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ALTRIOS - Advanced Locomotive Technology and Rail Infrastructure

Optimization System

Accelerate rail decarbonization through development and distribution
of a validated comprehensive modeling framework

*  Open-source software tool to evaluate strategies for
deploying advanced locomotive technologies and —
associated infrastructure for cost-effective decarbonization

*  Simulate train dynamics, energy conversion and storage
technologies, meet-pass planning, and freight-demand
driven train scheduling

*  Provide guidance on the risk/reward tradeoffs of different
technology rollout strategies.

* Identify Pareto optimal, geospatial-temporal deployment
strategies for advanced locomotive technologies and
associated infrastructure
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ALTRIOS Team: Multi-Disciplinary team combining strengths of a national

lab, university research center, research laboratory, and railway operator

=3 N R E L ) Deep experience in energy efficient transportation technologies, energy
storage/conversion, and developing and deploying open source software

.RAILTEC ) Expertise in railroad operations, train dynamics, and train energy modeling

@’G ) Locomotive powertrain expertise and performance data.

EEN Applied engineering expertise in train dynamics and operating efficiency.
RATLWAY Experience implementing and evaluating transformative train solutions.

Organizational Leads

NREL (PI): NREL (Model Lead): UIUC RailTEC (co-PI) SwWRI: BNSF (Industry):
Jason Lustbader Chad Baker C. Tyler Dick Steven Fritz Mike Swaney



Framework: Overview
ALTRIOS Modeling Framework
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ALTRIOS: Train Corridor Simulator

(I'rain Consist PIanner\
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Train Consist Planner, Overview

» Train consist planner builds a train plan including Locomotive ID, type of train, origin and
destination on simulated network, and number of empty and loaded railcars

* Input

* Output
— Annual 0/D pair traffic demand — List of consist information for each train
— Locomotive characteristics — Corresponding planned departure time
— Initial locomotive and railcar distributions
Origin Terminal Destination Terminal
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Develops a complete plan for the
path each train will take through the
track network along with estimated
times for traversing each segment

— Estimated times derived from
simulating each train using the
train performance calculator

Uses a high-performance free-path-
based deadlock avoidance algorithm

“Stringline” diagram train meet/pass
plan output shows the algorithm
chooses to meet trains at passing
sidings that generally minimize total
overall delay
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Train Resistance and Motion Calculations

e Grade resistance

— Train modeled as uniform mass strap W

(R —m Aelevation ) =,
grade 9 train length avg. G
. . avg. D
* Rolling resistance i
train

— Constant value, recalculated only if train mass changes
* Aerodynamic resistance

— Function of square of speed and air density

— Air density will be estimated from front of train elevation
* Curve resistance

— Calculated using truck-type specific curve resistance coefficients derived from
guadratic regression on AAR Train Energy Model tables
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Locomotive Powertrain Architectures

Conventional, hybrid, and battery locomotives
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Consist Powertrain

* Consist is modeled as a vector of locomotives, allowing flexibility in configuration.
* Tractive power is distributed based on positive tractive power capacity and regenerative

braking capacity
* |f any BELs are present in the consist, power is taken from or provided to BELs preferentially
while respecting battery state of charge limits.

Example hybrid consist, including a BEL in 2" position
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Metric Calculators: "
Greenhouse Gas LCA —

Flexible input format to define Greenhouse gas emission
LCA values by fuel type, region, and time of day.

Life cycle carbon intensities of selected fuels are being
determined, including:

— Ultra-low sulfur diesel
— Soybean Biodiesel
_ Hy d r 0 g e n Soybean biodiesel Ultra-low sulfur diesel Fossil-based hydrogen

— Electricity ediubg R oo rcin
All emissions are reported in units of carbon dioxide 160
equivalent (CO,,) per energy unit (e.g., MJ of fuel), 10 1
calculated using the global warming potentials of carbon 21
dioxide (CO2), methane (CH4), and nitrous oxide (N20) of
1, 25, and 298 g CO,, per g of greenhouse gas,
respectively, for a 100-year time horizon, per California
GREET (CA-GREET 3.0) model*.

(g CO2e per NMJ)
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. o . S E PP PP O PR PP PP P D PP PP PP S
*CA-GREET 3.0 model, California Air Resources Board. Effective Jan 4, 2019. SN E AT TR AT T ST
Available at https://ww2.arb.ca.gov/resources/documents/Icfs-life-cycle- Hour of the day
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Metric Calculators: Economics

Economics Model Overview

Flexible input format to define time-

varying regional costs and emissions Simulation Manager
factors s

Delays
*  Tonne-KM delivered Levelized Cost Of

¥4 Million Tonne-KM

Base case default values to reflect

current technology costs (LCOTKM)
onomic projections Economics Model
and forecasted changes S Gkt S
. - echnology price: discounted cash L SERESENENEIEE
Outputs include: e s
— Levelized Cost of Million Tonne-
Km Type and sizing of fleet
investments Legend
— Net Present Value *  Fuel converter | % IVeauIe
* Energy storage
— Year-by-year costs itemized by *  Supporting

infrastructure

Parameters

category (e.g., locomotives vs.
refueling infrastructure vs.

energy)
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Data Collected for Validation

~ 375-mile route between Barstow and Stockton,
California

Detail data for 1 BEL & 2 Wabtec Tier 4 ET44C4
diesel locomotives used for complete route

17 round trips, with a total of 6,375 miles
traveled. The total duration of the data recorded is
900 hours.

Geography well suited for validation

— mountains provide opportunities for high
power traction or regenerative braking for long
durations.

— Long flat plain between Bakersfield and
Stockton provide another extreme in

geography.
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. . Conventional locomotive validation
Calibration and
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Fuel Energy [J]
~

Conventional Diesel Electric Locomotive

o

166

—  Calibrated by adjusting idle fuel rate and drivetrain efficiency
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* Avoid reverse engineering BEL design Time-averaged error: 3.94%
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Example ALTRIOS Application

* Route within BNSF Scenic
Subdivision

— Subdivision spans from
Seattle, WA 10
Wenatchee, WA

— Contains Cascade
Tunnel

* Route Statistics:
— Distance: 185 km
— Max. Elevation: 860 m
— Trip Duration: ~4 hours

400 Skykomi n
Wenathchee

100 150 200

& 0 50
Distance Traveled [km]
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Example Application: Single Train with Hybrid Consist
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Example Application: Multiple Train Simulation Manager

e  Planned 88 trains from origin/destination demand and simulated energy use for Wenatchee-Seattle
*  The 88, 4-hour long train trips span 7 days, plus 14 days for warm start and cool-down
*  This simulation runs end-to-end in 23 seconds on a laptop ("wall clock" computer time)

Simulated route map :
Each marker is a hybrid consist train simulation, marker size indicates SOC, opacity shows time

Distance Traveled [km]
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Example Application: Multiple Train Simulation Manager

\
Map fles by Stamen Design under CC BY 3.0 Data by OpenStresthlap contributors under ODbL
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Example Application: Multi-Year, Multi-Train Roll-Out

Estimates Electrification Costs

Set of 20-year prescribed rollouts using 2.4 MWh BELs to meet
electrification targets (total fleet size approx. 120 locomotives)

— Initial proof of concept uses static, present-day cost
assumptions for Li-ion batteries (NREL ATB), diesel (EIA), and
electricity (EIA)

— Freight demands and locomotive pool sizes are assumed and
may not represent actual operations within that subdivision

— 20-year locomotive life-span assumed (5% annual turnover)
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Annual GHGs (1K tonnes)

Example Application: Multi-Year, Multi-Train Roll-Out
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Estimates Cumulative GHG Savings

A 70% 2.4 MWh BEL fleet reduces
annual GHGs by 12,000 tonnes
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Cumulatively, a 20-year target of 70% BELs
increases levelized costs 12% and reduces GHGs 22%
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ALTRIOS-Lite Web Application

Easy to use web-based application for 7,,1

. . .

running ALTRIOS simulations 2
Includes features:

. About  Rollout Simulation  Train Simulation Help |Q

. . . . . .
— Single train simulation A

g This application allows you to explore a rollout strategy for incorporating battery electric locomotives (BELs) into a fleet of existing diesel locomotives by

s er of years to complete the rollout and the targ ation percentage. Given a number of years and a target % of battery electric

n / B _t ra i n S i u I a t i O n C O p a ri S O n RIOS computes a rollout plan for replaci ives with BELs, including the present-day fleet's scheduled retirements

Simulate BEL fleet rollout

Developed to be modular and —
expandable
Meets Federal accessibility requirements

defined by Section 508 (29 U.S.C. 794d) Emm
to ensure disabled employees and
members of public access to infraction
comparable to others.

‘ (®Fixed Conditions
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« Complete Graphic User Interface ?9‘“'
(GUI) and release publicly

« Complete case study assumption
definitions and conduct trade-off
analysis of BELs.

 Publication of example analysis
study using ALTRIOS

- Open source by June 2023 ALTRIOS

For the latest ALTRIOS news please see our website:
https://www.nrel.gov/transportation/altrios.html
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https://www.nrel.gov/transportation/altrios.html

Please email me if you
would like to learn
more about ALTRIOS

Thank You

https://www.nrel.gov/transportation/altrios.html

www.nrel.gov

Jason A. Lustbader

Advanced Vehicles and Charging Infrastructure Group Manager
National Renewable Energy Laboratory
Jason.Lustbader@nrel.gov
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