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Executive Summary 

As part of a Federal Railroad Administration (FRA)-funded Automated Train Operations (ATO) 
Sensor Platform (SP) Data Analysis Rapid Prototype (RP) project, a research team from MxV 
Rail, (formerly Transportation Technology Center, Inc.), evaluated commercial off-the-shelf 
(COTS) data processing techniques with the potential to support ATO locomotive SP-related 
train automation functions.  
Current industry efforts, as well as several FRA-funded efforts, are underway to develop ATO 
for use in North American Class I freight railroad service. ATO, coupled with existing safety and 
efficiency enhancing systems (e.g., Interoperable Train Control (ITC) Positive Train Control 
(PTC) and train energy management systems (EMS)) offer the North American rail industry 
safety and operational enhancements, allowing it to remain a competitive and viable long-haul 
transportation mode. The objective of the ATO SP Data Analysis RP project, conducted by TTCI 
from August 2021 to September 2022, was to study the capability of COTS data processing 
techniques to support SP functions. This project was a continuation of the ATO SP RP project 
and continued the data analysis work started in the prior project.  
The team investigated clear path detection and person detection using sample data sets and 
railroad-specific data sets. Researchers evaluated autoencoder and saliency-based approaches for 
clear path detection. Further refinement of these techniques may provide a hazard detection 
solution without the need for producing an algorithm capable of classifying every possible hazard.  
In the person detection effort, the team evaluated 10 different neural networks. Researchers found 
that while the performance of each could be improved, no single neural network appeared capable 
of producing the results necessary for an SP. However, the team found substantial improvement by 
using a committee of neural networks to eliminate false negatives. These results suggest the 
potential of meeting reliability requirements using multiple neural networks trained on the specific 
hazards found in the rail environment. 
Future work should include the collection of larger data sets involving the rail environment, proper 
annotation of those data sets for use in training and evaluating machine learning algorithms, 
improving the performance of the algorithms studied, evaluation of additional algorithms, and 
improved committee algorithms. 
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1. Introduction 

In a Federal Railroad Administration (FRA)-funded Automated Train Operations (ATO) Sensor 
Platform (SP) Data Analysis Rapid Prototype (RP) project, a team from Transportation 
Technology Center, Inc. (TTCI) researched the feasibility of using commercial off-the-shelf 
(COTS) data analysis processes and tools to meet the needs of SP-related train automation 
functions defined in the ATO program. This effort, started in August 2021 and concluded in 
September 2022, primarily focused on evaluating the suitability of COTS algorithms for use in 
the analysis of data produced in a prior ATO SP RP project. This project included COTS 
algorithm identification, algorithm evaluation, and data analysis tasks. 

1.1 Background 
The railroad industry is engaged in an ongoing effort to define an interoperable ATO system of 
systems. ATO encompasses a collection of train automation functions that individually provide 
improvements to railroad efficiency and safety and collectively provide for high automation for 
trains under normal line of road operating conditions. The capability of machine perception of 
possible hazards within the railroad operating environment is a potentially enabling technology 
for many of the train automation functions that are expected to enhance railroad safety and 
efficiency. These train automation functions are intended to be fully interoperable, allowing any 
equipped train to seamlessly operate across any ATO-equipped North American railroad and 
supported by any qualified railroad personnel, regardless of the automation equipment supplier. 
Within the ATO concept, the SP is responsible for scanning the external environment ahead of 
the locomotive and providing actionable information to locomotive onboard systems. An SP 
supporting high automation is expected to monitor the foul volume and right of way ahead of the 
train and provide high confidence information regarding the distance to which the train route is 
clear, classification of Objects of Interest (OOIs) that may be fouling the track or occupying the 
right of way, and Conditions of Interest (COIs) in the roadbed and right of way that present a 
hazard. An SP supporting a limited set of train automation functions may perform a specified 
subset of the functionality performed by the full SP. Train automation systems consuming SP-
provided information are responsible for initiating appropriate train responses as governed by 
railroad operating practices and regulatory requirements. 
In a prior FRA-sponsored ATO Safety and Sensor Development project (Federal Railroad 
Administration, 2020) researchers defined interoperable requirements for a SP capable of 
supporting ATO. These requirements defined the OOIs and COIs to be detected and the regions 
in which they are to be detected and started identifying the reliability performance of the 
detection system. 
The ATO Safety and Sensor Development project was followed by the FRA-sponsored ATO SP 
RP project, in which researchers began evaluating the feasibility of constructing an SP using 
COTS sensor devices. The team built a sensor array, collected data, and performed preliminary 
analysis. This report details the further analysis of this data to study the feasibility of using 
modern data analysis software to meet the SP requirements. 

1.2 Objectives 
The ATO SP Data Analysis RP effort included the following objectives: 
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• Demonstrate the capability of COTS data processing techniques to perform SP functions 
such as object detection, object classification, and anomaly detection 

• Provide advisement and modification of sensor platform requirements associated with 
data analysis function and performance 

• To the extent possible with available railroad-provided data, compare the SP RP system 
to current operations 

1.3 Overall Approach 
The team performed project management and engineering tasks in collaboration with railroad 
industry representatives. As part of the broader ATO development effort, a Technical Working 
Group (TWG) comprised of railroad and FRA members provided technical input and oversight 
to the team’s ATO technical efforts. This TWG served as the advisory group (AG) for the ATO 
SP RP project. As they were already familiar with the SP RP effort, this group then served as the 
AG for this project, providing guidance on project goals and technical oversight. To assist in the 
data analysis system evaluation efforts, the team also contracted with a sensor systems 
consultant. 
The team executed the project in three phases, as illustrated in Figure 1: 

• Identify COTS tools 
• Implement data analysis processes 
• Analyze effectiveness of analysis processes 

 
Figure 1. Project task flow diagram 
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1.3.1 Identify COTS Tools 
During the initial project phase, researchers used a three step process to identify and select COTS 
data analysis tools: 

• Define selection criteria for COTS tools 

• Identify potential COTS and open-source tools 

• Evaluate selected tools against selection criteria 
The team needed to define the selection criteria for COTS data analysis tools before useful tools 
could be selected. This included problem definition, market research, and definition of selection 
criteria. Analysis goals included the detection, classification, ranging, tracking, and intercept 
prediction of objects. 
Once selection criteria were defined, the team conducted a survey of COTS and open-source 
analysis tools to identify those potentially capable of meeting project goals. Researchers then 
evaluated the tools identified against the selection criteria, and the necessary tools procured. 

1.3.2 Implement Data Analysis Processes 
During the implementation phase, the team prioritized and implemented the SP functions. The 
top priority was the implementation of a clear path detection algorithm. The detection of people, 
vehicles, and other objects was a lesser priority. 

1.3.3 Analyze Effectiveness 
The team analyzed the effectiveness of the data analysis processes by: 

• Identifying evaluation criteria 

• Developing test cases 

• Testing software against available data 

• Comparing the results to current operations 
In addition, the results of this project are being considered during revision of the existing SP 
system requirements outside the scope of this project. 

1.4 Scope 
The team performed the following tasks as part of the ATO SP Data Analysis RP project: 

• Identified and procured COTS data analysis tools that have potential to satisfy ATO SP 
requirements 

• Implemented data analysis processes to identify if the path ahead is clear, with detection 
and classification of objects as secondary objectives  

• Applied data analysis processes to sensor data collected from the sensor suite assembled 
in the prior ATO SP RP project 

• Analyzed the effectiveness of data analysis processes at performing their intended 
function 

• Reported project findings and recommendations for next steps 
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The scope was limited to an initial evaluation of COTS tools, with development of custom data 
analysis processes and refinement of existing processes considered out of scope. The intent was 
to begin evaluating what capabilities may already be available to determine future efforts that 
will be required, and not to perform an exhaustive evaluation of all potential data analysis 
processes. Additionally, the scope of the evaluation was limited by the project budget and 
schedule, with priority given to evaluation of processes to determine if the path ahead of the train 
is clear. 

1.5 Organization of the Report 
This report summarizes and highlights the results of the ATO SP Data Analysis RP project. The 
report is organized as follows: 

• Section 1 provides the objective and background information of the project to aid in 
setting the context of the project. 

• Section 2 reviews sensor platform concepts and requirements. 

• Section 3 provides an overview of clear path detection algorithms developed during this 
project using saliency and autoencoder neural network-based methods. 

• Section 4 provides an overview of existing open-source neural networks and their use in 
object classification tasks, as well as an overview of an output fusion method and the 
impact of output fusion on performance. 

• Section 5 provides the report conclusion and recommended next steps. 
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2. Sensor Platform Concept and Requirements 

A prior FRA-sponsored ATO Safety and Sensor Development project (Federal Railroad 
Administration, 2020) informed about this effort. An SP capable of supporting train automation 
functions could use any of a wide range of COTS technologies that may include, cameras 
(optical, thermal, infrared), lidar, radar, sonar, or other technologies. Because the prior ATO SP 
RP project used camera technology, this research team focused on the analysis of data produced 
by cameras. To understand the data analysis objectives, it is necessary to understand the basic SP 
functionality and a small set of selected use cases. 
The SP monitors the environment ahead of the train for external conditions that present hazards, 
such as track obstructions or people encroaching within the foul volume. The environment ahead 
of the train is logically partitioned into three areas of interest, the foul volume, the collision 
volume, and the wayside. These logical partitions are illustrated in Figure 2.  

 
Figure 2. Areas of interest 

External conditions are further defined as either:  

• Objects of Interest (OOI) – Objects in an area of interest, not part of the railroad track 
infrastructure, that may pose a hazard to the train (e.g., people, vehicles, etc.), or  

• Conditions of Interest (COI) – Objects/conditions in an area of interest that are part of or 
impacting the railroad track infrastructure that present a hazard to the train (e.g., sun 
kinks, earth over rail, failed crossing gates, etc.). 

The foul volume is the region ahead of the train through which the train will pass. Definition of the 
foul volume depends on the AAR plate to which a track is built. For the purposes of this project, 
researchers defined the foul volume to be 10 feet wide and centered on the track centerline and 
extending from the surface of the rail head to 15 feet above the rail head. The foul volume extends 
along the train route from the end of the collision volume in front of the lead locomotive, to a 
distance defined by the SP use cases. An SP must be able to distinguish between an OOI located 
just inside the foul volume and just outside the foul. For this reason, a data analysis objective was 
the localization of an object relative to the track occupied by the train and the leading edge of the 
train. 
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The collision volume is the area immediately in front of the train. Any object within the collision 
volume is considered so close to the train that a collision is unavoidable. The final definition of 
the collision volume may take the speed of the train into account, but for this effort it was 
considered the region from the leading edge of the lead locomotive to 6 feet in front of the lead 
locomotive. The collision volume is centered on the track centerline and has the same width and 
height as the foul volume. 
The wayside is the area to either side of the foul and collision volumes that may need to be 
monitored for OOIs and COIs. For this project, researchers defined the wayside as being within 
70 feet of either side of the foul and collision volumes. 

2.1 Sensor Platform Use Cases 
The following SP use cases represent a subset of the full SP functionality as defined in prior 
efforts. These use cases were selected as a subset representative of SP functions, the 
investigation of which is of benefit to industry efforts to develop an interoperable SP. These SP 
use cases informed the data analysis objectives. 

2.1.1 Clear Path 
The core function of the SP is monitoring for environmental conditions (OOIs or COIs) which 
result in it being unsafe for a train to proceed. Current data analysis approaches focus on 
positively identifying known phenomena (e.g., inanimate objects, people, animals, or other 
conditions such as fire, rain, or fog). If a machine vision system does not identify any objects in a 
scene, it is assumed that nothing of interest is in the scene. This approach has both technical and 
practical benefits and supports the other use cases. 
However, for this system to verify that it is safe for a train to proceed, it would require an 
exhaustive data set describing every possible phenomenon which could render it unsafe to 
proceed. This could be considered impractical for many reasons, including: 

• Many potentially hazardous objects, such as rocks and downed trees, vary tremendously. 
Training datasets may fail to encompass every possible rock and downed tree that could 
obstruct a railroad track. 

• Objects may present a different appearance while obstructing a railroad track than they do 
in normal training data sets. For example, cargo fallen off a train onto an adjacent track will 
have a highly variable appearance depending on the damage and final resting position. 

• Objects unexpected in the rail environment may, on rare occasion, be found on the track. 
For example, in January 2022, an airplane crash-landed, coming to a stop on an active 
railroad track (National Transportation Safety Board, 2022). 

• New vehicles will be found at grade crossings in the future that have not been designed 
yet; it is not possible to definitively characterize all of them. 

One approach to addressing this challenge is clear path detection. A clear path can be defined as 
any condition an SP is to detect. Any obstruction preventing a clear path from being observed is 
detected regardless of the nature of the obstruction; an object not considered during algorithm 
design would be detected as the lack of a clear path. This includes any deviation of the rails from 
the definition of a clear path, regardless of the nature of the deviation. For example, gross rail 
damage as would be detected by a crew (e.g., sun kinks) could be detected regardless of the 
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specifics of the sun kinks. Clear path detection differs from object detection in that the distance 
to which the path is clear must be measured. This requires an SP that, within acceptable 
confidence limits, reports the distance to which the foul volume is clear of all objects. Such an 
SP could then be expanded with definitions of known non-hazards, resulting in improved 
performance over time. 

2.1.2 Person in Wayside or Foul 
People in the wayside or foul commonly include: 

• Railroad personnel 

• The general public (frequently present at grade crossings) 

• Trespassers 
People could be present in any of the areas of interest and the exact location is important. A 
person standing just outside the foul volume must be distinguished from the same person 
stepping into the foul volume. In addition, people will commonly be found outside the areas of 
interest; they are clutter and should be disregarded. 
Of special concern for the development of a functional SP is the ability to distinguish people 
from livestock and from people-like objects (e.g., a picture of a person printed on a sign adjacent 
to the track). Researchers considered this concern secondary for the initial data analysis effort, 
but it is likely to be a major factor in later efforts. 

2.1.3 Vehicle in Wayside or Foul 
Vehicles are commonly found at grade crossings and on roads alongside the track. As with 
people, the vehicle location is required. Size, composition, and appearance are expected to easily 
distinguish vehicles from other OOIs. Of more concern is distinguishing a vehicle from clutter. 
For example, a vehicle driving on a public road adjacent to the track is clutter, while a vehicle 
driving on a service road within the wayside is an OOI. 

2.1.4 Livestock 
Livestock are commonly found along some railroad tracks, depending on the nature of fencing 
along the track and proximity to ranching activity. As noted in Section 2.1.2, the primary 
concern is correctly distinguishing livestock from people. 

2.1.5 Other Hazards 
A wide range of other hazards may be encountered in the rail environment. Researchers did not 
attempt an exhaustive characterization of other hazards for this effort. Instead, the team 
considered the detection of objects with a profile of at least 1 foot by 1 foot as desirable. This 
informs the minimum size of OOI that the data analysis algorithms need to detect. 

2.2 Detection, Localization, and Classification 
The purpose of the data analysis is to identify all OOIs and COIs present in the foul volume and 
wayside. The SP will operate in a noisy, cluttered environment. Noise includes the presence of 
signals which may produce undesired or incorrect sensor readings. For example, the setting sun 
may shine into a camera, saturating the sensor and diminishing the quality of data from the 
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sensor. Clutter includes the signal generated by real objects which are present, but not of interest. 
Trash alongside the track is clutter, as is everything outside the areas of interest. One data 
analysis goal is to differentiate real OOIs and COIs from noise and clutter. 

2.2.1 Detection 
Detection is the identification of the number of OOIs and COIs present. Detection characterizes 
OOIs and COIs only in that a decision is made as to if a detection is noise/clutter or potentially 
an OOI or COI. An object not of interest may be discarded as clutter during detection or reported 
as a detection and later discarded during classification. Detection does not classify OOIs, COIs, 
and objects not of interest beyond the decision to report them as detections. For example, two 
people in the wayside would be reported as two distinct detections; a washed-out track and a fuse 
would also be reported as two distinct detections. 
The goal of the SP is to detect all OOIs and COIs present within the areas of interest. In practice, 
SP detection will be limited by the field of view (FOV) of the sensor devices. The FOV is 
limited both by environmental obstructions and the sensor technology used. An additional 
challenge is limiting detections to the areas of interest. 
As the SP must be able to detect many OOIs and COIs at the same time, detection is closely 
linked to classification and localization. For an OOI or COI to be classified and localized, its 
presence must be detected, and that detection must correctly report separate OOIs and COIs as 
separate detections. 

2.2.2 Localization 
Localization is the process of finding the physical location of OOIs and COIs in the real world. 
In this case, OOIs and COIs are located relative to the head of the train and the foul volume. The 
SP will report the distance along the train route to the point on track closest to the OOI or COI 
and whether it is in the foul volume. 
To support localization of OOIs and COIs, the sensor devices must produce data from which the 
real-world position can be calculated relative to the Head of Train (HOT). Localization 
approaches frequently involve sensors providing the azimuth angle, elevation angle, and distance 
relative to the sensor(s). However, other localization approaches can be used, such as 
stereoscopic ranging. Localization was addressed in the initial ATO SP RP project. 

2.2.3 Classification 
Classification is identifying the nature of an OOI or COI well enough to assign it to one of 
several pre-determined classes. Classification differs from full identification in that information 
beyond the object class is not needed. For example, a 1973 Dodge Viper is simply classified as a 
vehicle; the specific make and model do not matter. Some detections will be objects not of 
interest (clutter) or noise and are discarded. Detections which cannot be classified at the required 
confidence are reported as unknown OOIs. 
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3. Clear Path Detection 

As discussed in Section 2.1.1, clear path detection is a priority approach intended to handle the 
highly variable nature of potential hazards. Due to this high variability, the team did not consider 
it possible to train a classification network with enough classes to account for every possible 
potential hazard. The team explored two primary clear-path detection methods in this project: 
saliency-based target detection and autoencoder neural networks. 

3.1 Saliency Based Target Detection 
Researchers considered the possibility of visual saliency-based target detection for use in clear 
path detection, locating objects ahead of the locomotive, and calculating the distance to the 
objects. This section introduces the visual saliency process and discusses two types of visual 
saliency: spectral residual static saliency and fine grain static saliency. 

3.1.1 Visual Saliency 
A visual saliency map, or saliency map, shows the region(s) of an image on which people's eyes 
tend to focus first, providing an indication of the importance of each pixel to the human visual 
system. Saliency maps are themselves an image, with the brightness of each pixel representing 
how salient the corresponding pixel is in the original image. They are normally presented as heat 
maps with bluer pixels representing lower saliency and redder pixels representing higher 
saliency. A shadow of the original image may be retained in the saliency map to allow easy 
human interpretation of the saliency map. The saliency maps used in machine vision are 
algorithmically produced and attempt to mimic the saliency of each area in the image as 
perceived by a human. Saliency maps are used in various visual attention models such as those 
from Itti & Coch (2001). Figure 3 provides an example of a visual saliency map showing the 
input image (left) with the computed saliency map (right). 

 

Figure 3. Input image (left) and computed saliency map (right) 
In this effort, the focus was on static saliency, in which the features of a single image are 
analyzed for probable visual cues. Two static saliency detection algorithms are described in the 
following subsections. 
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3.1.1.1 Spectral Residual Static Saliency Detection Algorithm  
The research team tested the log-spectrum based algorithm presented in Hou (2007). This 
algorithm is based on analyzing the log-spectrum of an input image and extracting the spectral 
residual. The log-spectrum is the graph of image intensity (on a logarithmic scale) versus the 
image frequency. In this context, image frequency refers to the rate of change at any point in the 
image. Smooth parts of an image with no sharp edges or sharp changes of contrast will have a 
low image frequency. Parts of an image with rapidly changing contrast and overlapping object 
edges will have a high image frequency. The residual spectrum is the result of subtracting the 
average log-spectrum (found by averaging the log-spectrum of multiple images within the image 
set) from the log-spectrum of the image of interest. The remaining values are the residual 
spectrum in the frequency domain, representing areas of the image that contain possible proto-
objects, or objects which may be of higher interest or draw a viewer’s focus. The frequency 
domain residual spectrum is transformed into the spatial domain to generate a saliency map. 
Figure 4 shows a spectral residual saliency map overlaid as a heatmap on the input image. The 
red and yellow region represents the salient areas in the image, with red as the most salient.  

 
Figure 4. Spectral residual saliency map overlaid onto input image 

3.1.1.2 Fine Grained Static Saliency Detection Algorithm 
Montabone & Soto (2010) present a saliency algorithm that produces a fine-grained feature map 
of visual saliency by using an efficient implementation of center-surround differences through 
the so-called “integral image.” Given an input image, the resulting pixels of an integral image are 
comprised of the sum of pixel values to the left of and above the input image pixels. Combining 
the integral image in various ways with the original input image can produce a fine-grained 
saliency map where the proto-object shape is better defined than in the spectral residual 
approach. This algorithm can operate in real time at the original image resolution. Figure 5 
shows the original input image and the fine-grained saliency map overlaid as a heatmap onto the 
input image where the red and yellow region represents the most salient areas in the image. This 
approach shows an improvement over the spectral residual approach as the proto-object locations 
are far less diffused and better represent objects within the image.  
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Figure 5. (left) Input image, (right) fine-grained saliency map 

3.1.2 Thresholding 
The second step of the clear path detection algorithm is to threshold the computed saliency map. 
The purpose of thresholding is to eliminate areas where the saliency value is too low and does 
not warrant further inspection. Additionally, the thresholded saliency map is the input to the 
segmentation algorithm presented in the next section. Thresholding comes in three forms: 1) 
simple thresholding where the user specifies a global threshold value to use, 2) Otsu’s 
thresholding (Otsu, 1979) where the global threshold value is automatically determined, and 3) 
adaptive thresholding that will determine a threshold value for different pixel regions in the input 
image. This approach is useful for images that have different lighting conditions in different 
areas. For preliminary thresholding under this project, the team used simple thresholding. Figure 
6 and Figure 7 show the thresholded saliency maps, using the input image shown in Figure 5, for 
the spectral residual and fine-grained method, respectively. 

 
Figure 6. Spectral residual saliency map for input image in Figure 5 
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Figure 7. Fine grained saliency map for input image in Figure 5 

3.1.3 GrabCut Based Image Segmentation  
After thresholding of the saliency map, the original image and the output of the thresholding 
algorithm (Section 3.1.2) are processed by the GrabCut algorithm to extract the foreground. 
GrabCut is an image segmentation algorithm described by Carsten Rother (2004). In this case, 
the foreground is defined as the set of areas that may contain targets of interest, which is not 
necessarily the same area a photographer would define as the foreground. The background is 
then the image area that is not part of the foreground. 
The GrabCut algorithm uses the thresholding map as the approximate segmentation, defines 
those areas as the foreground pixel set, and considers all the other areas as the background pixel 
set. Next, foreground and background Gaussian Mixture Models (GMMs) are created using the 
previously defined background and foreground pixel sets. An iterative process is then used to 
learn GMM parameters to create new pixel distributions. A graph cut optimization is then 
performed to reach the final image segmentation. The user will specify how many iterations of 
the process will be executed. Figure 8 and Figure 9 show the foreground extracted from the input 
image (Figure 5) using the GrabCut algorithm for the spectral residual and fine-grained method 
of saliency, respectively. 
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Figure 8. Foreground extracted from the input image in Figure 5, for the spectral method 

of saliency using the GrabCut algorithm 

 
Figure 9. Foreground extracted from the input image in Figure 5, for fine-grained method 

of saliency using the GrabCut algorithm 

3.1.4 GrabCut Threshold 
The next step in the target detection process is to threshold the foreground output from the 
GrabCut algorithm. A simple threshold value of 1 is used to convert the input image to a binary 
image. Figure 10 and Figure 11 show examples of GrabCut binary image outputs for the spectral 
and fine-grained methods of saliency, respectively. 
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Figure 10. Binary image of the GrabCut output in Figure 8 for  

the spectral method of saliency 

 
Figure 11. Binary image of the GrabCut output in Figure 9 for the fine-grained method of 

saliency 

3.1.5 Object Localization 
Object localization is used to describe both the process of locating an object in the real world 
relative to the head of the train, and to describe the process of locating an object within an 
image. Locating an object within an image supports locating the object in the real world, as 
explained below. 
To localize objects in the thresholded GrabCut output, the OpenCV “findContours” method is 
first used. The findContours method, presented in Structural Analysis and Shape Descriptors 
(2022), uses the black and white image produced by the GrabCut Thresholding (Section 3.1.4). It 
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identifies the white regions of the image and produces a contour map and hierarchy describing 
the white regions. Since the white regions of the images are the objects as identified by the above 
process, this results in a preliminary set of object locations. Next, bounding rectangles are drawn 
using the “cv2.boundingRect” function. 
Figure 12 and Figure 13 show the results of this process for the spectral residual and fine-grained 
saliency methods, respectively, where the process successfully localized all but one target 
(targets included a child mannequin, an adult mannequin, three boxes, and a vehicle). Figure 12 
shows the one target (i.e., the child mannequin) not localized and not found. Additionally, the 
algorithm localized other objects near the track, e.g., an orange cone. The algorithm successfully 
localized objects in the far distance, including a flag, a blue sign, and the white object located at 
the left side of the image. Additional analysis is necessary to discard objects that are clutter from 
OOIs. 
Appendix A shows the use of this process to detect objects in NIR imagery at a range of 4,000 
feet. 

 
Figure 12. Spectral residual object localization 

 
Figure 13. Fine-grained object localization 
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3.1.6 Railroad Track Segmentation 
The team tested an additional algorithm (i.e., algorithm K) for railroad track segmentation. This 
algorithm combines an analysis of low-level details with a high-level context analysis to capture 
the larger image semantics (Yu, et al., 2021). Figure 14 shows an example output image. 

 
Figure 14. Object localization and rail segmentation output from  

input image shown in Figure 4 

3.2 Autoencoder Neural Networks for Path Clear Detection  
In the last 10 to 20 years, significant progress has been made in using deep neural networks 
(DNNs) for image classification, image segmentation (i.e., deciding which pixels belong to 
which objects), object detection, and anomaly detection. The research team considered the 
possibility of using DNNs for clear path detection. 
The first step in using DNNs to detect obstructions in the foul volume is to locate the train tracks. 
This can be seen as either an image segmentation problem or an object detection problem. Once 
the track location is known, the second step is to detect whether the tracks are clear (a normal 
condition) or if there is an obstacle in the foul volume (an anomaly). If there is an obstacle in the 
foul volume, the distance to the obstacle must be determined. The team considered the 
development of an autoencoder-based track clear detector which, when given an image of the 
track, can determine if it is obstructed. 
Autoencoders are a type of feed forward neural network and can be thought of as implementing a 
function (in the mathematical sense). Given an input image, an autoencoder will compress the 
input into a smaller dimensional space and then try to reconstruct the original image from the 
compressed representation. An autoencoder is a complex way of approximating the mathematical 
identity function (i.e., a function in which the output equals its input). The formula for the 
identity function is simply f(x) = x. 
To explain the use of approximating a function as trivial as the identify function, it is necessary 
to explain how autoencoders work. Suppose an autoencoder takes as input a 100 pixel by 100 
pixel grayscale image. Such an image can be thought of as a point in a 10,000-dimensional space 
(since 1002 = 10,000 and each grayscale pixel can be represented by a single number). An 
autoencoder does not simply copy its input to its output, as a copy and paste would. Instead, it 
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first compresses the image into a smaller dimensional space called the latent space. The 
dimension of the smaller space is called the latent dimension, and it is essential that the latent 
dimension is smaller than the dimension of the input space. 
An autoencoder is composed of two parts, an encoder and a decoder. The encoder compresses an 
input, X, into a representation, Y, in the latent space. The decoder takes an element Y of the latent 
space and produces an output X1, which is an attempt at a reconstruction of the original input X. 
Autoencoders do not work by a standard, general compression algorithm. They can only 
faithfully reproduce data similar to the training data, which is key to why they work as anomaly 
detectors. When training an autoencoder, numerous images of “normal'' data are presented to it; 
in this case, images of train tracks where the foul volume is clear. The machine learning 
algorithm is forced to learn useful ways of representing salient features of the training data 
because the latent dimension is smaller than the input dimension. 
Because an autoencoder can faithfully reproduce data similar to training data, and because it 
cannot do so for data unlike training data, a comparison of an input image X with the 
autoencoder output X1 can determine if X is “normal” or not (i.e., whether or not the foul volume 
is free of obstacles). This is done by comparing how well X1 matches X. 

3.2.1 Benefits of Autoencoder for Path Clear Detection 
There are at least two primary reasons why an autoencoder is an appealing approach for anomaly 
detection. First, the amount of data representing normal instances vastly outweighs the amount of 
data representing anomalies. Second, the number of different types of obstacles that could present a 
hazard to a train is unbounded. As discussed in Section 2.1.1, there is no possible way to specify in 
advance all the different possible obstacles that could show up. It would be enormously difficult, if 
not impossible, to train a classifier with enough categories to cover all possibilities. 

3.2.2 Current Progress in Training an Autoencoder 
As part of this project, researchers trained an autoencoder using railroad-provided video taken 
from the rear of a train. Several gigabytes of videos of clear tracks were provided by the railroads 
and the team extracted frames from those videos to use for training a deep neural network. As 
part of this effort, researchers trained an autoencoder on a subset of the data currently available; 
use of all available training data was not necessary for this research. 
Each image used in training the DNN was a picture of a section of the track, cropped to 140 
pixels by 140 pixels, and converted to grayscale. In Figure 15, Figure 16, and Figure 17, the 
training images are shown at the top and the autoencoder-reconstructed images are shown below. 
Figure 15 shows five examples of images before (top) and after (below) they were sent through 
the prototype autoencoder, including only straight track. 
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Figure 15. Prototype autoencoder results, straight track 

Figure 16 shows five examples of images before (top) and after (below) they were sent through 
the prototype autoencoder, including both straight and curved track. 

 
Figure 16. Prototype autoencoder results, curved and straight track 

For curved tracks, the autoencoder produced a slightly more blurred image than for straight 
tracks. Curved tracks are not inherently more difficult for the machine learning algorithm to 
handle. Rather, the curved tracks appear blurred because only a few of the training images were 
of curved tracks. Once the model is trained with the rest of the available data, curved tracks 
should present no difficulty. 
Figure 17 shows five more pairs of images, with a variety of shadows on the track. 

 
Figure 17. Prototype autoencoder results, with shadows 

Shadows within images did not produce more blurred images, therefore the impact of shadows is 
not significant. 
To test the ability of the autoencoder to detect obstacles, the team added obstacles artificially to 
images. Three types of obstacles were added (i.e., a fallen tree trunk, a car, and a person). The 
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obstacles added artificially were not to scale. It is expected that the autoencoder will have more 
difficulty reconstructing small obstacles than large ones. This difficulty is addressed in Section 
3.2.2.2 below.  
Figure 18 shows five examples of images with obstacles artificially added before (top) and after 
(below) they were sent through the prototype autoencoder. 

 
Figure 18. Autoencoder reconstructed images containing simulated obstacles, Test 1 

Since an autoencoder can only faithfully reconstruct images similar to training objects, the 
autoencoder trained and studied as part of this effort wasn't able to reconstruct the simulated 
obstacles at all, suggesting an obstacle detection potential. Rather, as seen in Figure 18, it made 
the obstacles disappear entirely and attempted to reconstruct the train tracks based on what was 
visible. 
Because the obstacles were not reproduced at all, the algorithm would indicate the presence of an 
obstacle. Additional tests of simulated obstructions are seen in Figure 19 and Figure 20. 

 
Figure 19. Autoencoder reconstructed images containing simulated obstacles, Test 2 

 
Figure 20. Autoencoder reconstructed images containing simulated obstacles, Test 3 
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From the results shown here, the team concluded that an autoencoder has obstacle detection 
potential. 

3.2.2.1 Training with Images Containing Shadows 
The team only completed preliminary work using images with shadows or switches. Researchers 
trained an autoencoder using the 1,000 images used in the first training as well as an additional 
400 images containing more complex scenarios, including shadows. The results shown in Figure 
21 show the performance of this autoencoder on images with simulated obstacles. 

 
Figure 21. Autoencoder reconstructed images containing simulated obstacles with shadows 
The addition of complex images introduced notable changes in the behavior of the autoencoder. 
The dark tree trunk in the image second from the right in Figure 21 results in a shadow-like 
effect in the autoencoder output. Similarly, the car in the first image on the left in Figure 21 
results in a similar shadow-like effect. As shadows are the closest thing in the training dataset to 
the simulated obstacles, the team anticipated this behavior. 

3.2.2.2 Difficulty with Apparently Small Objects 
Given a working autoencoder, an anomaly detector is made by picking a threshold value, ρ. 
Images that the autoencoder reconstructs with a fidelity ρ or better will be declared as normal 
(i.e., obstacle-free). Images reconstructed with a fidelity worse than ρ will be considered to 
contain an obstacle. By adjusting the value of ρ, the false negative (i.e., indicating there is not an 
obstacle when there is) rate can be decreased. This causes a corresponding increase in the false 
positive rate (i.e., indicating there is an obstacle when there is not). Conversely, the false positive 
rate could be decreased, making the false negative rate increase. 
The team did not determine the potential for the autoencoder to detect either small or distant 
obstacles as part of this effort. The farther an obstacle is from the train, the smaller of a 
difference the obstacle will cause in the autoencoder's output. Greater sensitivity to small 
differences in an image from its reconstruction will result in more false positives. The same 
problem is expected with small obstructions. 
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4. Classification Neural Networks 

Although the basic question of whether the track ahead is clear is most important for the 
facilitation of ATO train movement, the use cases listed in Section 2.1 require several key types 
of objects to be explicitly classified as people, vehicles, or livestock. Since neural network-based 
classification processes are “blind” to classes of objects they are not explicitly trained to detect, 
the use of these types of networks in establishing high confidence that the train path is clear is 
limited to the set of object classes which the onboard system is trained to detect. This will be 
constrained by the capacity of onboard processing power. As the list of common objects for 
classification grows, so does the latency of the processing. A possible solution to mitigate the 
required onboard processing needs is to only attempt classification of known objects detected by 
the clear path detection algorithm. 
Researchers evaluated several classification neural networks for use in SP classification tasks, 
and in this effort the sole focus was on the person class. The team evaluated networks on 
accuracy, precision, and recall (see Section 4.2), as well as network rates of false positive, false 
negative, true positive, and true negative. The team then combined several networks in a 
committee structure and further evaluated them to assess the potential for increased performance. 
Classification neural networks require curated training and evaluation data sets. Every image or 
video in the data set must be labeled as to whether it does or does not contain each object on 
which the network is going to be trained. Depending on the specific neural network, the object 
may have to be in the image as well. Errors in the training data set can substantially reduce the 
reliability of the resulting analysis.  
Researchers evaluated 10 different neural networks during this project representative of the state-
of-the-art for neural network classification algorithms at the time this project was conducted.  

4.1 Convolutional Neural Network Introduction 
Artificial neural networks are complex, nonlinear computing systems. As the name implies, the 
functionality of neural networks is somewhat like the biological brain. Artificial brain cells 
within neural networks display emergent behavior through the interconnections between the 
artificial brain cells. The artificial brain cells can learn and classify data characteristics after a 
training process. Training the artificial brain cells is an iterative process of inputting known data 
into the neural net, observing the results, and adjusting the network parameters so the network 
converges on the correct results. As in the brain, neural networks are comprised of many 
neurons, referred to as nodes. Nodes are arranged in layers and are linked by connections. These 
connections are weighted by a scalar value which is iteratively adjusted in training to optimize 
the network results. Any given artificial neural network is comprised of three main parts: an 
input layer, a hidden layer, and the output layer. All data input into a neural network, such as 
image pixel values, is fed into the input layer. In the case of images, all pixels of the image are 
input in parallel, i.e., each pixel is simultaneously input into its own input node. The output layer 
is responsible for the final probabilistic prediction. Unlike the input and output layers, the hidden 
layer is comprised of not one but multiple layers of parallel nodes. Every node in a hidden layer 
is connected to every node in the hidden layers before and after it.  
All neural networks evaluated under this project are of the convolutional neural network (CNN) 
type. CNNs are specifically tailored for image processing tasks. The key difference between a 
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standard neural network and a CNN is in the operation performed by nodes at each layer. In a 
standard neural network, the operation at a node is a series of summations based on the previous 
layer’s inputs and connection weights (this is called a fully connected neural network). In a 
convolutional neural network, the operation by nodes is a convolution of an input matrix (i.e., an 
image) with a smaller kernel of weights (i.e., a filter). A single layer of a convolutional network 
is comprised of multiple parts, generally consisting of a convolutional block, pooling layer, and 
rectified linear unit (ReLU) activation.  
The kernel, or filter, of a convolutional block convolves across the input image to create a 
smaller resulting image called a feature map. The elements of the filter matrices are called the 
filter weights. The filter weights are iteratively adjusted in network training to give an optimal 
response at each layer. Figure 22 illustrates the convolution process. The input is shown on the 
left of the figure, with the 3 by 3 convolution filter overlayed in green. The result, shown on the 
right of the figure, is the sum of the input and filter element products. 

 
Figure 22. Example convolution of an input matrix and a 3 by 3 filter  

A given convolutional layer generates a series of output feature maps that are generally too large 
for practical purposes, so they are further downsampled by a pooling function. The goal is to 
substantially downsample data at each network layer to arrive at a classification in a practical 
number of layers. Downsampling also reduces the number of parameters, which reduces the 
overall computational cost. The most widely used form of pooling is max pooling. It operates by 
applying a 2 by 2 filter to the feature maps. The 2 by 2 filter moves by two pixels as it scans 
across the maps, and it outputs the maximal value in the four-pixel neighborhood. The result is a 
series of feature maps that have been downsampled by 75 percent. Figure 23 illustrates the 
pooling process. The maximal pixel value from each 2 by 2 colored region is passed to the 
smaller resulting matrix. 

 
Figure 23. Example of the pooling process resulting in a 75 percent reduction of data 

After the pooling process is complete, a ReLU activation function is applied. Neural networks, 
whether fully connected or convolutional, rely on activation functions to make the networks non-
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linear. The ReLU function is simple; after pooling, each element of a feature map is cleared to 
zero if the value of the element is negative. The use of ReLU activation further reduces data in 
the feature maps, making the network lighter in computation. 
After several repetitions of the convolution, pooling, and ReLU cycle, data is downsampled 
enough that it may be presented to the output layer. The last layer of feature maps is transformed 
into a one-dimensional feature vector that is presented to the output layer for final classification. 
The output of this final classification network is a vector with the number of elements equaling 
the number of classifications, and which contains a distribution of real values. A transformation 
function is applied to the final output vector to transform the values to a range between zero and 
one, where all the entries add up to one. This gives a more intuitive statistical representation of 
the result in a probability distribution. 

4.2 Training Classifier Neural Networks 
The 10 different neural networks evaluated during this project supported the classification of 
many discrete object classes. These classes show a high level of detail, containing classes such as 
tie, baseball hat, and glove. Although this level of detail is impressive, it often creates 
undesirable results for the identification of a single object class, such as a person. For this reason, 
the evaluated networks were trained using a training database containing images of only two 
classes: “person” and “non-person.” The people in these images were shown in various 
orientations and environments. Each image labeled “person” contained only one individual. The 
images containing no people were of various objects (e.g., motorcycles, cars, airplanes) in 
different environments. The training image dataset was assembled from annotated images 
contained in the Massachusetts Institute of Technology image database LabelMe, and 
Microsoft’s Common Objects in Context (COCO) image database. The final training database 
for this project contained a total of 406 annotated images, half containing persons and half 
containing non-persons.  

4.3 Classifier Neural Networks Evaluation Approach  
The team tested the neural networks against an evaluation dataset of 266 images assembled from 
the LabelMe and COCO datasets. This combined dataset contained 133 images containing 
persons and 133 containing no persons. The training and evaluation image datasets were 
independent and did not share any images. The networks were evaluated on their accuracy, 
precision, and recall performance against this evaluation dataset. Network rates of false positive, 
false negative, true positive, and true negative were also evaluated against the dataset. Each 
neural network outputs the probability of an image belonging to either the “person” or “non-
person” class in the form of two probabilities (since there are two possible classes) whose sum is 
equal to 1. The images receive the label of the highest probability prediction.  
When evaluating a neural network, its precision is measured by the percentage objects correctly 
labeled as a detection vs the total number of objects labeled as a detection. This is calculated as 
the number of true positive detections divided by the total number of detections: 

 
The recall of a neural network is the percentage of correct positive detections out of the total 
number of items that should have been detected. The recall is calculated by dividing the number 
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of objects correctly labeled positive by the number of objects that should have been labeled 
positive: 

 
The accuracy of a neural network is the percentage of the positive detections that are correct. The 
accuracy is calculated by dividing the number of objects correctly labeled by the number of all 
labeled objects: 

 
The precision and recall of a particular classification neural network are engineering tradeoffs. 
As the precision of the network is increased, the recall generally decreases. The opposite is also 
true; as recall is increased, precision of the network decreases. 

4.4 Neural Network Evaluation Results 
This section contains a description of the performance of each classification neural network 
tested. The confusion charts shown in this section illustrate the number of true positives, true 
negatives, false positives, and false negatives, categorized as follows: 

• True positive: the model correctly identifies a person in an evaluation image 

• True negative: the model correctly identifies the lack of a person in an evaluation image 

• False negative: the model incorrectly identifies an evaluation image as lacking a person 

• False positive: the model incorrectly identifies an evaluation as containing a person when 
it does not 

In the confusion charts, true positives and true negatives are represented by blue shades where a 
darker blue indicates a larger number of correct detections. Red represents the false positives and 
false negatives, where a darker red indicates a larger number of incorrect detections. In a well 
performing model, there are large numbers of true positives and true negatives and only a small 
number of false positives and false negatives. Minimizing the number of false negatives is of the 
most interest in this effort. 
Ten neural networks were evaluated for their object detection capability, and were labeled 
Network A to Network J. The neural networks were anonymized as the purpose of this study is a 
preliminary evaluation of the feasibility of constructing an SP and this evaluation should not be 
used in comparing the neural networks for other purposes. 

4.4.1 Network A 
The structure of Network A contains 25 convolutional layers. It was the first CNN to support the 
use of GPUs to boost performance. Due to its simple structure, Network A requires relatively 
low computational power, but also showed the lowest accuracy, precision, and recall scores of 
any neural network tested during this project. Figure 24 below shows the confusion chart of 
Network A. Of the 133 images containing persons, Network A incorrectly classified 59. 
Therefore, the false negative rate was 44 percent. 
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Figure 24. Confusion chart of Network A 

4.4.2 Network B 
Network B is the CNN backbone of popular object detection methods. It differentiates itself from 
earlier, similar networks with the use of residual connections and the addition of more layers, 
containing 53 layers in total. Residual connections skip the immediately following convolutional 
layers and connect directly to more distant layers. In testing during this project, Network B 
performed well, scoring near the top on precision and in the upper middle on accuracy and recall. 
Figure 25 below shows the confusion chart of Network B. The false negative rate of this network 
was 35 percent. 

 
Figure 25. Confusion chart of Network B 

4.4.3 Network C 
Network C was designed to maintain acceptable performance, both in terms of computational 
power required and in terms of accuracy, when the depth, width, and resolution are scaled up. 
For this testing, only the baseline model of Network C was available, though versions of this 
model with more layers exist. Network C saw identical results to Network B, as shown by the 
confusion chart in Figure 26 below. The structures of many neural networks are quite similar, in 
fact many networks are built on the foundations of others; this is a likely explanation for the 
observed results. The false negative rate of this network was 35 percent. 
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Figure 26. Confusion chart of Network C 

4.4.4 Network D 
Network D is a CNN that is based on a similar architecture to Network E. Network D uses 
several changes to the typical convolution and pooling techniques to create a more efficient and 
accurate network architecture. Network D uses convolution filters which downsample data at a 
more aggressive rate than similar networks, reducing overall computational cost. This network 
also leverages average pooling filters, instead of the often-used max pooling. In this testing, 
Network D was an outstanding performer. It earned the best accuracy and precision scores and 
performed well in recall. As a top performer, Network D was chosen as the primary network for 
the fusion committee described in Section 4.6. Figure 27 below shows the confusion chart of 
Network D. The false negative rate of this network was 16 percent. 

 
Figure 27. Confusion chart of Network D 

4.4.5 Network E 
Network E can be considered a hybrid between Networks D and B. Network E leverages many 
of the convolution and pooling strategies of Network D, while also using residual connections 
seen in Network B. This testing showed this model to be effective, with results for the tests in the 
upper middle of the group tested. However, both Network G and Network H outperformed this 
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model, as did Network D. Figure 28 below shows the confusion chart of Network E. The false 
negative rate of this network was 23 percent. 

 
Figure 28. Confusion chart of Network E 

4.4.6 Network F 
Network F shows novelty over other networks in its implementation of the convolution process. 
Most networks perform only one convolution type per convolution layer. Network F performs 
three separate convolutions in sequence per convolution layer. The convolutions can either 
decrease or increase the number of resulting parameters proportional to an expansion factor. This 
factor was one of the parameters adjusted in training to achieve optimal results. Network F 
performed well in this testing with acceptable accuracy, precision, and recall results. Figure 29 
below shows the confusion chart of Network F. The false negative rate of this network was 20 
percent. 

 
Figure 29. Confusion Chart of Network F 

4.4.7 Network G 
Network G’s model was created to solve what is called the “vanishing gradient” problem. Before 
the release of Network G, CNNs had an issue of strongly diminishing performance returns for 
each additional network layer past a certain layer number. Network G solves this problem by 
using a new network layer called the residual block. This process is similar to the residual 
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connections used in Network B. Residual connections skip several convolutional layers at a time. 
The layers skipped by a connection are considered the residual block. Residual blocks can be 
selectively skipped if that layer is a hindrance to the overall performance which helps it gain 
increasing accuracy with additional network layers. Network G performed well in testing, with 
accuracy and precision scores in the 90s and a recall in the 80s. The only network that bested it 
in recall is the more powerful Network H, which is a larger version of Network G. Figure 30 
below shows the confusion chart of Network G. The false negative rate of this network was 12 
percent. 

 
Figure 30. Confusion Chart of Network G 

4.4.8 Network H 
Network H is a larger version of the neural network seen in Network G. It is one of the best 
performers in this testing, seeing good accuracy, precision, and best overall recall of networks 
tested. Figure 31 below shows the confusion chart of Network H. The false negative rate of this 
network was 14 percent. 

 
Figure 31. Confusion Chart of Network H 

4.4.9 Network I 
Network I was designed to reduce the required network bandwidth when training the network 
using distributed training (i.e., training over a network). This was done by generally minimizing 
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the size of the network architecture. Network I primarily accomplishes this by aggressively 
reducing parameters in each convolutional layer, leading to a rapid downsampling of the input 
data size. In evaluation, Network I showed better performance than Network A in all categories; 
however, Network A is the only network it outperformed. In recall, Network I resulted in a 
middle of the pack score. Figure 32 below shows the confusion chart of Network I. The false 
negative rate of this network was 29 percent. 

 
Figure 32. Confusion Chart of Network I 

4.4.10 Network J 
Network J was directly based on Network A and was designed to be an improvement over the 
original. The structure of the network greatly resembles Network A with a single, linear 
architecture. The main difference between the two networks lies in the convolution layer and 
convolution filter size. Network J uses substantially smaller convolutional filter kernels 
compared to Network A, making Network J more discriminative in its results. Network J 
substantially improved Network A’s accuracy and precision with scores increasing from 67 to 76 
and 73 to 91, respectively. On recall, there was only a slight improvement from 56 to 58. While 
performance increased, Network J took roughly 16 times longer to train than Network A. Figure 
33 below shows the confusion chart of Network J. The false negative rate of this network was 42 
percent. 

 
Figure 33. Confusion Chart of Network J 
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4.5 Summary of Neural Network Person Detection Performance 
Table 1 shows the name, accuracy, precision, and recall performance of all networks tested. 
Network D, Network G, and Network H were top performers. 

Table 1. Performance of Neural Networks 

Network Accuracy (%) Precision (%) Recall (%) 
Network A 67 73 56 
Network B 78 89 65 
Network C 79 89 65 
Network D 91 98 84 
Network E 86 94 77 
Network F 86 91 80 
Network G 91 93 88 
Network H 91 96 86 
Network I 73 75 71 
Network J 76 91 58 

Table 2 below shows the individual false positive and false negative rates of each network. These 
two error types have the most direct impact on rail network performance and safety. High false 
positive error rates (incorrectly classifying an object as a person) will cause unnecessary train 
response and slow down train operations. High false negative rates (failing to classify a person) 
can result in safety risks since the appropriate train response may not be triggered. These results 
suggest that individual classification networks may not meet railroad safety standards. For all 
networks, the false negative rate is higher than the false positive rate. Future efforts should focus 
on minimizing false negative rates of individual networks. 

Table 2. False Positive and False Negative Rates of Networks 

Network False Positive Rate (%) False Negative Rate (%) 
Network A 21 44 
Network B 8 35 
Network C 8 35 
Network D 2 16 
Network E 5 23 
Network F 8 20 
Network G 7 12 
Network H 4 14 
Network I 24 29 
Network J 6 42 

4.6 Neural Net Committee Algorithm 
Researchers explored a neural network output fusion technique to improve classification 
performance. This output fusion technique is referred to as a committee algorithm. The neural 
network committee is comprised of multiple independent neural networks whose individual 
results are considered a vote in the collective task outcome.  
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4.6.1 Committee Network Selection 
The primary emphasis in the committee network selection is finding algorithms that complement 
each other’s performance. In other words, if a network fails to classify persons in a particular set 
of images, the network should be paired with one that does correctly classify persons within that 
same image set. Finding such complementary networks reduces the chance that the committee 
will be affected by the same source of error. Finding good complementary networks increases 
the efficiency of the committee. Combining networks with similar performances on a set of 
images is redundant since their output will be very similar. Removal of redundant networks 
within the committee by selecting only complementary networks reduces the computational cost 
of the committee and reduces computing hardware necessary on board an ATO train.  
The team evaluated two methods of selecting complementary networks. In the first option for 
selection, the team identified the overall best neural net as the primary (Network D). The images 
which caused Network D to perform poorly (false positives and false negatives) were then 
presented to all other networks. The top two networks with the best performance on the set of 
Network D false positive and false negative images were selected as its complements (Network I 
and Network G) and added to the three-network committee. Figure 34 illustrates this first option 
committee selection process. 

 
Figure 34. First option process for committee selection 

In the second option for selection, the team identified a network as the primary (Network D) and 
then presented the images that caused Network D to perform poorly to all other networks. The 
first complement network was selected based on its performance on Network D’s false positive 
and false negative images. This network is called the first complement (Network I). The images 
that caused Network I to perform poorly were then presented to the remaining networks. The 
second complement was found by evaluating all remaining networks against the false positive 
and false negative image database of Network I. The top performer was selected as the second 
complement (Network H). Figure 35 shows the second option committee selection process. 

 
Figure 35. Second option process for committee selection 
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Table 3 below shows the network performance on the false positive and false negative images of 
Network D. 

Table 3. Network Performance on Network D False Positive and +False Negative Images 
Name of Network Accuracy (%) Precision (%) Recall (%) 

Network A 22 80 19 
Network B 30 86 29 
Network C 30 86 29 
Network E 30 86 29 
Network F 26 75 29 
Network G 48 91 48 
Network H 43 83 48 
Network I 52 86 57 
Network J 17 75 14 
 

Network I was the overall best complement to Network D with the best accuracy and recall 
scores. Network G was the second best complement with the best precision score. Following the 
first option committee selection method, Network D, Network I, and Network G were selected 
for the committee.  
Table 4 below shows the network performance on the false positive and false negative images of 
Network I. 

Table 4. Network Performance on Network I False Positive and +False Negative Images 

Name of Network Accuracy (%) Precision (%) Recall (%) 
Network A 48 53 46 
Network B 63 74 51 
Network C 73 78 72 
Network E 76 84 69 
Network F 77 81 77 
Network G 82 83 85 
Network H 85 89 82 
Network J 69 84 84 

 

Network H was the overall best complement to Network I, as it had the best accuracy and 
precision scores with a recall score that was close to the top. Following the second option 
committee selection method, Network D, Network I, and Network H were selected for the 
committee. 

4.6.2 Committee Network Performance Evaluation 
Researchers evaluated both the first and second option committee algorithms against the same 
266 image evaluation dataset as the individual networks. The team evaluated two voting schemes 
of the committee algorithm output fusion, the majority vote and minority vote.  
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4.6.2.1 Majority Vote Committee Approach 
The majority vote approach requires consensus from two of the three neural networks before an 
object is positively classified (e.g., if only one of three networks classifies an object as a person, 
the object is considered not a person since the majority of networks did not agree on a result). 
Figure 36 illustrates this process. 

 
Figure 36. Illustration of the majority vote process 

Table 5 shows scores of the majority vote committees and the independent Network D score. For 
the majority vote scheme in the Network D, Network I, and Network G committee, accuracy 
remained the same, while recall increased and precision decreased compared to Network D 
alone. In the Network D, Network I, and Network H committee, accuracy and recall increased 
and precision decreased slightly compared to Network D alone.  

Table 5. Committee Results for Majority Vote 

Neural Networks Accuracy (%) Precision (%) Recall (%) 

Network D 91 98 84 

First option committee  
(Network D, Network I, Network G) 91 93 90 

Second option committee  
(Network D, Network I, Network H) 92 96 89 

Table 6 shows the false positive and false negative rates of the majority vote committees. Both 
committees saw a notable decrease in the false negative rate.  

Table 6. False Positive and False Negative Rates of Majority Vote Committees 

Neural Networks False Positive Rate (%) False Negative Rate (%) 

Network D 2 16 

First option committee  
(Network D, Network I, Network G) 7 10 

Second option committee  
(Network D, Network I, Network H) 4 11 

Figure 37 and Figure 38 below show the confusion plots of the two majority vote committees.  
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Figure 37. Confusion plot first option committee majority vote 

 
Figure 38. Confusion plot second option committee majority vote 

4.6.2.2 Minority Vote Committee Approach 
The minority vote approach requires a positive result from just one of the three neural networks 
before an object is positively classified (e.g., if just one of three networks classifies an object as a 
person, the object is identified as a person, since only one network vote is necessary). Figure 39  
shows this process. 

 
Figure 39. Illustration of the minority vote process 

Table 7 shows the minority vote committee scores and independent Network D score. In the 
minority vote scheme, the two committees scored lower in accuracy and precision when 
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compared to Network D alone, but both committees saw a more than 10 percent increase in 
recall score. Although Network D was the single best overall performer, the network saw a 
relatively low recall compared to its accuracy and precision. The committee output fusion 
method mitigated this weakness.  

Table 7. Committee Results for Minority Vote 

Neural Networks Accuracy (%) Precision (%) Recall (%) 

Network D 91 98 84 

First option committee 
(Network D, Network I, Network G) 82 75 96 

Second option committee 
(Network D, Network I, Network H) 82 75 95 

Table 8 below shows the false positive and false negative rates of the minority vote committees. 
With the minority vote scheme, the first option committee saw a 12 percent decrease in false 
negative errors. This shows that committee type output fusion algorithms could be leveraged to 
increase safety of ATO operations. Future data analysis efforts should focus on refining the 
output fusion process. Larger committee size and different voting schemes may result in the 
further decrease of false negative rates. 

Table 8. False Positive and False Negative Rates of Minority Vote Committees 

Neural Networks False Positive Rate (%) False Negative Rate (%) 

Network D 2 16 

First option committee 
(Network D, Network I, Network G) 32 4 

Second option committee (Network D, 
Network I, Network H) 32 5 

Figure 40 and Figure 41 below show the confusion plots of the two minority vote committees. 

 
Figure 40. Confusion plot first option committee minority vote 
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Figure 41. Confusion plot second option committee minority vote 
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5. Conclusion and Recommendations 

In the ATO SP Data Analysis RP project, researchers evaluated the feasibility of using COTS 
software tools and algorithms in the creation of SP data analysis processes capable of supporting 
railroad automation use cases. The team investigated the priority processes of clear path 
detection and classification of people. Researchers analyzed data from a prior ATO SP RP 
project as part of the clear path detection effort. 
The team investigated clear path detection as a possible solution to the difficulty of identifying 
every possible hazard that could occur in the rail environment. Researchers studied visual 
saliency-based and autoencoder-based clear path detection approaches for potential use in clear 
path detection. The preliminary results from both methods suggest that clear path detection is 
feasible for use as a component of an SP by providing class-independent hazard detection. In 
addition, the visual saliency approach produces a list of possible objects that could be fed to an 
object classification algorithm to further refine information related to objects. 
Researchers evaluated 10 convolutional neural networks for use in the classification of people. 
Key findings from the evaluation include: 

• The classification performance of any single network may be insufficient to meet 
confidence levels for operational safety. 

• All classification networks evaluated showed a bias away from false positive results and 
toward false negative results. The average false positive rate of all networks was 9.3 
percent, while the average false negative rate was 27 percent. 

The output of the several neural networks was fused to explore potential classification 
performance benefits. The team evaluated two different committee algorithms that used two 
different voting approaches. Key findings of the committee algorithm evaluation include: 

• The three-network committee algorithm approach saw a maximal reduction in false 
negative rates of 12 percent when compared to the performance of a single network. 

• Output fusion techniques can potentially be leveraged to help meet operational safety 
levels. 

Further refinement of both clear path detection and object detection is needed. Recommended 
future work includes: 

• Investigation into reducing false negative error rates of classification processes – This 
includes determining the cause of high false negative rates compared to false positive 
rates observed in neural networks 

• Implementation and evaluation of additional clear path detection and object detection 
approaches 

• Expansion of and evaluation of classification neural networks to include the set objects 
and conditions of interest identified in the SP requirement documentation (Federal 
Railroad Administration, 2020) 

• Collection of additional data in the railroad environment, including all environmental 
conditions in which an ATO train may operate – This work should build toward a 
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thorough sampling of the environment encountered across all the North American Class I 
railroads 

• Creation of a properly annotated training and evaluation data set – This data set should be 
taken from the railroad environment (per the above recommendation) and carefully 
annotated for use in training and evaluating machine learning algorithms 

• Evaluation of the neural networks using larger railroad-specific data sets 

• Additional work on committee-based approaches to improving object detection reliability 
In summary, the data analysis conducted in this effort suggests that an SP capable of benefiting 
railroad operations is possible, but additional work remains to fully prove the concept. 
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Appendix A. Object Localization Example Images 

 
Figure A1. Sample IR input image 
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Figure A2. Spectral residual saliency map overlaid onto the input image 

 
Figure A3. Fine grained saliency map for input image in Figure 5 
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Figure A4. Spectral residual saliency map for input image 

 
Figure A5. Fine grained saliency map for input image 
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Figure A6. Foreground extracted from the input image for the spectral method of saliency 

using the GrabCut algorithm 
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Figure A7. Foreground extracted from the input image for fine-grained method of saliency 

using the GrabCut algorithm 
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Figure A8. Spectral residual object localization 
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Figure A9. Fine grained object localization 
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Figure A10. Fine grained object localization and rail segmentation 
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Abbreviations and Acronyms 

ACRONYM DEFINITION 

AG Advisory Group 

ATO Automated Train Operations 

CNN Convolutional Neural Network 

COCO Common Objects in Context 

COI Conditions of Interest 

COTS Commercial Off the Shelf 

CSP Cross Spatial Partial 

DA Data Analysis 

DNN Deep Neural Network 

EMS Energy Management Systems 

FOV Field of View 

FRA Federal Railroad Administration 

GMM Gaussian Mixture Models 

GNU GNU’s not Unix 

GPU Graphics Processing Unit 

HOG Histogram of Oriented Gradient 

HOT Head of Train  

IOU Intersection Over Union 

ITC Interoperable Train Control 

OOI Object of Interest 

ReLU Rectified Linear Unit 

RFP Request for Proposal 

RP Rapid Prototype 

SP Sensor Platform 

TWG Technical Working Group 
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