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PREFACE 

The Federal Railroad Administration is sponsoring research 
development and demonstration programs to provide improved safety, 
performance, speed, reliability and maintainability of rail 
transportation systems at reduced life cycle costs. A major 
portion of these efforts is related to·improvement of the dynamic 
characteristics of rail vehicles and track structures. 

Under the RR 515 Project, Transportation Systems Center is 
maintaining a center for resources to be applied to these programs. 
As part of this effort, TSC has been acquiring, developing and 
extending analysis tools to support these FRA objectives. 

As a result of a survey of FRA requirements and existing 
analysis tools, it was found that there is a need for extension 
of the frequency domain linear analysis computer programs to 
include significant non-linearities without incurring the large 
cost associated with direct numerical integration of the equations 
of motion. This report represents an initial study in the 
applicability of the describing function approach used in 
control system analysis to predict the stability of rail vehicles. 

The research effort described in this report was conducted 
by Professor Garg of Duke University while serving under a 
temporary appointment to the staff of Transportation Systems 
Center of the U.S. Department of Transportation. 

The author wishes to acknowledge many helpful discussions 
held with Dr. Herbert Weinstock of the TSC and Professor Armand 
B. Perlman during the course of this research. Mr. Richard 
Gunzel provided programming support for the DEC System available 
at the Transportation Systems Center 
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1 . INTRODUCTION 

A significant amount of research effort in recent years has 

dealt with the problem of hunting of railway axles and trucks [BS, 

C2, D2, L3, Ml, M2, Rl, Wl, W2].* Hunting in rail vehicles is a 

continuous lateral oscillation and may be termed as primary or 

secondary. Primary hunting refers to a strongly coupled lateral 

motion of car body and truck which usually takes place at low 

speeds. At higher speeds, lateral oscillations of trucks and 

axles take place in a coupled lateral and yawing mode. This 

phenomenum, known as secondary hunting, tends to limit the safe 

operating speeds of rail vehicles. Above critical speeds the 

secondary hunting leads to an excessive lateral motion,with wheel 

flanges banging from rail to rail and sometimes riding over the rail 

to cause vehicle derailment. Conventionally, in order to correct 

the situation, the vehicle is withdrawn from service and the wheels 

are machined to their original profile before being reintroduced 

in serv.i:ce. 

Normally, the wheels are designed with a straight conical taper 

and a flange. However, after having been in operation for sometime 

the conical profile gets worn to a hollowed profile to conform to 

the railhead profile [W3]. The wheel profile turns into a continuous 

* Numbers in square brackets designate references at the end 
of report. 
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curve, and during hunting of the wheelset axle the contact·point 

moves laterally along these two profiles. When the amplitude of 

oscillations becomes excessive, one of the contact points moves 

way into the flange. For large amplitude oscillations it is con­

ceivable that the wheel will ride the rail. An appropriately 

profiled wheel may prevent derailment. 

While there is great interest in attaining high speeds 

for travel via rail vehicles, there are also various problems 

associated with high speed operation, including safety, stability, 

and wear. From a safety viewpoint, for example, it is necessary to 

limit the transverse efforts exerted by the vehicles onto the rails 

to values compatible with the lateral strength of the track. Also, 

tread wear is associated with a decrease in ride quality which leads 

to passenger discomfort. Lateral track elasticity is dependent upon 

factors such as rail head profile, tie spacing and torsional 

resistance of the track. The last factor is based upon the force 

required to secure the track to the ties and base plates. 

Furthermore, track elasticity deviates from its initial value 

during the track life time. The margin of safety from derailment 

is a function of track lateral stability. In the present analysis, 

in addition to several others, the effect of variation in track 

stiffness on vehicle critical speed is examined. 

Dynamic analysis of rail-wheel interaction has been convention­

ally carried out using linear techniques. The results are valid 

for small perturbation from equilibrium point and for well main­

tained tracks [Wl]. In actual practice, however, the rails may have 
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large vertical and lateral irregularities. In addition, the wheel 

profile may deviate from the initial conical configuration due to 

wheel wear after running for a certain length of time. As reported 

in the literature [B3,C2,D2,L2,M3,Rl,W4], primarily the following 

approaches have been used for an evaluation of critical speeds and 

limit cycle analysis: 

1) Small Perturbation Linearization 

2) Numerical Integration Schemes 

3) Krylov and Bogoliubov Method 

A linearized analysis is valid only for small deviations from 

the equilibrium or operating point. Previous studies[C3,G2] have 

indicated that a linearized analysis of nonlinear equations predicts 

that below a criLical or hunting speed any perturbations of motion 

from the equilibrium point simply decay. Above the hunting speeds, 

however, the oscillations grow subsequent to any deviations from 

the equilibrium states. The results derived on the basis of linear­

ized analysis may not hold for large deviations and hence may not 

provide a realistic insight into the dynamic behavior of actual 

systems. 

The dynamics of the rail-wheel interaction includes several 

nonlinear relationships which lead to a formulation of the model 

in terms of nonlinear dynamical equations. Integration of these 

equations to arrive at a temporal response can be carried out for 

the linearized equations or in their nonlinear forms using well­

known numerical methods (for example, via a Runge-Kutta algorithm). 

To find the solutions as a function of time, one needs to specify 
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the initial condition for each state variable in terms of which the 

system equations are formulated. For the linear system, the trans­

ient response can be obtained for any set of initial conditions. 

For another set of initial conditions, one can expect to obtain 

similar dynamical behavior for the system; this is true,since in 

these cases the principles of superposition and homogeneity would 

hold. 

To obtain the global or in-the-large behavior of the system 

in which the variables,such as the displacement of the wheel on the 

rail profile, may be allowed to have large deviations, the application 

of linear methods may yield erroneous results. This is true both 

qualitatively and quantitatively, since the nonlinearities may be 

important, and the linear analysis may fail to reveal their dynamic 

influence. Computer techniques for system simulation provide straight­

forward and realizable solution procedures and calculations for any 

set of given initial conditions. However, for a different set of 

initial conditions, the solution is to be carried out again,and 

unfortunately, in the case of nonlinear systems, the solution of 

the system under two sets of initial conditions may be vastly different. 

It is essential, therefore, that to obtain a global solution valid 

under all operating conditions, one would have to carry out a large 

number of numerical computational runs. This process can be 

excessively time consuming and prohibitively expensive due to the 

necessity of checking a large set of initial conditions. Even so, 

there is no guarantee that there does not exist an initial condition 

for which the behavior of the system will be very different from others. 
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Approximate methods have also been used for a variety of problems 

involving the analysis of nonlinear oscillations. Krylov and Bogoliubov 

method [B4] is one such technique,and it has been used for evaluating 

limit cycle oscillation amplitude of systems involving rail-wheel 

interactions. However, as is true for any approximate method, a 

significant associated problem is that of accuracy. A certain 

degree of assurance is necessary to guarantee the applicability of 

the method involved and ensure the validity of both qualitative and 

quantitative results. The method attributed to Krylov and Bogoliubov has 

been used to determine the oscillations of periodic response. The 

method also gives in evidence the transient process corresponding to 

small amplitude variations in oscillations. A major limitation of 

the technique,however, is that it is only applicable to systems de­

scribed by second-order differential equations. Furthermore, the approach 

linearizes the nonlinear system, with the assumption that, in the 

neighborhood of the steady-state oscillations, the transient process 

approximates the transient response of an equivalent linear system with 

slowly varying amplitude and frequency. 

A large number of practical nonlinear systems cannot be adequately 

described by a second-order nonlinear differential equation. The 

method of describing function, often called the method of harmonic 

linearization, is applicable to systems described by high-order 

nonlinear differential equations. This method is very commonly 

applied for stability analysis and investigation of sustained nonlinear 

oscillations, called limit cycles. The method was developed by 

Kochenburger inthe U.S. [K2,Gl] and is extensively used in connection 
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with problems of control system analysis. 

The basic concept behind the describing function method is 

that first the given differential equations are reformulated in 

terms of an autonomous nonlinear feedback system,with the non­

linearity isolated from the linear portion of the system. It is of 

basic interest to determine whether the system can exhibit periodic 

oscillations. Furthermore, the stability of these oscillations can 

be obtained using the describing function technique. 

To solve a problem using describing function analysis it is 

assumed that the input to the nonlinearity is a sinusoidal function 

of specific amplitude A and a constant frequency of oscillation w. 

The requirements on the existence of an oscillatory solution are 

based on the filter hypothesis. This hypothesis implies that the 

distorted signal resulting as the output of the nonlinearity has 

the higher harmonics filtered out by the linear plant and only the 

fundamental frequency remains. This fundamental harmonic gives rise 

to the assumed oscillatory solution of the system. The postulation 

is quite realistic, since the nonlinear system may exhibit periodic 

oscillations arbitrarily close to a pure sinusoid. A describing 

function for a general nonlinearity may be assumed to correspond to 

a complex input amplitude and frequency-dependent transfer function. 

There are certain applicability conditions on the nonlinear 

characteristic and linear portion of the system for the describing 

function analysis to be valid. These include the validity of general­

ized filter property of the system, which is easily satisfied if 

the linear part of the system is stable. If an oscillatory input 
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is applied to an unstable linear part of the system, the filter 

property has no meaning. The second applicability condition is 

that there should be no open~oop purely imaginary poles in the linear 

part of the system, i.e., the linear plant should be open-loop stable. 

Finally, the nonlinear function should have finite partial derivatives. 

This condition is satisfied by requiring the components of the describ­

ing function to be monotonic functions of amplitude A in the neighborhood 

of the value of A that corresponds to the actual periodic solution. 
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2. DYNAMIC EQUATIONS OF \MOTION FOR THE SUSPENDED WHEELSET 

For high speed hunting, car body and truck masses are effectively 

isolated from wheelset. Dynamic equations have been written for 

investigating the guidance and stability of complete vehicle models 

[C3], half-car models [Wl], trucks [G2] and simple wheelsets [Ll, W2]. 

In addition,experimental results have been reported [Dl,M2] including , 

their comparisons with the analytically obtained results. These 

experiments have been carried out on simple wheelset models, scaled 

vehicles, and conventional rail vehicles. Obviously, the more degrees 

of freedom included in the model, the more complex it becomes. 

Based upon such analyses one can optimize suspension designs, evaluate 

wheel-rail forces, vehicle displacement, velocity, and acceleration 

levels, and construct suitable control strategies to satisfy any 

predefined performance criteria, e.g., passenger comfort, or 

vehicle nerailment. In addition it may be desirable to minimize 

wear between the wheels and guideway structure, and provide 

maximum adhesion for both traction and braking. 

As pointed out above, many models, with varying degrees 

of sophistication,are generally available in the literature. For 

practical purposes relative to secondary hunting, however, a simplified 

suspended wheelset model is adequate to represent wheel-rail dynamics. 

The wheelset configuration is shown inFigure 2-1. It is assumed that 

the wheelset travels on a straight ideal track (no irregularities) 

with a velocity V. The profile of the wheels is considered to be 
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Figure 2-1. Schematic Representation of a Simple 
Wheelset on a Regular Track 
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nonlinear. Linear creep coefficients are assumed in the lateral and 

yaw directions,and the effect of spin creep is neglected. 

The equations of motion for the wheelset can be derived on the 

basis of forces and moments acting between the worn wheels and the 

rail. The current practice is to use a conical profile on the 

new wheels~ however, wear of the wheel surface during running leads to 

a hollowing of the wheel. Efforts are underway to experiment with 

new designs of wheel profiles [W3] in order to utilize the associated 

gravitational stiffness and improve wheelset stability. 

The gravitational stiffness results from an elevation of the 

wheelset center caused by a lateral displacement of the wheelset. 

Obviously, the gravitational stiffness is a constant for conical 

wheels. For profiled wheels, however, it is a function of the rolling 

radii at the contact points and axle load. 

Gravitational stiffness enters two places in dynamic equations. 

In the force equation it appears as the "lateral gravitational stiffness," 

which is defined as the variation in lateral force for each unit 

change of wheelset lateral displacement. In the moment equation it 

appears as the yaw gravitational stiffness,which is defined as the 

variation of net torque on the wheelset for each unit change in yaw 

displacement. 

Profiled wheels have another characteristic, namely the effective 

conicity. For conical wheels it is the value of cone angle, and hence 

is a constant. For worn wheels the effective conicity is defined as 

that cone angle which for simply coned wheels would produce the same 

wavelength of kinematic oscillations (the natural oscillatory motion 

of a free wheelset rolling along the track) [G2]. 
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Creep is basically the phenomenon of deviation from rolling 

[M4], which plays a critical role in the lateral instability of 

the wheelset. The pure rolling motion of a wheelset cannot be 

thus maintained due to the phenomenon of creep. There is a large 

body of literature available dealing with fundamental concepts 

related to creep, such as in References Jl, J2, and V2. 

However, not much experimental data is available for creepage in 

full-scale vehicles. One of the reasons for this deficiency is the 

difficulty encountered in actual measurement of creep forces. 

Linear relationships exist between creepage and tangential 

forces, and the creep coefficients are constants. These relationships 

hold for small deviations from rolling motion. As the creepages 

increase there is a marked deviation from linearity. Ultimately 

the wheels start to slide on the rail, and the limiting value of 

creep force is equal to coulomb friction force. This is shown in 

Figure 2-2. 

In the present analysis the longitudinal and lateral creep 

coefficients are considered equal. The longitudinal creep force in 

the linear region is given by the product of longitudinal creep 

coefficient and the longitudinal creepage. A similar result holds 

for creep in the lateral direction. A typical empirical relation­

ship is that the creep coefficient may be assumed to be 150 times 

the normal force. 
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The dynamic equations of motion for the wheelset can be set 

up in terms of lateral displacement y and yaw displacement ~ of 

the wheelset relative to the track. Following the development given 

in section 3 of Reference [Wl], the total force in the lateral 

direction is: 

where, 

and 

F -2f (~ - ~) - F - k y y L V g y 

F force in the lateral direction y 

fL lateral creep coefficient 

y = lateral displacement 

V vehicle forward velocity 

~ yaw displacement 

F Force due to gravitational stiffness g 

ky stiffness of the primary suspension 

( 0) {', ~ 
= dt 

For an axle and wheelset of mass m, the total lateral force 

is given by 
.. 

F my y 

and the equation of motion in the lateral direction becomes 

. 
my + 2f (~ - ~) + F + ky y 0 L V g 
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Reference [Wl] uses a virtual work approach to derive the expression 

for Fg based upon the axle load w, half track gage ~, radii r 1 , 

r 2 and their derivatives (with respect to lateral displacement y) as 

where 

F 
g 

(') indicates the first derivative of the rolling radius with 

respect to lateral displacement y. 

The net torque applied by the rails on the wheelset according 

to Reference [Wl] is 

where 

fT tangential creep coefficient 

rl instantaneous rolling radius of the right wheel 

r2 instantaneous rolling radius of the left wheel 

~ destabilizing torque applied by normal forces 

kl)J yaw stiffness of the primary suspension 

The expression for the torque ~ based on Reference [Wl] is: 

w~ 
M__ =- (r '- r ')''' 
-~ 2 1 2 'I' 

Also, for a wheelset of moment of inertia C about the centroidal 

axis normal to the axle, 

M CiP 
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Hence the dynamic equation of motion in the yaw direction is: 

cijj 

i.e. 
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3. LINEARIZED ANALYSIS 

The dynamic model of a wheelset moving along a straight track 

with a constant velocity V can be considered to have two degrees 

of freedom, one lateral and the other, yaw. For small amplitude 

motions the nonlinear equations can be linearized to yield the 

following set of equations: 

2fL • 
my + V y + ky y 

and 

where the various parameters have been defined previously. 

the above set of equations can be represented in a matrix form 

given by 
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I • 
.., 

Y:t_ 0 

y2 
-ky 

m 
d 

= dt 
y3 0 

Y4j 
-2fTSI,a 

r 0 C 

1 0 

-2fL ~ 
Vm Vm 

0 0 

0 
-kw 
c 

0 

0 

1 

2f S/,2 
T 

vc 

...., 

Since the equations have been linearized Laplace transform technique 

is applicable and the characteristic function can be obtained by 

evaluating the following determinant: 

s -1 0 0 

-~ b Vm ~/m 

0 0 s -1 

k1j! 
s+ 

2fTS/,2 
c vc 0 

The characteristic equation resulting from this above function is: 
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+'-
£,2 

~ 
].,. 4fTfL 

_Q,2 
4 2(2 + 

fT 3 + ~ + ) s 2 s + -vc> s + <c 
mCV

2 mV m 

f k\ji k f t 2 

+ 2(~ + __y_ _T_) s 
Vm . c m VC 

+ (ky k\ji 
m • C 

The parameters may be combined in accordance with the following 

definitions leading to a more convenient form of the above equation. 

s2 r .Q,/ o a 

wk V/S 

2 k\ji 
w\ji c 

uJT 
2 2fT.Q,2 

---cs-

2 2fL 
WL mS 

w 2 k 
y Y/m 

sl s 
/wk 

In terms of above quantities the equation is: 
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Routh-Hurwitz criterion [M6] may be applied to the characteristic 

function to arrive at the stability limit for the linearized dynamical 

model of the wheelset. For the above polynomial the critical frequency 

wk, for hunting can be derived from the condition: 

where 

and 

B 1 
0 

An algebraic manipulation of the above quantities in terms of 

the stated condition yields 
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= 

(1 + 

2 
wl)J 

The frequency of kinematic oscillations wk' corresponds to the 

critical speed Vcr such that the amplitude of oscillations would 

continue to grow exponentially with time above this speed; 

below this speed the small oscillations will decay. 

It should be noted that the Routh-Hurwitz test cannot be straight-

forwardly applied to the nonlinear dynamical model for stability 

analysis. In case of nonlinear systems, there is the additional 

concept of limit cycling mode. Linear systems do not exhibit limit 

cycles,and to handle the nonlinear problem a modified approach must 

be used. The describing function method provides the answer, as will 

be discussed in section 4. 
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4. THE DESCRIBING FUNCTION APPROACH FOR LIMIT CYCLE ANALYSIS 

The describing function method of nonlinear analysis involves· 

the replacement of the nonlinear element by its "equivalent" linear 

representation,which is an input amplitude dependent function. Each 

describing function is dependent upon the assumed input to the non­

linear element. Typically, the input is considered to be a sinusoid 

of amplitude A and frequency w, and the corresponding describing function 

is called a sinusoidal input describing function. The input to the 

nonlinearity is not restricted to a sinusoid. Other types of inputs 

have also been used to derive describing function expressions. These 

include two sinusoids [Al], a bias and a sinusoid ~1], three simultaneous 

inputs [Vl], and a gaussian input [A2]. In the analysis presented 

in this report, a sinusoidal input describing function approach has 

been applied for stability and limit cycle. 

The sinusoidal input describing function is derived from the consid­

eration of harmonic response of a nonlinearity to a sinusoidal input at 

various frequencies and amplitudes. The output will be a nonsinusoidal 

periodic waveform with the same period as the input wave. The output 

wave will consist of a fundamental component and other higher harmonics. 

A sinusoidal input describing function is defined as the complex 

ratio of the fundamental component of the output to the input. The 

output is the product of describing function and the input and is 

dependent upon the input amplitude. 
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For all practical purposes a sinusoidal input describing function 

may be considered to be an equivalent linear operator which minimizes 

the mean-square difference between the actual output and its approx-

imation based upon the fundamental components of the output waveform. 

Consider a nonlinear input-output relationship 

z = h(x) 

where z is the output dependent on x, the input to the nonlinearity. 

If the nonlinear function is approximated by its describing 

function, and x is a sinusoidal input given by: 

x = A Sin wt 

A being the amplitude and w the frequency of the sinusoidal input, 

then the error e is evaluated from: 

e = zactual - z . approx1.mate 

h(x) - G*(A)x 

h(A sin wt) - G*(A)A sin wt 

where G*(A) is the describing function for the nonlinear character-

istic. For nonphase-shifting nonlinearities, as in the case considered, 

here, G*(A) is simply a function of input amplitude, and the describing 

function in these cases can be considered to be an amplitude dependent 

gain. 

The linearizing gain G*(A) can be calculated from the basic 

property of the describing functions in terms of a minimization of 

mean-squared approximation error. The mean-squared error is given by 

2 
e 

2'TT 

~1 w e 2 (t)dt 2'TT 
0 
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and the describing function G*(A) is obtained from the condition 

2 
ae; 

- 0 
C3G*(A) 

It was pointed out earlier (Section 1) that while the wheel 

profile may be initially conical, it wears to a hollow profile, 

leading to body hunting and a decrease in ride comfort. Design 

techniques are being evolved that would enable vehicles to be 

designed for stable operation on hollow tire profiles. 

If the wheel-profile has an arbitrary shape the rolling 

radii r 1 and r
2 

can be described by the following expressions 

[Wl]: 

Here r is the nominal radius, and o is a factor dependent on 
0 0 

the wheel gage, track gage and the wheel and rail profiles. The 

lateral displacement is given by y
1 

and g(v) represents a nonlinear 

polynomial function representing the profile 

g (v) 
N 
L: 
n 

With a suitable choice of axes the term o can be set equal 
0 

to zero. This set of axes is coincidental with the base and 

measuring lines on the tyre profiles. The value of N used in the 

present study ranged from 16 to 2l,depending upon the specific 

tire profile. The procedure to arrive at the value of N was to 
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first select the profile. The discrete data from the profile 

were fed into a digital computer program called FITIT developed for 

the DEC-10 system available at the TSC This program fits poly­

nomials of varying degrees through the given set of data in a 

least-squares sense and computes the associated coefficients of the 

polynomial. The profile using the computed coefficients was graphic­

ally displayed via a CALCOMP plotter. Appendix A shows the various 

profiles used, computer plots for the profiles and the computed 

coefficients. For each of these profiles is also appended a 

plot of difference in rolling radii of opposite wheels as a function 

of lateral displacement. 

There are three predominant nonlinearities in the dynamical 

equations derived for the wheelset. These include the gravitational 

stiffness in the lateral and the yaw direction~ and the effective 

conicity. Each one of the three nonlinearities arises from the 

fact that the tire profile itself is nonlinear. In the following 

paragraphs the describing functions for these nonlinearities will 

be derived. 

The expression for the gravitational force (valid up to N=21) 

in terms of the axle load W, half track gage £1 least-squares fit 

polynomial coefficients a
0

,a1 , ••• ,a21 , and lateral displacement Yt 

is: 
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F 
g 

+ 6(a5 ~ a6£)yi + 8(a7 + a8£)yi 

9 + 10(a9 + a 10 t)y1 

13 
+ 14(al3 + al4£)yl 

15 + 16 (al5 + al6£)yl 

Assuming that a sinusoidal input y
1 

= Y
1sin wt is available at 

hunting with Y
1 as the amplitude of limit cycle, the gravitational 

force can be represented by: 

F = K * (Y ) y g g 1 1 

where Kg*(Y
1 ) is the describing function for the lateral gravitational 

stiffness. Using the basic definition, the describing function can 

-be obtained by minimizing the mean-squared error e 

2 
e 

which on setting y 1 

leads to: 

W 12Tr/W 
= 2 Tf (K * yl - Fg)dt 

0 g 

Y1 Sinwt 

2 ae 
al<* g 

and 

0 
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K *(Y") g . l. 
~ {2(a" +a~£) + 4(a..., + a 4 9-) (3/4)Y,

2 
N j_ ~ ~ ~ 

4 
+6 (a

5 
+ a

6
£) (15/24)Y

1 
6 

+ 8 (a
7 

+ a
8

£) (105/192)Y
1 

8 + 10 (a
9 

+ a
10

n (945/1920)Y
1 

+12 (a
11 

+ a 12 £) (10395/23040)Y
1

10 

+14 (a
13 

+ a
14

£) (135135/322560)Y
1

12 

+ 16 (a
15 

+ a
16

£) (2027025/5160960)Y
1

14 

+ 18 (a
17 

+ a
18

£) (34459425/92897280)Y
1

16 

18 
+ 20(a

19 
+ a 20n (6.5472907/18.579456)Y

1 

+ 21 a 21 (1.3749309/4.0874803)Y1
20

} 

The describing function above is valid not only for the periodic 

solution but also yields information about the transient process 

during the establishment of the corresponding sustained oscill_ations. 

As a result the stability of the limit cycle can be investigated 

using the describing function technique. 

The yaw gravitational stiffness, K , is obtained from a 
. a 

consideration of the destabilizing torque due to normal forces, 

which is given by: 
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Assuming Ka*(Y 1 ) to be the describing function for the 

gravitational yaw stiffness K , one can obtain an expression for 
a 

K * by minimizing the mean squared error as in the case of lateral 
a 

gravitational stiffness. The yaw gravitational stiffness describing 

function K * is: 
a 

W1 {a1 + 3a3 (1/2) Y1
2 

+ 5a5 (3/8)Y1
4 

+ 7a 7 (15/48)Y1
6 

+ 9a 9 (105/384)Y1
8 

10 
+ lla11 (945/3840)Y1 

+ 13a13 (10395/46080)Y1
12 

+ 15a15 (135135/645120)Y1
14 

+ 17a17 (2027025/10321920)Y 1
16 

18 
+ 19a19 (3.4459425/18. 579456) Y1 

+ 2la21 (0.65472907/3.7158912)Y1
20 } 

Effective conicity is one of the most important factors 

governing the stability of the wheelset. It is defined as the 

simple coning angle which will produce the same wavelength of 

kinematic motion as the worn tires [Kl]. The difference in rolling 

radii for a pair of wheels as a function of lateral displacement y
1 

is given by: 
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Based on the differential equations derived earlier, the 

effective conicity a 
e 

is given by 

r rl - r2 0 a. (r + r ) e yl 1 2 

r rl - r2 0 
"' ~2r yl 0 

If a * represents the describing function of the effective e 

conicity ae, then the error e is given by: 

- a* e 

and the mean squared error e is defined from: 

2 
e 

For a limit cycle oscillation of the wheelset with Y1 as 

the amplitude of oscillation, the describing function a* may be e 
evaluated from: 

2 
(l-
e 

acz--* e 
0 

Proceeding as before gives the describing function for 

effective conicity ae*(Y
1

) as: 

28 



+ a5(3/8) yl4 

+ a 7 (15/48) Y1
6 

+ a 9 (105/384) Y
1

8 

+ a 11 (945/3840) Y
1

10 

+ a 13 (10395/46080) y
1

12 

+ a 15 (135135/645120) y
1

14 

+ a 17 (2027025/10321920) y
1

16 

+ a 19 (0.34459425/l.8579456) Y1
18 

+ a 21 (0.65472907/3.7158912) Y1
20 

The hunting frequency wk for the wheel set and the critical 

speed V are related by the expression cr 

where the parameter S is given by: 
e 

s =~. e V -o--' -e 

The describing function terms may be introduced in the 

expression for wk to calculate the hunting frequency. Thus 
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wk 

where, 

and 

2 

2 

s 2 
e 

2 
wl/J + 

WT 
(~) 

e 

2 w 
(l + _!__) [l 

2 
WL 

2f 
L 

mS e 

* 

~L 

2 2 
wy + wgf 

k k * _y+_g: 
m m 

r 9, 
0 

Ci* e 

2 
2 w rr 

':1 

2 2 2 w - w 
( 1/Je g ) 

(wL 
2 2 2 

+ WT ) 

It should be noted that since ae* is a function of Y1 , 

Se is also a function of Y1 • Consequently, WT and WL are dependent 

Similarly, Ka* and Kg* are functions of Y1 . 

30 

Hence, wl/J 
e 



and wg are contingent upon the value of Y1 • This observation 

leads to the formulation of a computational scheme for generating 

pairs of wk and Y1 values. 

A possible computational scheme is to first assume a value 

for Y1 and compute the values of K * K * and a * since their g ' a ' e 

describing function expressions depend upon Y1 • Next Be may be 

calculated. With these results, evaluations may be made of ww , 
·e 

wT' wL' wg~' wy and wg using the parametric values for the given 
2 wheelset. Every term in the expression for wk is known with 

these computations. The critical speed vcr may be obtained from 

the wk - Be relationship. The value of Y1 may be iterated next 

and the preceding computations repeated to yield another wk - Y1 
pair. 
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5. APPLICATION OF THE PROPOSED TECHNIQUE 

The describing function method proposed in the previous 

chapter was applied to a problem dealing with the nonlinear 

dynamics of a railway vehicle wheelset [L2]. The motivation was 

to investigate the applicability of the proposed approach and to 

compare the results with the ones available in the literature. 

The values obtained using the technique advanced in this report 

compared favorably with the results reported elsewhere. In 

addition, the method is general and applicable to systems of 

higher order, a distinct advantage over the Krylov and Bogoliubov 

method. 

The dynamic model in Reference L2 is set up in terms of 

generalized coordinates and nondimensionalized parameters. 

Curved wheel profile is one nonlinearity, and wheel-rail flange 

force is another. The force is of a dead-zone type, the clearance 

between the wheel flange and the rail representing one-half the 

deadband. The rails are assumed to be horizontal, straight and 

devoid of any irregularities. Linear creep is used in the dynamic 

model. The difference in rolling radii between the two wheels is 

approximated by a cubic polynomial. 

The following equivalence may be established between the 

dimensional symbols used in Reference L2 and in the present analysis. 
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Variable/Parameter Name Reference L2 This Report 

Wheelset Moment of Inertia I2 c 

Creep Coefficients f fL,fT 

Suspension Lateral Stiffness k k 
X y 

Suspension Yaw Stiffness k8 k~ 

One half track gage a ~ 

Lateral displacement X y 

Yaw displacement 8 ~ 

Simulations were run for the parametric values reported in 

Reference L2. Figure 5-l is a plot for the case a 1 = 15.84 shown 

in Figure 7 of Reference L2. The continuous curve shows several 

points translated from Law and Brand results (in terms of dimensional 

parameters) as identified by inverted triangles. The results 

obtained using the approach presented in this report are identical 

to those obtained by Law and Brand. 

Appendix B has a complete listing of the program used for 

computations and a plot of the four curves which correspond to the 

four cases shown by Law and Brand in Figure 7 of their paper. 

The equivalence between thevariables and parameters used in 

the present analysis and those used in Reference L2 was established 

as follows. For o0 = 0, and a cubic polynomial, the difference 

in rolling radii is given by the equation: 
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Hence: 

From analysis of Reference L2, 

-
ao a 3 

=(a)x + ( ~) x 
a 

The value of a 1 in present analysis equals a 0 used in 

Reference L2, and the value of a 3 is computed as the ratio 

(a1;a 2). The equivalent values of this parameter corresponding 

to the four curves shown in Figure B-1 in Appendix B are, respectively, 

O, 0.6336, 1.2672, and 2.5344. 
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6. DI~CUSSION OF RESULTS 

The approach advanced in this report was applied to three types 

of wheel profiles: a new conical profile with flange, a worn tread 

with an originally conical profile, and a wheel with a cylindrical 

profile. These three profiles are illustrated in the plots given in 

Appendix A. The conical wheel had a taper of 1 in 20 and corresponds 

to a standard profile for passenger trains as recommended by the 

Association of American Railroads (AAR). Similarly, the cylindrical 

profile was based upon the AAR specifications. The profile of a worn 

wheel resulted as a deviation from a standard conical wheelsuch that 

the maximum wear was on the wheel tread. 

The approach employing the describing function techniques as 

outlined in section 4 was used to arrive at the results presented 

in this section. The following parameters were chosen as a base 

case for a typical wheelset. 

Parametric variations were made from the following base values 

to investigate system sensitivity: 

m, wheelset mass 90 slugs (2,810 lb) 

C, wheelset moment of inertia = 360 lb-ft-sec2 

ky' primary suspension lateral stiffness = 5xl0 4 lb/ft 

k~, primary suspension yaw stiffness = lxlo 5 lb-ft/rad 

fT, tangential creep coefficient = 4xl0 5 lb 
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fL' lateral creep coefficient = 4xl0 5 lb 

r
0

, centered wheel rolling radius = 1.5 ft 

£, half of the track gage = 2.5 ft 

For the above parameters, in the case of a wheel with straight 

conical profile (i.e., straight taper of 1 in 20 and no flanges) 

the linear analysis predicted a critical velocity of 184.26 ft/sec 

and a kinematic hunting frequency of 21.27 rad/sec. As will be 

evident from the following discussion, an inclusion of nonlinear 

profile in the analysis lowers the prediction of critical speed to 

a more realistic value. 

The effect of static load on critical speed as a function of 

limit cycle amplitude is shown in Figure 6-1. A conventional conical 

tyre profile is used. Two plots are presented, one for the axle 

mass m, and the other for an additional weight of 20,000 lb on the 

axle. It is observed from the two plots that an increase in weight 

on the axle raises the peak value of critical velocity. Also the 

peak is shifted to the right for a higher load on the axle. This 

indicates that for the same limit cycle oscillation amplitude, there is 

an increase in critical speed; hence an increase in axle load has a 

stabilizing influence on the wheelset. 

Figure 6-2 shows a comparison of \Tcr - Y1 plots for a new conical 

profile and a wheel with a tread worn profile. While the exact 

shape of the worn wheel curve will depend on the wear pattern of 

the profile, the general nature of the two curves is likely to be 

similar. Since most of the wear is on the tread portion of the conical 

profile, there is a marked difference between the values of critical 

velocity for the two cases. For larger oscillation amplitudes which 
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correspond to the flange portion, the two curves are identical. 

Figure 6-3 shows the V - Y1 plots for the cylindrical profile wheel. cr 

It is noted that in this case the peak critical velocity is much higher 

than the previous two cases. 

The influence of a change in ky' the lateral stiffness of the 

primary suspension, is shown in Figure 6-4. This and all the succeeding 

plots are for the case of newwheelwith a conical profile. Similar 

plots were generated for the remaining cases of tread-worn and 

cylindrical profiles,and it was found that the general nature of 

plots in the three cases was essentially similar. For the case 

illustrated in Figure 6-4, the yaw stiffness of the primary stiffness 

was maintained at a constant value of k~ = lxl0 5 lb-ft/rad and the 

lateral stiffness was varied over values ranging from 2,000 lb/ft to 

100,000 lb/ft. It was found that the critical speed was increased 

with an increase in ky value. For example, a ten fold increase in 

lateral stiffness more than doubled the value of peak critical speed. 

It would seem attractive to use a high value of primary suspension 

lateral stiffness. However, a compromise value has to be chosen in 

view of ride comfort and other practical design considerations. 

The effect of variation in k~, the yaw stiffness of primary 

suspension, with the lateral stiffness held constant is shown in 

Figure 6-5. Again, as in the previous case, the critical speed 

increases with an increase in yaw stiffness. The lateral stiffness 

was fixed at 50,000 lb/ft and yaw stiffness ranged from 50,000 lb-ft/rad 

to 500,000 lb-ft/rad. For a ten-fold increase in yaw stiffness, the 

critical speed increased more than fifty percent. The limiting value 

of k~ is, however, dictated by wear and other operational consider­

ations on curved tracks. A large value of yaw stiffness leads to 
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increased wear on both flange and rail head while curving, and 

enhances the possibility of derailment [C2]. Based upon Figures 

6-4 and 6-5, one can observe that one method of designing a vehicle 

for stable operation at high speeds is to use high values of lateral 

and yaw stiffness for primary suspensions. 

The influence of change in creep coefficient on the critical 

speed is shown in Figure 6-6. In this case the value of m is held 

constant at 90 slugs. The creep coefficients chosen range from lxl0 5lb 

6 
to 4xl0 lb, and thus include a wide latitude of values resulting 

from a variety of surface conditions and operational forces. While 

there is a slight increase in critical speed with a decrease in 

creep coefficient, this increase takes place only at small values 

of creep coefficient. In addition, the magnitude of this increase 

is rather insignificant. 

Figure 6-7 shows the effect of change in wheelset mass, m, on 

the peak critical speed of the wheelset. Each point identified on 

the curve corresponds to the peak critical speed for that mass value. 

The lateral andlongitudinalcreep coefficients fL and fT' respectively, 

were both held at a constant value of 4xl0 5 lb. It will be noted 

from the plot that the peak critical velocity increased as the wheel-

set mass decreased. Also, this increase is considerably higher than 

obtained with a decrease in creep coefficient. Thus, it is possible 

to attain higher stable running ?Peeds with light weight wheelsets 

if all other parameters are held constant. However, manufacturing 

and strength considerations would dictate the specific choice of 

lower limit on the wheelset mass m. 
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The describing function of effective conicity a * for the e ' 
conical profile of a new wheel as a function of lateral oscillation 

amplitude is shown in Figure 6-8. For a str~ight tapered cone profile 

it is a constant equal to the cone angle of the tread. This is 

obvious from Figure 6-8 for the conical portion of the wheel. The 

value of the taper over the linear range is l in 20. However, for 

the nonlinear range the effective conicity is derived from the 

difference in rolling radii as the wheelset is displaced laterally 

from its nominal position. The describing function a * is a function e 
of the lateral oscillation amplitude for the wheelset as shown in 

the figure. 

Figure 6-9 shows K *, the describing function of the gravitational g 

stiffness for a new wheel with conical profile. The gravitational 

stiffness arises due to an elevation of the center of gravity as the 

wheelset is displaced laterally. Again, it is dependent on the 

difference in rolling radii between opposite wheels, which in turn 

is a function of the amplitude of lateral oscillations. The describing 

function for gravitational stiffness is essentially zero for the linear 

portion of the wheel, rises over the flange portion of the wheel 

and finally decreases as the flange profile starts to level off. 

The gravitational Force, F , as a function of the amplitude of g 

lateral oscillations, is shown in Figure 6-10. The plot is similar 

in trend to the plot of gravitational stiffness describing function 

illustrated in the previous figure. As before, the gravitational 

force is nearly zero for approximately 0. 07 5 ft ( 0. 9 inch) from the 

centered position. The gravitational force increases over the flange 
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portion of the profile and subsequently decreases after reaching a 

maximum at about 0.14ft (1.68 inch) from the mean position. 

Figure · 6-11 shows a plot of yaw displacement, 1jJ, as a function 

of the amplitude of lateral oscillations. Since the critical speed 

is also a function of the amplitude of lateral oscillation (Figure 6-1) 

this plot may also be redrawn in terms of V versus 1jJ values. Such cr 

a plot may help to interpret the relationship between hunting and 

rotational amplitude of the wheelset oscillation. The value of 1jJ is 

computed from the frequency-dependent relationship. 

ship: 

!1JJ I 
~(Kg*+ ky) - mw

2
]

2 
+ 

2fL 

2fL w 2 (--) v 
JY 1 (jw)J 

Alternatively, the value of 1jJ may be obtained using the relation-

These expressions are based upon the nonlinear equations describing 

the dynamical behavior of the wheelset. In both of the expressions, 

the right hand side terms are known for each assumed value of Y1 • 

Under the assumption of linear creep, the lateral and long-

itudnal components of creep velocity were computed using the following 

relationships. The magnitude of the lateral component is given by: 
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and the same for thelongitudinal (forward) component is given by: 

The plots of ~L and ~T' the lateral and forward components of 

creep velocity or creepage are shown in Figure 6-12. The forward 

or transverse component is no more than 50% of the lateral component 

over the entire range of Y1 values. The corresponding creep forces 

can be obtained, straightforwardly, as the product of creepage and 

creep coefficients. The significance of the creep forces is the 

following: 

As the wheelset speed increases in the forward direction, 

the creep forces generated at the wheel treads also increase until 

their vector sum equals the limiting friction between wheel and 

rail. Slipping starts at this stage, and yaw and lateral oscillations 

attain their maximum levels. 

The foregoing plots and discussion illustrate the dynamic 

behavior of the wheelset and the effect of variation in various 

parameters on the amplitude and frequency of hunting motion in the 

lateral mode. The describing function method of analysis was 

used. The information is helpful in dynamic analysis, modeling, 

and parametric study of rail systems. 
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7. CONCLUSIONS 

Sustained oscillation of wheelsets traveling over rails cause 

serious problems leading to an unsatisfactory operation of entire 

vehicle. The wheels are subjected to forces while negotiating curves 

[Bl, K3], or forces arising from the rail irregularities [L4,Sl,S2]. 

Several analytical studies have been undertaken in the past to 

model the rail-wheel interaction and develop a better understanding 

of the complex dynamic phenomenon. Many investigations have been 

restricted to linear analyses, however, thus restricting their 

validity to small deviations from the equilibrium state. 

In actual operation, large scale excursions from the operating 

point are quite common and as such require new and convenient tools 

to predict the dynamical behavior applicable over a broader range 

of operation. The phenomenon of hunting at high speeds is fairly 

well-known. In addition to providing poor ride characteristics, 

hunting has been responsible for derailments of wheelsets and bogies. 

This report has dealt with the secondary hunting problem 

associated with a wheelset consisting of a pair of wheels connected 

via a rigid axle. The wheels are assumed to have a nonlinear 

profile, either in the new or in the worn state. The analytical 

expression for a given profile is in a polynomial form,and the 

coefficients of the polynomial are obtained using a least-square 

curve fit algorithm. Linear lateral and transverse creep coefficients 

are assumed. 
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A describing function based approach is developed to arrive 

at the critical velocity and amplitude of lateral oscillations 

relationship. Influence of change in parameters on critical velocity 

is also examined using the same approach. The method is tested 

by applying it to a system published in literature and analysed by 

the Krylov and Bogoliubov method. The proposed approach yields 

comparable results, and has the added advantage of being general and 

equally applicable to systems of higher order and complexity. 

The method was applied to three types of profiles: 

a conventional conical profile (described by an eighteenth-

degree polynomial) , a tread-worn conical profile (described by a 

seventeenth-degree polynomial), and a cylindrical profile (described 

by a sixteenth-degree polynomial). 

The following conclusions were obtained from the results 

obtained in this report: 

1. While tread wear has an influence on the peak value 

of critical velocity, the general shape of the response curve is 

similar to that in the case of new wheel. 

2. An increase in axle load increases the value of peak 

critical velocity and hence has a stabilizing effect. 

3. An increase in each,the lateral and yaw stiffness, leads 

to an increase in the value of critical velocity and hence has 

a beneficial effect on high speed operational stability of the 

wheelset. 

56 



4. The influence of change in wheelset mass on peak critical 

velocity is rather small. An increase in wheelset mass causes a 

decrease in peak critical velocity. 

In addition to the specific conclusions enumerated above it 

may be remarked that whereas the proposed technique of representing 

a profile by a polynomial is basically appropriate,the results are 

sensitive to the polynomial coefficients. An alternate desyription 

of the profile may be via a combination of straight lines and arcs 

of circles. Further work needs to be done in the area of an accurate 

and convenient representation of the wheel profile. 

The research outlined in the present report considered an 

ideal knife-edged rail. A more realistic analysis will have to 

take into account the rail head profile and its changes with a wear 

in the wheel profile. 

The effect of including nonlinear creep forces in the analysis 

may be examined. The present report considers only constant creep 

coefficients, thus limiting creep forces below their limiting value of 

coulomb friction. Further analysis should explore this aspect of 

the problem. 

57 



REFERENCES 

Al Atherthon, D., Turnbull, G., Gello, A., and VanderVelde, W.: 
Discussion of the Double Input Describing Function (DIDF) 
for Unrelated Sinusoidal Signals, IEEE Transactions on 
Automatic Control, Vol AC-9, No. 2, April 1964, pp. 197-198. 

A2 Axelby, G.: Random Noise with Bias Signals in Nonlinear 
Devices, IRE Transactions on Automatic Control, Vol.AC-4, 
No. 2, November 1959, pp. 167-f8l'. 

Bl Boocock, D.: Steady-State Motion of Railway Vehicles on 
Curved Track, Journal of Mechanical Engineering Science, 
Vol. 11, No. 6, 1969, pp.556-566. 

B2 Blader, F., and Kurtz, E.: Dynamic Stability of Cars in Long 
Freight Trains, ASME Paper No. 73-WA/RT-2, 1973. 

B3 Bennington, C.: The Railway Wheelset and Suspension Unit 
as a Closed-Loop Guidance Control System: A Method for 
Performance Improvement, Journal of Mechanical Engineering 
Science, Vol. 10, No. 2, 1968, pp. 91-100. 

B4 Bogoliubov, N.N. and Mitropolski, J.A.: Asymptotic Methods 
in the Theory of Nonlinear Oscillations, State Press for 
Physics and Mathematical Literature, Moscow, 1963. 

B5 Brann, R.: Some Aspects of the Hunting of a Railway Axle, 
Journal of Sound and Vibration, Vol 4, No. 1, 1966, pp. 18-32. 

Cl Cooperider, N.: The Hunting Behavior of Conventional Railway 
Trucks, Journal of Engineering for Industry, Transactions 
of the ASME, Vol. 94, No. 2, May 1972, pp. 752-762. 

C2 Clark, J. and Law, E.: Investigation of the Truck Hunting 
Instability Problem of High-Speed Trains, ASME Paper No. 
67-TRAN-17, 1967. 

C3 Cooperider, N.: High Speed Dynamics of Conventional Railway 
Trucks, Ph.D. Thesis, Stanford University, 1968. 

58 



/Dl/ 
\__>;/ 

Davies, ~ · Some Experiments on the Lateral Oscillation of 
Railway Vehicles, Journal of the Institute of Civil Engineers, 
Vol. 11, 1930, pp. 224-261. 

D2 De Pater, A.: The Approximate Determination of the Hunting 
Movement of a Railway Vehicle by aid of the Method of 
Krylov and Bogoliubov, Applied Scientific Research, Section A, 
Vol.lO, 1961, pp. 205-228. 

Gl Gelb, A. and VanderVelde, W.: Multiple-Input Describing 
Functions and Nonlinear System Design, McGraw-Hill, 
New York, 1968. 

G2 Gilchrist, A.O., et al: The Riding of Two Particular Designs 
of Four-Wheeled Railway Vehicle, Proceedings of the Institution 
of Engineers, Vol. 180, Pt. 3F, 1966, pp. 99-113. 

Jl Johnson, K.: The Effect of Spin Upon the Rolling Motion of 
an Elastic Sphere on a Plane, Journal of Applied Mechanics, 
Transactions of the ASME, Vol. 80, Sept. 1958, pp. 332-338. 

J2 Johnson, K.: The Effect of a Tangential Contact Force Upon 
the Rolling Motion of an Elastic Sphere on a Plane, Journal 
of Applied Mechanics, Transactions of the ASME, Vol. 80, 
Sept. 1958, pp. 339-346. 

Kl King, B.: Tyre Profiles, Paper No. 14, Presented at the 
Third International Wheelset Conference, Sheffield, 
July 1969. 

K2 Kochenburger, R.: A Frequency Response Method for Analyzing 
and Synthesizing Contactor Servomechanisms, AIEE Transactions 
Pt. I {Power Apparatus and Systems), Vol. 69, 1950, 
pp.270-284 

K3 Koci, L. and Marta, H.: Lateral Loading Between Locomotive 
Truck Wheels and Rail Due to Curve Negotiation, ASME Paper 
No. 65-WA/RR-4, 1965. 

Ll Law, E.: Analysis of the Nonlinear Dynamics of a Railway 
Vehicle Wheelset, Ph.D. Thesis , University of Connecticut, 
1971. 

L2 Law, E., and Brand, R.: Analysis of the Nonlinear Dynamics 
of a Railway Vehicle Wheelset, Journal of Dynamic Systems, 
Measurement, and Control, Transactions of the ASME, 
Vol. 95, No. 1, March 1973, pp. 28-35. 

59 



L3 Law, E. and Cooperrider, N.: A Survey ~f Railway Vehicle 
Dynamics Research, Journal of Dynamic Systems, Measurement, 
and Control, Transactions of the ASME, Vol 96, No. 2, 
June, 1974, pp. 132-146. 

L4 Law, E.: Nonlinear Wheelset Dynamic Response to Random Lateral 

Ml 

Rail Irregularities, ASME Paper No. 73-WA/RT-3, 1973. 

Ma tsudaira, T. : 
Vehicles with 
Tokaido Line, 
Vol. 180. Pt. 

Hunting Problems of High-Speed Railway 
Special Reference to Bogie Design for the New 
Proceedings of the Institution of Engineers, 
3F, 1966, pp. 58-66. 

Matsudaira, T. et.al.: Problems on Hunting of Railway Vehicle 
on Test Stand, Journal of Engineering for Industry, 
Transactions of the ASME, Vol. 91, No. 3, August 1969, 
pp • 8 7 9- 8 9 0 • 

M3 Meacham, H. and Ahlbeck, D.: A Computer Study of Dynamic 
Loads Caused by Vehicle-Track Interaction, Journal of 
Engineering for Industry, Transactions of the ASME, Vol. 91, 
No. 3, August 1969, pp. 808-816. 

M4 Marcotte, P.: Lateral Dunamic Stability of Railway Bogie 
Vehicles, M.S. Thesis, University of Sheffield, May 1972. 

M5 Minorsky, N.: Theory of Nonlinear Control Systems, McGraw-Hill, 
New York, 1969. 

01 Oldenburger, R. and Boyer, R.C.: Effects of Extra Sinusoidal 
Inputs to Nonlinear Systems, Transactions of the ASME, 
Series D, Journal of Basic Engineering, Vol. 84, No. 4, 
December 1962, pp. 559-570. 

Rl Reynolds, D.: Hunting in Freight Cars, ASME Paper No. 
74-RT-2, 1974. 

Sl Siddall, J., Dokainish, M. and Elmarghy, W.: On the Effect 
of Track Irregularities on the Dynamic Response of Railway 
Vehicles, ASME Paper No. 73-WA/RT-l, 1973. 

S2 Stassen, H.: Random Lateral Motions of Railway Vehicles, 
Doctoral Thesis, Delft Technological University, 1967. 

60 



Vl Vander Vegte, J. and Royle, R.: Triple Input Describing 
Functions and the Stability Analysis of Forced Nonlinear 
Control Systems, JACC Preprints, 1967, pp. 499-504. 

V2 Vermeulen, P., and Johnson, K.: Contact of Nonspherical 
Elastic Bodies Transmitting Tangential Forces, Journal 
of Applied Mechanics, Transactions of the ASME, Vol. 86, 
No. 2, June 1964, pp. 338-340. 

Wl Weinstock, H.: Analyses of Rail Vehicle Dynamics in Support 
of Development of the Wheel Rail Dynamics Research Facility, 
Report No. MA-06-0025-73, TSC, Cambridge, Mass., 1973. 

W2 Wickens, A.: The Dynamics of Railway Vehicles on Straight 
Track: Fundamental Considerations of Lateral Stability, 
Proceedings of the Institution of Mechanical Engineers, 
Vol. 180, Part 3F, 1966, pp. 29-44. 

W3 Wickens, A.: The Dynamic Stability of Railway Vehicle Wheelsets 
and Bogies Having Profiled Wheels, International Journal 
of Solids and Structures, Vol. 1, No. 3, 1965, pp. 319-341. 

W4 Wickens, A.: General Aspects of the Lateral Dynamics of 
Railway Vehicles, Journal of Engineering for Industry, 
Transactions of the ASME, Vol. 91, No. 3, August 1969, pp.869-878. 

61 





APPENDIX A 

PROFILES USED 

AND 

COMPUTER PLOTS 

63 



Appendix A presents the graphic displays of profiles used, computer 

generated coefficients and plots for a least-square polynomial fit 

obtained using the FORTRAN program FITIT (developed for DEC-lO 

System available at TSC), and the plots of difference in rolling 

radii of two opposite wheels of the wheelset as a function of 

lateral displacement. For example, Figure A-1 is a plot of the conical 

wheel profile. The vertical bars and the numbers represent the 

discrete data used as input to the polynomial fit program. The data 

was fed in feet units and Figure A-2 shows the values o£ coefficients 

a
0

, a 1 , .• , a 18 of the 18th-degree polynomial used for fitting 

the polynomial through the set of discrete data points. The points 

marked X represent the input data from Figure A-1. As is evident from 

Figure A-2, an 18th-degree polynomial provides a satisfactory fit to the 

conical profile. Figure A-3 is a plot of differences in rolling radii 

for the conical profile as a function of lateral displacement. The 

curve is negative symmetric, as one would expect, and is useful 

in computing the effective conicity of the profile. 

Figures A-4,A-5 and A-6 present the above profile in the case 

of a conical wheel. The details of the wear pattern are evident from 

Figure A-4.The computer generated plot and the coefficient of the 

least-square fit polynomial are shown in Figure A-5. A seventeenth­

degree polynomial provided-a good fit in this case. Figure A-6 is the 

plot of difference in rolling radii versus lateral displacement. 

Figures A-7,A-8 and A-9 contain the set of plots for a new 

cylindrical wheel. In this case a sixteenth-order polynomial 

adequately represented the profile. The values of coefficients 

for input data in feetarealso shown in Figure A-8. 
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Figure A-1. Tire Profile for a New Wheel with a Conical Profile 
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Law and Brand [L2] have formulated an analytical model for 

nonlinear dynamics of a vehicle wheelset traveling on straight tracks. 

The wheel profile in the model was assumed to be nonlinear, creep 

forces and moments to be linear, and a rail-wheel contact force to 

consist of a deadband and linear spring characteristic.The Krylov and 

Bogoliubov method of analysis was used in Reference L2. 

A dynamic model in terms of nonlinear differential equations 

was set up to evaluate the amplitude of stationarv oscillations. 

Stability conditions were derived using a perturbation analysis. 

It was shown that the flange clearance and the nonlinear variation 

of axle roll with lateral displacement had a significant influence 

on the motion of the wheelset. The results were graphically presented 

to po~tray the effect of wheel profile curvature parameter and non­

dimensional flange clearance on the oscillation amplitude. 

For the purposes of this report, the describing function 

approach outlined at the end of Section 4 was applied to the system 

used in Reference L2. The describing function for deadband type 

nonlinearity was derived. The equivalence between the model presented 

in Reference L2 and the one proposed in the present report was 

established and the values of equivalent parameters were identified. 

Based on these parameteric values, Figure B-1 was obtained using the 

proposed approach. The dimensional values obtained as well as the 

corresponding nondimensional parameters (such as used in Fioure 7 of 

Reference L2) are labeled in Figure B-1. 
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The listing of computer program used to arrive at the results 

presented in Figure B-1 is shown in Fiqure B-2. The first part of the 

program includes the parameter values. Next, the describing function 

of gravitational stiffness in yaw and lateral directions and effective 

conicity are computed. The calculation of all the frequency parameters 

is carried out, and finally,the hunting frequency and critical speeds 

are evaluated. 
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Figure B-2. Listing of Computer Program Using the Describing 
Function Technique for the Example of Prior Work 
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This Appendix includes a listing and typical output of the 

computer program developed to implement the describing function 

method presented in this report. The listing shown is for the case 

of a new wheel with a conical profile. Similar programs were used 

for the tread-worn conical and cylindrical profiles. 

First, the coefficients of the least-square polynomial fit as 
I 

obtained from subprogram FITIT,are listed as AO, Al, ••• , Al8. 

Next, the coefficients used in the expressions for describing function 

are provided as C2, C4, ••• , C20. The values of parameters are 

fed as RO for r
0

, AL for £, AKY for ky' AKS for k~ , AM for m, 

FT for fT and FL for fL. 

The expressions for describing function are computed, KGS for 

Kg*, AKAS for Ka* and ALPHAE for ae*· Using the computed value of 

* ae ' Be is calculated as BETAE. The values of equivalent frequencies 

from the expressions derived in Section 4 are computed as WSE for 

w~ , WT for~r' WL for wL and WG for wg. The hunting frequency wk 
e 

is calculated from the condition derived in Section 4 ,and the critical 

velocity V , designated as VCR in the program,is calculated using 
cr 

wk and Be· 

For each value of oscillation amplitude Y, the steady-state 

value of yaw displacement ~, creepage ~T and ~L' creep forces 

Fe and Fe , and gravitational force Fg are computed. The correspond-
T L 

ing FORTRAN variable names are SI, CVT, CVL, CFT, CFL, and FG. 



In the output, first the polynomial coefficients are listed. 

The computed values of various variables for each iteration of Y 

appear as three rows of output. These are illustrated by printing 

the FORTRAN variables following the values of polynomial coefficients. 

The equivalent variables used in dynamic equations are listed along 

with the FORTRAN variables. The plots in Section 6 are generated 

from the values thus computed for various tire profiles. 
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10 FORMAT!12X,'A0',15X,'Al'•15X,'A2',15X,'A3',/) 
TYPE 12,AO,A1,A2,A3 
T\'PE 14 

14 FOPt·1AT f 1 ;~:=< ~ ~ Ft4' , 15>=:, ' 1=15' , 1.5:=-::, ' Fit.' , 15::-:;, ' A7' ~ . ...-) 
TYPE 12,A4,A5,A6,A7 

l 

T\'PE 16 
FC!Pt·1AT r 1 i::;:-:;, ' A:::::' , 15::-:;, ' F!'::J' , 15>::, ' A 10' , 1·~-::-:;, ' F! 11 ' , .. · J 
TYPE 12,A8,A9,A10,A11 
T\'PE 19 

1 '~1 FOPt·1RT ( 1 C:::-:;, ' A 1 C:' , 14>=:, ' R 1 ::::' , 14::.:;, ' A 14' , ] .:.1; : ~ ' i:i l ~;' ~ . ...-) 
TYPE 12,A12,A13,A14,A15 
T\'PE i::c1 

c:121 FOPHFIT!12::<, 'F116', 14>::, 'Fi17', 14>::, 'F:t:::::•, 14:0<, 'F:J.·:::•' , . ..-) 

T'lPE E.:l 

T\'PE 1 :::: , F!i::0, AC:: 1 
12 FC!PMATr4D17.6,//) 
13 FOPMATr2D17.6,//) 

T\'PE ~i 

c: F"OF:t·1AT ;:...--. ..- ... ··, 9;:.:;, ''/' , :::::::-:;, 'L·l r ~:::;I J ' , :::;:.-:' '1 .. 1 r T J ' '::=:;:.::' '! ... ! (! __ l ' ':::::;:.:;, '1 .. 1 ( \' J ' ' 
:::::::·::' 'L·! (fCI ' ' ........ ) 
T\'PE 6 

'F"C' ' . ..- . ..-:; 
DC! l 0[1 I=- 1 , ;::~~; 
KGS=W/AL~12.•rA1+R2•ALl+4.•1A3+A4•ALJ•!2.•C4l•Y••2+6.•rA5+A6•ALl 

•r2.•C6l•Y••4+8.•rA7+A8•ALJ•r2.•C8l•Y••6+18.•rA9+A10•ALJ•r2.•C10 
c: •Y••8+12.•rA11+A12•ALJ•r2.•C12l•Y••10+14.•rA13+Al4•ALl• 
0 2.•C14l•Y••12+16.•rA15+A16•ALJ•r2.•C16l•Y••14+18.•rA17+A18•ALl• 
4 2.•C18l•Y••t6+28.•rA19+A20•ALl•r2.•C20l•Y••18+21•A21 
~ •11.3749309/4.0874803l•Y••20l 

ALPHAE=Al+A3•C2•Y••2+A5•C4•Y••4+A7•C6•Y••6+A9•CB•Y••8+A11 
•C10•Y••10+A13•C12•Y••12+A15•C14•Y••14+A17•C16•Y••16+A19 

!CJKAS=L·f''AI_:t' IF! 1 +3. •A::::"''Ci::::•··;-':¢:•2+5. •F15•C4•"r"••4+7. •A7"'C6•'·(9:•6 
+9.•A9•C8•Y••8+11.•A11•C10•Y••10+13.•A13•C12•Y••12+15.•A15 

2 •C14•Y••14+17.•A17•C16•Y••16+19.•A19•C18•Y••18+21.•A21•C20 
::=.: ;t;·.,·;:,:•c::0l 

ACS=KGS•1.0E06/IKCS+1.0E06l 
I<C~:::;:::-,AG~:: 

BETAE=SQRTrrR0•ALl/IALPHAEll 
WSE=SQRTrrAKS-AKASl/C) 
WT=SQRTrr2.•FT•AL••2J/IC•BETAEll 
WL=SQRTrr2.•FLl/IAM•BETAEll 
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WGF2=KGS/AM 
WG2=WGF2+WY~~2 

WG=SQRTIWG2l 
X=WSE~~2+11WT/WL1~~2l~WG~~2 

R=WSE~~4-2.~1WSE•~2l~IWG••2l+WG••4 

S=1.+1WT*•2/WL••2l 
T=WL••4+2.•1WT••2l•IWL••2l+WT••4 
Z=l.-R/T 
WKS=X/IS•Zl 
WK=SQRTIWKSI 
UCR=BETAE~~K 

SI=ISQRTIIIKGS+AKYl-IAM•WK••2lJ••2+12.•FL/BETAEJ••2l 
/(2.•FLil•Y 
CUT=SQRTIIALPHAE•Y/R0l••2+!SI•AL/BETAEl•*2l 
CFT=FT•CUT 
CUL=SQRTIIY/BETAEl•*2+SI**2l 
CFL=FL•CUL 
FG=I2.•W/ALl•IIA1+A2•ALJ•Y+2.•1A3+A4*ALl*Y••3+3.•1A5+A6•ALl*V~•

5 

+4.•1A7+A8~ALl*Y••7+5.•1A9+AJ0•ALl*Y*•9+6.~1A11+A12•ALl 

2 •Y••11+7.•1A13+A14•ALl•Y••13+8.*1A15+A16~ALl*Y**15 

3 +9.*1A17+A18~ALl•Y••t7+10.*1A19+A20~ALl•Y•~19l 

TYPE 17,Y,WSE,WT,WL,W/,WK 
17 FORMATI6F12.4l 

TYPE 18,ALPHAE,BETAE,AKAS,KGS,UCR 
18 FORMATI13X,5F12.4l 

TYPE 55,SI,CUT,CFT,CUL,CFL,FG 
55 FORMATI6E12.4,///) 
100 Y=Y+.01 

STOP 
WD 
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, E::O' !;:IC!!U. F'4 
FORTPAN: RICNU.F4 

. L..c.;n:;:, r!··iG 

F' T C! ill ::=.:!< COPE 
E::·T:CUT I Ot-1 

C; ~ .-. 

,. I f ,-.,IT C: · ... ··.·' ..,,. ,--r· ~ .. '. 'C&,. 
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Ci = ?6?5~i:::D+ 1 :~~ 

.... , .... ,.,.~ 
!·· . ..:!·"'"· ~~ 

,-.F-·1 ... . -· r~ 

i·l r K! "";.. 



FLOATING UNDERFLOW 

FLOATING UNDERFLOW 

16.6355 40.3534 32.2827 
0.0515 8.5292 373.3757 

0.2436E-03 0.9744E+02 0.8311E-03 

0 = [11 ~;~~~ 

2:~:. 570C: 
·-:::6. 9'375 1::::1.1411 

0.0515 8.5338 372.0709 -~5.0855 181.2860 
0.1766E-02 0.7300E-03 0.2920E+03 0.2492E-02 0.9968E+03 -0.6740E+00 

0. 641 ::::E -{!2 

[!. 7559E -(1;=: 

16.6359 40.3157 
0.0514 8.5451 

0.1213E-02 0.4854E+03 

16.6364 40.2695 
0.0511 8.5648 

0.1691E-02 0.6765E+03 

16.6369 40.2066 
0.0508 8.5916 

0.2161E-02 0.8643E+03 

16.6372 40.1393 
0.0505 8.6204 

0.2623E-02 0.1049E+04 

16.6371 40.0858 
0.0502 8.6434 

0.3084E-02 0.1234E+04 

16.6361 40.0700 
0.0501 8.6503 

0.3553E-02 0.1421E+04 

:::::t:.::=:. 7:::.:43 
0.4148E-02 

3C~. £::156 
::::E.:::. i 79'3 

0. 57'34E -02 

:::;~. 165::: 

::::;::: • 111 4 
35i:':. ::=:;:::~::-r:::: 

0. 9~)46E -02 

354. :~:5'34 

:::2. ~]56~1 
:::::,::.6. 9::::~::)4 

0. l2C::9E-i;=:11 
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2::::.57t:::12 
·-3. ::::148 

~~1. 165'3[ H~14 

'35. [174::: 
0. ;::970E +04 

;:=~::::II ~5?0E~ 

i04 .. 5C.~E.9 

2:::: .. !:i712li~ 
'?-t.. 52C~ 1 

!;=:1. 4265E H14 

;::::::. ::i?t:IC~ 
14:::. 45:::4 

0. 4'317E·H]4 

1 ::=: 1. 6~]60 
~:;:1. 551 ~~1E +!;=:1!;=:1 

;.:::1. C:'631 
1 ::=:;:=:. 11:::::::: 

0. :::::f1'3C::E +!;=:11 
" 

;:::1. 2709 

0. 55~~1:::::E +0 1 
" 

.-.of .-,--;>·-•. -~ 
C.l "C I · .. ':0'-t' 

18:=:. :::::::5:=: 
!;=:1. 59'3:::E +!;=:11 

~ 

1 ::=: ::::: • ::=: (;. '3 i:': 
!;=:1. 61 EAE +(11 

" 

21.2B14 
l ::=:4. (190 1 

(1. 1 ::=::;:::::E +02 _,. 



0.0504 :::. 62C:t.. 
3;::~ .. 1[174 
.:.i-05. :~;(1'38 

2:~:. 57[1C.~ 

436. 7~Jo;:: 1 ::::~:. ·~ 1 03 

0.0950 16.6246 40.3696 32.2957 23.5702 21.4606 

0. 11;::1E--01 

0. ::.;::74E-01 

0. 147::::E-·01 

0. ;:::::56E -0 1 

16. l:.~:::i6J 
0, (15.:.~:.6 

1::1. 54;::;::E -02 

it ... 46~i[1 
~Ci. o:::74 

0.1116E-01 

16.4244 
(1, 1 [16::: 

0. 1465E-~::11 

16. 4;~:~:5 
e. 1c::61 

0. 1:::47E-01 

40.9405 
:::. ;::::::::6:::: 

0. c: 169E +(14 

--:' ,-,c;.:::-c; 
( ,. C•·-'·-'·-1 

43" 7'':.1t.1 
7. C::<t 10 

0. :::::::::::::::E +04 

0.5859E+04 

(';~::::. 6::.::::::7 
0. i 7'~7E-Ol 

172:::. 119~i 
~::1. c::449E -~::11 

o. 29C::4E-01 

.-.. -. '"7·-··-·1::" . .:u:o. f.,: .. .: .. _, 

;::::::::::::6. 2064 
0. 3471[-(11 

40.371::: 
;:::::::97. 2691 

o. 4~::1c::·~E -o 1 
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1241 . :::t.::.:;~ 

;~~::::II 57(-tC~ 

;::::::75. 5:::1 :::: 

;::3. 5?'0!=: 
~:;49r1. 5'39(1 

~:::1. :::::::::~::17[ +04 

;::::::. ~i71~12 
::::::~~14. 65::::4 

1190::::. 71 7~::1 
0.1170E+05 

(1. 13::::::E+05 

1 C:4 7::::. '3276 
o. 161C::E+05 

t:::;=:. 8937 

;:~ 1 • 7C:::.:::: 
1 :::o. (10·~·~ 

0. 61 E;:~:E +~::;::: 

1 ?:::: .. 8794 
1;::;. 1C::15E+04 

"' 

o. 1 ·::,5:::E +04 
" 

151,.2170 
0.254~E+04 

137. 9:~:1 0 
(1. c::544E H:H 

" 

;:::::::::. 1 ~::1'~3 
126.0311 

0. 177!EH::14 
" 



(1. i 65~~1 16.4555 51.9144 41.5315 23.5702 
0.1412 5.1534 2517.9300 9905.6731 

0.2201E-01 0.8803E+04 0.4537E-01 0.1815E+05 

16.4778 52.8601 42.2881 23.5702 
0.1518 4.9706 2253.6501 7958.2968 

!21. :~:s::=.:2E -0 1 0.2508E-01 0.1003E+05 0.4987E-01 0.1995E+05 

o .. i85(1 16.59~3 53.3507 42.6806 23.5702. 
-48 .. 9981 

11 7. oc·2::: 

;::2. 4~:::141 
111. ::::6c:6 

0. 59'3c:E +~:::n 
A 

C:1 .. 1547 
1 ():~:. C~271 

0.3798E-01 0.2749E-01 0.1100E+05 0.5366E-01 0.2147E+05 -0.5645E+04 

ATTEMPT TO TAKE SQRT OF NEGATIVE ARG 

17.:::521 ~:~. 5915 ?3 .. 5?[1C~ '! ~ .-.. -~--1"-1 
1 [ • c.·=·c.-.:1 

0.1176 5.6475 -14731.3580 97: 601~:0:1 
0.2235E-01 0.8940E+04 0.5049E-01 0.2019E+05 -0.6009E+05 

CPU TIME: 3.47 ELAPSED TIME: 4:29.45 

NO. OF ERRORS ERROR TYPE 
8 FLOATING·UNDERFLON 
1 ATTEt·1PT TO TAfT SOPT OF t·1EGFITI1..JE ARC; 

D<IT 
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