

FRA Decarbonization Workshop Global Trek Towards Decarbonization

Ian Hodkinson, Alstom

16th May 2023

Rail in Europe: Context

- Total rail network length: ~ 237,000 km (~142,000 miles)
- Percentage of electrification: ~ 55%
- Freight: 400 B tonne-km (274 B Ton-miles) per year
 (2021) vs ~ 1500 B ton-miles in US
- Passenger: 261 B passenger-km (161 B passenger-miles) (2021) vs 6.4 B passenger-miles (USA 2019)

Multiple Standards:

- Different gauges (Iberian, standard)
- Different signalling systems (historically nation now converging on ERTMS)
- Different electrification standards

Single European Railway Directive (2012)

- National railway companies split into: Infrastructure, passenger rail, and freight rail
- Provides framework for trans-border railway services

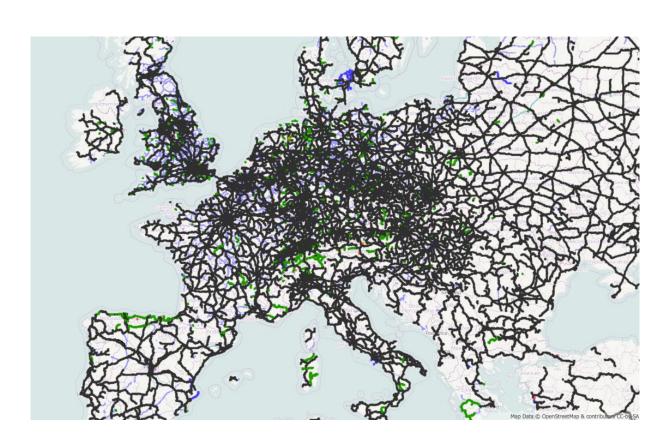


Figure: European Rail Network (Wikipedia)

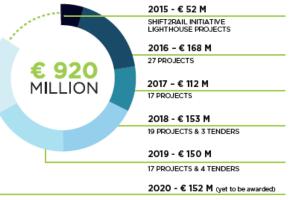
- EU Rail is the new European partnership on rail research and innovation established under the Horizon Europe programme and the successor of the Shift2Rail Joint Undertaking
- The vision is to deliver, via an integrated system approach, a high capacity, flexible, multi-modal and reliable integrated European railway network by eliminating barriers to interoperability and providing solutions for full integration
- The partnership aims to accelerate research and development in innovative technologies and operational solutions
- This will support the fulfilment of European Union policies and objectives relevant for the railway sector and the competitiveness of the rail sector and the European rail supply industry
- EU Rail will accelerate the penetration of integrated, interoperable and standardised technological innovations necessary to support the Single European Railway Area (SERA).

Shift2Rail - Innovation Programmes

Innovation Programmes					
IP1	Cost-efficient and Reliable Trains, including high-capacity trains and high speed trains				
IP2	Advanced Traffic Management and Control System				
IP3	Cost efficient, Sustainable and Reliable High Capacity Infrastructure				
IP4	IT Solutions for Attractive Railway Services				
IP5	Technology for Sustainable and Attractive European Rail Freight				
CCA	Cross Cutting Activities				

28 MEMBERS

412 PARTICIPANTS


29 COUNTRIES

109 SMEs

113
RESEARCH CENTRES
AND UNIVERSITIES

19 TOPICS, 3 TENDERS & 1 PRIZE

Shift2Rail – Decarbonisation Outputs

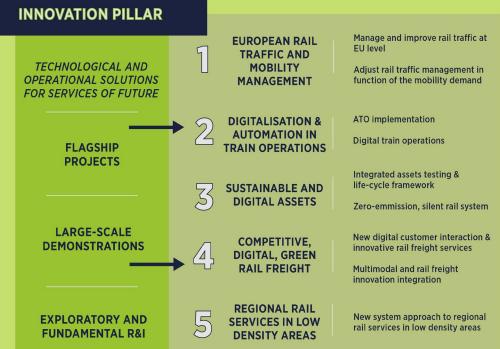
- Development of the new generation of traction drives using silicon carbide technology to TRL 7
- A carbon free mobility road map from 2022 to 2030 detailing the work required to develop a
 credible alternative for diesel traction, meeting technical performance requirements at
 acceptable costs.
- Basic research on battery and hydrogen powered rolling stock, including infrastructure and operational aspects for retrofitting existing regional trains
- Last mile propulsion and next generation energy efficient propulsion systems for freight vehicles
- Energy studied standardised methodology for estimation of energy consumption by simulation and measurement enabling the standardised specification of energy efficient railway systems
- Hydrogen, "Study on the use of fuel cells and hydrogen in the railway environment" commissioned by Shift2Rail JU and the Fuel-Cell Hydrogen JU was produced in 2019, delivering a roadmap for the R&I activities.

DELIVER AN
INTEGRATED
EUROPEAN RAILWAY
NETWORK BY DESIGN

DEVELOP A UNIFIED
OPERATIONAL
CONCEPT AND A
FUNCTIONAL SYSTEM
ARCHITECTURE FOR
INTEGRATED EUROPEAN
RAIL TRAFFIC AND
CCS/AUTOMATION

DELIVER A
SUSTAINABLE AND
RESILIENT RAIL SYSTEM

DELIVER A
COMPETITIVE, GREEN
RAIL FREIGHT FULLY
INTEGRATED INTO THE
LOGISTICS VALUE CHAIN



DEVELOP A STRONG AND GLOBALLY COMPETITIVE EUROPEAN RAIL INDUSTRY

EUROPE'S RAIL:

ONE INTEGRATED R&I PROGRAMME

INNOVATION PILLAR SYSTEM PILLAR TECHNOLOGICAL AND FUNCTIONAL **OPERATIONAL SOLUTIONS OPERATIONAL** SYSTEM FOR SERVICES OF FUTURE CONCEPTS ARCHITECTURE **FLAGSHIP PROJECTS** A SINGLE COORDINATING **BODY FOR THE WHOLE SECTOR EVOLUTION** LARGE-SCALE **DEMONSTRATIONS** OPEN INTERFACES TO SYSTEM OTHER REQUIREMENT **TRANSPORT SPECIFICATIONS EXPLORATORY AND MODES AND FUNDAMENTAL R&I** BUSINESSES

DEPLOYMENT GROUP

FUTURE SOLUTIONS DEPLOYED IN A COORDINATED AND CONSISTENT WAY AT EUROPEAN LEVEL, TAKING INTO ACCOUNT ALTERNATIVE ROLLOUT SCENARIOS, BEHAVIOURAL AND ORGANISATIONAL CHANGES, SYNERGIES WITH OTHER MODES OF TRANSPORT

Europe's Rail – Flagship Areas

Flagship Area		Project	Objectives
FA1	Network management planning and control & Mobility Management in a multimodal environment	FP1-MOTIONAL	Improved planning and operational management of services The future railway system will be interoperable, resilient, able to adapt capacity and able to integrate all involved services. Rail traffic is managed as a Network with management planning and control overview at EU level, with new processes and automation for decision support. Rail management looks at the multimodal environment striving to real-time demand-driven operations, including demand from other transport modes.
FA2	Digital & Automated up to Autonomous Train Operations	FP2-R2DATO	Digital "Automated & Autonomous" Train Operations building upon the next gen Automatic Train Control based on ERTMS + enhancements on TCMS for integration at the on-board level
FA3	Intelligent & Integrated asset management	FP3-IAM4RAIL	Aims to provide innovative technical requirements, methods, solutions, and services – including technical requirements and standards for future developments – based on the latest cutting-edge technologies to minimise asset lifecycle costs and extend service life while meeting safety requirements and improving the reliability, availability, and capacity of the railroad system. Both infrastructure and rolling stock are addressed.
FA4	A sustainable and green rail system	FP4-Rail4Earth	Improve the existing sustainability performance of railways, to build a more attractive and resilient transport mode and to contribute towards the objectives of a climate neutral Europe for 2050. Activities include rolling stock, infrastructure, stations, and all sub-systems (traction, bogies, brakes, energy storage systems, HVAC).
FA5	Sustainable Competitive Digital Green Rail Freight Services	FP5-TRANS4SM-R	Digitalization and automation of operational functions (e.g. DAC) and processes as well as increasing the efficiency of the immaterial (information/data) layer of transport in logistic
FA6	Regional rail services / Innovative rail services to revitalise capillary lines	FP6-FutuRe	Decreasing cost while offering a high quality of service and operational safety + increase customer satisfaction and attractiveness

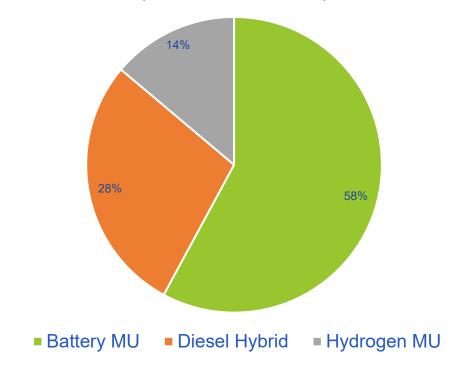
Europe's Rail – Decarbonisation Topics

- To complete full diesel suppression further zero emission trains and refuel /recharge infrastructures will be developed with the suitable technical, environmental and economical performance
- Harmonisation and standardisation, including **simplification of certification**, to simplify solutions allowing interoperable trains and lower costs for a quicker deployment
- Batteries (BEMU long range autonomy) and Hydrogen hybrid trains with low life cycle costs will be developed (peak power shaving, load shedding capacity).
- Alternative fuelling solutions for regional railways such as hydrogen, e-fuels, battery fuelling
- Sub-urban catenary trains with **on board Energy Storage System** will be developed for mass transit systems with a single power supply. Onboard systems will avoid the use of mechanical braking (energy losses, particulate matter emissions, maintenance costs). It is also a cost-efficient solution when space is limited to increase capacity)

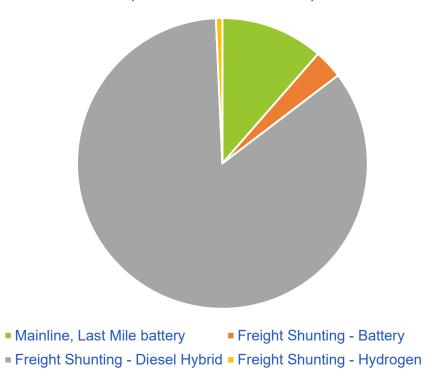
Europe's Rail: FA4 (Multi Annual Work Plan)

Shift2Rail

- Development of the new generation of traction drives using silicon carbide technology to TRL 7
- A carbon free mobility road map from 2022 to 2030 detailing the work required to develop a credible alternative for diesel traction, meeting technical performance requirements at acceptable costs.
- Basic research on battery and hydrogen powered rolling stock, including infrastructure and operational aspects for retrofitting existing regional trains
- Last mile propulsion and next generation energy efficient propulsion systems for freight vehicles
- Energy studied standardised methodology for estimation of energy consumption by simulation and measurement enabling the standardised specification of energy efficient railway systems
- Hydrogen, "Study on the use of fuel cells and hydrogen in the railway environment" commissioned by Shift2Rail JU and the Fuel-Cell Hydrogen JU was produced in 2019, delivering a roadmap for the R&I activities.


Europe's Rail

- To complete full diesel suppression further zero emission trains and refuel /recharge infrastructures will be developed with the suitable technical, environmental and economical performance
- Harmonisation and standardisation, including simplification of certification, to simplify solutions allowing interoperable trains and lower costs for a quicker deployment
- Batteries (BEMU long range autonomy) and Hydrogen hybrid trains with low life cycle costs will be developed (peak power shaving, load shedding capacity).
- Alternative fuelling solutions for regional railways such as hydrogen, e-fuels, battery fuelling
- Sub-urban catenary trains with on board Energy Storage System
 will be developed for mass transit systems with a single power
 supply. Onboard systems will avoid the use of mechanical braking
 (energy losses, particulate matter emissions, maintenance costs). It
 is also a cost-efficient solution when space is limited to increase
 capacity)



Alternative traction – current state of play in EU

Alternative Traction - Freight vehicles in EU (in service/on order)

But only 6% of EU Diesel Passenger Fleet

But only 2% of EU Freight Diesel Fleet

Source: PINTA 3 report

Alternative Traction – Current Performance

Train characteristics	Battery train	Hybrid Hydrogen/Battery train	Hybrid Diesel/Battery train
Type of operation	Mainly Regional	Regional	Mainly Regional
	Sub-urban		Freight
	160 km/h (Regional)	160 km/h (Regional)	160 km/h (Regional)
Maximum speed			100 km/h (Freight)
	Traction batteries	Mainly H2 + Traction batteries	Electric
Type of Energy supply	Electric (panto / 3rd rail)	Electric (panto)	Diesel + Traction batteries
3,100 00 000 000 000 000			Batteries only*
			("Silent mode")
Range in Catenary Free Operation	80 km	800 km	> 1000 km
	(from 40 – 150 km)	(from 400 to > 1000 km)	
Traction Battery capacity per train	. 550 kWh	270 kWh	130 kWh
Battery technology	LTO or NMC	LTO or NMC	LTO or NMC
Fuel cell power	N.A	325 kW	N.A
Hydrogen storage	N.A	350 Bar	N.A
Combustion engine	N.A	N.A	Step IV or V

Q: Is performance enough to displace diesel?

Source: PINTA 3 report

Carbon Free Mobility

- Approx 14,000 fleet of locomotives and 8,000 diesel multiple units
- Alternative drives
 - Passenger: battery, diesel hybrid and hydrogen (about 6%),
 - Freight: last mile battery, shunting battery, freight shunting diesel hybrid and freight shunting hydrogen (about 2%)

Infrastructure

- Standardised cost efficient solutions for interface between vehicle and infrastructure
- Energy supply interfaces between vehicle and infrastructure (overhead, charging station., external supply stations)

Operation

 Requires extension of BEMU range, fast charging for long range, standardisation of interfaces (catenary voltage of overhead lines, plug and power for external energy supply, hydrogen refuelling, operation and battery interfaces)

Certification/homologation

- Germany first hybrid hydrogen battery (2018) and first battery train 2022). France first hybrid diesel / battery train ongoing for certification. Other countries tests in service

Source: PINTA 3 report

Alstom: Carbon Free Mobility in the EU

Alstom iLint Hydrogen train

Alstom BEMU Battery Train

Alstom: EU Alternative Traction in North America

Alstom iLint will be arriving in Quebec, Canada this summer (June – September)!

Questions