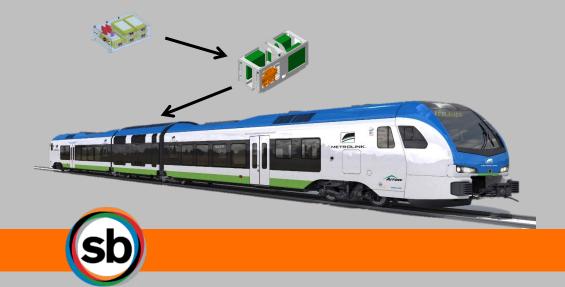
Diesel Multiple Unit

Arrovy

Zero-Emission Multiple Unit


ZEMU

Goals:

- Decarbonization by implementing a zero-emission passenger rail vehicle on existing infrastructure
- Select a technology that could be implemented on corridors outside of 9-mile Arrow service corridor
- Deliberate and thoughtful hazard analysis process with key partners

Funding Agency

California State Transportation Agency

Regulatory Agency

Federal Railroad Administration

Vehicle Manufacturer

Stadler Rai

Railroad of Record

Southern California Regional Rail Authority

Regulatory Agency

South Coast Air Quality
Management District

Managing Consultant
Mott MacDonald Team

Selection of Preferred Technology

Cost

Capital, Operations & Maintenance

Infrastructure

Right-of-Way, Charging & Fueling, Utilities

Environmental Considerations

Land use, GHGs, Aesthetics, Noise, Socio-Economic

Operations

Range, Scalability, Reliability, Operations, Life Span

Regulatory Compliance

FRA, NFPA, CPUC

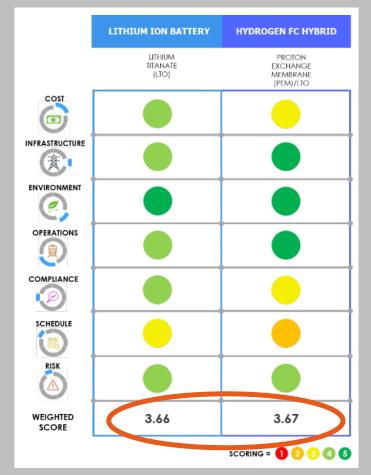
Implementation Schedule

Timeline for Planning, Design, Construction phases

Risk Analysis

Identify and document risks for further analysis

Evaluation Criteria


High Level Pre-Screening

Category	Baseline – Arrow DMU	Wayside Power Supply		On-Board Energy Storage System					Hybrid System			
Rail Technology	Diesel	Overhead Contact System (OCS)	Ground Level Power Supply - Third Rail	Battery	Supercapacitor	Hydrogen Fuel Cell	Biofuel	Natural Gas	Hydrogen Fuel Cell + Battery	Diesel + Battery	Biofuel + Battery	Natural Gas + Battery
Relative Capital Costs	Good	Poor	Poor	Moderate	Moderate	Moderate/ Poor	Good	Good/ Moderate	Moderate/ Poor	Good	Good/ Moderate	Moderate
Relation Life Cycle Cost	Moderate/ Poor	Good/ Moderate	Good/ Moderate	Moderate	Good/ Moderate	Moderate	Moderate/ Poor	Good/ Moderate	Moderate	Moderate	Moderate	Moderate
GHG Emissions	Poor	Good	Good	Good	Good	Good	Moderate/ Poor	Moderate	Good	Poor	Moderate	Good/ Moderate
Aesthetics	Good	Poor	Moderate	Good	Good	Good	Good	Good	Good	Good	Good	Good
Range	Good	Good	Good	Moderate	Poor	Good	Good	Good	Good	Good	Good	Good
Scalability	Good	Poor	Poor	Moderate	Moderate	Good	Good	Good	Good	Good	Good	Good
Life Span	Good	Good	Good	Poor	Moderate	Moderate	Good	Good	Moderate	Moderate	Moderate	Moderate
Regulatory Compliance	Good	Moderate	Poor	Moderate	Moderate	Moderate	Good	Moderate	Moderate	Moderate/ Good	Moderate/ Good	Moderate
Result	Baseline	Incompatible	Incompatible	Compatible	Compatible	Compatible	Incompatible	Incompatible	Compatible	Incompatible	Incompatible	Incompatible

Selection of Preferred Technology

- Early on assumed battery solution would be the easy pick
- Battery and hydrogen hybrid scored almost identical based on our goals and objectives
- Looked to SBCTA Board to determine best course
- Direction from Board was to focus on our objective to select a technology that could be implemented on corridors outside of 9-mile Arrow corridor
- We then decided to select Hydrogen Hybrid due to easier expandability and range

Project Schedule:

Supplier Qualification/ Research & Conceptual Acceptance Project Kick-off Contract Final Design Acceptance Operational Development Design of Vehicle Negotiation **Testing**

APRIL 2018

SBCTA awarded a \$30 million grant from the State of California from the California Transit and Intercity Rail Capital Program (TIRCP) to develop a zero-emission multiple unit (ZEMU).

NOVEMBER 2019

SBCTA signs contract with Stadler US to begin manufacturing hydrogen-powered ZEMU train

2022

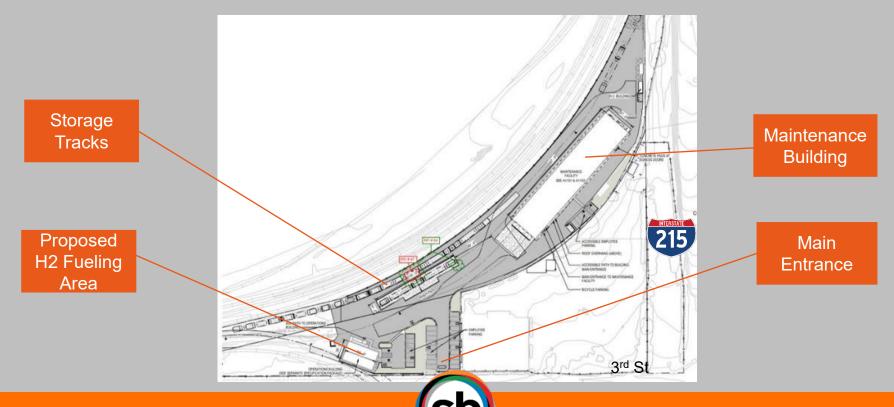
Begin operating Arrow service with DMUs

LATE 2023

Begin testing zero-emission train along rail line

LATE 2024

Integrate zero-emission train with Arrow's rail fleet and begin operating zero-emission passenger train



Arrow Maintenance Facility (AMF)

Maintenance and Fueling Facilities

Maintenance and Fueling Facilities

Proposed H2 Fueling Area

> Main Entrance

Maintenance Building

Maintenance Facility-Exterior

Maintenance Facility -Interior

