0889	0.1536	0.2439	0.3641	0.5184	0.7111	0.9465	1.2288	1.5623	1.9513	2.4000	2.5500
		р	0	109	218	326	435	544	653	761	870	979	1088	1196	1305	1414	1523	1631	1631
	1100	У	0.0000	0.0007	0.0057	0.0192	0.0455	0.0889	0.1536	0.2439	0.3641	0.5184	0.7111	0.9465	1.2288	1.5623	1.9513	2.4000	2.5500
		р	0	111	223	334	445	556	668	779	890	1001	1113	1224	1335	1446	1558	1669	1669
	1125	У	0.0000	0.0007	0.0057	0.0192	0.0455	0.0889	0.1536	0.2439	0.3641	0.5184	0.7111	0.9465	1.2288	1.5623	1.9513	2.4000	2.5500
		р	0	114	228	341	455	569	683	796	910	1024	1138	1251	1365	1479	1593	1706	1706
	1150	У	0.0000	0.0007	0.0057	0.0192	0.0455	0.0889	0.1536	0.2439	0.3641	0.5184	0.7111	0.9465	1.2288	1.5623	1.9513	2.4000	2.5500
		p	0	116	233	349	465	581	698	814	930	1046	1163	1279	1395	1511	1628	1744	1744
	1175	У	0.0000	0.0007	0.0057	0.0192	0.0455	0.0889	0.1536	0.2439	0.3641	0.5184	0.7111	0.9465	1.2288	1.5623	1.9513	2.4000	2.5500
		p	0	119	238	356	475	594	713	831	950	1069	1188	1306	1425	1544	1663	1781	1781
	1200	у	0.0000	0.0007	0.0057	0.0192	0.0455	0.0889	0.1536	0.2439	0.3641	0.5184	0.7111	0.9465	1.2288	1.5623	1.9513	2.4000	2.5500
		p	0	121	243	364	485	606	728	849	970	1091	1213	1334	1455	1576	1698	1819	1819
	1225	у	0.0000	0.0007	0.0057	0.0192	0.0455	0.0889	0.1536	0.2439	0.3641	0.5184	0.7111	0.9465	1.2288	1.5623	1.9513	2.4000	2.5500
		р	0.0000	0.0007	248 0.0057	371 0.0192	495 0.0455	619 0.0889	743 0.1536	866 0.2439	990 0.3641	1114 0.5184	1238 0.7111	1361 0.9465	1485 1.2288	1609 1.5623	1733 1.9513	1856 2.4000	1856 2.5500
	1250	y p	0.0000	126	253	379	505	631	758	884	1010	1136	1263	1389	1515	1.5623	1.9513	1894	1894
	1275	у	0.0000	0.0007	0.0057	0.0192	0.0455	0.0889	0.1536	0.2439	0.3641	0.5184	0.7111	0.9465	1.2288	1.5623	1.9513	2.4000	2.5500
	1275	p	0	129	258	386	515	644	773	901	1030	1159	1288	1416	1545	1674	1803	1931	1931
	1300	у	0.0000	0.0007	0.0057	0.0192	0.0455	0.0889	0.1536	0.2439	0.3641	0.5184	0.7111	0.9465	1.2288	1.5623	1.9513	2.4000	2.5500
	1300	р	0	131	263	394	525	656	788	919	1050	1181	1313	1444	1575	1706	1838	1969	1969

^ay = Lateral pile deflection in inches

21 Penn Plaza, 360 West 31st Street, 8th Floor

New York, NY 10001 T: 212.479.5400 F: 212.479.5444 www.langan.com

T: 212.479.5400 F: 212.479.5444 www.langan.com
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C. S.A.
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C.
Langan Engineering and Environmental Services, inc.
Langan Cri, Inc.
Langan Cri, Inc.
Collectively known as Langan

# **Hudson Yards West Rail Yard**

Project

MANHATTAN

**NEW YORK** 

Drawing Title

Clay p-y Table 24-inch Diameter

Project No.	Table No.
170444101	
Date	
2018/07/02	
Scale	6
No Scale	U
Drawn By / Checked By	
ZW / MGP	
Submission Date	
2018/07/02	Sheet 6 of 11

^bp = Lateral pile resistance in pounds per inch

## Per	Zone	Su									Cu	rve Points							-	
Fig.   19	20110	psf		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
P		650	у	0.0000	0.0021	0.0171	0.0576	0.1365	0.2667	0.4608	0.7317	1.0923	1.5552	2.1333	2.8395	3.6864	4.6869	5.8539	7.2000	7.6500
1		030	р	0	99	199	298	398	497	596	696	795	894	994	1093	1193	1292	1391	1491	1491
P		675	у	0.0000	0.0021	0.0171	0.0576	0.1365	0.2667	0.4608	0.7317	1.0923	1.5552	2.1333	2.8395	3.6864	4.6869	5.8539	7.2000	7.6500
The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The	CLAY (36 inch Caisson)		р	0	103	206	309	413	516	619	722	825	928	1031	1134	1238	1341	1444	1547	1547
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page		700	У	0.0000	0.0021	0.0171	0.0576	0.1365	0.2667	0.4608	0.7317	1.0923	1.5552	2.1333	2.8395	3.6864	4.6869	5.8539	7.2000	7.6500
Page   175   1			р																	
Page		725	H																	
The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late   The late																				
Page		750	H																	
Part			Ħ																	
Page   19		775	$\vdash$																	
Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part			V	_																
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page		800	n																	
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page			-																	
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page		825	$\vdash$																	
Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part		95.7	Ė																	
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page		850	$\vdash$																	
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page		075	-	0.0000																
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page		8/5	р	0	133	266	399	533	666	799	932	1065	1198	1331	1464	1598	1731	1864	1997	1997
Part		000	у	0.0000	0.0021	0.0171	0.0576	0.1365	0.2667	0.4608	0.7317	1.0923	1.5552	2.1333	2.8395	3.6864	4.6869	5.8539	7.2000	7.6500
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page		900	р	0	137	274	411	548	684	821	958	1095	1232	1369	1506	1643	1779	1916	2053	2053
Part		025	у	0.0000	0.0021	0.0171	0.0576	0.1365	0.2667	0.4608	0.7317	1.0923	1.5552	2.1333	2.8395	3.6864	4.6869	5.8539	7.2000	7.6500
P   0   152   304   456   608   759   911   1063   1215   1367   1519   1671   1823   1974   2126   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278	~	323	р	0	141	281	422	563	703	844	984	1125	1266	1406	1547	1688	1828	1969	2109	2109
P   0   152   304   456   608   759   911   1063   1215   1367   1519   1671   1823   1974   2126   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278	issoi	950	у	0.0000	0.0021	0.0171	0.0576	0.1365	0.2667	0.4608	0.7317	1.0923	1.5552	2.1333	2.8395	3.6864	4.6869	5.8539	7.2000	7.6500
P   0   152   304   456   608   759   911   1063   1215   1367   1519   1671   1823   1974   2126   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278	h Ca	330	р	0	144	289	433	578	722	866	1011	1155	1299	1444	1588	1733	1877	2021	2166	2166
P   0   152   304   456   608   759   911   1063   1215   1367   1519   1671   1823   1974   2126   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278	inc	975	У	0.0000	0.0021	0.0171	0.0576	0.1365	0.2667	0.4608	0.7317	1.0923	1.5552	2.1333	2.8395	3.6864	4.6869	5.8539	7.2000	7.6500
P   0   152   304   456   608   759   911   1063   1215   1367   1519   1671   1823   1974   2126   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278	(36		р	0	148	296	444	593	741	889	1037	1185	1333	1481	1629	1778	1926	2074	2222	2222
P   0   152   304   456   608   759   911   1063   1215   1367   1519   1671   1823   1974   2126   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278   2278	(FA)	1000	У	0.0000	0.0011	0.0085	0.0288	0.0683	0.1333	0.2304	0.3659	0.5461	0.7776	1.0667	1.4197	1.8432	2.3435	2.9269	3.6000	3.8250
105			р	-																
1050   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1075   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1075   p   0   163   3.26   489   653   816   979   1142   1305   1468   1631   1794   1958   2112   2284   2447   2447     1100   p   0   167   3.34   501   668   8.34   1001   1168   1335   1502   1669   1386   2003   2169   2336   2503   2503     1125   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1125   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1150   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1150   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1150   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1175   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1200   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1201   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1202   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435		1025	H																	
1050   p   0   159   319   478   638   797   956   1116   1275   1434   1594   1753   1913   2072   2231   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391   2391																				
1075   Y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250		1050	H																	
1075   p   0   163   326   489   653   816   979   1142   1305   1468   1631   1794   1958   2121   2284   2447   2447			Ħ																	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1075	$\vdash$																	
1100   p   0   167   334   501   668   834   1001   1168   1335   1502   1669   1836   2003   2169   2336   2503   2503   2503   2503   1204   1205   p   0   171   341   512   683   853   1024   1194   1365   1536   1706   1877   2048   2218   2389   2559   2559   2559   1150   p   0   174   349   523   698   872   1046   1221   1395   1569   1744   1918   2093   2267   2441   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616   2616			V	_																
1125   y   0.000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1150   p   0   171   341   512   683   853   1024   1194   1365   1536   1706   1877   2048   2218   2389   2559   2559     1150   p   0   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1175   p   0   174   349   523   698   872   1046   1221   1395   1569   1744   1918   2093   2267   2441   2616   2616     1175   p   0   0.000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1200   p   0   178   356   534   713   891   1069   1247   1425   1603   1781   1959   2138   2316   2494   2672   2672     1200   p   0   182   364   546   728   909   1091   1273   1455   1637   1819   2001   2183   2364   2546   2728   2728     1225   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1250   p   0   186   371   557   743   928   1114   1299   1485   1671   1856   2042   2228   2413   2599   2784   2784     1250   p   0   186   371   557   743   928   1114   1299   1485   1671   1856   2042   2228   2413   2599   2784   2784     1250   p   0   189   379   568   758   947   1136   1326   1515   1704   1894   2083   2273   2462   2651   2841   2841     1275   p   0   193   386   579   773   966   1159   1352   1545   1738   1931   2124   2318   2511   2704   2897   2897     1300   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1300   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1275   p   0   193   386   579   773   966   1159   1352		1100	n																	
1125   p   0   171   341   512   683   853   1024   1194   1365   1536   1706   1877   2048   2218   2389   2559   2559     1150   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1175   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1175   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1200   p   0   178   356   534   713   891   1069   1247   1425   1603   1781   1959   2138   2316   2494   2672   2672     1200   p   0   182   364   546   728   909   1091   1273   1455   1637   1819   2001   2183   2364   2546   2728   2728     1225   p   0   186   371   557   743   928   1114   1299   1485   1671   1856   2042   2228   2413   2599   2784   2784     1250   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1250   p   0   189   379   568   758   947   1136   1326   1515   1704   1894   2083   2273   2462   2651   2841   2841     1275   p   0   193   386   579   773   966   1159   1352   1545   1738   1931   2124   2318   2511   2704   2897   2897     1300   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1300   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1300   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1300   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435			$\boldsymbol{T}$																	
1150		1125	$\vdash$																	
1150   p   0   174   349   523   698   872   1046   1221   1395   1569   1744   1918   2093   2267   2441   2616   2616     1175   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1200   p   0   182   364   546   728   909   1091   1273   1455   1637   1819   2001   2183   2364   2546   2728   2728     1225   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1225   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1250   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1250   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1250   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1275   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1276   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1276   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1276   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250     1277   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435			у																	
1175   y   0.0000   0.0011   0.0085   0.0288   0.0683   0.1333   0.2304   0.3659   0.5461   0.7776   1.0667   1.4197   1.8432   2.3435   2.9269   3.6000   3.8250		1150	p																	
11/5   p   0   178   356   534   713   891   1069   1247   1425   1603   1781   1959   2138   2316   2494   2672   2672     1200		1175	-	0.0000	0.0011	0.0085	0.0288	0.0683	0.1333	0.2304	0.3659	0.5461	0.7776	1.0667	1.4197	1.8432	2.3435	2.9269	3.6000	3.8250
1200   p   0   182   364   546   728   909   1091   1273   1455   1637   1819   2001   2183   2364   2546   2728   2728     1225		11/5	-																	
P   0   182   364   546   728   909   1091   1273   1455   1637   1819   2001   2183   2364   2546   2728   2728		1200	у	0.0000	0.0011	0.0085	0.0288	0.0683	0.1333	0.2304	0.3659	0.5461	0.7776	1.0667	1.4197	1.8432	2.3435	2.9269	3.6000	3.8250
125   p   0   186   371   557   743   928   1114   1299   1485   1671   1856   2042   2228   2413   2599   2784   2784		1200	р	0	182	364	546	728	909	1091	1273	1455	1637	1819	2001	2183	2364	2546	2728	2728
P   O   186   371   557   743   928   1114   1299   1485   1671   1856   2042   2228   2413   2599   2784   2784		1225	у	0.0000	0.0011	0.0085	0.0288	0.0683	0.1333	0.2304	0.3659	0.5461	0.7776	1.0667	1.4197	1.8432	2.3435	2.9269	3.6000	3.8250
1250   p   0   189   379   568   758   947   1136   1326   1515   1704   1894   2083   2273   2462   2651   2841   2841   2845   2845   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445   2445		1625	р																	
P   O   189   379   568   758   947   1136   1326   1515   1704   1894   2083   2273   2462   2651   2841   2841		1250																		
1275   p   0   193   386   579   773   966   1159   1352   1545   1738   1931   2124   2318   2511   2704   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897   2897			•																	
y 0.0000 0.0011 0.0085 0.0288 0.0683 0.1333 0.2304 0.3659 0.5461 0.7776 1.0667 1.4197 1.8432 2.3435 2.9269 3.6000 3.8250		1275																		
p 0 197 394 591 788 984 1181 1378 1575 1772 1969 2166 2363 2559 2756 2953 2953		1200	-																	
		1300	р	0	197	394	591	788	984	1181	1378	1575	1772	1969	2166	2363	2559	2756	2953	2953

^ay = Lateral pile deflection in inches

T: 212.479.5400 F: 212.479.5444 www.langan.com

T: 212.479.5400 F: 212.479.5444 www.langan.com
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C. S.A.
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C.
Langan Engineering and Environmental Services, inc.
Langan Cri, Inc.
Langan Cri, Inc.
Collectively known as Langan

# **Hudson Yards West**

**Rail Yard** 

Project

MANHATTAN

# Clay p-y Table 36-inch Diameter

Drawing Title

**NEW YORK** 

Project No.	Table No.
170444101	
Date	
2018/07/02	
Scale	<del>-</del>
No Scale	/
Drawn By / Checked By	
ZW / MGP	
Submission Date	
2018/07/02	Sheet 7 of 11

^bp = Lateral pile resistance in pounds per inch

Zone	Su									Cu	rve Points								
20.10	psf		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	650	у	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
	030	р	0	133	265	398	530	663	795	928	1060	1193	1325	1458	1590	1723	1855	1988	1988
Zone	675	у	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
		р	0	138	275	413	550	688	825	963	1100	1238	1375	1513	1650	1788	1925	2063	2063
Caisson)	700	у	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
		р	0	143	285	428	570	713	855	998	1140	1283	1425	1568	1710	1853	1995	2138	2138
	725	У	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
		р	0	148	295	443	590	738	885	1033	1180	1328	1475	1623	1770	1918	2065	2213	2213
	750	У	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
		р	0	153	305	458	610	763	915	1068	1220	1373	1525	1678	1830	1983	2135	2288	2288
	775	У	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
		р	0	158	315	473	630	788	945	1103	1260	1418	1575	1733	1890	2048	2205	2363	2363
	800	У	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
		р	0	163	325	488	650	813	975	1138	1300	1463	1625	1788	1950	2113	2275	2438	2438
	825	У	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
		p 	0	168	335	503	670	838	1005	1173	1340	1508	1675	1843	2010	2178	2345	2513	2513
	850	У	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
		p	0	173	345	518	690	863	1035	1208	1380	1553	1725	1898	2070	2243	2415	2588	2588
	875	У	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
		p	0	178	355	533	710	888	1065	1243	1420	1598	1775	1953	2130	2308	2485	2663	2663
	900	у	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
		р	0 0000	183	365	548	730	913	1095	1278	1460	1643	1825	2008	2190	2373	2555	2738	2738
	925	y p	0.0000	0.0028 188	0.0228 375	0.0768 563	0.1820 750	0.3556 938	0.6144 1125	0.9756 1313	1.4564 1500	2.0736 1688	2.8444 1875	3.7860 2063	4.9152 2250	6.2492 2438	7.8052 2625	9.6000 2813	10.2000 2813
(uo		Ė	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
ais	950	р	0.0000	193	385	578	770	963	1155	1348	1540	1733	1925	2118	2310	2503	2695	2888	2888
뒫		у	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
.= -=	975	p	0	198	395	593	790	988	1185	1383	1580	1778	1975	2173	2370	2568	2765	2963	2963
\}		у	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
9	1000	p	0	203	405	608	810	1013	1215	1418	1620	1823	2025	2228	2430	2633	2835	3038	3038
		у	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
	1025	р	0	208	415	623	830	1038	1245	1453	1660	1868	2075	2283	2490	2698	2905	3113	3113
	4000	у	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
	1050	р	0	213	425	638	850	1063	1275	1488	1700	1913	2125	2338	2550	2763	2975	3188	3188
	1075	у	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
	1075	р	0	218	435	653	870	1088	1305	1523	1740	1958	2175	2393	2610	2828	3045	3263	3263
	1100	у	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
	1100	р	0	223	445	668	890	1113	1335	1558	1780	2003	2225	2448	2670	2893	3115	3338	3338
	1125	у	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
	1123	р	0	228	455	683	910	1138	1365	1593	1820	2048	2275	2503	2730	2958	3185	3413	3413
	1150	у	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
		р	0	233	465	698	930	1163	1395	1628	1860	2093	2325	2558	2790	3023	3255	3488	3488
	1175	у	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
		р	0	238	475	713	950	1188	1425	1663	1900	2138	2375	2613	2850	3088	3325	3563	3563
	1200	У	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
		р	0	243	485	728	970	1213	1455	1698	1940	2183	2425	2668	2910	3153	3395	3638	3638
	1225	У	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
		p	0	248	495	743	990	1238	1485	1733	1980	2228	2475	2723	2970	3218	3465	3713	3713
	1250	y p	0.0000	0.0014 253	0.0114 505	0.0384 758	0.0910 1010	0.1778 1263	0.3072 1515	0.4878 1768	0.7282 2020	1.0368 2273	1.4222 2525	1.8930 2778	2.4576 3030	3.1246 3283	3.9026 3535	4.8000 3788	5.1000 3788
	1275	у	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
	1275	p	0	258	515	773	1030	1288	1545	1803	2060	2318	2575	2833	3090	3348	3605	3863	3863
	1300	у	0.0000	0.0014	0.0114	0.0384	0.0910	0.1778	0.3072	0.4878	0.7282	1.0368	1.4222	1.8930	2.4576	3.1246	3.9026	4.8000	5.1000
		р	0 deflection	263	525	788	1050	1313	1575	1838	2100	2363	2625	2888	3150	3413	3675	3938	3938

^ay = Lateral pile deflection in inches

T: 212.479.5400 F: 212.479.5444 www.langan.com

T: 212.479.5400 F: 212.479.5444 www.langan.com
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C. S.A.
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C.
Langan Engineering and Environmental Services, inc.
Langan Cri, Inc.
Langan Cri, Inc.
Collectively known as Langan

# **Hudson Yards West**

Project

MANHATTAN

**Rail Yard** 

# Clay p-y Table 48-inch Diameter

Drawing Title

**NEW YORK** 

Project No.	Table No.
170444101	
Date	
2018/07/02	
Scale	8
No Scale	O
Drawn By / Checked By	
ZW / MGP	
Submission Date	
2018/07/02	Sheet 8 of 11

^bp = Lateral pile resistance in pounds per inch

Perf	Zone	Su									Cu	rve Points								
The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The	20.10	psf		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part		6EO	у	0.0000	0.0043	0.0341	0.1152	0.2731	0.5333	0.9216	1.4635	2.1845	3.1104	4.2667	5.6789	7.3728	9.3739	11.7077	14.4000	15.3000
Page   100   108   397   596   794   992   1100   1389   1597   1786   1586   1312   2318   2779   2776   2376   2376   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378   2378		030	р	0	190	379	569	759	948	1138	1327	1517	1707	1896	2086	2276	2465	2655	2845	2845
Part		675	У	0.0000	0.0043	0.0341	0.1152	0.2731	0.5333	0.9216	1.4635	2.1845	3.1104	4.2667	5.6789	7.3728	9.3739	11.7077	14.4000	15.3000
Part		0/3	р	0	198	397	595	794	992	1190	1389	1587	1786	1984	2182	2381	2579	2778	2976	2976
Part		700	У	0.0000	0.0043	0.0341	0.1152	0.2731	0.5333	0.9216	1.4635	2.1845	3.1104	4.2667	5.6789	7.3728	9.3739	11.7077	14.4000	15.3000
Part		700	р	0	207	415	622	829	1036	1244	1451	1658	1866	2073	2280	2488	2695	2902	3109	3109
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page		725	У	0.0000	0.0043	0.0341	0.1152	0.2731	0.5333	0.9216	1.4635	2.1845	3.1104	4.2667	5.6789	7.3728	9.3739	11.7077	14.4000	15.3000
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page			р	0	216	433	649	865	1082	1298	1514	1731	1947	2163	2380	2596	2812	3029	3245	3245
Part		750	У	0.0000	0.0043	0.0341	0.1152	0.2731	0.5333	0.9216	1.4635	2.1845	3.1104	4.2667	5.6789	7.3728	9.3739	11.7077	14.4000	15.3000
Part			р	0	226	451	677	902	1128	1353	1579	1804		2255	2481	2706	2932	3157	3383	3383
Page   19		775	$\vdash$																	
Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part			р	_																
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page		800	У																	
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page			р																	
Part		825	У																	
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page			Ė																	
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page		850	-																	
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page			H	-																
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page		875	H																	
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page			p																	
Page 95		900	У																	
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page			H																	
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page		925	$\vdash$																	-
P	(u		Ė	_																
P	aiss	950	H																	
P	5		р																	
P	2 ii	975	n																	
P	) ()		Ė																	
1025	8	1000	$\vdash$																	
1025   p   0   311   623   934   1245   1556   1868   2179   2490   2801   3113   3424   3735   4046   4358   4669   4669     1050   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1075   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1100   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1100   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1125   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1150   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1150   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1150   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1175   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1175   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1175   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     125   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1			÷	-																
1050		1025	H																	
1050   p   0   319   638   956   1275   1594   1913   2231   2550   2869   3188   3506   3825   4144   4463   4781   4781   4781   1075   p   0   326   653   979   1305   1631   1958   2284   2610   2936   3263   3589   3915   4241   4568   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894   4894			V																	
1075   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500		1050	p																	
1075   p   0   326   653   979   1305   1631   1958   2284   2610   2936   3263   3589   3915   4241   4568   4894   4894     1100   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1125   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1150   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1150   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1175   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1175   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1175   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1200   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1201   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1202   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1203   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1204   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923			H																	
1100   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1125		1075	$\vdash$																	-
1100		4400	у	0.0000																
1125   y   0.000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.200   7.6500		1100	р																	
P   O   341   683   1024   1365   1706   2048   2389   2730   3071   3413   3754   4095   4436   4778   5119   5119     O   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     O   349   698   1046   1395   1744   2093   2441   2790   3139   3488   3836   4185   4534   4883   5231   5231     O   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     O   356   713   1069   1425   1781   2138   2494   2850   3206   3563   3919   4275   4631   4988   5344   5344     O   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     O   364   728   1091   1455   1819   2183   2546   2910   3274   3638   4001   4365   4729   5093   5456   5456     O   371   743   1114   1485   1856   2228   2599   2970   3341   3713   4084   4455   4826   5198   5569   5569     O   379   758   1136   1515   1894   2273   2651   3030   3409   3788   4166   4545   4924   5303   5681   5681     O   386   773   1159   1545   1931   2318   2704   3090   3476   3863   4249   4635   5021   5408   5794   5794     O   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     O   386   773   1159   1545   1931   2318   2704   3090   3476   3863   4249   4635   5021   5408   5794   5794     O   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     O   386   773   1159   1545   1931   2318   2704   3090   3476   3863   4249   4635   5021   5408   5.8539   7.2000   7.6500     O   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     O   0.0021   0.0171   0.0576   0.1365		44	у																	
1150   p   0   349   698   1046   1395   1744   2093   2441   2790   3139   3488   3836   4185   4534   4883   5231   5231     1175   γ   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.200   7.6500     1200   γ   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.200   7.6500     1200   γ   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.200   7.6500     1225   γ   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1250   γ   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1250   γ   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1250   γ   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1275   γ   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1275   γ   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1300   γ   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1300   γ   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1300   γ   0.00000   0.0001   0.0011   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923		1125	р	0	341	683	1024	1365	1706	2048	2389	2730	3071	3413	3754	4095	4436	4778	5119	5119
P   0   349   698   1046   1395   1744   2093   2441   2790   3139   3488   3836   4185   4534   4883   5231   5231     1175		1150	у	0.0000	0.0021	0.0171	0.0576	0.1365	0.2667	0.4608	0.7317	1.0923	1.5552	2.1333	2.8395	3.6864	4.6869	5.8539	7.2000	7.6500
11/5   p   0   356   713   1069   1425   1781   2138   2494   2850   3206   3563   3919   4275   4631   4988   5344   5344   5344   1200   p   0   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500		1150	р	0	349	698	1046	1395	1744	2093	2441	2790	3139	3488	3836	4185	4534	4883	5231	5231
P   0   356   713   1069   1425   1781   2138   2494   2850   3206   3563   3919   4275   4631   4988   5344   5344   5344   5344   1200   P   0   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500		1175	у	0.0000	0.0021	0.0171	0.0576	0.1365	0.2667	0.4608	0.7317	1.0923	1.5552	2.1333	2.8395	3.6864	4.6869	5.8539	7.2000	7.6500
1200   p   0   364   728   1091   1455   1819   2183   2546   2910   3274   3638   4001   4365   4729   5093   5456   5456     1225   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1250   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1250   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1275   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1276   p   0   386   773   1159   1545   1931   2318   2704   3090   3476   3863   4249   4635   5021   5408   5794   5794     1300   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1300   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1300   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1300   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1300   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1300   0.0000   0.00000   0.0000000000000		11/5	р	0	356	713	1069	1425	1781	2138	2494	2850	3206	3563	3919	4275	4631	4988	5344	5344
P   O   364   728   1091   1455   1819   2183   2546   2910   3274   3638   4001   4365   4729   5093   5456   5456     1225		1200	у	0.0000	0.0021	0.0171	0.0576	0.1365	0.2667	0.4608	0.7317	1.0923	1.5552	2.1333	2.8395	3.6864	4.6869	5.8539	7.2000	7.6500
125   p   0   371   743   1114   1485   1856   2228   2599   2970   3341   3713   4084   4455   4826   5198   5569   5569   5569   1250   p   0   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.200   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500   7.6500		1200	р	0	364	728	1091	1455	1819	2183	2546	2910	3274	3638	4001	4365	4729	5093	5456	5456
P   O   371   743   1114   1485   1856   2228   2599   2970   3341   3713   4084   4455   4826   5198   5569   5569     1250		1225	у	0.0000	0.0021	0.0171	0.0576	0.1365	0.2667	0.4608	0.7317	1.0923	1.5552	2.1333	2.8395	3.6864	4.6869	5.8539	7.2000	7.6500
1250   p   0   379   758   1136   1515   1894   2273   2651   3030   3409   3788   4166   4545   4924   5303   5681   5681   1275   p   0   386   773   1159   1545   1931   2318   2704   3090   3476   3863   4249   4635   5021   5408   5794   5794   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   1300   13		1223	р		371		1114	1485	1856	2228		2970	3341	3713		4455	4826	5198	5569	5569
P   0   379   758   1136   1515   1894   2273   2651   3030   3409   3788   4166   4545   4924   5303   5681   5681     1275   p   0   386   773   1159   1545   1931   2318   2704   3090   3476   3863   4249   4635   5021   5408   5794   5794     1300   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1300   y   0.0000   0.0021   0.0171   0.0576   0.1365   0.2667   0.4608   0.7317   1.0923   1.5552   2.1333   2.8395   3.6864   4.6869   5.8539   7.2000   7.6500     1300   379   758   1136   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355   1355		1250	у																	
1275 p 0 386 773 1159 1545 1931 2318 2704 3090 3476 3863 4249 4635 5021 5408 5794 5794 1300 y 0.0000 0.0021 0.0171 0.0576 0.1365 0.2667 0.4608 0.7317 1.0923 1.5552 2.1333 2.8395 3.6864 4.6869 5.8539 7.2000 7.6500			p																	
y 0.0000 0.0021 0.0171 0.0576 0.1365 0.2667 0.4608 0.7317 1.0923 1.5552 2.1333 2.8395 3.6864 4.6869 5.8539 7.2000 7.6500		1275																		
1300		4222	Ė																	
		1300	p																	

^ay = Lateral pile deflection in inches

T: 212.479.5400 F: 212.479.5444 www.langan.com

T: 212.479.5400 F: 212.479.5444 www.langan.com
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C. S.A.
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C.
Langan Engineering and Environmental Services, inc.
Langan Cri, Inc.
Langan International LLC
Collectively known as Langan

## **Hudson Yards West** Rail Yard

Project

MANHATTAN

Clay p-y Table 72-inch Diameter

Project No.	Table No.
170444101	
Date	
2018/07/02	
Scale	g
No Scale	9
Drawn By / Checked By	
ZW / MGP	
Submission Date	
2018/07/02	Sheet 9 of 11

Drawing Title

**NEW YORK** 

^bp = Lateral pile resistance in pounds per inch

Zone	e Su Curve Points																		
20.10	psf		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	650	У	0.0000	0.0057	0.0455	0.1536	0.3641	0.7111	1.2288	1.9513	2.9127	4.1472	5.6889	7.5719	9.8304	12.4985	15.6103	19.2000	20.4000
	050	р	0	229	459	688	917	1147	1376	1605	1834	2064	2293	2522	2752	2981	3210	3440	3440
	675	У	0.0000	0.0057	0.0455	0.1536	0.3641	0.7111	1.2288	1.9513	2.9127	4.1472	5.6889	7.5719	9.8304	12.4985	15.6103	19.2000	20.4000
	073	р	0	239	479	718	958	1197	1437	1676	1916	2155	2395	2634	2874	3113	3352	3592	3592
	700	У	0.0000	0.0057	0.0455	0.1536	0.3641	0.7111	1.2288	1.9513	2.9127	4.1472	5.6889	7.5719	9.8304	12.4985	15.6103	19.2000	20.4000
		р	0	250	500	749	999	1249	1499	1748	1998	2248	2498	2747	2997	3247	3497	3746	3746
	725	У	0.0000	0.0057	0.0455	0.1536	0.3641	0.7111	1.2288	1.9513	2.9127	4.1472	5.6889	7.5719	9.8304	12.4985	15.6103	19.2000	20.4000
		р	0	260	520	781	1041	1301	1561	1821	2082	2342	2602	2862	3122	3383	3643	3903	3903
	750	У	0.0000	0.0057	0.0455	0.1536	0.3641	0.7111	1.2288	1.9513	2.9127	4.1472	5.6889	7.5719	9.8304	12.4985	15.6103	19.2000	20.4000
		р	0	271	542	812	1083	1354	1625	1895	2166	2437	2708	2978	3249	3520	3791	4062	4062
	775	У	0.0000	0.0057	0.0455	0.1536	0.3641	0.7111	1.2288	1.9513	2.9127	4.1472	5.6889	7.5719	9.8304	12.4985	15.6103	19.2000	20.4000
		р	0	281	563	844	1126	1407	1689	1970	2252	2533	2815	3096	3378	3659	3941	4222	4222
	800	У	0.0000	0.0057	0.0455	0.1536	0.3641	0.7111	1.2288	1.9513	2.9127	4.1472	5.6889	7.5719	9.8304	12.4985	15.6103	19.2000	20.4000
		р	0	292	585	877	1169	1462	1754	2046	2339	2631	2923	3216	3508	3800	4093	4385	4385
	825	У	0.0000	0.0057	0.0455	0.1536	0.3641	0.7111	1.2288	1.9513	2.9127	4.1472	5.6889	7.5719	9.8304	12.4985	15.6103	19.2000	20.4000
		p	0	303	607	910	1213	1517	1820	2123	2427	2730	3033	3337	3640	3943	4247	4550	4550
	850	У	0.0000	0.0057	0.0455	0.1536	0.3641	0.7111	1.2288	1.9513	2.9127	4.1472	5.6889	7.5719	9.8304	12.4985	15.6103	19.2000	20.4000
		р	0 0000	314	629	943	1258	1572	1887	2201	2516	2830	3145	3459	3774	4088	4402	4717	4717
	875	У	0.0000	0.0057	0.0455	0.1536	0.3641	0.7111	1.2288	1.9513	2.9127	4.1472	5.6889	7.5719	9.8304	12.4985	15.6103	19.2000	20.4000
		р	0	326	651	977	1303	1629	1954	2280	2606	2932	3257	3583	3909	4234	4560	4886	4886
	900	У	0.0000	0.0057	0.0455	0.1536	0.3641	0.7111	1.2288	1.9513	2.9127	4.1472	5.6889	7.5719	9.8304	12.4985	15.6103	19.2000	20.4000
		р	0 0000	337	674	1011	1349	1686	2023	2360	2697	3034	3371	3709	4046	4383	4720	5057	5057
	925	y p	0.0000	0.0057 349	0.0455 697	0.1536 1046	0.3641 1395	0.7111 1743	1.2288 2092	1.9513 2441	2.9127 2789	4.1472 3138	5.6889 3487	7.5719 3836	9.8304 4184	12.4985 4533	15.6103 4882	19.2000 5230	20.4000 5230
(uo		Ė	0.0000	0.0057	0.0455	0.1536	0.3641	0.7111	1.2288	1.9513	2.9127	4.1472	5.6889	7.5719	9.8304	12.4985	15.6103	19.2000	20.4000
Caisson)	950	р	0.0000	360	721	1081	1441	1802	2162	2523	2883	3243	3604	3964	4324	4685	5045	5406	5406
뒫		у	0.0000	0.0057	0.0455	0.1536	0.3641	0.7111	1.2288	1.9513	2.9127	4.1472	5.6889	7.5719	9.8304	12.4985	15.6103	19.2000	20.4000
CLAY (96 inch	975	, р	0	372	744	1117	1489	1861	2233	2605	2978	3350	3722	4094	4466	4839	5211	5583	5583
\		у	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
9	1000	p	0	384	768	1152	1537	1921	2305	2689	3073	3457	3842	4226	4610	4994	5378	5762	5762
		у	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
	1025	p	0	396	793	1189	1585	1981	2378	2774	3170	3566	3963	4359	4755	5151	5548	5944	5944
		у	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
	1050	р	0	409	817	1226	1634	2043	2451	2860	3268	3677	4085	4494	4902	5311	5719	6128	6128
		у	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
	1075	р	0	421	842	1263	1684	2104	2525	2946	3367	3788	4209	4630	5051	5471	5892	6313	6313
	1100	У	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
	1100	р	0	433	867	1300	1734	2167	2600	3034	3467	3901	4334	4767	5201	5634	6068	6501	6501
	1125	У	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
	1125	р	0	446	892	1338	1784	2230	2676	3122	3568	4015	4461	4907	5353	5799	6245	6691	6691
	1150	у	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
	1130	р	0	459	918	1377	1835	2294	2753	3212	3671	4130	4589	5047	5506	5965	6424	6883	6883
	1175	у	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
		р	0	472	944	1415	1887	2359	2831	3303	3774	4246	4718	5190	5662	6133	6605	7077	7077
	1200	У	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
		р	0	485	970	1455	1939	2424	2909	3394	3879	4364	4849	5334	5818	6303	6788	7273	7273
	1225	У	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
		р	0	495	990	1485	1980	2475	2970	3465	3960	4455	4950	5445	5940	6435	6930	7425	7425
	1250	у	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
		р У	0.0000	505 0.0028	1010 0.0228	1515 0.0768	2020 0.1820	2525 0.3556	3030 0.6144	3535 0.9756	4040 1.4564	4545 2.0736	5050 2.8444	5555 3.7860	6060 4.9152	6565 6.2492	7070 7.8052	7575 9.6000	7575 10.2000
	1275	p	0	515	1030	1545	2060	2575	3090	3605	4120	4635	5150	5665	6180	6695	7210	7725	7725
	1200	У	0.0000	0.0028	0.0228	0.0768	0.1820	0.3556	0.6144	0.9756	1.4564	2.0736	2.8444	3.7860	4.9152	6.2492	7.8052	9.6000	10.2000
	1300	р	0	525	1050	1575	2100	2625	3150	3675	4200	4725	5250	5775	6300	6825	7350	7875	7875

^ay = Lateral pile deflection in inches

T: 212.479.5400 F: 212.479.5444 www.langan.com

T: 212.479.5400 F: 212.479.5444 www.langan.com
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C. S.A.
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C.
Langan Engineering and Environmental Services, inc.
Langan Cri, Inc.
Langan Cri, Inc.
Collectively known as Langan

# **Hudson Yards West Rail Yard**

Project

MANHATTAN

Drawing Title

**NEW YORK** 

Clay p-y Table 96-inch Diameter

Project No.	Table No.
170444101	
Date	
2018/07/02	
Scale	10
No Scale	10
Drawn By / Checked By	
ZW / MGP	
Submission Date	
2018/07/02	Sheet 10 of 11

^bp = Lateral pile resistance in pounds per inch

Size	UCS									Cu	rve Points								
5.20	psi	П	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	4200	У	0.0000	0.0080	0.0107	0.0133	0.0160	0.0187	0.0213	0.0240	0.0267	0.0293	0.0320	0.0347	0.0373	0.0400	0.0427	0.0453	0.0480
24 inch	4200	р	0	33600	34160	34720	35280	35840	36400	36960	37520	38080	38640	39200	39760	40320	40880	41440	42000
24	7000	У	0.0000	0.0080	0.0107	0.0133	0.0160	0.0187	0.0213	0.0240	0.0267	0.0293	0.0320	0.0347	0.0373	0.0400	0.0427	0.0453	0.0480
	7000	р	0	56000	56933	57867	58800	59733	60667	61600	62533	63467	64400	65333	66267	67200	68133	69067	70000
_	4200	у	0.0000	0.0120	0.0160	0.0200	0.0240	0.0280	0.0320	0.0360	0.0400	0.0440	0.0480	0.0520	0.0560	0.0600	0.0640	0.0680	0.0720
inch	4200	р	0	50400	51240	52080	52920	53760	54600	55440	56280	57120	57960	58800	59640	60480	61320	62160	63000
36	7000	У	0.0000	0.0120	0.0160	0.0200	0.0240	0.0280	0.0320	0.0360	0.0400	0.0440	0.0480	0.0520	0.0560	0.0600	0.0640	0.0680	0.0720
	7000	р	0	84000	85400	86800	88200	89600	91000	92400	93800	95200	96600	98000	99400	100800	102200	103600	105000
_	4200	У	0.0000	0.0168	0.0224	0.0280	0.0336	0.0392	0.0448	0.0504	0.0560	0.0616	0.0672	0.0728	0.0784	0.0840	0.0896	0.0952	0.1008
inch	4200	р	0	70560	71736	72912	74088	75264	76440	77616	78792	79968	81144	82320	83496	84672	85848	87024	88200
48	7000	у	0.0000	0.0168	0.0224	0.0280	0.0336	0.0392	0.0448	0.0504	0.0560	0.0616	0.0672	0.0728	0.0784	0.0840	0.0896	0.0952	0.1008
	7000	р	0	117600	119560	121520	123480	125440	127400	129360	131320	133280	135240	137200	139160	141120	143080	145040	147000
_	4200	У	0.0000	0.0264	0.0352	0.0440	0.0528	0.0616	0.0704	0.0792	0.0880	0.0968	0.1056	0.1144	0.1232	0.1320	0.1408	0.1496	0.1584
inch	1200	р	0	110880	112728	114576	116424	118272	120120	121968	123816	125664	127512	129360	131208	133056	134904	136752	138600
72	7000	у	0.0000	0.0264	0.0352	0.0440	0.0528	0.0616	0.0704	0.0792	0.0880	0.0968	0.1056	0.1144	0.1232	0.1320	0.1408	0.1496	0.1584
	7000	р	0	184800	187880	190960	194040	197120	200200	203280	206360	209440	212520	215600	218680	221760	224840	227920	231000
_	4200	у	0.0000	0.0360	0.0480	0.0600	0.0720	0.0840	0.0960	0.1080	0.1200	0.1320	0.1440	0.1560	0.1680	0.1800	0.1920	0.2040	0.2160
inch	-1200	р	0	151200	153720	156240	158760	161280	163800	166320	168840	171360	173880	176400	178920	181440	183960	186480	189000
96	7000	у	0.0000	0.0360	0.0480	0.0600	0.0720	0.0840	0.0960	0.1080	0.1200	0.1320	0.1440	0.1560	0.1680	0.1800	0.1920	0.2040	0.2160
	, 300	р	0	252000	256200	260400	264600	268800	273000	277200	281400	285600	289800	294000	298200	302400	306600	310800	315000

^ay = Lateral pile deflection in inches

T: 212.479.5400 F: 212.479.5444 www.langan.com

T: 212.479.5400 F: 212.479.5444 www.langan.com
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C. S.A.
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C.
Langan Engineering and Environmental Services, inc.
Langan Cri, Inc.
Langan International LLC
Collectively known as Langan

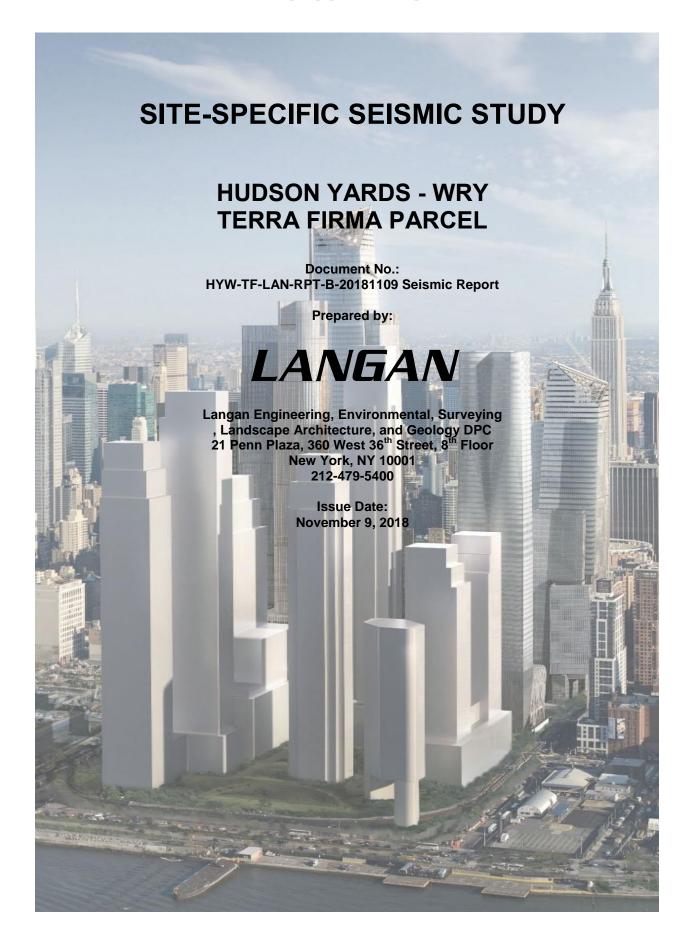
Project

MANHATTAN

**Hudson Yards West Rail Yard** 

**NEW YORK** 

**Bedrock p-y Table** 20 to 90 inch


**Diameter Socket** 

Project No.	Table No.
170444101	
Date	
2018/07/02	
Scale	11
No Scale	1.1
Drawn By / Checked By	
ZW / MGP	
Submission Date	
2018/07/02	Sheet 11 of 11

 $^{^{\}rm b}{\rm p}$  = Lateral pile resistance in pounds per inch



# APPENDIX G Site-Specific Seismic Study





1 2 3		INTRODUC	E SUMMARY
	3.2 3.3 3.4	Proposed D Local Faults Subsurface	otion       2         development       2         s and Seismicity       3         Data       3         d Subsurface Conditions       4
4			VALUATION4
	4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12	Probabilistic Source Mod Empirical G Epistemic U Probabilistic Seismic Hat Bedrock Ac Dynamic So Minimum Pe Ground Res Soil Liquefa	Seismic Hazard Analysis
5 6 7		LIMITATIO	9 NS
			LIST OF TABLES
	5 P	ercent Dar	Risk-Targeted Maximum Considered Earthquake (MCE _R ) Spectrum SA(g) for mping
_			LIST OF FIGURES
	gure 1		Site Location Map Boring and CPT Location Plan
	gure 2 gure 3		Bedrock MCE _R Spectra
			LIST OF APPENDICES
	ppend ppend		Tower 5 Site-Specific Seismic Study Tower 6 Site-Specific Seismic Study



## 1 Executive Summary

Langan Engineering, Environmental, Surveying, Landscape Architecture, and Geology D.P.C. performed site-specific seismic studies for the proposed buildings within the terra firma site of the West Rail Yard of Hudson Yards. Two towers (Towers 5 and 6) were independently evaluated in this study. One low-rise structure (Building C), located between the two towers, was also evaluated using the site-specific studies for the towers.

The entire terra firma site was preliminarily classified as Site Class F because of liquefaction susceptibility identified using the 2014 New York City Building Code (NYCBC) and 2015 New York State Building Code (NYSBC) general procedures. Site Class F requires site-specific seismic analyses to assess the seismic response of the ground and to determine seismic design parameters.

This study is specific to the referenced site and reflects the state-of-practice in the fields of seismology and geotechnical earthquake engineering. This study was performed in accordance with the provisions of 2014 NYCBC, 2015 NYSBC and ASCE 7-10. The following summarizes the approach and key conclusions from the study:

- 1. Seismic hazard analysis and selection of bedrock acceleration time series:
  - a. We performed a probabilistic seismic hazard analysis to develop the target bedrock acceleration response spectrum.
  - b. We selected 11 representative "seed" ground motion acceleration time series and modified them by matching their acceleration spectra to the target spectrum to develop 11 input bedrock motions for the site-specific ground response analyses.
- 2. Site-specific ground-response analyses:
  - a. The site was divided into two zones corresponding to the proposed Tower 5 and Tower 6 locations. For each tower, we performed individual site-specific total-stress and effective-stress ground response analyses (soil amplification analysis) using the developed input bedrock motions (acceleration time series). We applied the motions at the base of one dimensional soil columns and estimated ground response spectra.
  - b. We developed a site-specific design response spectrum for each tower using the respective estimated ground response spectra.
- 3. Liquefaction analyses:
  - a. For each tower, we evaluated the potential for liquefaction of the granular soils below the groundwater table for the risk-targeted maximum considered earthquake (MCE_R) level event (about 10 percent higher PGA than the geometric mean MCE_{GM} level).
  - b. We estimated the potential free-field ground surface seismic settlements during the  $MCE_R$  event.
  - c. We estimated excess pore water pressure ratios in the soils during the MCE_R level event.
- Conclusions and recommendations:
  - a. The recommended short- and long-period design spectral accelerations and Seismic Design Categories are provided in Appendices A (Tower 5) and B (Tower 6). Note the response spectra for both towers are limited to a Code dictated lower-bound. We



recommend LIRR Building C be designed using the same lower-bound response spectra as the towers.

- b. We estimated excess pore water pressure ratios as high as about 90 percent for Tower 5 and 60 percent for Tower 6 during the MCE_R-level event, corresponding to partial liquefaction (partial soil strength loss). The excess pore water pressure ratios we estimated using empirical methods were as high as 40 percent and 50 percent, respectively. Partial liquefaction should be considered in the analysis of lateral pile capacity, using the estimated excess pore water pressure ratios to reduce the soil strength. We recommend using the higher predicted pore water pressures from the Tower 5 analysis for the design of LIRR Building C.
- c. We estimated up to about 0.5 inch of seismic-event-induced settlement for free-field conditions after the MCE_R-level event. Utilities under the sidewalks and site connections should be designed to account for differential settlements up to about 0.5 inch between sidewalk and pile- or rock-supported structures.

#### 2 Introduction

This report presents the results of our site-specific seismic study for the proposed development within the terra firma site of the West Rail Yard of Hudson Yards. Our study was performed to assess the seismic response of the ground at the project site, as required by the 2014 NYCBC and 2015 NYSBC for sites susceptible to liquefaction (i.e. Site Class F), and to determine appropriate seismic parameters for use in design of the proposed structures.

The analyses and recommendations presented herein are in accordance with the NYCBC, NYSBC and ASCE 7-10. All elevations contained herein reference the North American Vertical Datum of 1988 (NAVD88) and are approximate.

# 3 Project Overview

### 3.1 Site Description

The project is on the Far West Side of Manhattan within the western half of the Metropolitan Transportation Authority (MTA) – Long Island Rail Road (LIRR) West Side Yards. The West Rail Yard (WRY) site is divided into "terra firma" (Block 676, Lot 1) and "platform" (Block 676, Lot 5) parcels. This report focuses solely on the terra firma site. The terra firma site measures about 147,000 square feet and is bound by the LIRR South Access Road and platform parcel on the north, West 30th Street on the south, the Eleventh Avenue viaduct on the east, and Twelfth Avenue (New York State Rout 9A/Westside Highway) on the west. The site location is shown in Figure 1.

The terra firma site is occupied by several LIRR support facilities at the east end of the site, a laydown area for ongoing construction within Hudson Yards near the center of the site, and a Vehicle Processing Center (VPC) near the west end of the site. An LIRR access road borders the north side of the site. The High Line Park elevated rail line traverses along the south and west sides of the site. The structure parallels West 30th Street then arcs north, near the west end of the site. Numerous structures are adjacent to the site, including an active rail yard to the north and the Eleventh Avenue viaduct and Segment 2 of the Amtrak Gateway tunnel to the east.

Additional details pertaining to the site are included in our Geotechnical Report, dated 9 November 2018.

#### 3.2 Proposed Development

The planned development includes construction of three structures:



• Tower 5 – Tower 5 will be on the west side of terra firma and will consist of a high-rise residential building spanning over the Highline. The tower will be supported by a core northeast of the Highline and two mega columns southwest of the Highline. A cellar is limited to the core area northeast of the Highline. Maintenance space will occupy the ground and platform levels, and a residential lobby will occupy the plaza level. The full tower footprint will span over the Highline above the plaza level.

Tower 5 will be designed in accordance with the 2014 New York City Building Code (NYCBC). The design team has not been selected.

• Tower 6 – Tower 6 will be on the east side of the site between the Highline and LIRR South Access Road and will consist of a high-rise building with residential, retail, and school spaces. The building will have a single cellar level for use as parking and utility space. Retail space, a school, maintenance facilities, and parking will occupy the ground level and extend under the Highline to provide frontage along West 30th Street. A portion of the school and additional parking will occupy the platform level. Portions of the school, retail space, and a residential lobby will occupy the plaza level. The tower will contain residential units.

Tower 6 will be constructed over, and will be partially supported by the Amtrak Gateway tunnel Segment 3 (to be constructed).

Tower 6 will be designed in accordance with the NYCBC. The design team has not been selected.

• **LIRR Building C** – A two-story LIRR support building ("Building C") will be constructed below the platform and between towers 5 and 6. Building C will have a single cellar level.

The LIRR building will be designed in accordance with the 2015 New York State Building Code (NYSBC) with applicable Uniform Code supplements through 2017.

#### 3.3 Local Faults and Seismicity

New York City is on the Manhattan Prong, in the passive continental margin of the stable central and eastern United States, far from tectonic plate boundaries (approximately 1,400 miles from the nearest tectonic plate boundary). Seismicity in this region is overall low, with the exception of a few zones such as the New Madrid (Missouri) and Charleston, South Carolina seismic zones. The Manhattan Prong is relatively active compared to most of this region; the largest earthquake in the area was a magnitude mbLg 5.25 event offshore of New York City in 1884.

Many faults have been identified in the Manhattan Prong and the surrounding regions, but the locations of active faults is not clear (Sykes et al. 2008). There are difficulties in characterizing the activity of faults in the region because of the small sizes of ruptures, the absence of surface rupture, and the distribution of seismicity on many smaller faults, each with very low displacement rates.

A fault known as Cameron's Line is about 2.5 miles east of the site. Cameron's Line is described as an Ordovician (Taconic) suture zone. Geologists postulate that the fault was healed by Paleozoic metamorphism and is no longer a zone of brittle faulting or a source of earthquakes. Assumed brittle faults of the Manhattan Prong include the 125th Street fault, which extends across Manhattan to Queens; the Dyckman Street fault; and the Dobbs Ferry fault. Experts recognize that research is needed to improve the mapping and dating of these various faults to improve seismic-hazard studies.

#### 3.4 Subsurface Data

Subsurface data was derived from numerous investigations undertaken within and adjacent to the WRY. This information includes borings and cone penetration testing (CPT) data, as well as laboratory testing of



soil and rock. The data includes studies performed by Langan and several other entities. The approximate locations of the borings and CPTs are shown in Figure 2.

The geotechnical parameters used in this study were primarily derived from 16 geotechnical borings, five seismic CPTs, and laboratory testing performed as part of the design of the proposed New York Sports and Convention Center (NYSCC) in 2004, and three additional borings drilled for the test caissons in 2017. This data was supplemented with historical data within and adjacent to the site prepared by others.

#### 3.5 Generalized Subsurface Conditions

The subsurface conditions were interpreted separately for each tower using available boring, CPT and lab data in the vicinity of each building.

The general subsurface conditions consist of uncontrolled fill underlain by consecutive layers of clay and silt, sand, glacial till, and bedrock. Bedrock was encountered from about el -22 feet to -131 ft; the depth to rock generally increases from east to west.

Groundwater was measured in monitoring wells installed in the vicinity of the site from as high as about el 3.9 ft to as low as el -1.5 ft, but groundwater is generally expected to vary from about el 0 to 2 ft. Groundwater levels are tidally influenced along the west side of the site given the relatively close proximity to the present Hudson River shoreline. In addition, groundwater levels are likely to fluctuate with seasonal changes and precipitation events. Zones of perched water may be present at some locations due to the inconsistent nature of the fill and native soils.

The shear wave velocity of the bedrock was estimated to be around 9,000 feet per second based on the cross-hole seismic tests and borehole suspension logging performed within the same rock formation at nearby sites.

The soil and rock parameters used in the site specific seismic analyses are summarized for each tower in Appendices A and B.

Additional details are presented in our Geotechnical Report, dated 9 November 2018.

#### 4 Seismic Evaluation

#### 4.1 Introduction

We performed a site-specific seismic study for each tower to develop a design acceleration response spectrum, as required by the NYCBC and NYSBC for sites susceptible to liquefaction. Site specific analyses are more rigorous than the general procedures outlined in the NYCBC and NYSBC. The general procedures typically do not accurately represent the amplitude and frequency content specific to an individual site. As such, design acceleration response spectrum values derived using the general procedures may be either overly conservative or, in some cases, unconservative.

#### Our evaluation included:

- Performing a probabilistic seismic-hazard analysis;
- 2. Selecting and modifying appropriate bedrock acceleration time series;
- 3. Estimating dynamic soil and bedrock properties for each zone;
- 4. Determining the Site Class per the Building Code for each zone;
- Performing total-stress and effective-stress ground response analyses for each zone;



- 6. Performing analyses to evaluate the liquefaction potential and estimate excess pore water pressures in the granular soils situated below the groundwater table for each zone;
- 7. Recommending an appropriate design acceleration response spectrum for each zone; and,
- 8. Determining the Seismic Design Category (SDC) for each zone.

We developed a design acceleration-response spectrum specific to each tower using state of practice methods and reflecting in situ soil and bedrock conditions. Our evaluation was performed in accordance with provisions of 2014 NYCBC, 2015 NYSBC, and ASCE 7-10. The study included one-dimensional wave-propagation analyses to estimate the response at the site ground surface during a design seismic event.

The total-stress one-dimensional analyses were performed using the commercial computer program Shake2000 (Geomotions, 2015). The effective-stress one-dimensional analyses were performed using the commercial computer program D-MOD2000 (Geomotions, 2015).

#### 4.2 Probabilistic Seismic Hazard Analysis

We performed a probabilistic seismic-hazard analysis (PSHA) to systematically account for uncertainties in the location, recurrence interval, and magnitude of future earthquakes. The results of a PSHA define a uniform hazard for a site in terms of a probability that a particular level of shaking will be exceeded during the given life of the structure.

As part of the development of the risk-targeted maximum considered earthquake (MCE $_{\rm R}$ ) spectrum at bedrock level, we performed a PSHA to develop a site-specific response spectrum for a 2 percent probability of exceedance in 50 years (i.e. a return period of 2,475-year earthquake). The bedrock spectrum was developed using the computer code EZ-FRISK 8.00 (Fugro Consultants Inc. 2016). The approach used in EZ-FRISK is based on the probabilistic seismic-hazard model developed by Cornell (1968) and McGuire (1976).

#### 4.3 Source Modeling and Characterization

We used the Petersen et al. (2014) seismic source model with the same logic tree used for the production of the USGS 2014 maps. We understand that Fugro Consultants Inc. obtained this database directly from the USGS.

#### 4.4 Empirical Ground Motion Prediction Equations (GMPEs)

The estimate of uniform hazard spectral accelerations at bedrock level is based on empirical GMPEs, which use the bedrock shear-wave velocity in the upper 30 meters ( $Vs_{30}$ ) as input. We assigned average bedrock  $Vs_{30}$  of 9,000 feet per second. We used the same weighting and the same empirical GMPEs that were used in Petersen et al. (2014).

#### 4.5 Epistemic Uncertainty and Aleatory Variability

The term "epistemic uncertainty" is used to describe the uncertainty because of incomplete knowledge and data about the physics of the earthquake process. For example, there is uncertainty as to which attenuation relationship is more applicable for the site at hand. Similarly, the term "aleatory variability" is used to describe the randomness in the ground motion predicted by each attenuation equation. The epistemic uncertainty is taken into account by using a suite of attenuation relations with different weights. All the different weight combinations are incorporated in the final hazard estimations by using a logic-tree approach (McGuire 2004). The aleatory variability is taken into account by explicitly considering the randomness (standard deviation) in the predicted ground motions.



### 4.6 Probabilistic Seismic Hazard Analysis Results

The computed uniform hazard spectrum for 2 percent probability of exceedance in 50 years was based on the geometric mean component of the attenuation equations, and was then adjusted for the maximum direction component by multiplying with period-dependent amplification factors according to Sahi and Baker (2013), and was further adjusted by using the ASCE 7-10 risk coefficients for the site to determine the risk-targeted maximum considered earthquake (MCE_R) ground motion response accelerations. At each spectral response period, the uniform hazard bedrock response spectrum was multiplied by the risk coefficient  $C_R$  in accordance with Section 21.2.1 of ASCE 7-10. We used the USGS risk-targeted ground motion calculator, along with the site-specific hazard curves for periods of 0.2 and 1 second to estimate the  $C_{RS}$  and  $C_{R1}$  respectively. For periods less than or equal to 0.2 second,  $C_R = C_{Rs} = 0.93$ ; for periods greater than or equal to 1 second,  $C_R = C_{R1} = 0.94$ ; and for periods between 0.2 seconds and 1 second,  $C_R$  was linearly interpolated between  $C_{Rs}$  and  $C_{R1}$ . The bedrock MCE_R spectrum is shown in Figure 3. Digitized MCE_R values are listed in Table 1.

Table 1 – Bedrock Risk-Targeted Maximum Considered Earthquake (MCE_R) Spectrum SA(g) for 5 Percent Damping

Structural	Site-Specific SA(g)
Period T (sec)	P.E. 2% in 50 years
0.01	0.146
0.10	0.255
0.20	0.192
0.30	0.136
0.40	0.103
0.50	0.081
0.75	0.052
1.0	0.039
2.0	0.020
3.0	0.013
4.0	0.010
5.0	0.008
6.0	0.006
7.0	0.004
8.0	0.003

### 4.7 Seismic Hazard Deaggregation Results

Seismic hazard deaggregation was performed to estimate the contribution of the various magnitudes events at various distances to the total seismic hazard. The results are useful in identifying pairs of earthquake magnitude and source-to-site distances that contribute the most to the estimated seismic hazard, performing deterministic analyses, and developing different scenarios to be used in selecting acceleration time series.

For the peak ground acceleration, which is of interest for the soil liquefaction-potential analyses, the majority of the hazard for the maximum considered earthquake comes from small to moderate magnitude earthquakes from the CEUS Gridded seismic zone. The corresponding modal (most likely) moment magnitude and distance were estimated to be magnitude of 5.05 and a distance of 11 kilometers. The mean moment magnitude and distance were estimated to be 5.45 and 22 kilometers respectively.



#### 4.8 Bedrock Acceleration Time Series

We selected 11 bedrock acceleration time series for use in our analyses following the guidelines of ASCE 7-10. All time series were recorded during earthquakes with magnitudes between 5.3 and 6.2, consistent with typical NYC design magnitudes. All time series were modified to match the target bedrock MCE_R spectrum presented in Figure 3 using a time-domain spectral-matching routine. The seed time series we used are listed in Table 2.

Table 2 - Acceleration Time Series Used for Matching to the Target MCER Rock Spectrum

No.	Earthquake & Year	NGA Sequence No.	Magnitude	Station Name	Closest Distance to Rupture (km)	Component
1, 2	Morgan Hill, 1984	455	6.19	Gilroy Array No.1	15	1230, 1320
3, 4	Whittier Narrows, 1987	624	5.99	Huntington Beach	45	270, 360
5	CA/Baja Border Area, 2002	2003	5.31	Calexico Fire Station	40	90
6, 7	Chi-Chi, Taiwan, 1999	2949	6.20	CHY033	13	E, N
8, 9	Chi-Chi, Taiwan, 1999	2985	6.20	CHY094	91	N, W
10, 11	Mineral, Virginia, 2011	8529	5.74	NP2555	124	N, E

Information obtained from the NGA-West and the NGA-East Flatfile (http://ngawest2.berkeley.edu/)

#### 4.9 Dynamic Soil and Bedrock Parameters

Dynamic soil and bedrock parameters are required for use in ground-response analyses. These parameters are:

- Small-strain shear modulus (G_{max});
- Shear modulus degradation curve with increased shear strains (i.e., G-γ curve); and
- Soil damping curve with increased shear strains (i.e.,  $\beta$ - $\gamma$  curve).

The small-strain shear modulus was estimated from in situ measurements of shear-wave velocity. The modulus degradation and damping curves were selected from published data for specific representative soil types; the following curves were used in our analyses:

- Fill Seed and Idriss "sand average" curve (1970)
- Organic Clay
   – Vucetic and Dobry (1991), PI = 40
- Silt and Clay
   – Vucetic and Dobry (1991), PI = 30
- Sand- EPRI Sand(1993)
- Bedrock EPRI Rock (1993)

#### 4.10 Minimum Permissible Level of Design Response Spectrum

The site class and associated code-specified acceleration-response spectrum are required to determine the minimum permissible levels of the design response spectrum derived from a site-specific study. The



minimum permissible level of the design spectrum is based on the Site Class determined according to the building code without considering soil liquefaction. Site Class E was used for the terra firma site.

#### 4.11 Ground Response Analyses Results

Total-Stress ground-response analyses were performed using the selected bedrock acceleration time series and dynamic soil and bedrock properties described above. All bedrock acceleration time series were applied as rock-outcrop motions in accordance with ASCE 7-10.

For each zone, one-dimensional analyses were performed to assess the sensitivity of the ground surface acceleration-response spectra to variable depth to rock and stiffness of the soil column. The sensitivity of the depth to rock was assessed by varying the soil column thickness; we selected two representative soil columns for each zone, corresponding to the lower(C1) and higher (C2) depth to rock for each zone. The sensitivity of the soil stiffness was assessed by varying the best-estimate shear-wave velocities for all layers by 20 percent above and below the estimated average, yielding six different soil columns in total.

The 11 modified bedrock acceleration time series were applied at the base of each of soil column, resulting in a suite of 66 acceleration-response spectra. This relatively high number of spectra allows the mean response spectrum to provide a reasonable estimate of the average ground response during the design earthquake event, capturing the variable earthquake motions and variable soil conditions for each zone.

Per section 1613.5.4 of the 2014 NYCBC, section 1613.3.4 of the 2015 NYSBC and section 21.3 of ASCE 7-10, these 66 calculated MCE $_{\rm R}$  spectra were multiplied by a factor of two-thirds to model the "Design Earthquake (DE)."

The mean total-stress spectrum for each soil column is presented in Appendices A to F for Zones 1 to 6, respectively.

#### 4.12 Soil Liquefaction Potential Analyses

The NYCBC requires an evaluation of the liquefaction potential of noncohesive soils below the groundwater table and to a depth of 50 feet below the ground surface. The potential for soil liquefaction was evaluated using the procedure outlined by Idriss and Boulanger (2008). This evaluation develops an empirical relationship between the earthquake demand, represented by the Cyclic Stress Ratio (CSR), and the soil's resistance to dynamic loading, represented by the Cyclic Resistance Ratio (CRR). The CSR is correlated to the Peak Ground Acceleration (PGA) of the design earthquake event and the in situ soil stresses. The CRR is correlated to SPT N-values, or cone penetration testing (CPT) resistance obtained from field tests at the site. The field N-values are converted to  $N_{1,60,N}$  by applying correction factors for soil overburden pressure, hammer energy efficiency and atmospheric pressure. Field CPT tip resistances are converted to  $q_{t1,N}$  by applying correction factors for soil overburden pressure, percent fines and atmospheric pressure.

Liquefaction analyses results are also presented in Appendices A and B. Both zones have points with factors of safety of 1.0 or below, indicating susceptibility to liquefaction.

To further assess the effect of liquefaction, we performed effective-stress non-linear soil amplification analyses with D-MOD2000 for each tower. This approach models the generation of excess pore water pressure (EPWP) and allows a more accurate evaluation of liquefaction potential during the MCE_R event, and of the ground surface acceleration response spectrum. The EPWP ratio is defined as the ratio of pore water pressures developed in the soil at a certain depth, to the soil's effective stress at that depth. A ratio of 1.0 (or 100 percent) implies that the pore water pressure is equal to the effective stress at a specific depth; when this occurs, the soil has reached complete liquefaction. EPWP ratios less than 1.0 (less than 100 percent) correspond to partial liquefaction. For each zone:



- We modeled two soil columns for each tower (east and west) to consider the influence of different depth to rock.
- We used time series CHY094N for each soil column as the bedrock input motion, to obtain the most conservative estimates of excess pore water pressures. CHY094N is the time series that give the highest acceleration response spectra and EPWP.
- We performed total-stress analyses with SHAKE2000 and D-MOD2000 and calibrated the D-MOD2000 damping parameters so that the ground surface acceleration spectra estimated by the two computer codes reasonably match. Then we performed effective stress analyses with D-MOD2000 using the previously estimated damping parameters.
- We used published relationships that are available in the D-MOD2000 library to model the pore water generation, the soil degradation, the redistribution of the pore water pressures, and the pore water pressure dissipation during the MCER-level event.

The EPWP were also estimated using

- the SHAKE2000-estimated PGA,
- the SPT and CPT data for each tower,
- the corresponding factors of safety (FoS) against liquefaction following the method of Idriss and Boulanger (2008), and
- the FoS versus EPWPR curves from Tokimatsu & Yoshimi (1983).

Estimated EPWP are presented in Appendices A (Tower 5) and B (Tower 6).

The recommended EPWP ratios to be considered for foundation design at each tower are presented in Appendices A and B. Note that the D-MOD2000 analyses yielded maximum EPWP ratios up to about 90 percent for the upper fill layer for Tower 5 and EPWP ratios up to about 60 percent for the upper fill layer for Tower 6. The associated ground-surface seismic volumetric settlements are estimated to be less than 0.5 inches for both Tower 5 and Tower 6.

#### 5 Results

The results of our analyses are summarized in Appendices A (Tower 5) and B (Tower 6).

Both towers have the same code dictated lower-bound design response spectra. We recommend that LIRR building C (located between the two towers—with similar subsurface conditions) be designed with the same response spectra as the towers, and the higher pore pressure ratios predicted in the Tower 5 analysis.

#### 6 Limitations

The conclusions and recommendations provided in this report are based on current state of practice. Research is ongoing to develop empirical ground-motion attenuation relations, as well as reviewing information related to the seismicity in the project region. Future research may prove counter to the assumed conditions. In addition, the subsurface conditions were inferred from a limited number of historic borings. The recommendations provided are dependent upon one another and no recommendation should be followed independent of the others.

Any proposed changes in structures or their locations should be brought to Langan's attention as soon as possible so that we can determine whether such changes affect our recommendations. The information is assumed to represent conditions reported only at the locations indicated and at the time of investigation. If different conditions are encountered during construction, they should immediately be brought to Langan's attention for evaluation, as they may affect our recommendations.



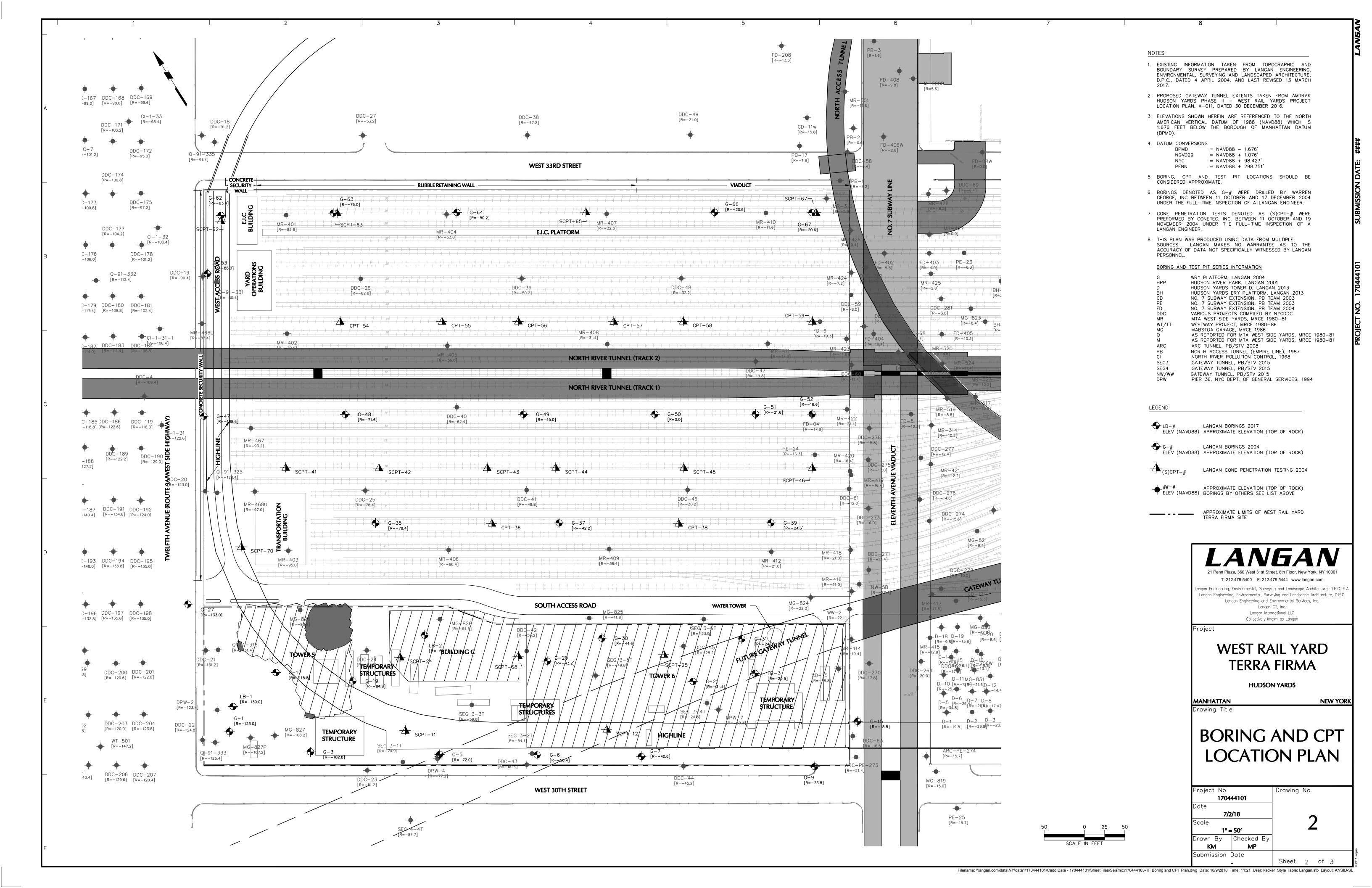
This report has been prepared to assist the Owner, architect and structural engineer in the design process and is only applicable to the design of the specific project identified. The information in this report cannot be utilized or depended on by engineers or contractors who are involved in evaluations or designs of facilities (including underpinning, grouting, stabilization, etc.) on adjacent properties which are beyond the limits of that which is the specific subject of this report.

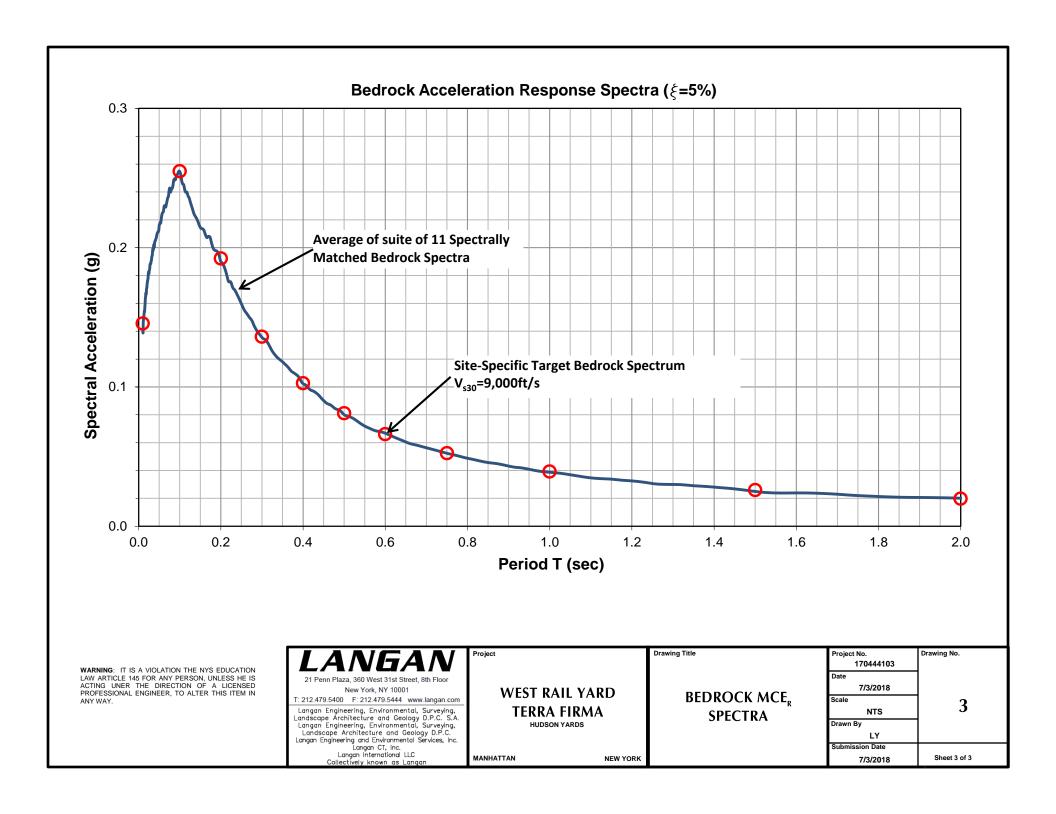


#### 7 REFERENCES

- ASCE/SEI 7-05. (2005). *Minimum Design Loads for Buildings and Other Structures*. American Society of Civil Engineers/ Structural Engineering Institute.
- Baskerville, C. A. (1994). Bedrock and Engineering Geologic Maps of New York County and parts of Kings and Queens counties, New York, and parts of Bergen and Hudson Counties, New Jersey.
- Buxton, H. T., Soren, J., Posner, A., & Shernoff, P. K. (1981). *Reconnaissance of the ground-water resources of Kings and Queens Counties, New York.* Syosset, New York: U.S. Geological Survey.
- Cornell, C. (1968). Engineering Seismic Risk Analysis. *Bulletin of the Seismological Society of America*, 58(5).
- EPRI. (1993). Guidelines for Site Specific Ground Motions. Palo Alto, California: Electric Power Research Institute.
- Geomotions Inc. (2015). D-MOD2000 "A computer Program for Seismic Response Analysis of Horizontally Layered Soil Deposits, Earthfill Dams and Solid Waste Landfills", Version 9.99.6.
- Geomotions Inc. (2015). SHAKE2000 "A computer Program for the 1D Analysis of Geotechnical Earthquake Engineering Problems", Version 9.99.6.
- McGuire, R. (1976). FORTRAN Computer Program for Seismic Risk Analysis Open-File Report 76-67. U.S. Geological Survey.
- McGuire, R. (2004). Seismic Hazard and Risk Analysis. Boulder, Colorado: Earthquake Engineering Research Institute.
- NEHRP. (2009). Recommended Seismic Provisions for New Buildings and Other Structures, Part 1: Provisions, FEMA P-750. FEMA.
- Pacific Earthquake Engineering Research Center. (2010). *PEER Ground Motion Database website*. Retrieved from http://peer.berkeley.edu/peer_ground_motion_database
- Petersen, M. D., Frankel, A. D., Harmsen, S. C., Mueller, C. S., Haller, K. M., Wheeler, R. L., et al. (2008). Documentation for the 2008 Update of the United States National Seismic Hazard Maps. U.S. Geological Survey.
- Risk Engineering Inc. (2015). *EZ-FRISK, Software for Earthquake Ground Motion Estimation, Version* 7.65.
- Seed, H. B., & Idriss, I. M. (1970). Soil Moduli and Damping Factors for Dynamic Response Analysis. Berkeley: University of California.
- Sykes, L. R., Armbruster, J. G., Kim, W.-Y., & Seeber, L. (2008). Observations and Tectonic Setting of Historic and Instrumentally Located Earthquakes in the Greater New York City-Philadelphia Area. *Bulletin of the Seismological Society of America*, *98*(4), 1696-1719.
- The City Of New York. (2008). Building Code.
- URS. (2008). URS Summary Report, Appendix H in 2008 Seismic Design Guidelines for Bridges.
- Vucetic, M., & Dobry, R. (1991). Effect of Soil Plasticity on Cyclic Response. *Journal of Geotechnical Engineering*, 117(1), 89-107.
- Weidlinger Associates PC. (2008). Seismic Design Guidelines for Bridges, Part I: Provisions, Final Draft September 2008. New York City Department of Transportation.
- Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., et al. (2001). Liquefaction Resistance of Soils: Summary Report From the 1996 and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. *Journal of Geotechnical and Geoenvironmental Engineering*, 127(10), 817-833.

\\langan.com\data\NY\data1\170444101\Office Data\Reports\Geotechnical\Seismic\Terra Firma\Text\HYW-TF-LAN-RPT-B-20181109-Seismic_Report.docx





**End of Report** 



# **FIGURES**









# APPENDIX A

Tower 5 Site-Specific Seismic Study



We performed a site-specific seismic analysis for Tower 5 of the terra firma site. The key assumptions and results are summarized below.

#### 1 Subsurface Conditions

The subsurface conditions at Tower 5 consist of fill, underlain by consecutive layers of organic clay, silty clay/clayey silt, sand and finally bedrock. The depth to bedrock varies from 72 to 140 feet, increasing east to west. We selected two soil columns (east and west) to represent differing soil conditions and the variation in depth to bedrock of the zone. The depth to rock of the two soil columns are based on the average depth to rock of the borings in the east and west side of the zone. The soil layer thicknesses and shear wave velocities used for each column are listed in Table A-1.

The shear wave velocity of the rock is estimated to be about 9,000 feet per second (fps), based on cross-hole seismic testing and borehole suspension logging from nearby sites in the same rock formation.

Table A-1 - Summary of Assumed Soil Layer Thickness and Shear Wave Velocities

East Column - Representative of the east side of the zone Based on G-5, G-19, LB-2, SCPT-11, SCPT-24							
Layer	Average layer thickness (feet)	Range of measured/assumed shear wave velocities (fps)	Shear wave velocity used in model (fps)				
Fill	30	290 to 678	440				
Organic Silty Clay	27	406 to 510	460				
Silty Clay/Clayey Silt	21	570 to 832	625				
Sand	3	1,000 to 1,490	1,250				
Bedrock	N/A	9,000	9,000				

West Column - Representative of west side of the zone Based on G-1, G-3, G-17, LB-1, SCPT-11, SCPT-24							
Layer	Average layer thickness (feet)	Range of measured/assumed shear wave velocities (fps)	Shear wave velocity used in model (fps)				
Fill	30	290 to 678	440				
Organic Silty Clay	27	406 to 510	460				
Silty Clay/Clayey Silt	53	550 to 730	625				
Sand	3	1,000 to 1,490	1,250				
Bedrock	N/A	9,000	9,000				

#### 2 Site Class

We calculated weighted-average shear-wave velocities  $(\overline{V}_s)$  between about 485 and 495 feet per second (fps). The site was preliminarily classified as Site Class E, as per 1613.5.2 of 2014 NYCBC, without consideration of soil liquefaction. The site was re-classified as Site Class F because of its potential for liquefaction using simplified methods, as described below.



## 3 Soil Liquefaction

Figure A-1 shows a plot of the factor of safety with depth using standard penetration test (SPT) and cone penetration test (CPT) results according to the Idriss and Boulanger (2008) procedures with the following parameters:

- An earthquake magnitude of 5.75 earthquake event, which is more conservative than the
  estimated mean deaggregation magnitude (5.45), but consistent with older studies (2008 USGS
  Seismic Hazard Maps and the 2016 NYCDOT Report);
- A PGA of 0.33g for Site Class E;
- A magnitude scaling factor (MSF) of 1.6, per the Idriss and Boulanger (2008).

The initial Idriss and Boulanger (2008) liquefaction analysis indicated potential liquefaction at depths between about 8 and 35 feet. We then performed DMOD2000 effective-stress nonlinear analyses and estimated maximum excess pore water pressure ratios as high as 90 percent at depths between 25 to 30 feet, corresponding to partial liquefaction (partial soil strength loss).

The EPWP were also estimated using the SHAKE2000-estimated PGA of 0.112g, the SPT and CPT data from G-1, G-3, G-17, G-19, CPT-11 and CPT-24, the corresponding factors of safety (FoS) against liquefaction following the method of Idriss and Boulanger (2008), and the FoS versus EPWPR curves from Tokimatsu & Yoshimi (1983). The estimated EPWP are shown on Figure A-2. The DMOD-estimated EPWP are typically higher than the empirically-estimated EPWP.

Partial liquefaction should be considered in the analysis of lateral pile capacity, using the estimated excess pore water pressure ratios to reduce the soil strength. We gave more weight to the DMOD-2000 results. The excess pore water pressure ratios estimated from DMOD2000 analyses and empirical method mentioned above are presented in Figure A-2 and listed in Table A-2.

 Depth (ft)
 EPWP ratios
 Recommended Design EPWPR

 0 to 10
 <10%</td>
 0%

 10 to 20
 0% to 50%
 30%

 20 to 30
 40% to 90%
 65%

<20%

Table A-2 – Summary of Estimated Excess Pore Water Pressure Ratios

We estimated up to 0.5 inches of seismic-induced settlement for free-field conditions after the  $MCE_R$ -level event.

0%

# 4 Design Acceleration Response Spectrum

Below 30

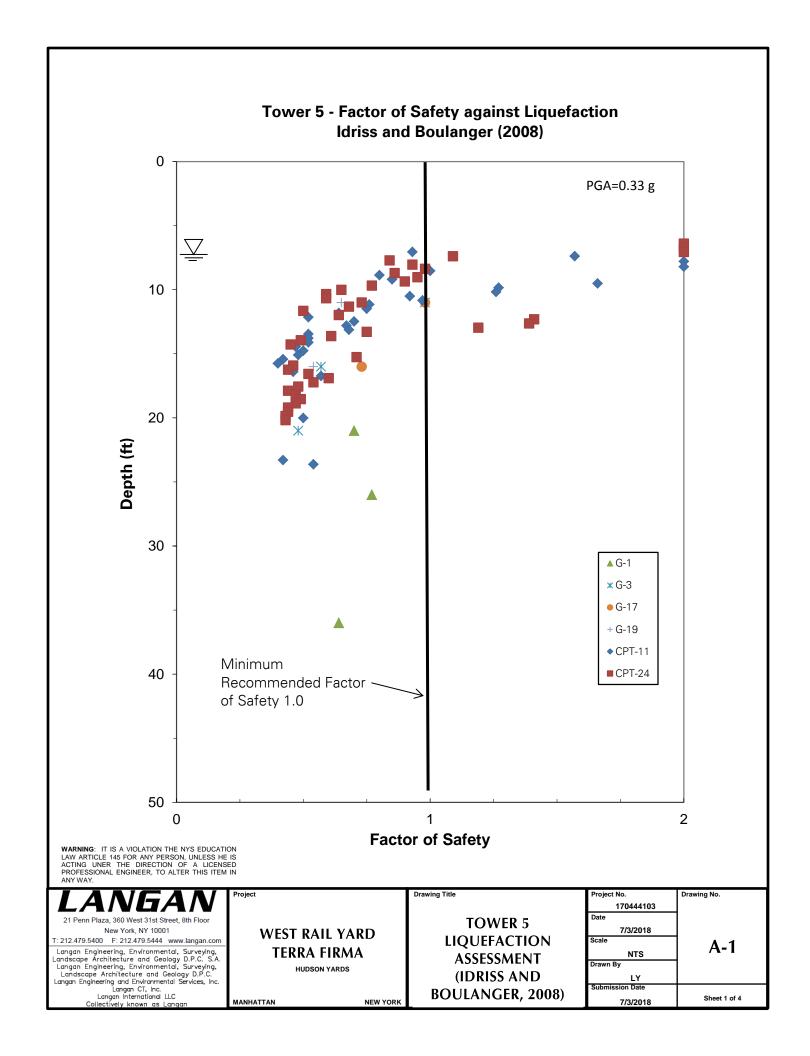
The design spectrum recommendations based on the SHAKE2000 total-stress analyses are listed in Table A-3. The plot of the SHAKE2000 design spectra, and 80 percent of the Site Class E design spectrum (minimum allowed per ASCE 7-10) are presented in Figure A-3. The red triangles show our recommended design acceleration-response spectrum, which follows the 80% Site Class E line.

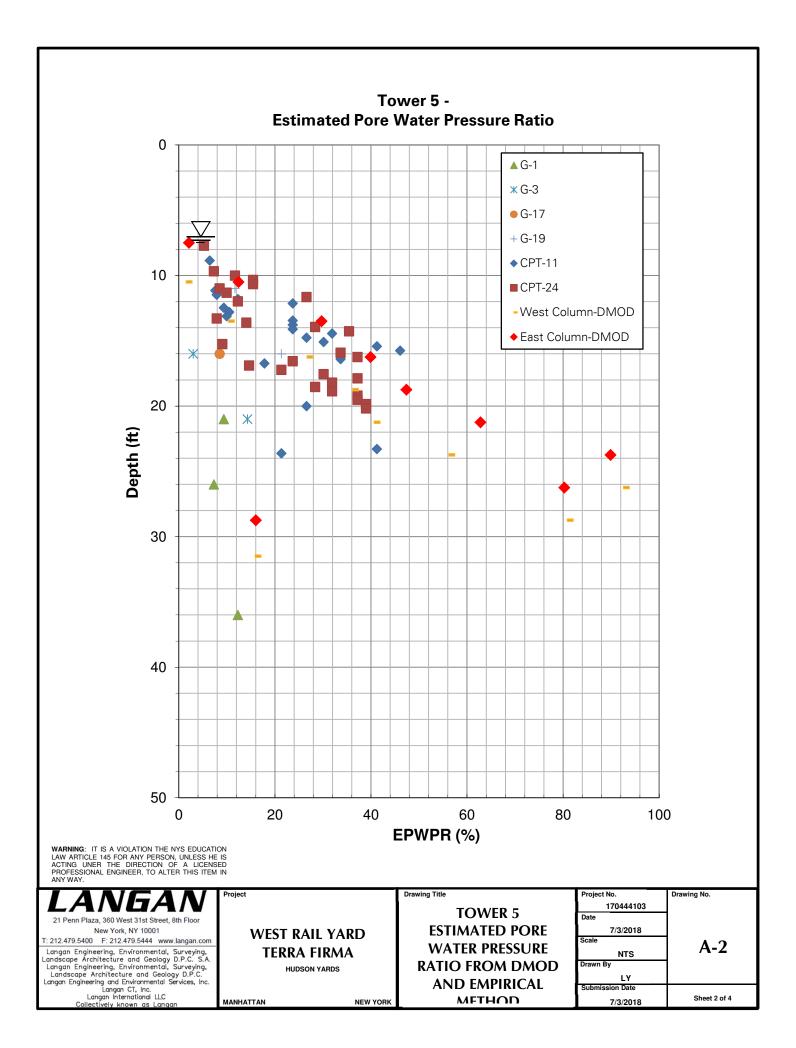


Table A-3 – Recommended Design Smooth Site-Specific spectrum, SA(g) for 5 percent damping

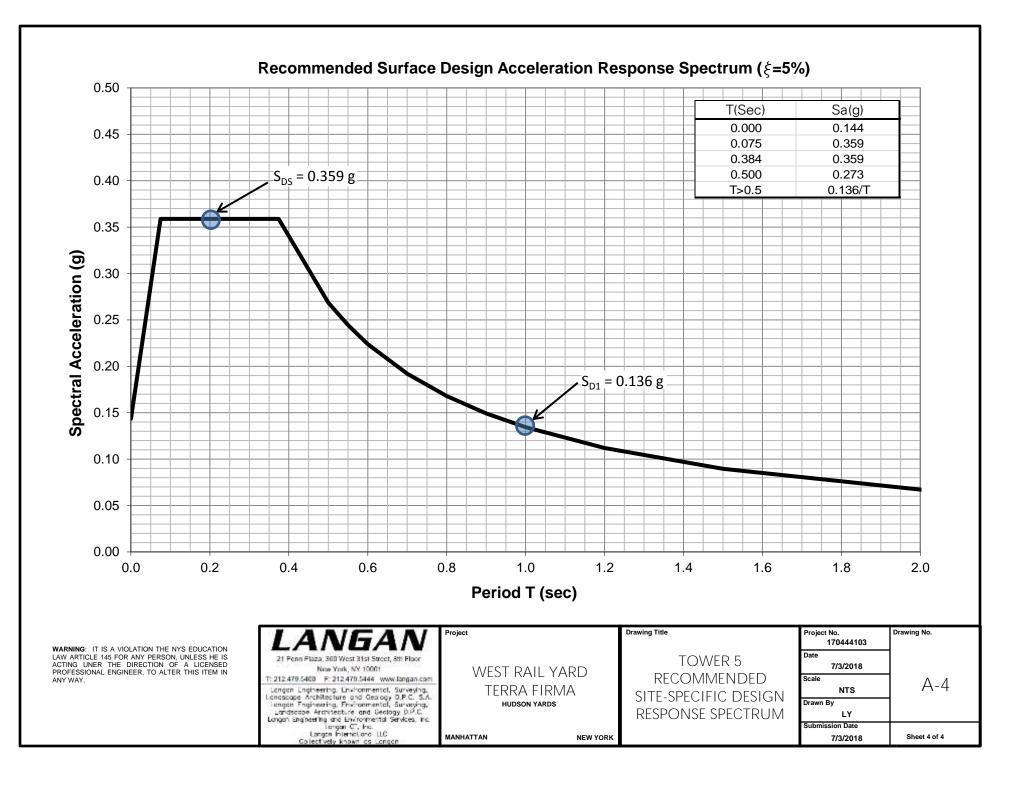
Period T (seconds)	Recommended Design Acceleration (g)
0.00	0.144
0.075	0.359
0.384	0.359
0.500	0.273
T>0.5	0.136/T

The recommended design spectrum satisfies the 2014 NYCBC, 2015 NYSBC and ASCE 7-10 requirements. A plot of the recommended design response spectrum containing a table with the spectral ordinates is presented on Figure A-4. The short-period and 1-second-period design accelerations obtained from the recommended design spectrum are as follows:


- SDS = 0.359 g at a period of 0.2 seconds
- SD1 = 0.136 g at a period of 1.0 second


## 5 Seismic Design Category

For Risk Category I, II and III, the recommended design spectral accelerations obtained from our site-specific analysis result in a Seismic Design Category C, regardless of the structure's fundamental period of vibration. The results of the site-specific seismic study are listed in Table A-4.


Table A-4 – Recommended Seismic Design Parameters – Site-Specific Seismic Study

Design Parameter	Design Value
Site Class	E
Spectral Acceleration at short periods, S _{DS}	0.359 g
Spectral Acceleration at 1-sec period, S _{D1}	0.136 g
Site-Specific MCE _R -level PGA	0.112g
Risk Category	I, II and III
Seismic Design Category, SDC	С











# APPENDIX B

Tower 6 Site-Specific Seismic Study



We performed a site-specific seismic analysis for Tower 6 of the terra firma site. The key assumptions and results are summarized below.

#### 1 Subsurface Conditions

The subsurface conditions at Tower 6 consist of fill, underlain by consecutive layers of silty clay/clayey silt, sand and finally bedrock. The depth to bedrock varies from 32 to 70 feet, increasing east to west. We selected two soil columns (east and west) to represent differing soil conditions and the variation in depth to bedrock of the zone. The soil layer thicknesses and shear wave velocities used for each column are listed in Table B-1.

The shear wave velocity of the rock is estimated to be about 9,000 feet per second (fps), based on cross-hole seismic testing and borehole suspension logging from nearby sites in the same rock formation.

Table B-1 - Summary of Assumed Soil Layer Thickness and Shear Wave Velocities

East Column - Representative of the east side of the zone Based on G-9, G-15, G-21, G-31, LB-3, SCPT-25					
Layer  Average layer thickness (feet)  Range of measured/assumed shear wave velocities (fps)  Shear wave velocities (fps)					
Fill	20	325 to 875	475		
Silty Clay/Clayey Silt	15	350 to 450	425		
Sand	5	675 to 1,150	900		
Bedrock	N/A	9,000	9,000		

West - Representative of west side of the zone Based on G-6, G-7, G-20, G-30, SCPT-12, SCPT-68					
Layer  Average layer thickness (feet)  Range of measured/assumed shear wave velocities (fps)  Shear wave velocity used in model (fps)					
Fill	29	407 to 670	550		
Silty Clay/Clayey Silt	22	370 to 570	445		
Sand	10	650 to 1,490	1,050		
Bedrock	N/A	9,000	9,000		

#### 2 Site Class

We calculated weighted-average shear-wave velocities  $(\overline{V}_s)$  between about 490 and 540 feet per second (fps). The site was preliminarily classified as Site Class E, as per 1613.5.2 of 2014 NYCBC, without consideration of soil liquefaction. The site was re-classified as Site Class F because of its potential for liquefaction using simplified methods, as described below.

## 3 Soil Liquefaction

Figure B-1 shows a plot of the factor of safety with depth using standard penetration test (SPT) and cone penetration test (CPT) results according to the Idriss and Boulanger (2008) procedures with the following parameters:



- An earthquake magnitude of 5.75 earthquake event, which is more conservative than the estimated mean deaggregation magnitude, but consistent with older studies (2008 USGS Seismic Hazard Maps and the 2016 NYCDOT Report);
- A PGA of 0.33g for site class E;
- A magnitude scaling factor (MSF) of 1.6, per Idriss and Boulanger (2008).

The initial Idriss and Boulanger (2008) liquefaction analysis indicated potential liquefaction at depths between about 6 and 40 feet. We then performed DMOD2000 effective-stress nonlinear analyses and estimated maximum excess pore water pressure ratios as high as about 60 percent at depths around 15 to 20 feet, corresponding to partial liquefaction (partial soil strength loss).

The EPWP were also estimated using the SHAKE2000-estimated PGA of 0.129g, the SPT and CPT data from G-9, G-15, G-21, G-31, LB-3, G-6, G-7, G-20, G-30, SCPT-25, SCPT-12, SCPT-68, the corresponding factors of safety (FoS) against liquefaction following the method of Idriss and Boulanger (2008), and the FoS versus EPWPR curves from Tokimatsu & Yoshimi (1983). The estimated EPWP are shown on Figure B-2.

Partial liquefaction should be considered in the analysis of lateral pile capacity, using the estimated excess pore water pressure ratios to reduce the soil strength. We gave more weight to the DMOD-2000 results. The excess pore water pressure ratios estimated from DMOD2000 analyses and empirical method mentioned above are presented in Figure B-2 and listed in Table B-2.

Table B-2 – Summary of Estimated Excess Pore Water Pressure Ratios

Depth (ft)	EPWP ratios	Recommended Design EPWPR
6 to 10	<20%	0%
10 to 30	10% to 60%	40%
Below 30	< 20%	0%

We estimated up to about 0.5 inches of seismic-induced settlement for free-field conditions after the MCE_R-level event.

## 4 Design Acceleration Response Spectrum

The design spectrum recommendations based on the SHAKE2000 total-stress analyses are listed in Table B-3. The plot of the SHAKE2000 design spectra, and 80 percent of the Site Class E design spectrum (minimum allowed per ASCE 7-10) are presented in Figure B-3. The red triangles show our recommended design acceleration-response spectrum, which follows the 80% Site Class E line.

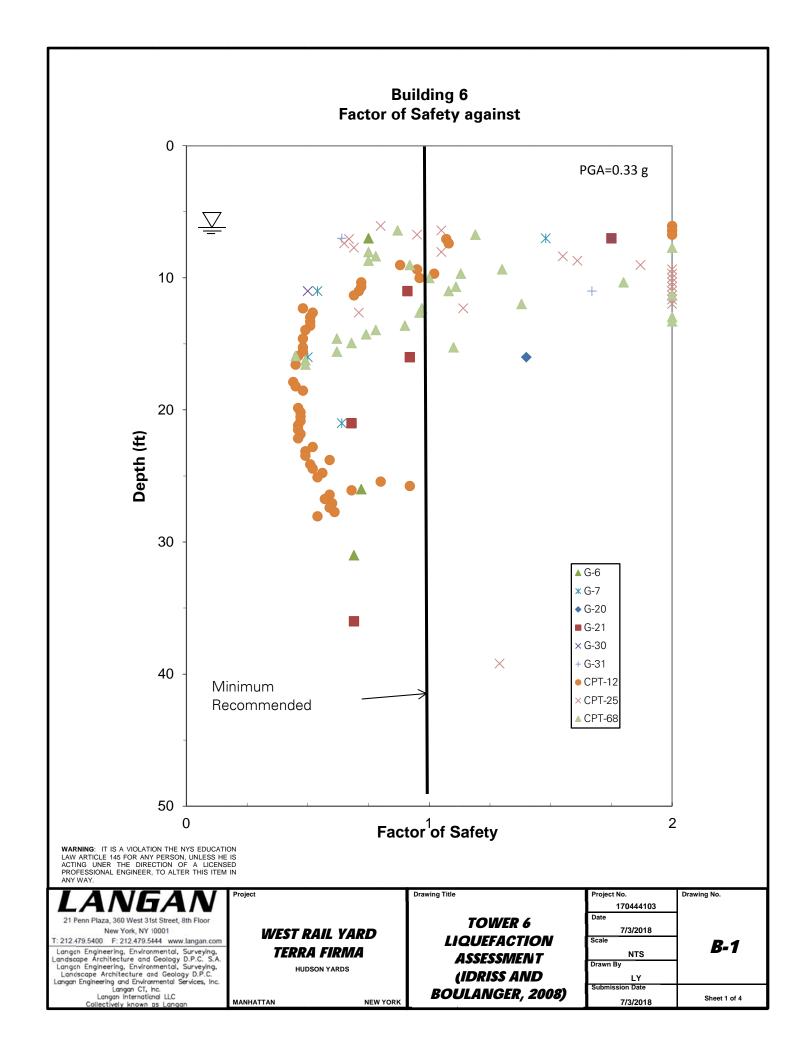
Table B-3 – Recommended Design Smooth Site-Specific spectrum, SA(g) for 5 percent damping

Period T (seconds)	Recommended Design Acceleration (g)
0.00	0.144
0.075	0.359
0.384	0.359
0.500	0.273
T>0.5	0.136/T

The recommended design spectrum satisfies the 2014 NYCBC, 2015 NYSBC and ASCE 7-10 requirements. A plot of the recommended design response spectrum containing a table with the spectral



ordinates is presented on Figure B-4. The short-period and 1-second-period design accelerations obtained from the recommended design spectrum are as follows:


- SDS = 0.359 g at a period of 0.2 seconds
- SD1 = 0.136 g at a period of 1.0 second

## 5 Seismic Design Category

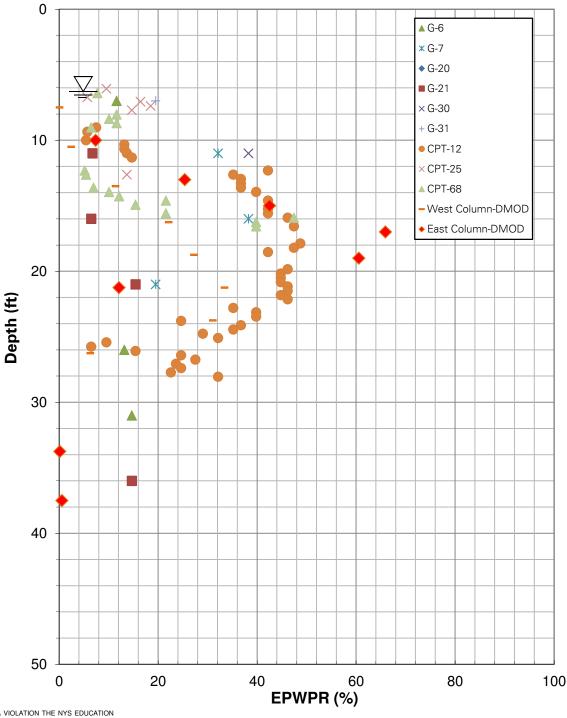

For Risk Category I, II and III, the recommended design spectral accelerations obtained from our site-specific analysis result in a Seismic Design Category C, regardless of the structure's fundamental period of vibration. The results of the site-specific seismic study are listed in Table B-4.

Table B-4 – Recommended Seismic Design Parameters – Site-Specific Seismic Study

Design Parameter	Design Value
Site Class	E
Spectral Acceleration at short periods, S _{DS}	0.359 g
Spectral Acceleration at 1-sec period, S _{D1}	0.136 g
Site-Specific MCE _R -level PGA	0.129 g
Risk Category	I, II and III
Seismic Design Category, SDC	С



## Tower 6 **Estimated Pore Water Pressure**



WARNING: IT IS A VIOLATION THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

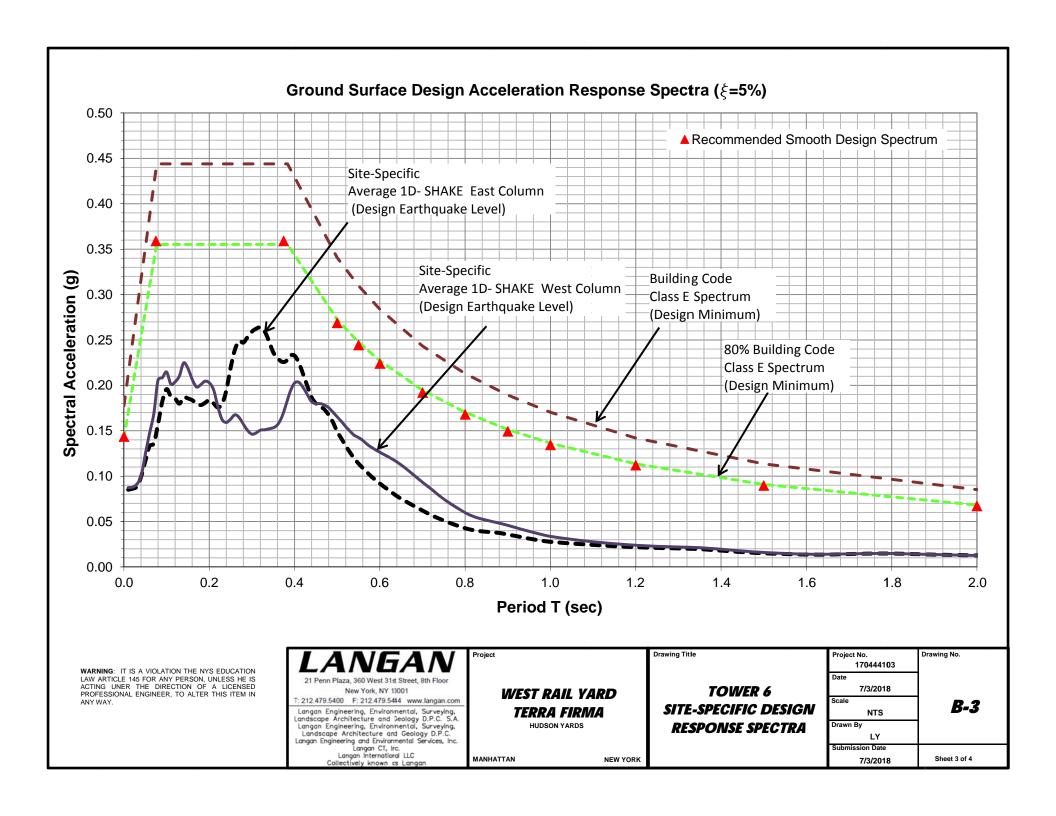
21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001

T: 212.479.5400 F: 212.479.5444 www.langan.com

1:212.479.5400 F:212.479.5444 www.langan.com
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C. S.A.
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C.
Langan Engineering and Environmental Services, Inc.
Langan Ci, Inc.
Langan International LLC
Collectively known as Langan

Project

### **WEST RAIL YARD TERRA FIRMA**

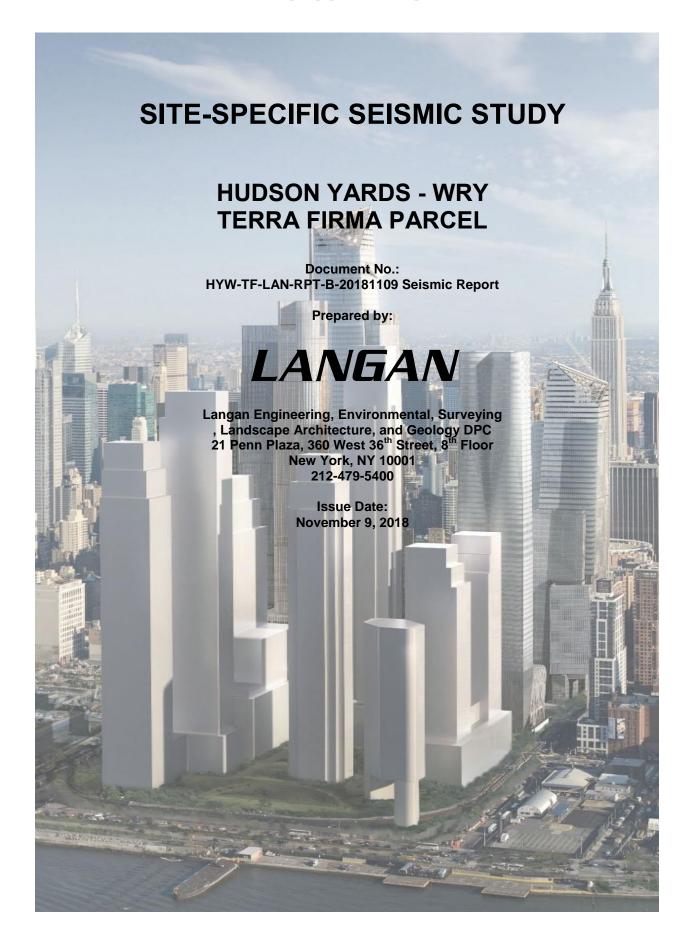

HUDSON YARDS

MANHATTAN **NEW YORK** 

## **TOWER 6 ESTIMATED PORE WATER PRESSURE RATIO FROM DMOD** AND EMPIRICAL **METHOD**

Drawing Title

Project No.	Drawing No.
170444103	
Date	
7/3/2018	
Scale	B-2
NTS	D-Z
Drawn By	
LY	
Submission Date	
7/3/2018	Sheet 2 of 4




#### Recommended Surface Design Acceleration Response Spectrum ( $\xi$ =5%) 0.50 Sa(g) T(Sec) 0.45 0.000 0.144 0.075 0.359 0.384 0.359 $S_{DS} = 0.359 g$ 0.40 0.273 0.500 T>0.5 0.136/T0.35 Spectral Acceleration (g) 0.30 0.25 0.20 $S_{D1} = 0.136g$ 0.15 0.10 0.05 0.00 0.2 0.6 8.0 1.0 1.2 1.6 1.4 0.0 0.4 1.8 2.0 Period T (sec) Project **Drawing Title** Drawing No. 170444103 WARNING: IT IS A VIOLATION THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN 21 Penn Plaza; 360 West 31st Street, 8th Floor TOWER 6 7/3/2018 New York, NY 10001 WEST RAIL YARD RECOMMENDED Scale T: 212.479.5408 F: 212.479.5444 www.langan.com B-4 Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology D.P.C. S.A. Langan Engineering, Environmental, Surveying, TERRA FIRMA SITE-SPECIFIC DESIGN Drawn By **HUDSON YARDS RESPONSE SPECTRUM** Landscape Architecture and Geology D.P.C. LY Longon Engineering and Environmental Services, Inc. Longon CT, Inc. Longon International LC Submission Date MANHATTAN NEW YORK Sheet 4 of 4 7/3/2018 Collectively known as Langan



## **Appendix J3**

## **Site-Specific Seismic Study**





1 2 3		INTRODUC	E SUMMARY
	3.2 3.3 3.4	Proposed D Local Faults Subsurface	otion       2         development       2         s and Seismicity       3         Data       3         d Subsurface Conditions       4
4			VALUATION4
	4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12	Probabilistic Source Mod Empirical G Epistemic U Probabilistic Seismic Hat Bedrock Ac Dynamic So Minimum Pe Ground Res Soil Liquefa	Seismic Hazard Analysis
5 6 7		LIMITATIO	9 NS
			LIST OF TABLES
	5 P	ercent Dar	Risk-Targeted Maximum Considered Earthquake (MCE _R ) Spectrum SA(g) for mping6ation Time Series Used for Matching to the Target MCER Rock Spectrum 7
_			LIST OF FIGURES
	gure 1		Site Location Map Boring and CPT Location Plan
	gure 2 gure 3		Bedrock MCE _R Spectra
			LIST OF APPENDICES
	ppend ppend		Tower 5 Site-Specific Seismic Study Tower 6 Site-Specific Seismic Study



## 1 Executive Summary

Langan Engineering, Environmental, Surveying, Landscape Architecture, and Geology D.P.C. performed site-specific seismic studies for the proposed buildings within the terra firma site of the West Rail Yard of Hudson Yards. Two towers (Towers 5 and 6) were independently evaluated in this study. One low-rise structure (Building C), located between the two towers, was also evaluated using the site-specific studies for the towers.

The entire terra firma site was preliminarily classified as Site Class F because of liquefaction susceptibility identified using the 2014 New York City Building Code (NYCBC) and 2015 New York State Building Code (NYSBC) general procedures. Site Class F requires site-specific seismic analyses to assess the seismic response of the ground and to determine seismic design parameters.

This study is specific to the referenced site and reflects the state-of-practice in the fields of seismology and geotechnical earthquake engineering. This study was performed in accordance with the provisions of 2014 NYCBC, 2015 NYSBC and ASCE 7-10. The following summarizes the approach and key conclusions from the study:

- 1. Seismic hazard analysis and selection of bedrock acceleration time series:
  - a. We performed a probabilistic seismic hazard analysis to develop the target bedrock acceleration response spectrum.
  - b. We selected 11 representative "seed" ground motion acceleration time series and modified them by matching their acceleration spectra to the target spectrum to develop 11 input bedrock motions for the site-specific ground response analyses.
- 2. Site-specific ground-response analyses:
  - a. The site was divided into two zones corresponding to the proposed Tower 5 and Tower 6 locations. For each tower, we performed individual site-specific total-stress and effective-stress ground response analyses (soil amplification analysis) using the developed input bedrock motions (acceleration time series). We applied the motions at the base of one dimensional soil columns and estimated ground response spectra.
  - b. We developed a site-specific design response spectrum for each tower using the respective estimated ground response spectra.
- 3. Liquefaction analyses:
  - a. For each tower, we evaluated the potential for liquefaction of the granular soils below the groundwater table for the risk-targeted maximum considered earthquake (MCE_R) level event (about 10 percent higher PGA than the geometric mean MCE_{GM} level).
  - b. We estimated the potential free-field ground surface seismic settlements during the  $MCE_R$  event.
  - c. We estimated excess pore water pressure ratios in the soils during the MCE_R level event.
- Conclusions and recommendations:
  - a. The recommended short- and long-period design spectral accelerations and Seismic Design Categories are provided in Appendices A (Tower 5) and B (Tower 6). Note the response spectra for both towers are limited to a Code dictated lower-bound. We



recommend LIRR Building C be designed using the same lower-bound response spectra as the towers.

- b. We estimated excess pore water pressure ratios as high as about 90 percent for Tower 5 and 60 percent for Tower 6 during the MCE_R-level event, corresponding to partial liquefaction (partial soil strength loss). The excess pore water pressure ratios we estimated using empirical methods were as high as 40 percent and 50 percent, respectively. Partial liquefaction should be considered in the analysis of lateral pile capacity, using the estimated excess pore water pressure ratios to reduce the soil strength. We recommend using the higher predicted pore water pressures from the Tower 5 analysis for the design of LIRR Building C.
- c. We estimated up to about 0.5 inch of seismic-event-induced settlement for free-field conditions after the MCE_R-level event. Utilities under the sidewalks and site connections should be designed to account for differential settlements up to about 0.5 inch between sidewalk and pile- or rock-supported structures.

#### 2 Introduction

This report presents the results of our site-specific seismic study for the proposed development within the terra firma site of the West Rail Yard of Hudson Yards. Our study was performed to assess the seismic response of the ground at the project site, as required by the 2014 NYCBC and 2015 NYSBC for sites susceptible to liquefaction (i.e. Site Class F), and to determine appropriate seismic parameters for use in design of the proposed structures.

The analyses and recommendations presented herein are in accordance with the NYCBC, NYSBC and ASCE 7-10. All elevations contained herein reference the North American Vertical Datum of 1988 (NAVD88) and are approximate.

## 3 Project Overview

### 3.1 Site Description

The project is on the Far West Side of Manhattan within the western half of the Metropolitan Transportation Authority (MTA) – Long Island Rail Road (LIRR) West Side Yards. The West Rail Yard (WRY) site is divided into "terra firma" (Block 676, Lot 1) and "platform" (Block 676, Lot 5) parcels. This report focuses solely on the terra firma site. The terra firma site measures about 147,000 square feet and is bound by the LIRR South Access Road and platform parcel on the north, West 30th Street on the south, the Eleventh Avenue viaduct on the east, and Twelfth Avenue (New York State Rout 9A/Westside Highway) on the west. The site location is shown in Figure 1.

The terra firma site is occupied by several LIRR support facilities at the east end of the site, a laydown area for ongoing construction within Hudson Yards near the center of the site, and a Vehicle Processing Center (VPC) near the west end of the site. An LIRR access road borders the north side of the site. The High Line Park elevated rail line traverses along the south and west sides of the site. The structure parallels West 30th Street then arcs north, near the west end of the site. Numerous structures are adjacent to the site, including an active rail yard to the north and the Eleventh Avenue viaduct and Segment 2 of the Amtrak Gateway tunnel to the east.

Additional details pertaining to the site are included in our Geotechnical Report, dated 9 November 2018.

#### 3.2 Proposed Development

The planned development includes construction of three structures:



• Tower 5 – Tower 5 will be on the west side of terra firma and will consist of a high-rise residential building spanning over the Highline. The tower will be supported by a core northeast of the Highline and two mega columns southwest of the Highline. A cellar is limited to the core area northeast of the Highline. Maintenance space will occupy the ground and platform levels, and a residential lobby will occupy the plaza level. The full tower footprint will span over the Highline above the plaza level.

Tower 5 will be designed in accordance with the 2014 New York City Building Code (NYCBC). The design team has not been selected.

• Tower 6 – Tower 6 will be on the east side of the site between the Highline and LIRR South Access Road and will consist of a high-rise building with residential, retail, and school spaces. The building will have a single cellar level for use as parking and utility space. Retail space, a school, maintenance facilities, and parking will occupy the ground level and extend under the Highline to provide frontage along West 30th Street. A portion of the school and additional parking will occupy the platform level. Portions of the school, retail space, and a residential lobby will occupy the plaza level. The tower will contain residential units.

Tower 6 will be constructed over, and will be partially supported by the Amtrak Gateway tunnel Segment 3 (to be constructed).

Tower 6 will be designed in accordance with the NYCBC. The design team has not been selected.

• **LIRR Building C** – A two-story LIRR support building ("Building C") will be constructed below the platform and between towers 5 and 6. Building C will have a single cellar level.

The LIRR building will be designed in accordance with the 2015 New York State Building Code (NYSBC) with applicable Uniform Code supplements through 2017.

#### 3.3 Local Faults and Seismicity

New York City is on the Manhattan Prong, in the passive continental margin of the stable central and eastern United States, far from tectonic plate boundaries (approximately 1,400 miles from the nearest tectonic plate boundary). Seismicity in this region is overall low, with the exception of a few zones such as the New Madrid (Missouri) and Charleston, South Carolina seismic zones. The Manhattan Prong is relatively active compared to most of this region; the largest earthquake in the area was a magnitude mbLg 5.25 event offshore of New York City in 1884.

Many faults have been identified in the Manhattan Prong and the surrounding regions, but the locations of active faults is not clear (Sykes et al. 2008). There are difficulties in characterizing the activity of faults in the region because of the small sizes of ruptures, the absence of surface rupture, and the distribution of seismicity on many smaller faults, each with very low displacement rates.

A fault known as Cameron's Line is about 2.5 miles east of the site. Cameron's Line is described as an Ordovician (Taconic) suture zone. Geologists postulate that the fault was healed by Paleozoic metamorphism and is no longer a zone of brittle faulting or a source of earthquakes. Assumed brittle faults of the Manhattan Prong include the 125th Street fault, which extends across Manhattan to Queens; the Dyckman Street fault; and the Dobbs Ferry fault. Experts recognize that research is needed to improve the mapping and dating of these various faults to improve seismic-hazard studies.

#### 3.4 Subsurface Data

Subsurface data was derived from numerous investigations undertaken within and adjacent to the WRY. This information includes borings and cone penetration testing (CPT) data, as well as laboratory testing of



soil and rock. The data includes studies performed by Langan and several other entities. The approximate locations of the borings and CPTs are shown in Figure 2.

The geotechnical parameters used in this study were primarily derived from 16 geotechnical borings, five seismic CPTs, and laboratory testing performed as part of the design of the proposed New York Sports and Convention Center (NYSCC) in 2004, and three additional borings drilled for the test caissons in 2017. This data was supplemented with historical data within and adjacent to the site prepared by others.

#### 3.5 Generalized Subsurface Conditions

The subsurface conditions were interpreted separately for each tower using available boring, CPT and lab data in the vicinity of each building.

The general subsurface conditions consist of uncontrolled fill underlain by consecutive layers of clay and silt, sand, glacial till, and bedrock. Bedrock was encountered from about el -22 feet to -131 ft; the depth to rock generally increases from east to west.

Groundwater was measured in monitoring wells installed in the vicinity of the site from as high as about el 3.9 ft to as low as el -1.5 ft, but groundwater is generally expected to vary from about el 0 to 2 ft. Groundwater levels are tidally influenced along the west side of the site given the relatively close proximity to the present Hudson River shoreline. In addition, groundwater levels are likely to fluctuate with seasonal changes and precipitation events. Zones of perched water may be present at some locations due to the inconsistent nature of the fill and native soils.

The shear wave velocity of the bedrock was estimated to be around 9,000 feet per second based on the cross-hole seismic tests and borehole suspension logging performed within the same rock formation at nearby sites.

The soil and rock parameters used in the site specific seismic analyses are summarized for each tower in Appendices A and B.

Additional details are presented in our Geotechnical Report, dated 9 November 2018.

#### 4 Seismic Evaluation

#### 4.1 Introduction

We performed a site-specific seismic study for each tower to develop a design acceleration response spectrum, as required by the NYCBC and NYSBC for sites susceptible to liquefaction. Site specific analyses are more rigorous than the general procedures outlined in the NYCBC and NYSBC. The general procedures typically do not accurately represent the amplitude and frequency content specific to an individual site. As such, design acceleration response spectrum values derived using the general procedures may be either overly conservative or, in some cases, unconservative.

#### Our evaluation included:

- Performing a probabilistic seismic-hazard analysis;
- 2. Selecting and modifying appropriate bedrock acceleration time series;
- 3. Estimating dynamic soil and bedrock properties for each zone;
- 4. Determining the Site Class per the Building Code for each zone;
- Performing total-stress and effective-stress ground response analyses for each zone;



- 6. Performing analyses to evaluate the liquefaction potential and estimate excess pore water pressures in the granular soils situated below the groundwater table for each zone;
- 7. Recommending an appropriate design acceleration response spectrum for each zone; and,
- 8. Determining the Seismic Design Category (SDC) for each zone.

We developed a design acceleration-response spectrum specific to each tower using state of practice methods and reflecting in situ soil and bedrock conditions. Our evaluation was performed in accordance with provisions of 2014 NYCBC, 2015 NYSBC, and ASCE 7-10. The study included one-dimensional wave-propagation analyses to estimate the response at the site ground surface during a design seismic event.

The total-stress one-dimensional analyses were performed using the commercial computer program Shake2000 (Geomotions, 2015). The effective-stress one-dimensional analyses were performed using the commercial computer program D-MOD2000 (Geomotions, 2015).

#### 4.2 Probabilistic Seismic Hazard Analysis

We performed a probabilistic seismic-hazard analysis (PSHA) to systematically account for uncertainties in the location, recurrence interval, and magnitude of future earthquakes. The results of a PSHA define a uniform hazard for a site in terms of a probability that a particular level of shaking will be exceeded during the given life of the structure.

As part of the development of the risk-targeted maximum considered earthquake (MCE $_{\rm R}$ ) spectrum at bedrock level, we performed a PSHA to develop a site-specific response spectrum for a 2 percent probability of exceedance in 50 years (i.e. a return period of 2,475-year earthquake). The bedrock spectrum was developed using the computer code EZ-FRISK 8.00 (Fugro Consultants Inc. 2016). The approach used in EZ-FRISK is based on the probabilistic seismic-hazard model developed by Cornell (1968) and McGuire (1976).

#### 4.3 Source Modeling and Characterization

We used the Petersen et al. (2014) seismic source model with the same logic tree used for the production of the USGS 2014 maps. We understand that Fugro Consultants Inc. obtained this database directly from the USGS.

#### 4.4 Empirical Ground Motion Prediction Equations (GMPEs)

The estimate of uniform hazard spectral accelerations at bedrock level is based on empirical GMPEs, which use the bedrock shear-wave velocity in the upper 30 meters ( $Vs_{30}$ ) as input. We assigned average bedrock  $Vs_{30}$  of 9,000 feet per second. We used the same weighting and the same empirical GMPEs that were used in Petersen et al. (2014).

#### 4.5 Epistemic Uncertainty and Aleatory Variability

The term "epistemic uncertainty" is used to describe the uncertainty because of incomplete knowledge and data about the physics of the earthquake process. For example, there is uncertainty as to which attenuation relationship is more applicable for the site at hand. Similarly, the term "aleatory variability" is used to describe the randomness in the ground motion predicted by each attenuation equation. The epistemic uncertainty is taken into account by using a suite of attenuation relations with different weights. All the different weight combinations are incorporated in the final hazard estimations by using a logic-tree approach (McGuire 2004). The aleatory variability is taken into account by explicitly considering the randomness (standard deviation) in the predicted ground motions.



### 4.6 Probabilistic Seismic Hazard Analysis Results

The computed uniform hazard spectrum for 2 percent probability of exceedance in 50 years was based on the geometric mean component of the attenuation equations, and was then adjusted for the maximum direction component by multiplying with period-dependent amplification factors according to Sahi and Baker (2013), and was further adjusted by using the ASCE 7-10 risk coefficients for the site to determine the risk-targeted maximum considered earthquake (MCE_R) ground motion response accelerations. At each spectral response period, the uniform hazard bedrock response spectrum was multiplied by the risk coefficient  $C_R$  in accordance with Section 21.2.1 of ASCE 7-10. We used the USGS risk-targeted ground motion calculator, along with the site-specific hazard curves for periods of 0.2 and 1 second to estimate the  $C_{RS}$  and  $C_{R1}$  respectively. For periods less than or equal to 0.2 second,  $C_R = C_{Rs} = 0.93$ ; for periods greater than or equal to 1 second,  $C_R = C_{R1} = 0.94$ ; and for periods between 0.2 seconds and 1 second,  $C_R$  was linearly interpolated between  $C_{Rs}$  and  $C_{R1}$ . The bedrock MCE_R spectrum is shown in Figure 3. Digitized MCE_R values are listed in Table 1.

Table 1 – Bedrock Risk-Targeted Maximum Considered Earthquake (MCE_R) Spectrum SA(g) for 5 Percent Damping

Structural	Site-Specific SA(g)
Period T (sec)	P.E. 2% in 50 years
0.01	0.146
0.10	0.255
0.20	0.192
0.30	0.136
0.40	0.103
0.50	0.081
0.75	0.052
1.0	0.039
2.0	0.020
3.0	0.013
4.0	0.010
5.0	0.008
6.0	0.006
7.0	0.004
8.0	0.003

### 4.7 Seismic Hazard Deaggregation Results

Seismic hazard deaggregation was performed to estimate the contribution of the various magnitudes events at various distances to the total seismic hazard. The results are useful in identifying pairs of earthquake magnitude and source-to-site distances that contribute the most to the estimated seismic hazard, performing deterministic analyses, and developing different scenarios to be used in selecting acceleration time series.

For the peak ground acceleration, which is of interest for the soil liquefaction-potential analyses, the majority of the hazard for the maximum considered earthquake comes from small to moderate magnitude earthquakes from the CEUS Gridded seismic zone. The corresponding modal (most likely) moment magnitude and distance were estimated to be magnitude of 5.05 and a distance of 11 kilometers. The mean moment magnitude and distance were estimated to be 5.45 and 22 kilometers respectively.



#### 4.8 Bedrock Acceleration Time Series

We selected 11 bedrock acceleration time series for use in our analyses following the guidelines of ASCE 7-10. All time series were recorded during earthquakes with magnitudes between 5.3 and 6.2, consistent with typical NYC design magnitudes. All time series were modified to match the target bedrock MCE_R spectrum presented in Figure 3 using a time-domain spectral-matching routine. The seed time series we used are listed in Table 2.

Table 2 - Acceleration Time Series Used for Matching to the Target MCER Rock Spectrum

No.	Earthquake & Year	NGA Sequence No.	Magnitude	Station Name	Closest Distance to Rupture (km)	Component
1, 2	Morgan Hill, 1984	455	6.19	Gilroy Array No.1	15	1230, 1320
3, 4	Whittier Narrows, 1987	624	5.99	Huntington Beach	45	270, 360
5	CA/Baja Border Area, 2002	2003	5.31	Calexico Fire Station	40	90
6, 7	Chi-Chi, Taiwan, 1999	2949	6.20	CHY033	13	E, N
8, 9	Chi-Chi, Taiwan, 1999	2985	6.20	CHY094	91	N, W
10, 11	Mineral, Virginia, 2011	8529	5.74	NP2555	124	N, E

Information obtained from the NGA-West and the NGA-East Flatfile (http://ngawest2.berkeley.edu/)

### 4.9 Dynamic Soil and Bedrock Parameters

Dynamic soil and bedrock parameters are required for use in ground-response analyses. These parameters are:

- Small-strain shear modulus (G_{max});
- Shear modulus degradation curve with increased shear strains (i.e., G-γ curve); and
- Soil damping curve with increased shear strains (i.e.,  $\beta$ - $\gamma$  curve).

The small-strain shear modulus was estimated from in situ measurements of shear-wave velocity. The modulus degradation and damping curves were selected from published data for specific representative soil types; the following curves were used in our analyses:

- Fill Seed and Idriss "sand average" curve (1970)
- Organic Clay
   – Vucetic and Dobry (1991), PI = 40
- Silt and Clay
   – Vucetic and Dobry (1991), PI = 30
- Sand- EPRI Sand(1993)
- Bedrock EPRI Rock (1993)

#### 4.10 Minimum Permissible Level of Design Response Spectrum

The site class and associated code-specified acceleration-response spectrum are required to determine the minimum permissible levels of the design response spectrum derived from a site-specific study. The



minimum permissible level of the design spectrum is based on the Site Class determined according to the building code without considering soil liquefaction. Site Class E was used for the terra firma site.

#### 4.11 Ground Response Analyses Results

Total-Stress ground-response analyses were performed using the selected bedrock acceleration time series and dynamic soil and bedrock properties described above. All bedrock acceleration time series were applied as rock-outcrop motions in accordance with ASCE 7-10.

For each zone, one-dimensional analyses were performed to assess the sensitivity of the ground surface acceleration-response spectra to variable depth to rock and stiffness of the soil column. The sensitivity of the depth to rock was assessed by varying the soil column thickness; we selected two representative soil columns for each zone, corresponding to the lower(C1) and higher (C2) depth to rock for each zone. The sensitivity of the soil stiffness was assessed by varying the best-estimate shear-wave velocities for all layers by 20 percent above and below the estimated average, yielding six different soil columns in total.

The 11 modified bedrock acceleration time series were applied at the base of each of soil column, resulting in a suite of 66 acceleration-response spectra. This relatively high number of spectra allows the mean response spectrum to provide a reasonable estimate of the average ground response during the design earthquake event, capturing the variable earthquake motions and variable soil conditions for each zone.

Per section 1613.5.4 of the 2014 NYCBC, section 1613.3.4 of the 2015 NYSBC and section 21.3 of ASCE 7-10, these 66 calculated MCE $_{\rm R}$  spectra were multiplied by a factor of two-thirds to model the "Design Earthquake (DE)."

The mean total-stress spectrum for each soil column is presented in Appendices A to F for Zones 1 to 6, respectively.

#### 4.12 Soil Liquefaction Potential Analyses

The NYCBC requires an evaluation of the liquefaction potential of noncohesive soils below the groundwater table and to a depth of 50 feet below the ground surface. The potential for soil liquefaction was evaluated using the procedure outlined by Idriss and Boulanger (2008). This evaluation develops an empirical relationship between the earthquake demand, represented by the Cyclic Stress Ratio (CSR), and the soil's resistance to dynamic loading, represented by the Cyclic Resistance Ratio (CRR). The CSR is correlated to the Peak Ground Acceleration (PGA) of the design earthquake event and the in situ soil stresses. The CRR is correlated to SPT N-values, or cone penetration testing (CPT) resistance obtained from field tests at the site. The field N-values are converted to  $N_{1,60,N}$  by applying correction factors for soil overburden pressure, hammer energy efficiency and atmospheric pressure. Field CPT tip resistances are converted to  $q_{t1,N}$  by applying correction factors for soil overburden pressure, percent fines and atmospheric pressure.

Liquefaction analyses results are also presented in Appendices A and B. Both zones have points with factors of safety of 1.0 or below, indicating susceptibility to liquefaction.

To further assess the effect of liquefaction, we performed effective-stress non-linear soil amplification analyses with D-MOD2000 for each tower. This approach models the generation of excess pore water pressure (EPWP) and allows a more accurate evaluation of liquefaction potential during the MCE_R event, and of the ground surface acceleration response spectrum. The EPWP ratio is defined as the ratio of pore water pressures developed in the soil at a certain depth, to the soil's effective stress at that depth. A ratio of 1.0 (or 100 percent) implies that the pore water pressure is equal to the effective stress at a specific depth; when this occurs, the soil has reached complete liquefaction. EPWP ratios less than 1.0 (less than 100 percent) correspond to partial liquefaction. For each zone:



- We modeled two soil columns for each tower (east and west) to consider the influence of different depth to rock.
- We used time series CHY094N for each soil column as the bedrock input motion, to obtain the most conservative estimates of excess pore water pressures. CHY094N is the time series that give the highest acceleration response spectra and EPWP.
- We performed total-stress analyses with SHAKE2000 and D-MOD2000 and calibrated the D-MOD2000 damping parameters so that the ground surface acceleration spectra estimated by the two computer codes reasonably match. Then we performed effective stress analyses with D-MOD2000 using the previously estimated damping parameters.
- We used published relationships that are available in the D-MOD2000 library to model the pore water generation, the soil degradation, the redistribution of the pore water pressures, and the pore water pressure dissipation during the MCER-level event.

The EPWP were also estimated using

- the SHAKE2000-estimated PGA,
- the SPT and CPT data for each tower,
- the corresponding factors of safety (FoS) against liquefaction following the method of Idriss and Boulanger (2008), and
- the FoS versus EPWPR curves from Tokimatsu & Yoshimi (1983).

Estimated EPWP are presented in Appendices A (Tower 5) and B (Tower 6).

The recommended EPWP ratios to be considered for foundation design at each tower are presented in Appendices A and B. Note that the D-MOD2000 analyses yielded maximum EPWP ratios up to about 90 percent for the upper fill layer for Tower 5 and EPWP ratios up to about 60 percent for the upper fill layer for Tower 6. The associated ground-surface seismic volumetric settlements are estimated to be less than 0.5 inches for both Tower 5 and Tower 6.

#### 5 Results

The results of our analyses are summarized in Appendices A (Tower 5) and B (Tower 6).

Both towers have the same code dictated lower-bound design response spectra. We recommend that LIRR building C (located between the two towers—with similar subsurface conditions) be designed with the same response spectra as the towers, and the higher pore pressure ratios predicted in the Tower 5 analysis.

#### 6 Limitations

The conclusions and recommendations provided in this report are based on current state of practice. Research is ongoing to develop empirical ground-motion attenuation relations, as well as reviewing information related to the seismicity in the project region. Future research may prove counter to the assumed conditions. In addition, the subsurface conditions were inferred from a limited number of historic borings. The recommendations provided are dependent upon one another and no recommendation should be followed independent of the others.

Any proposed changes in structures or their locations should be brought to Langan's attention as soon as possible so that we can determine whether such changes affect our recommendations. The information is assumed to represent conditions reported only at the locations indicated and at the time of investigation. If different conditions are encountered during construction, they should immediately be brought to Langan's attention for evaluation, as they may affect our recommendations.



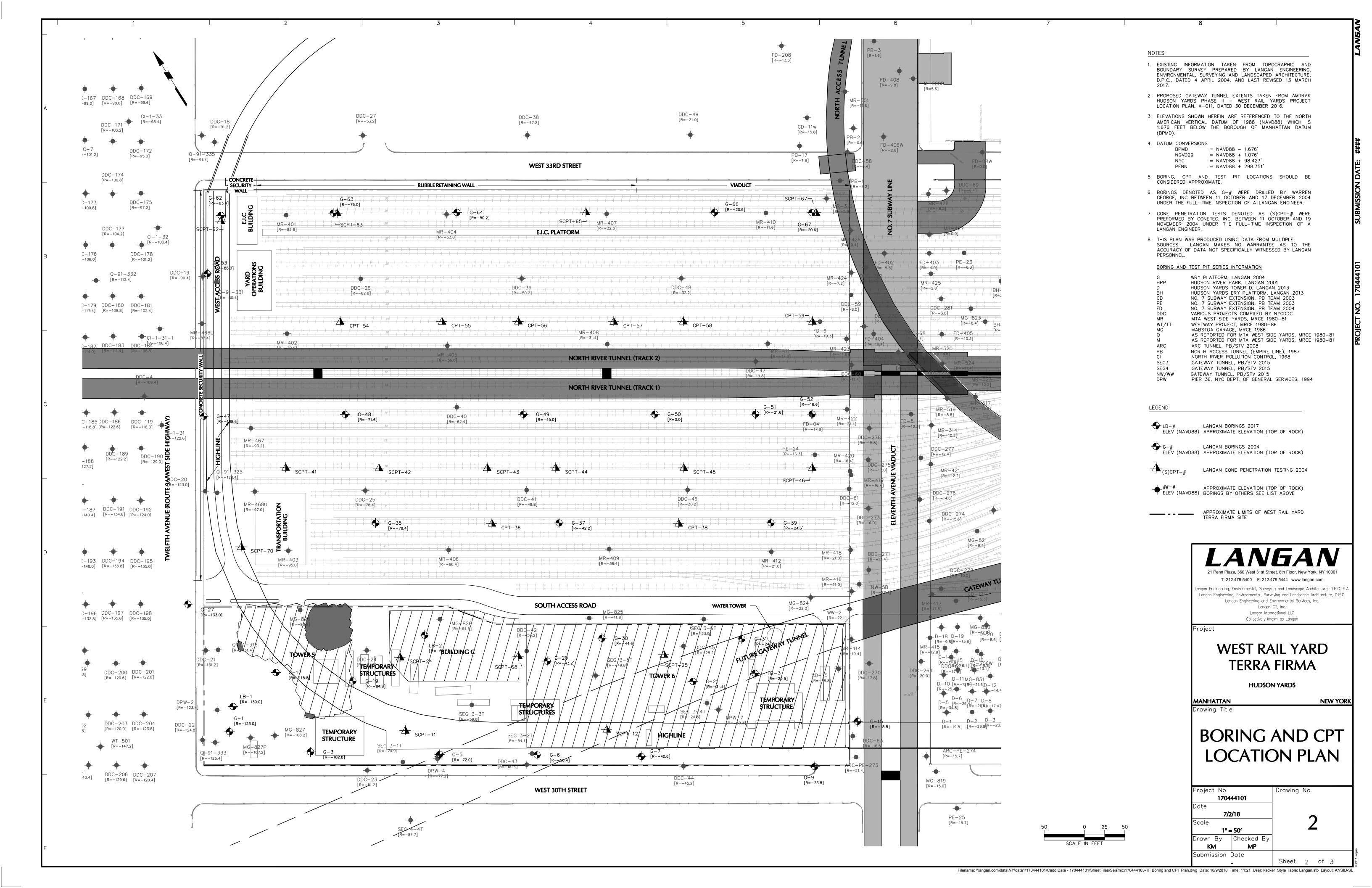
This report has been prepared to assist the Owner, architect and structural engineer in the design process and is only applicable to the design of the specific project identified. The information in this report cannot be utilized or depended on by engineers or contractors who are involved in evaluations or designs of facilities (including underpinning, grouting, stabilization, etc.) on adjacent properties which are beyond the limits of that which is the specific subject of this report.

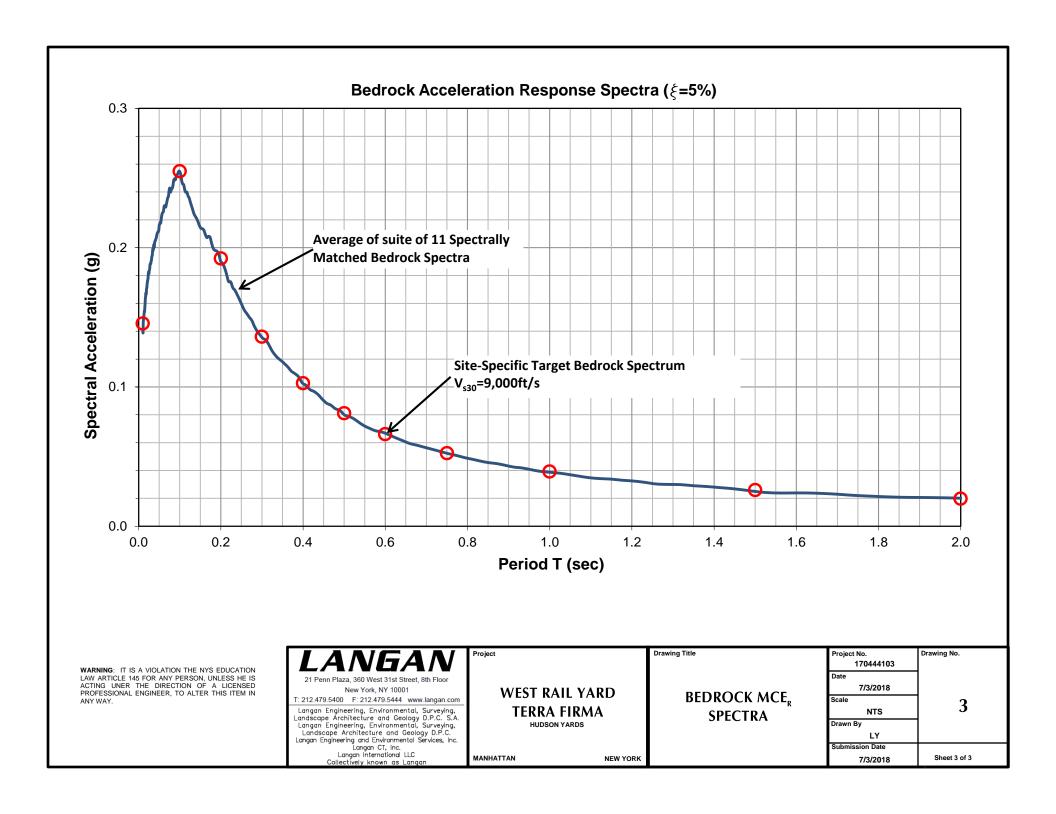


#### 7 REFERENCES

- ASCE/SEI 7-05. (2005). *Minimum Design Loads for Buildings and Other Structures*. American Society of Civil Engineers/ Structural Engineering Institute.
- Baskerville, C. A. (1994). Bedrock and Engineering Geologic Maps of New York County and parts of Kings and Queens counties, New York, and parts of Bergen and Hudson Counties, New Jersey.
- Buxton, H. T., Soren, J., Posner, A., & Shernoff, P. K. (1981). *Reconnaissance of the ground-water resources of Kings and Queens Counties, New York.* Syosset, New York: U.S. Geological Survey.
- Cornell, C. (1968). Engineering Seismic Risk Analysis. *Bulletin of the Seismological Society of America*, 58(5).
- EPRI. (1993). Guidelines for Site Specific Ground Motions. Palo Alto, California: Electric Power Research Institute.
- Geomotions Inc. (2015). D-MOD2000 "A computer Program for Seismic Response Analysis of Horizontally Layered Soil Deposits, Earthfill Dams and Solid Waste Landfills", Version 9.99.6.
- Geomotions Inc. (2015). SHAKE2000 "A computer Program for the 1D Analysis of Geotechnical Earthquake Engineering Problems", Version 9.99.6.
- McGuire, R. (1976). FORTRAN Computer Program for Seismic Risk Analysis Open-File Report 76-67. U.S. Geological Survey.
- McGuire, R. (2004). Seismic Hazard and Risk Analysis. Boulder, Colorado: Earthquake Engineering Research Institute.
- NEHRP. (2009). Recommended Seismic Provisions for New Buildings and Other Structures, Part 1: Provisions, FEMA P-750. FEMA.
- Pacific Earthquake Engineering Research Center. (2010). *PEER Ground Motion Database website*. Retrieved from http://peer.berkeley.edu/peer_ground_motion_database
- Petersen, M. D., Frankel, A. D., Harmsen, S. C., Mueller, C. S., Haller, K. M., Wheeler, R. L., et al. (2008). Documentation for the 2008 Update of the United States National Seismic Hazard Maps. U.S. Geological Survey.
- Risk Engineering Inc. (2015). *EZ-FRISK, Software for Earthquake Ground Motion Estimation, Version* 7.65.
- Seed, H. B., & Idriss, I. M. (1970). Soil Moduli and Damping Factors for Dynamic Response Analysis. Berkeley: University of California.
- Sykes, L. R., Armbruster, J. G., Kim, W.-Y., & Seeber, L. (2008). Observations and Tectonic Setting of Historic and Instrumentally Located Earthquakes in the Greater New York City-Philadelphia Area. *Bulletin of the Seismological Society of America*, *98*(4), 1696-1719.
- The City Of New York. (2008). Building Code.
- URS. (2008). URS Summary Report, Appendix H in 2008 Seismic Design Guidelines for Bridges.
- Vucetic, M., & Dobry, R. (1991). Effect of Soil Plasticity on Cyclic Response. *Journal of Geotechnical Engineering*, 117(1), 89-107.
- Weidlinger Associates PC. (2008). Seismic Design Guidelines for Bridges, Part I: Provisions, Final Draft September 2008. New York City Department of Transportation.
- Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., et al. (2001). Liquefaction Resistance of Soils: Summary Report From the 1996 and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. *Journal of Geotechnical and Geoenvironmental Engineering*, 127(10), 817-833.

\\langan.com\data\NY\data1\170444101\Office Data\Reports\Geotechnical\Seismic\Terra Firma\Text\HYW-TF-LAN-RPT-B-20181109-Seismic_Report.docx





**End of Report** 



# **FIGURES**









# APPENDIX A

Tower 5 Site-Specific Seismic Study



We performed a site-specific seismic analysis for Tower 5 of the terra firma site. The key assumptions and results are summarized below.

#### 1 Subsurface Conditions

The subsurface conditions at Tower 5 consist of fill, underlain by consecutive layers of organic clay, silty clay/clayey silt, sand and finally bedrock. The depth to bedrock varies from 72 to 140 feet, increasing east to west. We selected two soil columns (east and west) to represent differing soil conditions and the variation in depth to bedrock of the zone. The depth to rock of the two soil columns are based on the average depth to rock of the borings in the east and west side of the zone. The soil layer thicknesses and shear wave velocities used for each column are listed in Table A-1.

The shear wave velocity of the rock is estimated to be about 9,000 feet per second (fps), based on cross-hole seismic testing and borehole suspension logging from nearby sites in the same rock formation.

Table A-1 - Summary of Assumed Soil Layer Thickness and Shear Wave Velocities

East Column - Representative of the east side of the zone Based on G-5, G-19, LB-2, SCPT-11, SCPT-24					
Layer  Average layer thickness (feet)  Range of measured/assumed shear wave velocities (fps)  Shear wave velocities (fps)					
Fill	30	290 to 678	440		
Organic Silty Clay	27	406 to 510	460		
Silty Clay/Clayey Silt	21	570 to 832	625		
Sand	3	1,000 to 1,490	1,250		
Bedrock	N/A	9,000	9,000		

West Column - Representative of west side of the zone Based on G-1, G-3, G-17, LB-1, SCPT-11, SCPT-24					
Layer  Average layer thickness (feet)  Range of measured/assumed shear wave velocities (fps)  Shear wave velocities (fps)					
Fill	30	290 to 678	440		
Organic Silty Clay	27	406 to 510	460		
Silty Clay/Clayey Silt	53	550 to 730	625		
Sand	3	1,000 to 1,490	1,250		
Bedrock	N/A	9,000	9,000		

#### 2 Site Class

We calculated weighted-average shear-wave velocities  $(\overline{V}_s)$  between about 485 and 495 feet per second (fps). The site was preliminarily classified as Site Class E, as per 1613.5.2 of 2014 NYCBC, without consideration of soil liquefaction. The site was re-classified as Site Class F because of its potential for liquefaction using simplified methods, as described below.



## 3 Soil Liquefaction

Figure A-1 shows a plot of the factor of safety with depth using standard penetration test (SPT) and cone penetration test (CPT) results according to the Idriss and Boulanger (2008) procedures with the following parameters:

- An earthquake magnitude of 5.75 earthquake event, which is more conservative than the estimated mean deaggregation magnitude (5.45), but consistent with older studies (2008 USGS Seismic Hazard Maps and the 2016 NYCDOT Report);
- A PGA of 0.33g for Site Class E;
- A magnitude scaling factor (MSF) of 1.6, per the Idriss and Boulanger (2008).

The initial Idriss and Boulanger (2008) liquefaction analysis indicated potential liquefaction at depths between about 8 and 35 feet. We then performed DMOD2000 effective-stress nonlinear analyses and estimated maximum excess pore water pressure ratios as high as 90 percent at depths between 25 to 30 feet, corresponding to partial liquefaction (partial soil strength loss).

The EPWP were also estimated using the SHAKE2000-estimated PGA of 0.112g, the SPT and CPT data from G-1, G-3, G-17, G-19, CPT-11 and CPT-24, the corresponding factors of safety (FoS) against liquefaction following the method of Idriss and Boulanger (2008), and the FoS versus EPWPR curves from Tokimatsu & Yoshimi (1983). The estimated EPWP are shown on Figure A-2. The DMOD-estimated EPWP are typically higher than the empirically-estimated EPWP.

Partial liquefaction should be considered in the analysis of lateral pile capacity, using the estimated excess pore water pressure ratios to reduce the soil strength. We gave more weight to the DMOD-2000 results. The excess pore water pressure ratios estimated from DMOD2000 analyses and empirical method mentioned above are presented in Figure A-2 and listed in Table A-2.

 Depth (ft)
 EPWP ratios
 Recommended Design EPWPR

 0 to 10
 <10%</td>
 0%

 10 to 20
 0% to 50%
 30%

 20 to 30
 40% to 90%
 65%

<20%

Table A-2 – Summary of Estimated Excess Pore Water Pressure Ratios

We estimated up to 0.5 inches of seismic-induced settlement for free-field conditions after the  $MCE_R$ -level event.

0%

## 4 Design Acceleration Response Spectrum

Below 30

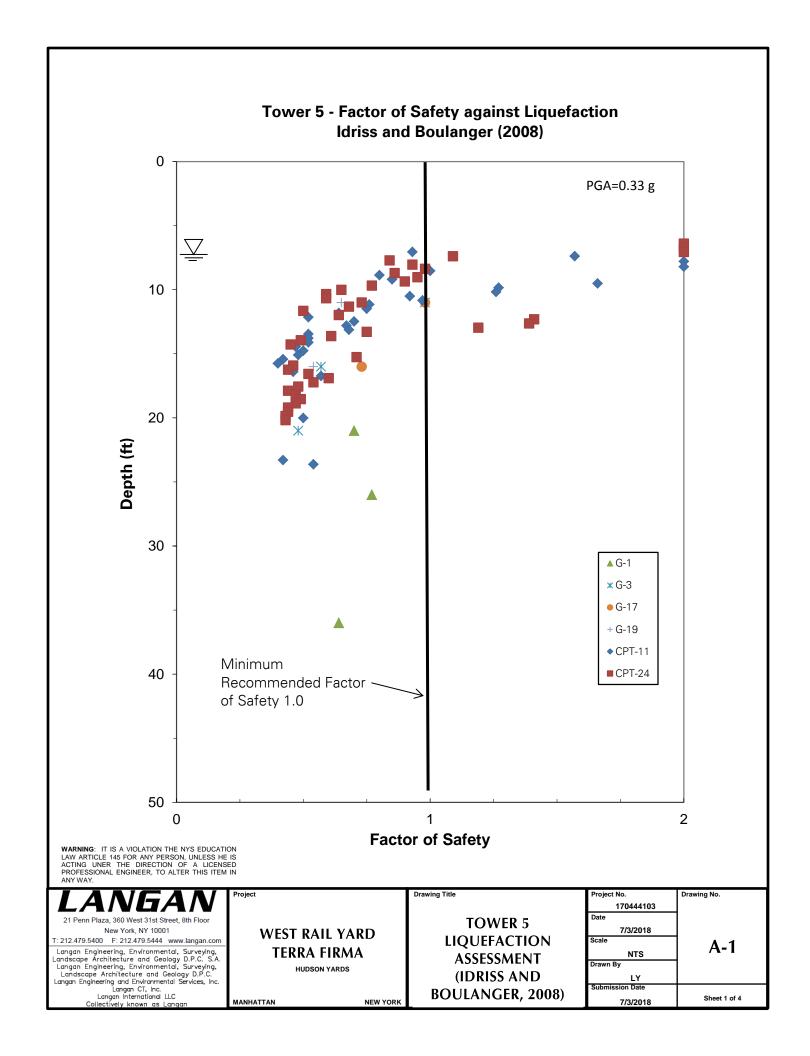
The design spectrum recommendations based on the SHAKE2000 total-stress analyses are listed in Table A-3. The plot of the SHAKE2000 design spectra, and 80 percent of the Site Class E design spectrum (minimum allowed per ASCE 7-10) are presented in Figure A-3. The red triangles show our recommended design acceleration-response spectrum, which follows the 80% Site Class E line.

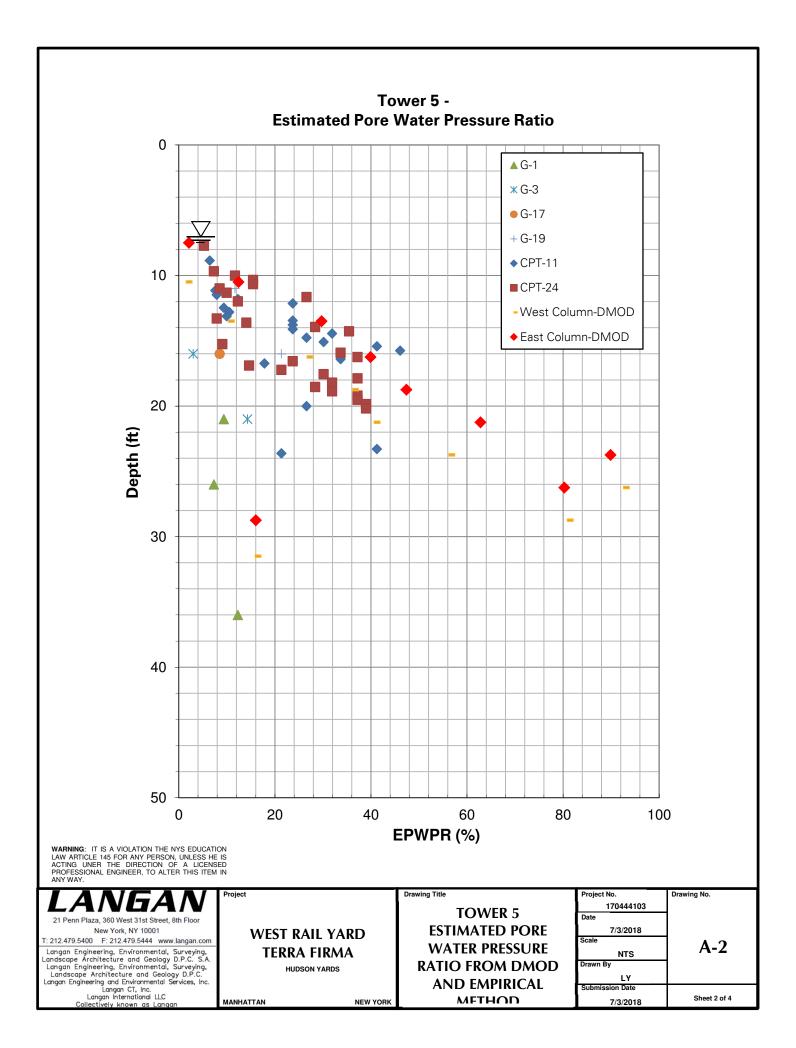


Table A-3 – Recommended Design Smooth Site-Specific spectrum, SA(g) for 5 percent damping

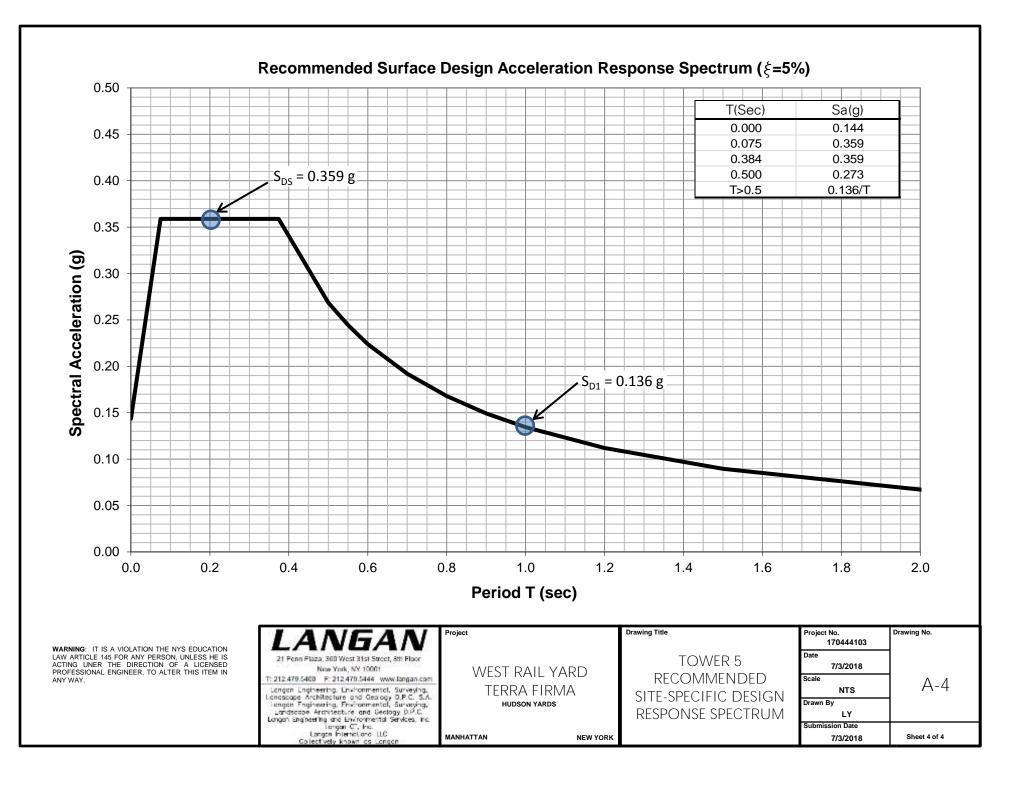
Period T (seconds)	Recommended Design Acceleration (g)
0.00	0.144
0.075	0.359
0.384	0.359
0.500	0.273
T>0.5	0.136/T

The recommended design spectrum satisfies the 2014 NYCBC, 2015 NYSBC and ASCE 7-10 requirements. A plot of the recommended design response spectrum containing a table with the spectral ordinates is presented on Figure A-4. The short-period and 1-second-period design accelerations obtained from the recommended design spectrum are as follows:


- SDS = 0.359 g at a period of 0.2 seconds
- SD1 = 0.136 g at a period of 1.0 second


## 5 Seismic Design Category

For Risk Category I, II and III, the recommended design spectral accelerations obtained from our site-specific analysis result in a Seismic Design Category C, regardless of the structure's fundamental period of vibration. The results of the site-specific seismic study are listed in Table A-4.


Table A-4 – Recommended Seismic Design Parameters – Site-Specific Seismic Study

Design Parameter	Design Value
Site Class	E
Spectral Acceleration at short periods, S _{DS}	0.359 g
Spectral Acceleration at 1-sec period, S _{D1}	0.136 g
Site-Specific MCE _R -level PGA	0.112g
Risk Category	I, II and III
Seismic Design Category, SDC	С











# APPENDIX B

Tower 6 Site-Specific Seismic Study



We performed a site-specific seismic analysis for Tower 6 of the terra firma site. The key assumptions and results are summarized below.

#### 1 Subsurface Conditions

The subsurface conditions at Tower 6 consist of fill, underlain by consecutive layers of silty clay/clayey silt, sand and finally bedrock. The depth to bedrock varies from 32 to 70 feet, increasing east to west. We selected two soil columns (east and west) to represent differing soil conditions and the variation in depth to bedrock of the zone. The soil layer thicknesses and shear wave velocities used for each column are listed in Table B-1.

The shear wave velocity of the rock is estimated to be about 9,000 feet per second (fps), based on cross-hole seismic testing and borehole suspension logging from nearby sites in the same rock formation.

Table B-1 - Summary of Assumed Soil Layer Thickness and Shear Wave Velocities

East Column - Representative of the east side of the zone Based on G-9, G-15, G-21, G-31, LB-3, SCPT-25			
Layer			Shear wave velocity used in model (fps)
Fill	20	325 to 875	475
Silty Clay/Clayey Silt	15	350 to 450	425
Sand	5	675 to 1,150	900
Bedrock	N/A	9,000	9,000

West - Representative of west side of the zone Based on G-6, G-7, G-20, G-30, SCPT-12, SCPT-68			
Layer			Shear wave velocity used in model (fps)
Fill	29	407 to 670	550
Silty Clay/Clayey Silt	22	370 to 570	445
Sand	10	650 to 1,490	1,050
Bedrock	N/A	9,000	9,000

#### 2 Site Class

We calculated weighted-average shear-wave velocities  $(\overline{V}_s)$  between about 490 and 540 feet per second (fps). The site was preliminarily classified as Site Class E, as per 1613.5.2 of 2014 NYCBC, without consideration of soil liquefaction. The site was re-classified as Site Class F because of its potential for liquefaction using simplified methods, as described below.

## 3 Soil Liquefaction

Figure B-1 shows a plot of the factor of safety with depth using standard penetration test (SPT) and cone penetration test (CPT) results according to the Idriss and Boulanger (2008) procedures with the following parameters:



- An earthquake magnitude of 5.75 earthquake event, which is more conservative than the estimated mean deaggregation magnitude, but consistent with older studies (2008 USGS Seismic Hazard Maps and the 2016 NYCDOT Report);
- A PGA of 0.33g for site class E;
- A magnitude scaling factor (MSF) of 1.6, per Idriss and Boulanger (2008).

The initial Idriss and Boulanger (2008) liquefaction analysis indicated potential liquefaction at depths between about 6 and 40 feet. We then performed DMOD2000 effective-stress nonlinear analyses and estimated maximum excess pore water pressure ratios as high as about 60 percent at depths around 15 to 20 feet, corresponding to partial liquefaction (partial soil strength loss).

The EPWP were also estimated using the SHAKE2000-estimated PGA of 0.129g, the SPT and CPT data from G-9, G-15, G-21, G-31, LB-3, G-6, G-7, G-20, G-30, SCPT-25, SCPT-12, SCPT-68, the corresponding factors of safety (FoS) against liquefaction following the method of Idriss and Boulanger (2008), and the FoS versus EPWPR curves from Tokimatsu & Yoshimi (1983). The estimated EPWP are shown on Figure B-2.

Partial liquefaction should be considered in the analysis of lateral pile capacity, using the estimated excess pore water pressure ratios to reduce the soil strength. We gave more weight to the DMOD-2000 results. The excess pore water pressure ratios estimated from DMOD2000 analyses and empirical method mentioned above are presented in Figure B-2 and listed in Table B-2.

Table B-2 – Summary of Estimated Excess Pore Water Pressure Ratios

Depth (ft)	EPWP ratios	Recommended Design EPWPR
6 to 10	<20%	0%
10 to 30	10% to 60%	40%
Below 30	< 20%	0%

We estimated up to about 0.5 inches of seismic-induced settlement for free-field conditions after the MCE_R-level event.

## 4 Design Acceleration Response Spectrum

The design spectrum recommendations based on the SHAKE2000 total-stress analyses are listed in Table B-3. The plot of the SHAKE2000 design spectra, and 80 percent of the Site Class E design spectrum (minimum allowed per ASCE 7-10) are presented in Figure B-3. The red triangles show our recommended design acceleration-response spectrum, which follows the 80% Site Class E line.

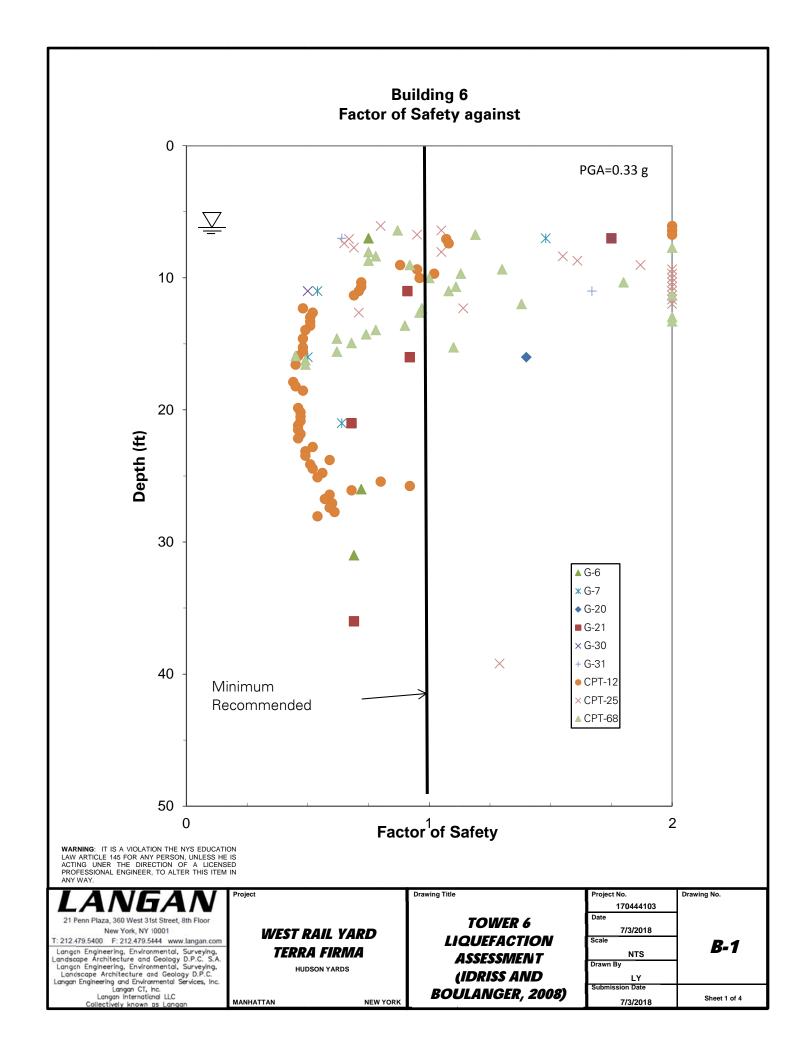
Table B-3 – Recommended Design Smooth Site-Specific spectrum, SA(g) for 5 percent damping

Period T (seconds)	Recommended Design Acceleration (g)
0.00	0.144
0.075	0.359
0.384	0.359
0.500	0.273
T>0.5	0.136/T

The recommended design spectrum satisfies the 2014 NYCBC, 2015 NYSBC and ASCE 7-10 requirements. A plot of the recommended design response spectrum containing a table with the spectral



ordinates is presented on Figure B-4. The short-period and 1-second-period design accelerations obtained from the recommended design spectrum are as follows:


- SDS = 0.359 g at a period of 0.2 seconds
- SD1 = 0.136 g at a period of 1.0 second

## 5 Seismic Design Category

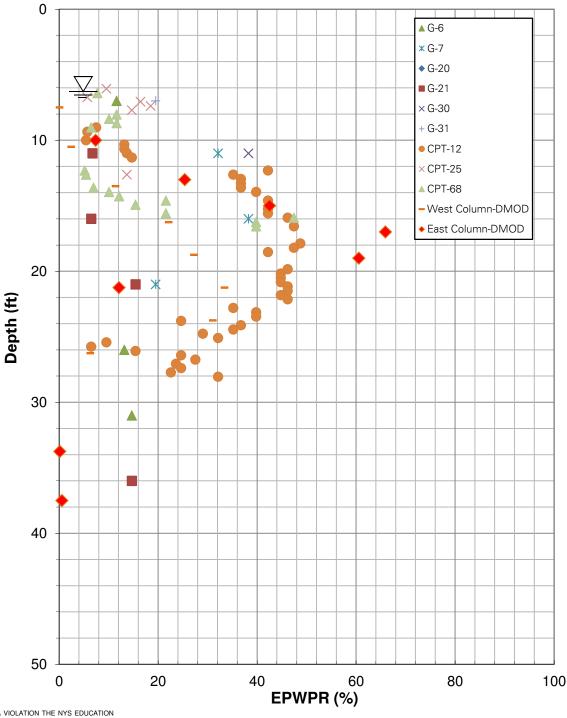

For Risk Category I, II and III, the recommended design spectral accelerations obtained from our site-specific analysis result in a Seismic Design Category C, regardless of the structure's fundamental period of vibration. The results of the site-specific seismic study are listed in Table B-4.

Table B-4 – Recommended Seismic Design Parameters – Site-Specific Seismic Study

Design Parameter	Design Value
Site Class	E
Spectral Acceleration at short periods, S _{DS}	0.359 g
Spectral Acceleration at 1-sec period, S _{D1}	0.136 g
Site-Specific MCE _R -level PGA	0.129 g
Risk Category	I, II and III
Seismic Design Category, SDC	С



## Tower 6 **Estimated Pore Water Pressure**



WARNING: IT IS A VIOLATION THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

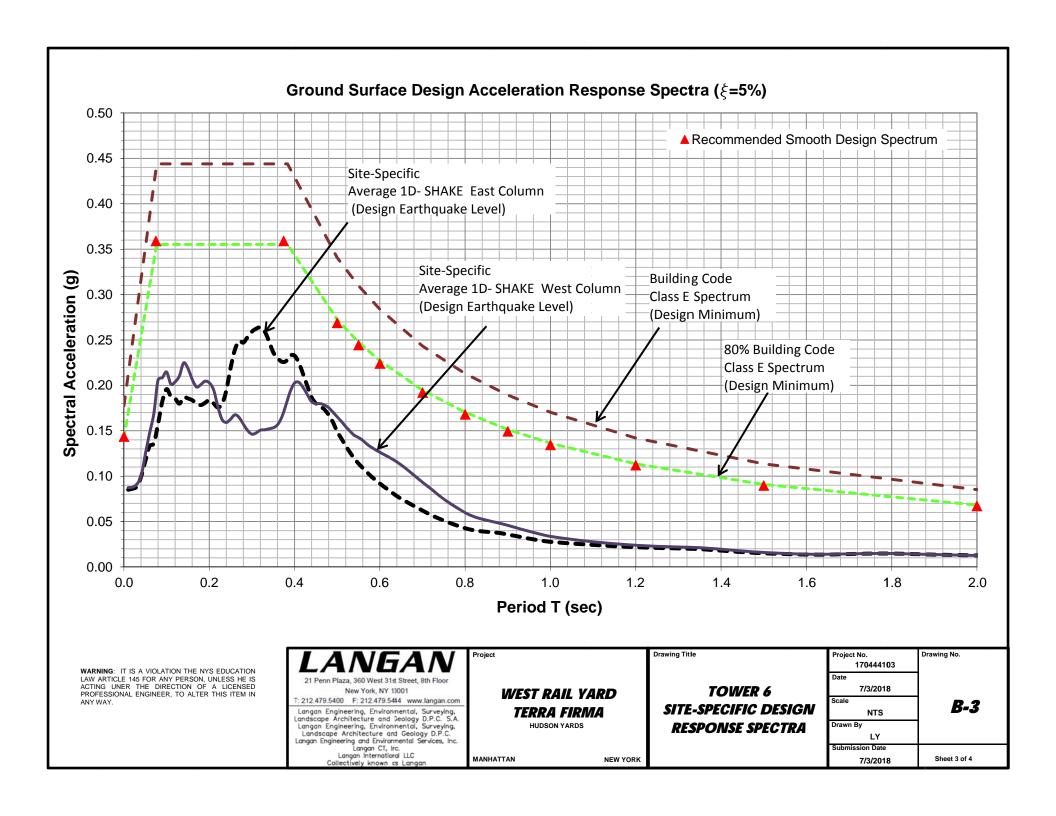
21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001

T: 212.479.5400 F: 212.479.5444 www.langan.com

1:212.479.5400 F:212.479.5444 www.langan.com
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C. S.A.
Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology D.P.C.
Langan Engineering and Environmental Services, Inc.
Langan Ci, Inc.
Langan International LLC
Collectively known as Langan

Project

### **WEST RAIL YARD TERRA FIRMA**


HUDSON YARDS

MANHATTAN **NEW YORK** 

## **TOWER 6 ESTIMATED PORE WATER PRESSURE RATIO FROM DMOD** AND EMPIRICAL **METHOD**

Drawing Title

Project No.	Drawing No.
170444103	
Date	
7/3/2018	
Scale	B-2
NTS	D-Z
Drawn By	
LY	
Submission Date	
7/3/2018	Sheet 2 of 4



#### Recommended Surface Design Acceleration Response Spectrum ( $\xi$ =5%) 0.50 Sa(g) T(Sec) 0.45 0.000 0.144 0.075 0.359 0.384 0.359 $S_{DS} = 0.359 g$ 0.40 0.273 0.500 T>0.5 0.136/T0.35 Spectral Acceleration (g) 0.30 0.25 0.20 $S_{D1} = 0.136g$ 0.15 0.10 0.05 0.00 0.2 0.6 8.0 1.0 1.2 1.6 1.4 0.0 0.4 1.8 2.0 Period T (sec) Project **Drawing Title** Drawing No. 170444103 WARNING: IT IS A VIOLATION THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN 21 Penn Plaza; 360 West 31st Street, 8th Floor TOWER 6 7/3/2018 New York, NY 10001 WEST RAIL YARD RECOMMENDED Scale T: 212.479.5408 F: 212.479.5444 www.langan.com B-4 Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology D.P.C. S.A. Langan Engineering, Environmental, Surveying, TERRA FIRMA SITE-SPECIFIC DESIGN Drawn By **HUDSON YARDS RESPONSE SPECTRUM** Landscape Architecture and Geology D.P.C. LY Longon Engineering and Environmental Services, Inc. Longon CT, Inc. Longon International LC Submission Date MANHATTAN NEW YORK Sheet 4 of 4 7/3/2018 Collectively known as Langan