The Impact of Air Leakage on Locomotive Efficiency and Decarbonization

Southwest Research Institute®

Chris Stoos

May 2023

POWERTRAIN ENGINEERING

OUTUNA/ECT DECEAD CUUNICTITUTE

swri.org

SwRI Locomotive Technology Center

- A group within the Powertrain Engineering Division of Southwest Research Institute
 - SwRI is a 501(c)(3) non-profit with 2,700 employees
 - 1700+ Acre facility in San Antonio, TX
 - 8 technical divisions "From Deep Sea to Deep Space"
- Locomotive Technology Center Established in 1990 for the AAR
- Hundreds of locomotives tested to date
- Projects for EPA, CARB, FRA, CaDOT, DOE, AAR, RR's, and OEM's

Locomotive Technology Center 203 Milam Street

Locomotive Compressed Air Overview

- Every locomotive has an air compressor
- Those compressors are driven by the engine
 - Electric or shaft driven
- Power needed for the compressor depends on many things
 - Compressor design
 - Compressor setpoint
 - Ambient conditions
- Air used for various functions
 - Brakes, Horn, Shutters, Valve Actuation, etc.

Leaks are difficult to find.

- Trains have miles of air piping on them, including locomotives and railcars
- Air leaks are invisible and hard to detect in noisy environments with PPE
- While there are limits on some leaks, many leaks have gone ignored over the years
- Difficulty of detection and extent of the issue can make it appear insurmountable

Fuel Consumption = GHG Emissions

- Locomotive fuel consumption is the primary source of GHG emissions for all railroads
- Reducing fuel consumption is necessary to meet stated SBTi goals
- Fuel consumption gains can be made in many areas
 - Operational efficiency improvements
 - Locomotive efficiency improvements
 - Engine efficiency improvements

Fuel Consumption = GHG Emissions

- Locomotive fuel consumption is the primary source of GHG emissions for all railroads
- Reducing fuel consumption is necessary to meet stated SBTi goals
- Fuel consumption gains can be made in many areas
 - Operational efficiency improvements
 - Locomotive efficiency improvements
 - Engine efficiency improvements
 - → Air leaks fall in this category

Locomotive Fuel Consumption

Brake Specific Fuel Consumption

- Mass of Fuel per unit of brake horsepower
- Measure of Engine Efficiency
- Good to compare different engine models/types

Traction Specific Fuel Consumption

- Mass of Fuel per unit of traction horsepower
- Measure of Vehicle Efficiency
- Good to compare different locomotive models

How much does it matter?

Test	Baseline LH NTSFC	Change in LH	Change in LH	Change in LH	
Locomotive	- Air Compressor Cut	NSTFC -	NTSFC - 30	NTSFC - 60	
	Out	Compressor Cut	SCFM Brake Pipe	SCFM Brake Pipe	
		In	Leak	Leak	
	[lb/THP-hr]	[%]	[%]	[%]	
Locomotive 1	0.389	1.3%	1.6%	-	
Locomotive 2	0.366	-	1.2%	-	
Locomotive 3	0.352	-	2.2%	-	
Locomotive 4	0.444	-	2.3%	-	
Locomotive 5	0.409	1.1%	2.1%	-	
Locomotive 6	0.399	-	2.2%	-	
Locomotive 7	0.403	-	2.1%	5.2%	
Locomotive 8	0.393	-	-	5.8%	
Average NSTFC Increase:		1.2%	2.0%	5.5%	

Test	Baseline SW NTSFC	Change in SW	Change in SW	Change in SW	
Locomotive	- Air Compressor Cut	NSTFC -	NTSFC - 30	NTSFC - 60	
	Out	Compressor Cut In	SCFM Brake	SCFM Brake Pipe	
			Pipe Leak	Leak	
	[lb/THP-hr]	[%]	[%]	[%]	
Locomotive 1	0.416	2.9%	4.1%	-	
Locomotive 2	0.404	-	3.1%	-	
Locomotive 3	0.398	-	4.7%	-	
Locomotive 4	0.491	-	2.6%	-	
Locomotive 5	0.505	2.56%	5.4%	-	
Locomotive 6	0.445	-	4.9%	-	
Locomotive 7	0.445	-	5.2%	14.1%	
Locomotive 8	0.434	-	-	14.1%	
Average NSTFC Increase:		2.7%	4.3%	14.1%	

How much does it matter?

Test	Baseline LH NTSFC	Change in LH	Change in LH	Change in LH	
Locomotive	- Air Compressor Cut	NSTFC -	NTSFC - 30	NTSFC - 60	
	Out	Compressor Cut	SCFM Brake Pipe	SCFM Brake Pipe	
		In	Leak	Leak	
	[lb/THP-hr]	[%]	[%]	[%]	
Locomotive 1	0.389	1.3%	1.6%	-	
Locomotive 2	0.366	-	1.2%	-	
Locomotive 3	0.352	-	2.2%	-	
Locomotive 4	0.444	-	2.3%	-	
Locomotive 5	0.409	1.1%	2.1%	-	
Locomotive 6	0.399	-	2.2%	- /	
Locomotive 7	0.403	-	2.1%	5.2%	
Locomotive 8	0.393	-	-	5.8%	
Average NSTFC Increase:		1.2%	2.0%	5.5%	

Most railroads operate their locomotive fleet somewhere between these two duty cycles.

Test	Baseline SW NTSFC	Change in SV	W Change in SW	Change in SV	V
Locomotive	- Air Compressor Cut	NSTFC -	NTSFC - 30	NTSFC - 60	1
	Out	Compressor Cu	ıt In SCFM Brake	SCFM Brake P	iŗ
		-	Pipe Leak	Leak	-
	[lb/THP-hr]	[%]	[%]	[%]	
Locomotive 1	0.416	2.9%	4.1%	-	
Locomotive 2	0.404	-	3.1%	-	
Locomotive 3	0.398	-	4.7%	-	
Locomotive 4	0.491	-	2.6%	-	
Locomotive 5	0.505	2.56%	5.4%	-	1
Locomotive 6	0.445	-	4.9%	-	Γ
Locomotive 7	0.445	-	5.2%	14.1%	Γ
Locomotive 8	0.434		-	14.1%	
Ave	erage NSTFC Increase:	2.7%	4.3%	14.1%	

These values <u>DO NOT</u> include losses due to train delays, AESS restarts, etc.

Total fuel consumption penalties are likely higher.

AESS – Great, when it works

	Average Run	Average Time		Est. Fuel Burned	Emissions
	Time Per Start	Between Restarts	% On Time	(per 24hrs)	(per 24hrs)
	[min]	[min]	[%]	[gal]	[kg CO ₂]
Before Repairs	79.3	82.9	48.9%	69.6	777.6
After Repairs	260.7	1,072.3	19.6%	26.4	294.9
% change	228.7%	1194.1%	-60.0%	-62.1%	-62.1%

43.2 gal/day difference

CN 8862 – Air Leaks (with approx. repair time)

- I. Air Dryer Replaced (20 min)
- 2. RB-MV Fixed (10 min)
- 3. MR2 Pressure Sensor Fixed (1 min)
- 4. MR Filter Housing Fixed (20 min)
- 5. Union threads near sump Fixed (5 min)
- 6. Compressor Not Fixed
- 7. Shutter Mag Valve Fixed (5 min)
- 8. Unloader Mag Valve Fixed (20 min)
- 9. MR2 Check Valve Replaced (2 hrs)
- 10. Piping on supply to Air Brake Cabinet Fixed (60 min)

Times listed do not include time spent finding leaks

GHG Impact of Leaks

Loco Compressor Only - Leaks Repaired - 60 SCFM Brake Pipe Leak

Air Leaks are Independent of Fuel Type

Whether Biodiesel, Renewable, Natural Gas, Hydrogen, or Battery Electric...air leaks will reduce the efficiency of ALL of them.

- Overall Vehicle Efficiency needs to be a focus point for railroads moving forward on new and rebuilt locomotives
 - Even with the same engine, it can be better.

What can be done

- Mechanical requirements need to change
 - FRA leak limits are set for safety, not efficiency
 - Railroad requirements need to become more stringent
- Advanced tools and autonomous inspections
- Mechanical personnel need the time and support to start chipping away at the problem
 - It is not an issue that can be fixed in a day

- There is opportunity to work with suppliers to optimize air usage of components
 - Air Dryers
 - Mag Valves
 - Anything that uses air should be on the table.

Conclusions

- Air leaks are a significant contributor of greenhouse gas and criteria emissions for railroads
- The issue needs to be addressed and mechanical will need time and resources
- ROI of fixing air leaks is favorable due to reduction in fuel consumption
- Air leaks and other vehicle efficiency improvements are independent of fuel source

SOUTHWEST RESEARCH INSTITUTE®

Advanced science. Applied technology.