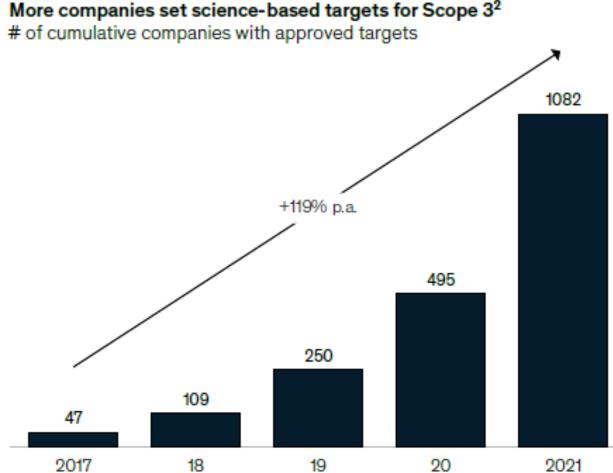


BNSF Railway Advanced Energy Innovation


MIKE SWANEY | DIRECTOR, ADVANCED ENERGY INNOVATION

Copyright 2022 BNSF Railway. All rights reserved. All trademarks, copyrights and materials not owned by BNSF are the property of the cited source.

Customer Demand for Lower Carbon Freight **Transportation Increasing**

96% of companies with approved • science-based targets have targets covering scope 3 emissions

Path to 30% Carbon Reduction

- Headwinds
 - Business mix
 - Growth

Opportunities

- Fuel efficiency
- Renewable fuels

Fuel Efficiency

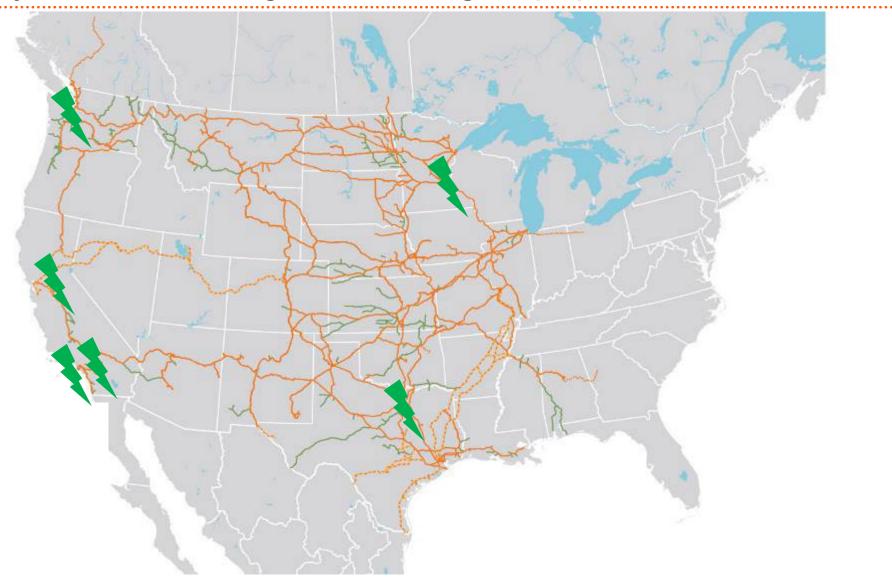
Initiatives:

- Replace Older Locomotives
- Operational Practices
 - Horsepower per ton
 - Speed limits
- Energy Management Software
 - Locomotive energy management
 - Idle reduction
- Aerodynamics
 - Locomotives, cars, train make-up

Renewable Diesel

- Advancing pilots to enable higher percentage blends
- Policy change/advocacy required for costcompetitive supply
 - State Low Carbon Fuel Standards
 - Multi-year process: legislation, rule-making, establish markets, establish supply chains
- Availability of cost-competitive renewable fuels

Advanced Energy Innovation


- Objective: Safe and Sustainable business value
- Process:
 - Research & Development
 - Demonstration / Pilot
 - Commercial/Operational Prove-out
- Technology
 - Hub Electrification
 - Locomotive Development

BNSF Battery-Electric Cargo Handling Equipment

7

.....

New Technology Exploration

- Vehicle Fleet Electrification
- Microgrid/Smart Energy Management

Advanced Energy Modeling

Locomotive Technology

- Battery-electric demonstrations
- Hydrogen fuel cell proof of concept
- Lithium-ion starter batteries

Locomotive Energy Needs

<u>Yard</u>

Operating model:

- Yard & local operations
 - Hump, trim & local work

Energy:

- <5 MWh
- 24 hr+ run time

Charging:

- ~2 MW (2-3 hrs full charge)
- Opportunity charge focus
- Stationary overhead charging at strategic locations

Regional

Operating model:

- Hybrid consist
- Short haul BEL only

Energy:

• 10-20 MWh, route & market dependent

Charging:

- ~3 MW speed (3-7 hrs full charge)
- End point / layover focus
- Stationary overhead

National / Long Haul

Operating model:

 Long distance BELs supported by Moving Charge or H2

Energy:

- 50-100 MWh
- Storage in battery or H2

Charging:

- 5+ MW speed (10-20 hrs full charge)
- Charge-on-the-move
- H2 or Battery Tender

Locomotive Commercial and Operational Prove-Out

Commercial Prove-Out:

- Industry Standard: 30 to 50 locomotive years per model
- Commercial Effectiveness Criteria: Safe, reliable, costcompetitive operations across diverse geographies, modes, and markets

Operational Prove-Out:

- Assess locomotive and train performance
- Demonstrate functional equivalence to diesel units
- Phased approach covering variety of use cases and criteria: power output, energy consumption, charging time, terminal logistics and throughput

Battery-Electric Challenges and Opportunities

Opportunities

- Zero Emissions
- System efficiency
 - Battery Electric vs. Diesel
 - Route-specific regenerative braking

Challenges

- Space Requirements
- Weight Restrictions
- Charge Time / Energy Demand

