

Running the World's First Commercial Hydrogen Train Fleet Challenges & Lessons Learned

Christoph Grimm, CEO evb – Eisenbahnen und Verkehrsbetriebe Elbe-Weser GmbH, Germany

Rail: On Track for Decarbonization May 16-17, 2023 | Denver, CO

On August 24, 2022, a German regional railroad wrote H₂istory

World's first HEMU fleet

in regular scheduled service

Mission:

- ensure reliable
 day-to-day operation
- establish processes & standards
- gather knowledge for future development & next generation of HEMUs

Welcome to Bremervörde!

Nearby and far ahead: introducing evb

- Serving the entire production chain for organizing + operating public transportation with 5 units: rail | bus | freight / logistics | infrastructure | maintenance & engineering
- Agile size: 660 employees in evb group
- Annual turnover: \$130 million USD
- State-owned by Lower Saxony, public entity
- evb is a tool for regional economic development
- Climate-friendly mobility provider in predominantly rural region
- Rooted in the region and close to the customer
- Competing with other railroads and service providers / freight companies
- Highly innovative and perfect for pioneering new technology

A lifeline to the region: Connecting Germany's rural north

- Central line of "Elbe-Weser Triangle" (marked orange)
- Connection to metropoles Hamburg (pop. 1.8 Mio) and Bremen (pop. 600 K), vital for daily commuting
- 79 miles long,
 2 hours 50 minutes travel time
- Hourly service, 7 days a week
- Non-electrified, single track
- 1.5 Mio annual passengers
- Established line, previously operated with DMUs

Why hydrogen?

- Climate protection
- Noise reduction
- Need to phase out Diesel (price, CO₂ charges, shrinking public acceptance)
- Non-electrified track (electrification commercially not viable)
- Keep DMU flexibility with less environmental impact: wide range few fueling stops quick refueling
- Enables green H₂ production on site via local electrolysis boosts local economic cycles ensures price stability 100% fossil free

Alstom Coradia iLint

- World's first hydrogen-powered passenger train
- Based on DMU platform LINT
- 2 hydrogen tanks of 130 kg / 287 lbs each (pressure approx. 350 bar / 5076 PSI, refueling times approx. 20 to 60 min)
- 2 fuel cells with 210 kW power each
- Additional battery for energy management: Recuperation of braking energy Boost acceleration Supply of on-board equipment and auxiliaries
- Top speed: 87 mph
- Up to 157 seats per unit
- World record range (on September 15, 2022): 730 miles with one H₂ tank filling (exceeds standard range)

Fueling station

CON COLOR

- World's first H₂ fueling station for passenger trains
- Location: close to evb workshop in Bremervörde
- 574 lbs H₂ capacity per HEMU
- Station volume: up to 2 US t H₂ per day (average consumption for 14 iLint: 1.8 US t)
- H₂ = byproduct of nearby chemical plant
- Coming soon: production of green hydrogen on site

Project partners

Landesnahverkehrsgesellschaft Niedersachsen (LNVG):

- Agency
- Plans, organizes and finances regional passenger train services in Lower Saxony
- Acquires rolling stock and provides rolling stock pool

- Train operator
- Performs maintenance (subcontracted by Alstom)
- Provides workshops, track infrastructure and fueling station site

- Builds trains
- Responsible for **maintenance** over life span
- Consortium partner of Linde for H₂ fueling station

- Builds and maintains H₂ fueling station
- Provides hydrogen

Selected contracts

Project challenges

 Availability trains, components: about 20% during first few months

Processes & standards best practices not established – or non existing

Range

limited by AC, auxiliaries and temperature (total cons. about 0.89-1.06 lbs H₂ per mile)

Resources

extra management capacity, workforce / staff

 Budget unexpected additional cost

Learning by doing – and breaking new ground

- All-new risk assessments and safety standards possible blueprint for future projects
- **Determining range** needs real-life experience influence of weather, timetable, passenger load etc.
- All-new refueling process no shutdown of fuel cells required cooling beneficial for speed
- Maintenance of roof-based H₂ components construction of dedicated workshops not necessarily required (depends on circumstances)
- H₂ detection in workshop far more marginal problem than expected, as yet no false alarms
- Training staff and stakeholders including external partners, e.g. training 100 firefighters in handling hydrogen in case of emergencies

Lessons learned: It's worth it – but remember ...

- High level of dedicated resources needed for success
- Ensure fallback solution to avoid service interruptions: backup fleet or possibility to push back launch
- Expect additional cost & delays and accept preliminary data: It's still early days, no full data set
- Reduce complexity where possible (e.g. contractual scheme)
- Be aware of range restrictions due to standards (min. tank pressure) and energy consumption of auxiliaries
- Establish processes for overall evaluation and knowledge assessment early on
- Think big and leverage synergies (e.g. trucking companies) using a holistic approach

Key message: It's all about the concept

 Key for major carbon reduction:

winning new customers for public transport

 Decisive factor: increase overall attractiveness of public transport, independent of propulsion technology

Thank You!

evb | Eisenbahnen und Verkehrsbetriebe Elbe-Weser GmbH Bahnhofstr. 67 D-27404 Zeven

info@evb-elbe-weser.de evb-wasserstoffzug.de

Rearby and far ahead

