Identity Management for Interoperable PTC
Systems in Bandwidth-Limited Environments

The Final Report

Part 3 (of three parts)
The Proposed Solution

Prepared for the Federal Railroad Administration
Under Grant Number FR-TEC-0006-11-01-00/20.321

Version prepared on July 26" 2014 as a revision to the version from May 2014.

Principal Investigator: Prof. Rajni Goel, Howard University

Co-Principal Investigators: Prof. Duminda Wijesekera, George Mason University

Dr. Andre B. Bondi, Siemens Corporation

Table of Contents

EX@CUtiVe SUIMMATY ...oovecrmsmssmssnsmsssansses 3
Section 1. Hash Seed Generation Methodology ... 4
1.A. Objectives and ReqUITremMENtSccouusmmsmsmssssmssssmsssssssssssmssssmssssmsssssssssssassssssssssssssassssssssssssns 4
1.B Hash Generation PrincCipal.......mmmsmsssssssssssssssssssssssssssssssssssssses 4
1.B.1 LaMPOTT SCHEIMA ..t ssss st s ssasssssssssanes 5
TLB.2. TESLA ettt et essesssses s ss s b RS R R R R R 5
Section 2. Hash Generation Protocols for WIUS ... 7
2.1. Distribute Cryptographic Parameters........mmemmemmsmmsmmssmssssssssssssssssssss 8

1. The back-office sets the cryptographic parameters....... e 8

2. Provide Cryptographic Parameters to Trains Admitted into the Region........cceeeererirnne. 9

3. On Receipt of Cryptographic Material, WIUs or TRAINS Compute Hash Sequences.....9

4. WIU Computes Hash value and Transmits a Broadcast Packetcocomneenensineeseenssnnens 9

5. A Train Receives a Packet and Checks Integrity (perfect Synchronization).c...... 10

6. A Train Receives a Packet and Checks Integrity (imperfect Synchronization)............. 11
Section 2. Implementing the WIU Message Hash Generation...........counmsnsessennes 14
WIU Client and Server COMPOSItioNccummmumsmmsmsmismsmismsmssasas 15
Development Branch DeCOMPOSITION ... ssssessssssssssssssssssssssssssssssasees 16

Use of Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).......... 18
Representation INVATIant. ...t ssses 18

2S5 () g =) 1 Lol T 20

List of Figures

Figure 1. 1: TESLA [PeITig2002].....ccicureeereereesrermrersseessesssessesssessessesssssssesssssssesssssssesssssssssssessssssssssssssesssssssesssens 6
Figure 2. 1: CryptographiC ENGINe ... ssssssssssssssssssssssssssssssssssasssssssssans 7
Figure 2. 2: Time Based Communication Dia@rramcmemnsmeesnsssssesssssssesssssssssssssssssssanes 12
Figure 2. 3: Phased DeVEIOPMENT ...t sssssssssssesssssssssssssssssssssssssssssssssssssssasssssssssssanes 14
Figure 2. 4: Server and Client Process Call Graphis. ... isnssesssssssssesssssssssssssssssssases 16
Figure 2. 5: Software Branch TiMeEliNe ... ssssssssssssssssssssssssssssssssssssases 17
Figure 2. 6: FRA-3 Branch - Command Shell ... sessesssssssssssssssssssssssssssanes 18
List of Tables

Table 2. 1: Describing Modules in FIGUIe 2.1. ... sssanes 8
Table 2. 2: EXplanation Of FIGUIE 2.2 ... ssases 12
Table 2. 3: Explanation of the Developmental Phases Shown in Figure 2.4.......covveereiniinnennes 15
Table 2. 4: SOftWware ROAAMAD ..o sssanes 17

Executive Summary

Positive Train Control is a wireless based system designed to provide comprehensive safety
coverage for passenger and cargo trains operating on US railroads by 2015. Mandated by
Rail Safety Improvement Act of 2008 (RISA 2008), major railroads have designed a broad
architecture consisting of two networks; namely the Signaling Network (SN) and the
Wayside Interface Network (WIN) powered by software-defined radios (SDRs) that use the
same 220MHz range. The Signaling Network provides authorities for trains to enter fixed
blocks of track and other signal functions and the Wayside Interface Network provide
sensory information about the vicinity of the tracks. The railroad community has decided
that both network require message integrity and availability but not confidentiality for both

networks.

From published documents, the Wayside Interface Network uses truncated SHA-1 hashed
keys to ensure the integrity of the WIU messages. We have found that this choice may
weaken the security requirements of WIU message broadcasts. We demonstrate these

vulnerabilities using the details of the proposed protocols.

Part 2 of this report showed that the existing wayside interface protocol has vulnerabilities.
This part (Part 3) describes a solution that overcomes those vulnerabilities. OQur solution to
overcome the hash breaking attack is to use a different hash for every hash at the every time
moment. This way the beacon’s integrity values will not be repeated over for a long time.
Given that to change hashes frequently require precise clocks, we first show a solution that
operates under this strict assumption and show a relaxed version that does not depend on

precisely synchronized clocks.

Although we have listed all investigators, the work reported in the section was solely done
by the George Mason University team consisting of Anthony Melaragno, Damindra Bandara

and Duminda Wijesekera.

Section 1. Hash Seed Generation Methodology

This section describes our way to avoid the vulnerabilities shown to exist in the WIU

beaconing protocol.

1.A. Objectives and Requirements
The basic objective is to create a new hash key per every message beacon generated by any

given WIU and to ensure that that two different WIU’s do not generate the same beacon. The
method described in this report assumes that the WIU network is reachable by the back

office on a periodic basis.

In order to formally specify, let there be WIU’s {W;: 1<i<n} be the collection of WIU’s. Let
{Sij: 1=i=n, 1<j } be the jth hash seed of the it WIU. Then the requirement to have all hash

seeds of all beacons to be distinct is formally specified as Vi,j,i’,j’ [(i,j) =(i,’,j’) =Si= Siy]

1.B Hash Generation Principal

Our method for every WIU to generate a different seed uses the two networks. First when a
train is granted entry to a segment (such as a block or a consecutive set of blocks) the back
office uses the signaling network to hand over three parameters. For the sake of
explanation, assume that these parameters are two different primes and a time that starts
(or started) a hash generation period. Say that the two primes are p and q and t. These

values are also conveyed to the WIU’s by the back office.

Then after j time units (say j seconds) ith WIU uses the jth hash seed created by using a
TESLA like protocol that started with a generating seed pi. In addition, at the (t+j)th time
WIU i uses a different hashing algorithm. Suppose there are M hash functions approved to
be used for hash generation and f(a,b,c,d) be any one-to-one (injective) function. Then we
can use [f(p,q,i,j) mod m] to be the function used to create the hash by the ith WIU at time t+j.
An example of f(a,b,c,d) is 2a3b5¢7d, Due to the unique prime factorization of any number,
[2a3b5¢7d = 2a3b'5¢7d = a=a’ A b=b’ A c=c’ A d=d’] thereby showing that f is a one to one
function. Consequently, the (t+j)th beacon message uses hash seed pigi and uses the hashing

algorithm [f(p,q,i,j) mod m].

Given that changing the hash per every message require that both clocks at the WIU beacon
and the recipient On Board Unit (OBU) be synchronized exactly. But we are aware that at
best both clocks can be synchronized against a GPU clock. Consequently, we allow a time
period, say A(i), a validity period for the ith (hash, algorithm) pair. Our system is based on an
enhancement of the TESLA (Timed Efficient Stream Loss-tolerant Authentication)
[Perrig2005] protocol. TESLA was based on a previously developed one-time password
schema by Lamport [Lamport1981]. In order for this report to be self-contained, we first,

describe the necessary details of Lamport’s schema and the TELSA protocol.

1.B.1 Lamport Schema
Lamport’s schema has two steps.

In the first step, the schema starts with
1. Aninitial seed (say X) and
2. Aseeded hash function (say H) like SHA-256 and

3. N, the number of different hash keys desired to create hash values for data.

The second step creates a hash key chain of length with hi=hash(X,H) and hn.1=hash(hy,H).

Then the required sequence of hash keys are [hn+1, hy,.....h1]

The security of the schema uses the fact that creating h; from hi.; involves reversing a hash,
because hj:1=hash(h;H) and relies on the length of the hash key and the strength of the

hashing algorithm H.

1.B.2. TESLA
The TESLA protocol uses the same idea as Lamport’s, scheme, but associates every has

value with a time interval (that is the time between receiving two successive has values)
Figure 1.1 shows example time intervals of using a 4-item long hash chain. This will require
that the system and the client be time synchronized. Limiting the time during which a
password is valid reduces the risk of a replay attack. In the case of OBU/WIU
communication, changing the HMAC key at previously agreed times reduce the risk of a
replay attack or hash spoofing, provided the original generation seed is not exposed to an

imposture.

hash(H2) hash(H3) hash(H4) hash(X)

H1 H2 H3 H4 X
hasj]/'(m) hasr|1‘(H2) hasr|1'(H3) hasr|1'(H4)
H1' H2' H3' H4'
Interval 1 Interval 2 Interval 3 Interval 4 Time

Figure 1. 1: TESLA [Perrig2002]

We now describe our enhancement of the TESLA protocol for secure WIU broadcasts.

Conceptually, in order to use TESLA for secure WIU broadcasts, we need to address issues

that are not addressed in the original TESLA protocol or any of its enhancements (to the

best of our knowledge).

1.
2.

Reaching an agreement on the length of a hash chain and other parameters.

Finding an alternate solution in case the hash chain finishes prior to establishing a
new one.

The protocol used by a train that enters a region that already has a running hash
chain.

Time synchronization failures to determine the time interval of hash validity.

Now we summarize the conceptual framework we have created up to now for solving these

issues.

1.

We use the signaling network in using agreement on the proposed cryptographic
parameters, including the key lengths.

We have developed and implemented a fallback solution in case key chains run out.
We describe a protocol used by a train that enters a region that has an already
running hash chain.

Currently we use a preset time synchronization window of 30 seconds for hash key
interval, but have not found any synchronization problems. Ongoing work
experiments are attempting to obtain variable time synchronization windows in a

WIU network.

Section 2. Hash Generation Protocols for WiUs

This section describes protocols to generate secure hashes for the WIU network. The
following diagram segments the processes and associated data messages necessary to
support the architecture. The figure illustrated below describes a cryptographic engine
which processes received WIU messages and validates the message, the CRC, the Integrity

Value, and the logical consistency.

<<system>> : cryptoengine
Data Packets [CRC][IV][M]
<<RF Radio EE— <<data analysis <<data analysis
Interface>> : RF component>> : component>> :
Radio CheckMessage() CheckCRC()
K\
5
|y
\\\l\\

Rep
<<data analysis [M]+[Result] <<data analysis Result
component>> : component>> :

CheckHMAC() RepOk()
<<Locomotive Control

System>>:
Locomotive Process

Figure 2. 1: Cryptographic Engine
The system can be decomposed into functional components, which are used to determine
the integrity and logical consistency of a message, as shown in Figure 2.1. Table 2.1
describes the functional contributions of each module in Figure 2.1. The receiver
component of the RF interface is connected to the crypto engine and accessible through a
standard Ethernet interface. Data packets are received and converted to a readable format.
Conceptually the following occurs and will be described in greater detail in the following
section:
* The message is checked for the correct data length prior to processing
* The message is queued and then checked for data corruption during transmission
(CRC Errors)
* The CRCis stripped off the packet and the result of the CRC check is queued
¢ The IV is checked to ensure that the data message has not been tampered with and
the result is checked
* The data representation invariant is checked as well as the results from the previous

steps

Component

Message Interface

Description

RF Radio

RF Radio Interface

The (RF) radio sends data packets (that
encapsulates the WIU message) using TCP or
UDP. Once de-capsulated, the WIU Message is
placed into a queue.

Check Message

Data Packets

Queued WIU messages are dequeued and
checked for data integrity and sent to the
checkCRC function. This is symbolized as
[CRC][IV][M].

Check CRC

WIU Message
Datagram

The WIU message CRC is checked and the result
placed into a searchable database for forensic
analysis. If successful the HMAC is checked.

Check HMAC

WIU Message
Datagram

The WIU Message is checked against the pseudo
randomly selected (salt, algorithm) pair for a
chosen time period. The result is placed into a
database for later forensic analysis.

Rep Ok

WIU Message
Datagram

Once verified, the representation invariant is
checked for logical consistency. The CRC hash
value, the message, time period, and expected
state of the system are compared and action is
taken as designed.

Table 2. 1: Describing Modules in Figure 2.1.

As mentioned in the table, all items are logged so that forensics can be analyzed
concurrently while the radios are communicating and post communication event. This
would allow for near real time situational awareness and action as the analysis of the data is
communicated back to the signaling network. The architecture is designed for future
expansion and research to support a cognitive engine to evaluate risk conditions. We now

describe the details of the designed and implemented system.

2.1. Distribute Cryptographic Parameters
On a regular time interval (say the ith time interval since the start of timing in the WIU

network) the protocol SetCryptoParameters(_) is issued by the back office to set the

cryptographic parameters of the jth time interval.

1. The back-office sets the cryptographic parameters
SetCryptoParameters(Start of Time: ty, Time Interval: A, number of hash functions: M,

hash sequence length: N)
{Back Office: (to,A,M,N) — WIU Network
Back Office: (to,A,M,N) — Signaling Network

2. Provide Cryptographic Parameters to Trains Admitted into the Region

GiveCryptoPrametesToTrains(Start of Time: to, Time Interval: A, number of hash
functions: WIU Message m, hash sequence length: N)

{Time of granting passage of Authority

Signaling Node(to,A,m,n) — OBU

}

3. On Receipt of Cryptographic Material, WIUs or TRAINS Compute Hash Sequences
On receipt of cryptographic parameters (to,A,M,N) the WIU creates the hashes to be used on

broadcast messages.

CreateTESLAhashes(Start of Time: to, Time Interval: A, number of hash functions: M, hash

sequence length: N)

{
CryptoQueue keyAlgorithmChain

//pi represents the specific prime used for a particular broadcast area
// the prime acts as the initial seed for salt creation
HashArray[0]:==p};
for(j:0;j=N)
AbstractDataType cryptoelement;
cryptoelement.crypto = CreateHash(HashArray[pi])
cryptoelement.algorithm = HashAlgorithm(p! mod M);
keyAlgorithmChain.push(cryptoelement);

4. WIU Computes Hash value and Transmits a Broadcast Packet

WIUComputingHash(Message wiuMessage, Start of Time: to, Time Interval: A, number of
hash functions: M, hash sequence length: N)

{x: time

x:=getTimeOfDay();

char hash[32];
if (to<x< to+,A.n){ /* within n time intevals */
in= [(x-to)/ Al ; /*Computes the hash time intervalx/
hashKey::= HashArray[N-i]; /* Derive the hash key/
hashseed = (keyAlgorithmChain.pop()).cryptoelement
IV ::= hash (hashseed xor wiuMessage); /*compute hash key*/
packet::=createpacket(message,lV, header, trailer);
transmit(packet);
}

5. A Train Receives a Packet and Checks Integrity (perfect Synchronization).

The following method to check integrity assumes that the WIUs and Trains have perfectly

synchronized clocks. Next we present an enhancement that will relax these assumptions.

getPacket(packet: p);
{ Integer: Interval,
Start time: to,
Time Interval: A,
Number of hash functions: M,
Hash Sequence length: N,
time: t
//Testing if we got the entire valid message
// Since we know the protocol length if we mod the protocol by the
// protocol length we then know if it is valid or not - first check
if(p mod messageSize == 0) // Valid Message
{ // Extracting the first 32 bits from the received message
char *rx_crc = (char *) memncpy(p, 0, 32)
// Extracting the rest of the CRC from the packet
char *calc_crc = (char *) memncpy(p, 32, sizeof(p)
// We are now calculating the CRC for message errors

calc_crc = crc(calc_crc)

10

if(strncpy(rx_crc, calc_crc, 32) == true)

{

else

// Passed the CRC error checking
wiuMessage[sizeof(WIUmessage)]
//extracting the wiu message
memncpy(p+32, sizeof(wiumessageframe), wiuMessage)
if(WIUComputingHash (wiuMessage)== True)
{ Message is correct

Perform actions
j::= packet.wiuld;
h::=packet.hash;
t::=getTimeOfDay();
in= [(x-to)/ Al ; /# Derive the hash key/
hashKey::= HashArray[N-i]; /* compute hash key*/
hashAlgo::= hashKey (mod m);
hash::= createHash(p.content, hashAlgo,hashKey)
/*create message hash*/
}
else

{ Log the message

}

// Log — Date, Time, Location CRC error and message

// Information for later forensic investigation

6. A Train Receives a Packet and Checks Integrity (imperfect Synchronization).

When a packet is received by the locomotive’s OBU two conditions need to be checked. The

first is that the CRC needs to be properly verified to ensure that the packet was not

11

corrupted in transmission. The second condition is that the integrity value (IV) has been

verified. This is done traditionally by taking a hash of the message.

€A €B
B bt YA e()
._» e
A TR a(t0—>1)l’$(t0—>1)atA a(tos1), K(tos1), ta
R T Itﬁrta a(tis2), K(tis2), ta
3] = a(ta—s), k(tass), ta
Communication —» 2—3 2—3
B . a(t1—2), k(t1-2), A
s MPerlod (—>)_’ (—>)a Oé(tn 17),K}(tn 17),tA
--- Iw+m
to —
o St |alta).Alta). ta)
3
\/ / \
Time Lamport Events Key - Algorithm
Events

Figure 2. 2: Time Based Communication Diagram

The keys used in our hash checking algorithm is explained using Figure 2.2, where the
vertical axis illustrates the flow of time, event, and the key in a set. The description of the

variables and there purpose is shown in Table 2.3:

Variables Purpose
@ € Qgigorithms A cryptographic algorithm is chosen from the set of all available
hash functions for the time period t. The time period runs from
to to th.
A cryptographic salt is generated and used for the time period
K; € Ksqits and represents a salt that is dequeued from the FILO queue.

The methodology for generating and using the salt follows from
the uTesla specification.

tA As in uTesla, the time difference encapsulates processing delay,
propagation delay, clock drift, and an error factor. During the
delta time period both the current and next key are considered
active, and we check the received packet’s integrity using both.

Lamport Event Each message received with the correct IV for the time period
would increment the lamport clock. The lamport clock would
act as another synchronization point.

Table 2. 2: Explanation of Figure 2.2

When a message is received the OBU looks at the received time and the current time if it is
within the time delta it uses the algorithm and key. If it is not it will begin increment to the
next key, algorithm, for the appropriate time period. The following pseudo code can explain

the interaction especially in an expiration time period.

12

Function Syncrhonizeit(IV)
{
currentTime = getTime()
// Current successful count of evnets
eventCounter = getCounter()
CryptoEntry entry = CryptoEntry SearchKeyChain(eventCounter)
[VTime = entry.getlVTimePeriod
If(IVTime == currentTime)
Syncrhonized
Else
If(IVTime < currentTime - (Propgation Delay + Processing Delay))
eventCounter++
return ((CryptoEntry) KeyChain.pop())
if(IVTime > currentTime - (Propgation Delay + Processing Delay))
eventCounter—
return entry

Endif

13

Section 2. Implementing the WIU Message Hash Genera

Protocol
PhaS e 1 Decomposition

| ' |
Phase 2
| : |
Phase3 . . Integration

Figure 2. 3: Phased Development

We implemented the software using open source cryptographic libraries, specifically,
libmhash, openss], libgcrypt, and linux queuing. The libraries provided proven
implementation of the software of the critical cryptographic libraries. The phases that
were used to develop the software is illustrated in Figure 2.4. Table 2.4 explains the activity

done during each of the phases.

14

Phase

Phase Title

Phase 1: Protocol
Decomposition

The purpose of the phase is to identify and decompose the
protocol message set into implementable components.

Phase 2: Development
and Modeling

The phase had two distinct goals and objectives:
Development: Identifying Software, development and
analyzing results.

Modeling: Analyzing the Radio Frequency (RF) for issues
pertaining to the communications environment

Phase 3: Component
Development

Build System: Using Autoconf / autotools / libtools were
to define the build environment for maximum portability
across platforms. Additionally, Doxygen was used to
document the developed libraries.

Library Integration: Installed chosen libraries were
installed in a Linux environment. Initially, Ubuntu
12.04LTS, as compatibility improved with GNU Radio, a
decision was made to move to a Redhat variant therefore
Fedora 20 was chosen. The cryptographic libraries are
retrieved using the Fedora package manager.

RF Modeling: The RF environment was modeled in Matlab
to model multipath and RF obstructions for an urban and
high-speed conditions.

Table 2. 3: Explanation of the Developmental Phases Shown in Figure 2.4

WIU Client and Server Composition

We developed WIU client and server architectures utilizing open source software. As

previously mentioned Fedora Linux was used as an operating system as well as open source

cryptographic libraries in phases 2 and 3. The physical layer was abstracted by using TCP

and UDP protocol where the WIU data frames were embedded within the datagrams. CRC

and IV values were evaluated though using the approach.

15

repoikc

tepservice

listan

getcurrent

Pthread_create
pthread_join

sleap

(a) Server Process

Figure 2. 4: Server and Client Process Call Graphs

checkercencode

checkhmac

memset
pthread_mutex_lock
pthread_mutex_unlock
socket
strerror
exit
wiuudp
setsockopt
perror
hton!
htons
bind
inet_addr
fentl
recvfrom
getcurrent

sieep

winclientudp.c

(b) Client Process

mhash_init

mhash_deinit

write_log

rintf

We show the server and client processes decompositions in Figure 2.5. Each of the

processes is started by a calling pthread. Continuous salt generation and algorithm

selection is not included in the first phase of development. Therefore all of the keys and

algorithms follow Perrig’s modified approach. It was later implemented as a proof of

concept and awaiting integration into the main branch. As illustrated in the call graph

check functions are used to check the HMAC for the hash for the intended time period and

check CRC is used to check for data corruption.

Development Branch Decomposition
The development of the software began with developing a common library that is shared by

both the client and the server through specific software branches. The software roadmap is

described in table 2.5.

Branch Name Branch Description Baseline No.

FRA-1 1. Defined and integrated core
cryptoengine = checkFuncions(): prototype functions FRA-1.0.2
¢ CRC 2. Integrated into RF Radio (Status
3. Defined base Replnvariant Completed)

¢ HMAC

Interface

16

* Base Replnvariant
* Check Message

FRA-2 Continuous Generation of FRA-2.0
cryptographic selection both the keys | (Status
and algorithms. Completed)
FRA-3
Synchronization algorithm and FRA-3.0
Cryptoengine-> Syncrhonizelt() prototype to synchronize (Status
communications. Completed)
FRA-4 Python test environment, which FRA-4.0
integrates the various branches in a (Development)

test environment, which can be called
and tested.

Table 2. 4: Software Roadmap

As described in table 2.5, FRA branches were created to integrate into the main branch of

FRA-4. FRA-4 allows for testing the WIU in an environment protocol under a variety of

experiments and threat scenarios figure 2.6 illustrates the python environment that allows

for future red team testing.

2012 2013 2013-2014

Main
Branch

FRA-1

FRA-2

FRA-3

Figure 2. 5: Software Branch Timeline

time

FRA-4

Branches were completed and at FRA-4 the integration of the software into a python

environment has started. FRA-4 acts as the final integration point to fully test the WIU

protocol under a variety of security constraints in an RF environment and will allow

integration of the Risk Engine.

17

Documented commands (type help <topic>):

bye get_wiu_status set_frequency set_glength
dumpcrypto help set_gain set_seed
gen_crypto set_beconperiod set_modulation start_rx
get_config_status set_crypto set_power testquery

Undocumented commands:

posttobasex

(ptc—cshz: I

Figure 2. 6: FRA-3 Branch - Command Shell

As illustrated in Figure 2.6 a python command shell was created to support a variety of
security and WIU specific messages. This will allow greater interactions and
experimentation to fully test the resilience of security methods including the Tesla

integration.

Use of Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)
Two protocols were used in the initial design TCP and UDP. The layer 3 (IP) and 4

(TCP/UDP) protocols were chosen due to the simplicity of using a socket interface. The
TCP/IP and UDP/IP interface was used to interface to the Network Interface Card (NIC)
card that communicated to the radio. The request messages, such as get WIU status were
encapsulated in TCP packets. Additionally, it had the CRC as well as the IV value. Once the
transmission started the WIU packets were encapsulated into UDP packets. The project
abstracted away the physical layer to make it possible to prove the cryptographic prototype.

The next phase of the project would encompass physical aspects of the Radio Frequencies.

Representation Invariant
The representation invariant provides a logical check to verify that the data itself is

consistent and does not pose a risk to the system. The following is an algorithm description

of the Representation invariant.

Function ErrorCode RepInvariant(WiuMessage M, int WiuMessageType){
If(M mod WiuMessageType != 0)
ErrorCode = MessageError

[f(M.wiu_id != Possible Wiulds

18

ErrorCode = PossibleWiulds

return ErrorCode

}

The error code will then be used to verify characteristics of the communication
environment and possibly provide post communications forensics as well as continuous

situational awareness of the communications environment.

19

References

[Perrig2002] Perrig,A. and Tygar J.D., Secure Broadcast Communication in Wired and
Wireless Networks, Kluwer Academic Publishers, 2002,101 Philip Drive, Assinippi Park,
Norwell Massachusetts 020601 USA,1st,0-7923- 7650-1.

[S9001] S9001 ITC - System Reference Architecture, Version 1.4, Interoperable Train
Control Architecture Team, August 2011.

[S9202] AAR Manual of Standards and Recommended Practices. Interoperable Train
Control: Wayside Interface Unit Requirements, Standard S-9202, adopted 2012.

[S9352A] PTC Office-Locomotive Segment ICD, Release 2.10, 2/29/2012.

[S9352B] S-9352B Interoperable Train Control (ITC): Wayside-Locomotive Interface
Control Document. DRAFT FOR COMMENT - DO NOT USE. Version DRAFT 3, 21 December
2010.

[S9352C] AAR Manual of Standards and Recommended Practices: Office Architecture and
Railroad Electronics Messaging. S-9352C: ITC TIME AND LOCATION—INTERFACE
CONTROL DOCUMENT (ICD), adopted 2012.

[Wang2005] Xiaoyun Wang, Yiqun Yin, and Hongbo Yu, Finding collisions in the full sha-1,
In Proceedings of Crypto, August 2005

[WIU-AAR9202_2010] Interoperable Train Control Wayside Interface Unit Requirements
Railway Electronics-AAR S-9202_2010

20

