

Exploring Decarbonization Options using A-STEP

Dr. George List, Dr. Andreas Hoffrichter, Lynn Harris 2023 FRA Rail: On Track Decarbonization Workshop May 17, 2023

Lead Investigators

Principal Investigator (PI) Task 8 Lead George F. List, Ph.D., PE

Project Manager (PM) Task 4 & 5 Lead Jeremiah Johnson, Ph.D.

Task 1 Lead Andreas Hoffrichter, Ph.D.

Task 2 Lead Hesham Rakha, Ph.D., P.Eng.

Task 6 Lead Eleni Bardaka, Ph.D.

Task 8 Ishtiak Ahmed, Ph.D.

Task 7 Lead Lynn Harris

Task 3 Lead Yue Cao, Ph.D.

Objective, Scope, Deliverables

- Objective: identify ways in which the rail freight industry in the US could be shifted to use of alternate fuels, aiding with decarbonization
- *Scope*: rail freight industry, present to 2050, any reasonable alternate energy sources: hydrogen, batteries, biofuels, electrification
- Deliverables: suite of tools that can be used for purposes of analysis and a small number of illustrative case studies

Decarbonization Toolset

Process Steps

3. Such as train miles, locomotive miles, gross ton-miles, and sensitivities (probabilistic assessments)

4. Investment and operating costs

Energy System Decarbonization Pathways

Policies that tighten carbon constraints result in continued growth in renewables so that in a net zero CO₂ scenario, renewables account for 50% of energy supply

- No Policy: increase in natural gas, solar and wind; persistence of coal; decline in petroleum
- COP26: more renewables squeeze out coal, natural gas increases
- Net Zero: tremendous increases in wind, solar, and biomass; uptick in nuclear, some natural gas and petroleum remain (to be offset with BECCS or DAC)
- Notes: COP26 26th United Nations Climate Change conference BECCS – Bio-Energy with Carbon Capture and Storage DAC – Direct Air Capture

arpa.e

Tool – Single Train Simulator

arame	eter	Diesel	BioDiesel	DieHvb	BioHvb	HvdHvb	BatLoco	BatTend	HvdTend	
Unit ID		1		2 3	4	5		5	7 8	
Wei	ght (tons)	214	21	1 214	214	214	21	4 100	100	
#Axles		6		5 6	6	6		5 4	1 4	
Length (ft)		74.5	74.	5 74.5	74.5	74.5	74.	5 65	65	
wt/axle (tons)		53.5	53.	5 53.5	53.5	53.5	53.	5 70	0 70	
teLir	n-μ (kips)	107	10	7 107	107	107	10	7 50	50	
prop	Max (kw)	2420	242	3300	3300	3300	330) (0 0	
BatMa	x-DC (kw)	0		2000	2000	2000	200	1000	1000	
CatMa	x-DC (kw)	0		3300	3300	3300	330) (0 0	
AuxMax	*-DC (kw)	2420	242	1000	1000	1000	100) (0 0	
rent	May (km)	0		2500	C	1000	250	100/	1000	
ay					U	a15				
e	Par	ameter	•	DblStk	CovHo	/Hop OpnHop		oxCar	TnkCar	Gond
	Unit ID Gross (tons) Tare (tons) #axles wt/axle (tons)		nit ID	11	1	.2	13	14	15	16
			110.0	143	.0 14	43.0	143.0	143.0	143.0	
			(tons)	22.5	33	.0 2	22.0	40.5	38.7	34.2
			#axles	4		4	4	4	4	4
			(tons)	27.5	35.7	75 35	5.75	35.75	35.75	35.75
	Length (60-90')			76.8	64	.6 5	53.1	67.9	55.6	57.8
		Empty (%)		40%	30	%	30%	20%	30%	20%
		Emp	LY (70)	10/0						
		Emp	LY (70)	1070						

	Dist	SpdLim	Grade	Curve	Catenary	Elev	dDist	
	(mi)	(mph)	(%)	(DoC)	(0,1)	ft	(m)	
	0	60	0.000	0.000	0	0	0	
	0.30903	60	0.299	0.000	0	4.881888	0.3090302	
	0.619703	60	0.873	0.247	0	19.20991	0.3106732	
	0.930192	60	1.070	0.625	0	36.7486	0.3104885	
	1.240877	60	1.596	0.260	0	62.93776	0.3106855	
	1.550029	60	1.094	0.889	0	80.79986	0.309152	
	1.860712	60	1.333	0.563	0	102.6609	0.3	
	2.171398	60	0.677	0.004	0	113.7667	0.3: Sim	
	2.482083	60	0.490	0.000	0	121.7982	0.3:	
	2.792769	60	-0.862	0.000	0	107.6644	0.3106855	
	3.103454	60	-0.024	0.000	0	107.2708	0.3106855	
	3.41414	60	0.562	0.000	0	116.4834	0.3106855	
	3.724825	60	-1.687	0.000	0	88.80632	0.3106855	
	4.035511	60	-1.363	0.312	0	66.4538	0.310685	
	4.346064	60	-1.365	0.572	0	44.0692	0.3105533	
	4.65635	60	-1.023	0.857	0	27.30215	0.310286	
	4.966289	60	-1.036	0.879	0	10.35451	0.3099392	
	5.276922	60	-0.675	0.438	0	-0.71826	0.3106327	
	5.587005	60	-0.089	0.207	0	-2.17005	0.3100828	
	F 007004	~~	0.464	0.007	^	0 500464	0.310286	
							0.3093496	
							0.310685	
							0.310685	
							0.310685	
							0.3105078	
-							0.3106812	
							0.310125	
							85	
							432	
							78	
)40	
	m		MM					

Energy Consumption Analysis – By Type and Region

- Regional variations due to terrain and motive power requirements
- Strategic decisions about what options, where, and why
- Overall efficiency depends on the energy delivery chain well to tank to wheel
- Carbon footprint depends on energy sourcing for battery, hydrogen natural gas, nuclear, hydro, solar, wind.....

Region	Diesel	Diesel Hybrid	(Battery 60%)	BioDiesel BiodieselH		id (Battery 60%)	Battery Electric	Hydrogen FC (Battery 60%)		Catenary Electric
	(gal/week)	Battery (kWh/week)	Tank (gal/week)	(gal/week)	Battery (kWh/week)	Tank (gal/week)	(kWh/week)	Battery (kWh/week)	Tank (kg/week)	(kWh/week)
NW	7,930,078	9,924,742	7,220,968	8,611,401	9,946,230	7,764,871	117,923,173	234,759,865	184,382	120,633,369
CA	2,029,270	2,710,110	1,884,581	2,192,049	2,721,300	2,026,531	30,585,082	64,175,827	50,516	29,705,729
SW	5,601,591	7,703,222	5,144,084	6,028,556	7,727,304	5,531,354	83,979,086	171,513,011	134,461	83,349,350
N_CEN	12,764,181	16,631,813	11,914,596	13,742,060	16,726,638	12,809,943	204,060,234	407,188,780	320,382	185,888,783
CEN	17,246,869	24,035,399	15,683,422	18,565,441	24,100,709	16,862,893	268,589,853	511,902,953	399,729	260,152,227
ТХ	5,134,985	6,636,186	4,711,680	5,528,173	6,660,045	5,065,930	80,506,774	155,246,907	121,748	77,026,326
NE	786,311	1,283,321	705,415	845,769	1,284,556	758,570	11,978,818	23,043,719	17,868	11,810,462
MID_AT	5,579,509	8,933,146	5,137,103	6,001,927	8,961,875	5,524,187	77,747,568	177,888,640	139,090	80,377,891
SE	6,217,883	9,839,063	5,588,865	6,687,993	9,850,056	6,009,914	93,747,042	182,310,923	141,531	93,854,450
Total/week	63,290,679	87,697,003	57,990,713	68,203,369	87,978,712	62,354,194	969,117,629	1,928,030,626	1,509,707	942,798,586
Total/year	3,291,115,322	4,560,244,146	3,015,517,084	3,546,575,187	4,574,893,006	3,242,418,071	50,394,116,732	100,257,592,538	78,504,775	49,025,526,447
Literature	3,000,000,000	112,997,313,433	3,000,000,000	3,225,806,452	105,087,501,493	3,225,806,452	47,978,682,098	3,791,249,107,536	686,188,632	47,978,682,098
Ratio to Diesel Energy	109.70%	4.04%	100.52%	109.94%	4.35%	100.51%	105.03%	2.64%	11.44%	102.18%
Energy (kWh)	123,962,455,472	4,560,244,146	113,581,830,363	124,233,634,169	4,574,893,006	113,579,258,649	50,394,116,732	100,257,592,538	2,616,564,150	49,025,526,447
Ratio to Diesel Energy	100.0%	95.	.3%	100.2%	95	.3%	40.7%	83.0	%	39.5%
Cost (billion \$)	\$ 15.07	\$ 0.57	\$ 13.81	\$ 18.51	\$ 0.57	\$ 16.93	\$ 6.30	\$ 12.53	\$ 0.11	\$ 6.13
Saving (billion \$)	\$ -	\$	0.69	\$ (3.44)	\$	(2.42)	\$ 8.77	\$	2.43	\$ 8.95
Unit Cost	\$ 4.58	\$ 0.13	\$ 4.58	\$ 5.22	\$ 0.13	\$ 5.22	\$ 0.13	\$ 0.13	\$ 1.40	\$ 0.13
Source	https://afdc.energy.go	https://www.electricc	https://afdc.energy.gov	https://afdc.energy.g	https://www.electri	https://afdc.energy.gc	https://www.elect	https://heshydrogen.c	om/hydrogen-fuel-	https://www.electr

Facility Sizing and Load Assessment

- The tender and locomotive arrival pattern is critically important
- Treating the problem using simulation is also critically important
- There are issues about when to do the recharging, influenced by peak load pricing by the utilities
- Making sure there is an adequate "ready reserve" of tenders is important
- Such assessments highlight the importance of the "upon arrival" charge policies for locomotives and tenders
- It's not just about facility sizing and cost estimation.

Tool – Recharging Facility Designer

Tool – Recharging Facility Designer

About Train Schedule Demand Profile Battery-electric Hydrogen

A-STEP: Achieving Sustainable Train Energy Pathways

Module 8: Infrastructure Requirements

Demand Profile

Chargers

20

Average Station Demand, MW

6.5

Download charger schedules as CSV

Download 15-minute demand profile as CSV

Tender Arrival/Departure Schedule Generator ()

Results

Total Hydrogen Dispensed, kg
4566380

Total Hydrogen Cost, \$

9132760

Total Electricity Consumption, MWh

6.39

Total Electricity Cost, \$

959

11

arpa.e

parture:

arpa·@

Freight Demand Scenario Illustrations

Macroeconomic factors used to develop the economic scenarios ^[2]:

- Growth of Gross Domestic Product
- % Change in Industrial
 Production
- % Change in Non-residential Fixed Investment
- Increase in Light Vehicle Sales
 - % Change in Productivity
- Housing Starts

Freight flow by rail for future years. [Source: FAF 5.2 estimates ^[1]]

[1] BTS, 2022. Freight Analysis Framework [WWW Document]. Bur. Transp. Stat. URL https://www.bts.gov/faf (accessed 4.21.22).
[2] Fullenbaum, R. and Grillo, C., 2016. Freight analysis framework inter-regional commodity flow forecast study: final forecast results report (No. FHWA-HOP-16-043).

Rail Freight Traffic Assignment

Energy Intensity and Sourcing Breakdown

Infrastructure Investment Assessment (3)

Sizing/optimization tool output: example trade-off between minimum battery energy storage capacity and solar PV capacity, shown in Pareto front

arpa·e

Nationwide Energy Demand / Supply Assessment

- Over 3000 distinct demands; 80,000 processes
 - Techno-economic data derived from NREL, EPA, EIA, etc.
 - Fuel prices are exogenous, based on AEO scenarios (Reference and Low Oil Price)
- We use modeling to generate alternatives (MGA) to explore alternate feasible solutions with near-minimum system costs

Recap

Decarbonization Scenarios

- 1. Business as Usual
- 2. 50% Reduction by 2050
- 3. Net Zero by 2050

Energy System Sensitivities

- 1. High/low renewable cost
- 2. Subsidized hydrogen
- 3. High/low oil and gas prices

🖳 Rail Freight Futures

Six rail freight futures representing fundamental shifts in how we move goods and materials

- I. Reduced fossil fuels
- 2. Shifting population to the Sunbelt
- 3. Decreased agricultural production
- 4. Agricultural shifting
- 5. Increased maritime access to the East Coast

🔆 Impact and Option Assessments

Spatially and temporally resolved costs

- Energy intensity assessment through train simulation
- Capital investment needs
- Nationwide energy demand and supply
- Fuel and electricity unit costs
- Operations and maintenance costs

Project Outreach

- A publicly available, free, and open-source software tool (A-STEP)
- Provide techno-economical analyses for decarbonizing freight rail
- Provide insights for decision-making guiding freight rail decarbonization (e.g., whether there need to be incentives to speed adoption of new technologies)
- Help potential adopters identify paths, identify risk factors, and monitor the most salient aspects of technology deployment

Thank You / Questions

Acknowledgement: Support provided by the LOCOMOTIVES initiative, ARPA-E

Backup

arpa·@

Freight Demand Scenarios

Estimates of future freight demand for three economic scenarios as developed by the Freight Analysis Framework (FAF) team ^[1]:

- 1. Baseline economic growth
- 2. Low economic growth
- 3. High economic growth
- Five rail freight demand sub-scenarios:
 - a. Reduced fossil fuels
 - b. Population shift to the sunbelt
 - c. Decreased agricultural production
 - d. Shift in agricultural production
 - e. Increased maritime access to East Coast

Sub-scenarios a-e are used in combination with the economic scenarios 1-3.

Milestone M1.5: Functioning single train model and documentation report

Efficiency Maps to Represent Propulsion System: Tank to DC Bus DC Bus to Wheel

arpa.e

Milestone M1.5: Functioning single train model and documentation report

Additional Propulsion Systems:

AC Electric Locomotive

Hydrogen Fuel Cell Hybrid Powertrain

DC Electric Locomotive

arpa.e

Tasks and Lead Participants

arpa.e **Project Visualization** NC STATE UNIVERSITY DB Oregon State University **A-STEP** Achieving Sustainable Train Energy Pathways **Project Scope - Years** 2020 2025 2030 2035 2040 2045 2050 **Project Scope – Shift in Energy Sources** Shift to <u>040</u>040 Alternate $O \geq 0$ Energy Decarbonization Freight Source Toolset Major Focus on Hydrogen

Energy Sourcing - Details

Efficiency Maps to Represent Propulsion System: Tank to DC Bus DC Bus to Wheel

Diesel-Electric Powertrain (With AC traction motors)

Energy System Decarbonization Pathways (2)

Industry and transport sectors drive growth in electricity and hydrogen demand

arpa.e

Single Train Simulator

Example outputs

