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1. INTRODUCTION

Elastic contact stress prob]ems are c1ass1f1ed as Hertz1an if they satisfy
the fo110w1ng f1ve cond1t1ons . 4 L

1. The bodies are homogenepu$; isotroptc, obey Hooke's law, and experi-
ence small strains and rotat1ons (1. e., the 11near theory of elasticity applies).

2.  The contact1ng surfaces are fr1ct1on1ess :

3. The dimensions of the deformed contact patch remain sma]] compared
to the pr1nc1pa1 radii of the undeformed surfaces. _

4. The deformat1ons are related to the stresses 1n the contact zones
as predicted by the 1inear theory of e]ast1c1ty for half spaces (Boussinesq's
1nf1uence functions are va11d)

5. The contacting surfaces are cont1nuous, and may be represented by
second degree polynomials (quadratic surfaces) prior to deformation.

Contact stress problems are also classified as:

a. Counterformal (or antiformal), if Condition 3 is satisfied, or

b. Conformal, if Condition 3 is violated.

Until recently, there existed no general way of handling any non-Hertzian
problems. However, Singh and Paul [1974] showed how to solve antiformal non-
Hertzian problems using the so-called Simply Discretized (S.D.) method. This
method was applied by them to relatively simple geometries. Later, Woodward
and Paul [1976] extended the S.D. method to the case of conformal problems,
but restricted their attention to the cases of cylinders and spheres. More
recently, Paul and Hashemi [1978-a] developed a modification of the S.D.
method by means of which they were able to solve antiformal contact problems
for virtually arbitrary geometries. By means of a computer program COUNTACT
(see Paul and Hashemi [1977]) they found the first known solutions for realis
tic rail and wheel profiles in antiformal contact.

The present work represents an extension of the modified S.D. method to
conformal problems with quite general geometries - including that of wheel
and rail profiles in closely conforming regions of the flange throat. Based
upon this analysis, a computer program (called CONFORM) has been developed
and reported upon by Paul and Hashemi [1978-b].



~ Additional references on related literature will be found in the cited
papers of Singh, Paul, and Woodward in the Ph.D. dissertation of Hashemi
[1979]. _ ' ‘

In_the*next section, we formulate the based integral equations governing
conformal contact stress problems. In Section 3, we show how the Modified
Simply Discretized Method can be used to solve the governing integral
- equation. |

In Section 4 the determination of the initial candidate contact boundary
is discussed. This is a necessary preliminary for the numerical method being
used. ‘ |

In Section 5 methods are developed for mesh generation and boundary
' determinétioh which are more general and efficient than those used in
the previously cited references. Section 6 briefly explains the organization
of computer programs developed for this work. Examples are given in Section

-7 and Conclusions are stated in Section 8.



2. FORMULATION OF THE GOVERNING INTEGRAL EQUATION
Let the two bodies of general, but closely conforming, shape be denoted

as body 1 and body 2. Cartesian coordinate axes are set up with the initial
contact point as common origin. Axes (x,y) lie in the tangent plane of the two
surfaces at the initial contact point, with the z-axis pointing into body 2.
Both surfaces are frictionless. Due to the applied loads, material points
in the two bodies undergo rigid-body translation éhd é]astic deformation.

The initial separation of points on the two bodies with common (x,y)
coordinates is given by the known surface'functions, z] and>22, as: (see Fig. 1)

f(x,y) = z,(x.y) - z;(x,y) (2-1)

If the bodies are pressed together, points that are well removed from
the contact region will undergo a rigid body motion, whereas points near
the contact region will undergo a rigid body motion plus superposed elastic
deformations. In general, the rigid-body motion of body 2 relative to body 1
is defined by six parameters. For simplicity, we assume, at this point,
that the rigid body motion of body 2 relative to body 1 consists of a translation
through distance S in the negative direction of axis z. The quantity ¢
is called the rigid body agproach; The methods of this paper may be extended

to cover the more general case where several or all of the six possible
degrees of (rigid-body) freedom are permitted.
Let us consider two points M] and M2 on the surfaces of bodies 1 and 2

with common coordinates (x,y) as in Fig. 1. The initial separation vector be-
tween the two points will be:

5= fon) 2 ) (2-2)

-2
where s; isthe initial separation  between point M, and point M,. ‘2
is the unit normal vector in the z-direction, and f(x,y) is given by
Eq. (2-1). After deformation occurs, points M] and Mo move to Mi and Mé.

If w; and w, represent the elastic displacement vectors of the points M
and Mo, then the final separation vector (i.e. separation vector after

deformation), becomes (see Fig. 1)

= S. +W.2"W~|'(SZ (2-3)



Fig. 1. The two bodies in contact under rigid body translation & = -82

(a) Curved lines are intersections of given surfaces with
a plane through the z axis. The line M]M2 js parailel
to the z-axis, prior to deformation.

(b) enlargement of region encircled in (a) showing the
process of deformation



For closely conforming surfaces the normals to the two surfaces (at
M] and MZ) differ very slightly in direction, and either of the two initial
surfaces represents a good approximation to the deformed surface on which contact
occurs. We will therefore assume that the contact patch lies on surface 1
(let body 1 be that of higher elastic modulus), and its unit normal vector n
will be approximated by ns the unit outward normal to surface 1.

Within the contact patch the component of separation S¢ in the normal

direction vanishes, i.e. {see Fig. 1).

A A
spe 0= (Fz+uwswy-62)en0 (2-4)
or ) |
~wg + wT4= (6-F) nz,(within contact patch) - (2-5)
where
no_
Wp =W
N e Cw,en, = n
W2 Wor Do = ¥Woely

are the components.of w and W, along the inward normals to surfaces 1 and 2;

note that U = - n,, and n, is the z-component of n; -

The displacement w? for body i is related to the pressure distribution

over the contact region ¢ on body i by the expression
w; (r)= [ G;(r;r)p(r') do' (2-6)
< ~

where the so-called "Green's function" G{r;g') is the normal displacement of point
r due to a unit normal force on body i at r'.* Denoting the projection of area

element do' on the x-y plane by .
‘ “dA's n! do | (2-7)

where n is the z component of ni, we may write Eq.( 2-6)in the form
) - el 1 dAI
wilr) = [ 6 (rsret)p(r') (2-8)
Q Z

where Q , the projection of o on the x-y plane will henceforth be called the

contact region.

The tip of vector y (r') is called a field (source) point. Quantities evalua-
ted at a source point will be marked by primes; e-qg. p=p(r'), but p=p(r).



Therefore equation (2-5) becomes
(G + Gydplr") & - ef) (2-9)

A physically meaningfu] solution requires that:
| Cplx,y) > 0 : within Q
PR B (2-10)
Coplx,y) = O on C
where bes the boundary of the contact region @ .
Equation (2-8) and condition (2-9) govern the conformal contact problem, and

léan be solved for p{x,y) and C, if a value of & is specified.
The resultant force Fp) and moment @(p) (on body 1), may be found

" (see Figure 2) from the expressions

F(p) = o jpn do (2']])
- gt
M(p) = o erX pg do‘ (2-]2)
where r = (X,¥,2), and do = dA/nZ by Eq. (2-7). Thus the applied external
force E 5,-F(p) and momentv@ = -@(p) are given by
L dA _
{FX;FysFZ} - = [Qp{!nx’ny’nz} n—Z (2 ]3)
dA
M= flyn, -2zn)p—=
X &2 z y n,
_ | dA
M, = £§-x n,*+zn)p . (2-14)
. d
MZ = £§x n, -y nx) p .



Pressure
Distribution

P(x,y)

Fig. 2. Forces applied to body 1




3. DISCRETIZATION OF THE INTEGRAL EQUATION

For a given rigid body approach &, Eq. (2-9) must be solved for the pres-
sure field p(x,y) and for the contact region @ . We will begin by assuming a
candidate contact region © . The projection of the intersection curve which
would arise if surface 1 were displaced relative to surface 2, along the z-axis
by distance & , on the x,y plane is called the interpenetration curve and is

given by (see Fig. 3)
f(x,¥)= zo(xsy) - z1(x,y) (3-1)

The region bounded by the interpenetration curve is chosen as the initial candidate
contact region. Equation (2-9) becomes an integral equation of the first kind,
which we will then solve by the modified simply discretized method*. Let us
~discretize the region Q of the integral equation into n subregions Q15 Doseesflps
where each subregion Qj is called'cell j". Then, Eq. (2-8) reduces to

- J16%6,] ‘ni:?f"+f [6,+6,] P—".‘-’-‘ ..... [ [6+6,] E:‘.‘—‘"= [8-f(x,y)In, (3-2)
Q] z 92 . Z Qn Z

If cell j is small enough so that p(x'.y') and n (x',y') over that cell can
be considered & constants pjvand n‘; then Eq. (3-2) reduces to:

. ap! P ;P / P /
[ (6r6,) B T [ (opeGy)ans Zp [ (6 Gy)AA% ... e 5 [ (GreGp)dA
Q - b4 n, Q] n, 92 n,

=[6-F(x,¥)] n{xsy) (3-3)
The term (G1+Gz) will be singular within certain cells and must therefore be
kept under the integral sign, at least for such cells. In short,

/ipl P. ’
[(6146,) %‘.‘—A =3 A | (6;#6,) dA"=[s-F(x,y)] n,(x.y) (3-4)
Q z j=1 n I Tq. ’

*

Paul and Hashemi [1978-a]
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Fig 3. Two bodies in conformal contact
a) prior to deformation
b) ficticious interpenetration
c) initial candidate contact region



To find the unknown values of Py we select n field points : (Xi’yi)

and write Eq.

where

1
1 f-3 I(Gl*G

= [(S"f(x.i ’yi )].(nZ )1

If matrix [bij] is nonsingular, Eq.

>

o

s for each of these points, in the form:

(3-5)
\ 7

(3-6)

(3-7)

(3-5) may be solved for the candidate

pressures pj. If these values of pj do not satisfy boundary conditions (2-9)

we must modify the assumed contact region boundary C.

The method used to

choose and modify the boundary of @ will be described in Sec. 5.
The Green's functions used for the specific examples of rail and wheel

considered in this paper (sec.

7) are discussed in Appendix A. For further

discussion on Green's functions see Hashemi and Paul [1979].
The applied force and moment are obtained from equations (2-13)and (2-14) as

' n
Fo =58y Py (LA
= n J

- where Aj is area of cell j (in the x,y plane).

n
. y-z=7.A.
b nz].] ]

n

n. |
5 p.[-xtz=E], 3-9
. pJ[ i, d5hs (3-9

n
) - 1,



n

4. INITIAL CANDIDATE CONTACT BOUNDARY

The initial candidate contact region will be chosen as the region inside
the "interpenetration curve," described in Sec. 3.
It was shown in Paul and Hashemi [1978-a] that for counterformal (but
not necessarily Hertzian) contact, the actual contact region lies inside
the interpenetration curve associated with a fixed approach. Similar reasoning
shows that, in the case of conformal contact problems, the true contact patch
lies inside the interpenetration curve, provided that the influence functions
(Green's functions) used for both bodies are unidirectional,* over the initial
candidate contact patch (see Hashemi [1979]), Experience to date suggests that the

interpenetration curve is a good candidate for the initial contact patch» even

for conformal contact.

5. MESH GENERATION AND CONTACT BOUNDARY DETERMIMATION

The method devised by Paul and Hashemi [1978-a] for the mesh generation
and boundary determination of counterformal problems has been improved and
extended to the conformal problem . In the following, rectangular cells,
with sides parallel to the x and y axis are utilized, and the contact region is

assumed to be symmetric about the x-axislas it would be for a wheel axis parallel
to the x-axis, and a rail axis parallel to the y-axis); consequently, only half
of the contact region (see Fig. 4) need be discussed. Both the field points
and source points will be chosen to lie at the centroids of the rectangular cells.
The scheme of subdivision for a candidate contact region is as follows:

Fig. 4 shows an example of such a region together with the coordinate axes
(x,y). The x-diameter, which has known Tength a, may be divided into any
number of segments (nb) called Bands. A typical band (i) will be further divided
into nsinumber of segments called strips. That part of a strip which lies above
the x-axis will be referred to as a half-strip. Then the "horizontal" length
hxi of cells in band i will be given by

hei = 23/ (5-1)

where
a. = r.a (5-2)

and rs is a fixed positive constant (less than 1) associated with band i, such

*
An influence function will be described as unidirectional over a surface if

a normal force applied to a point on the surface produces displacement at all
points of the surface whose components in the direction of the applied force
have the same sign everywhere.
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that % ry =1

If we divide each half-strip j into a number of cells mf,

the "vertical" length hy of each cell in that strip will be determined as:

h .=y /mJ ' ' (5-3a)

max Jj
where Yoax j js the y-coordinate of the point on the boundary curve correspond-
ing to the centerline of half-strip j (see Fig. 4).

14t is desired to have a field point on the x-axis, then we let

h .=y /(m. - =) (5-3b)

NA max j°J

PO =

The x-coordinate of the field points of all cells in the first strip will be
obtained as: |
hx]
At (5.4)

where a, is the left x-intercept of the boundary curve. Then the x-coordinate

L
‘of the cell centroid in strip j > 1 becomes

X5 = Xj_] + lgj (J >1) (5-5)
where hsj = hy; and strip j is in band 1.

Having unambiguously defined the cell arrangement, we may use Eqgs.
(3-6) and (3-7) to evaluate bijand di' Then the unknowns pj may be found by
solving the linear equations (3-5).

If the pressure distribution p, does not satisfy conditions (240) the
procedure explained in Paul and Hashemi [1978-a] will be used to redefine
the new ¢ontact region boundary C. The whole process will be repeated until
the conditions (2-1Q) are satisfied within a desired tolerance.



Line of

Symmetry

Fig. 4. Mesh arrangement for sample interpenetration curve. Bands are
shown separated by heavy vertical lines. Band 1 is subdivided into
5 strips, band 2 into 4 strips, band 3 into 5 strips. Note that the

x-axis is a line of symmetry,
is shown.

and only half of the contact patch

£l
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6. ORGANIZATION OF COMPUTER PROGRAM

The main program is called CONFORM which stands for " CONFORMal
contact." The program is able to handle all contact problems with one axis
of symmetry in its contact patch. In rail-wheel problems there will
always be at Teast one axis of symmetry (paraliel to the wheel axis) for wheel-
sets at zero yaw angle.

*
MAIN PROGRAM--CONFORM
The purpose of the main program is to manage input and output, to

call appropriate subprograms as needed, and to interlink the various
components needed for the overall program logic.

Figure 5 shows the relationship of the main program to the sub-
programs. In Fig. S, the arrows point from the calling program to the
called program. The fol16wing subprograms are used:

Subfunction PARAB: does the parabolic interpolation (or extrapolation
by a procedure referred to as PARAB2 in Paul and Hashemi [1978-a].

Subfunction BIF: calculates the integral k [dA/r of Boussinesq's function
Subfunction GDA: calculates fG dA

Subfunction GR1: calculates G(r,r') for body (1) (Rail)**

Subfunction GRZ2: calculates G(r,r') for body (2) (Wheel)**

Subroutine LEQT1F: solves the linear algebraic equations (3-5).

Subroutine INSEP: furnishes the initial separaration; i.e. the profile
function, Eq. (2-1), by a method described in Paul and Hashemi [1979].

Subroutine MIDWEL: provides the coordinates of an axial cross-section
of a railroad wheel (body 2); i.e. it computes the term z_(x,0) of Eq.
(2-1) in an appropriate set of coordinates (z,£) localized at the initial
point of contact (see Fig .6).

Subroutine WHEEL: computes the profile function zz(x,y) for body (2)
(wheel) for any (x,y) in contact region.

Subroutine RAIL: computes the profile function z](x,y) for body (1),
‘the railhead.

- _
The program is described in greater depth in the User's manual [Paul
and Hashemi, 1978-b].

*%k
The Green's functions supplied with the program are described in Appendix
A. Should the user wish to supply other types of Green's functions, he need
only replace subroutines GR1 and GR2 with his own subroutines of the same name.
A discussion of alternative choices of Green's functions is given in Hashemi and

Paul [1979].
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Subroutine WHEELQ: calculates z, ahd dz/dx of the wheel profile at any
point with coordinate x,, in middle plane with respect to wheel reference
coordinates (xw-zw) fixed in an axial cross-section of the wheel.
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-1Subfunction
‘BIF
!
Subfunction Subfunction Subfunction
6R2 6DA 6R1

Subfunction Maln Program Subroutine
PARAB _ . CONFORM LEQT1F
Subfunction Subroutine ] ' Subroutine
WHEEL INEP T |_RAIL

, —
Subroutine
WH'ELO Subfunction
MIDWEL

Fig. 5 Organization of Program CONFORM. Arrows point from calling
program to called program
Dotted block may be user-supplied if user desires to override
the standard subprograms provided.
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7. EXAMPLES

The examples are given for rail and‘wheel contact where the wheel is
so positioned that the problem could be either counterformal or conformal
depending upon the magnitude of the applied load. In the first example,
the applied load is relatively small so that the contact patch is counter-
formal, and the accuracy and reliability of the program CONFORM can be
verified versus program COUNTACT* (see Fig. 7). In the second example
the load is so high that the problem is highly conformal and the devia-
tion between the two programs is significant (see Fig. 8).

The elastic properties of rail and wheel (steel) are

E =30 x 10° psi ( Modulus of Elasticity)
v = 0.3 ( Poisson's Ratio ) : ,

Exampte 1. QggﬂIERFORMAL CASE OF RAIL AND WHEEL CONTACT STRESSES

Let the initial point of contact of rail and wheel be point C shown
in Fig. 6. For ¢ = 0.005" the numerical solution was found by using
the computer program "COUNTACT-1" (countérforma] contact stresses be-
tween bodies with one axis of symmetry in contact patch) and also by
"CONFORM" (conformal contact stresses between two elastic bodies).

The program CONFORM requires, as part of the input, the rigid body
approach & , an initial candidate contact region, and the desired initial
mesh arrangement. The final results are given in Table 1 for: pressure
distriéution, load (force and moment), and boundary of contact region.

A plot of pressure distribution along the ¢g-axis is given in Fig.
7-a, and the contact region is shown in Fig. 7-b for both programs. RNote
that for the very light load applied (1413 1b), the contact patch is
small and the problem is counterformal (but non-Hertzian). The excellent
agreement between the predictions of programs COUNTACT and CONFORM,
represents a validation of the latter program.

Example 2. CONFORMAL CASE OF RAIL AND WHEEL CONTACT STRESSES

For the same 1n1t1a] po1nt of contact as in examp]e 1, but for a higher
1oad the prob]em becomes conformal, and aga1n the numerical solution of
the prob]em was obtained by both CONFORM and COUNTACT , for & = 0.003"
(see Tables 2 and 3). The plot of pressure d1str1but1on along
the &-axis is shown in Fig. 8-a. The contact patch is shown in Fig. 8-b.

*See Paul and Hashemi [1978-a].



16

1

N
z
‘>——__T’—
N .
S
zxn ’ .
" ’
o & ,
- W
tw ——12.341 Radius
wn
\:

Fig. 6.

Example of rail and wheel in conformal contact

(unloaded case shown)

Numerical data is for 140RE rail (AREA designation) and for SIG
Metroliner wheel (SIG=Schweitzerische Industrie-Gesellschaft)

~



Table 1.

Xl

~0.16427115p 00
~0.116940%0 00
~0.14521120-01
0.8789P640-01
0.13516930 GO

NODE

ETA

X1

-0.16420 00
-0.1¢420 00
~0.16420 00
~0.14350 00
-0.14850 CO
~0.14850 00
-C.1327p 00
~0.1327 00
-0.,13270 00
-0.13270 00

* =0.11¢69d 00

~0.11650 €O
~G«11¢90 00
«-0.11690 00
-~0.11690 00
~0.90150-01
-0.90150-~01
-0.9015C-01
~0.52340-01
~0.52240-01
=0.5224D-01
~0.14520-01
-0.714520-01
-0.14520-01
0.23200-01
0.23300-01
0.2330p-01
0.61110-01
D.6111D0~01
0.61110-01
0.8750p-01
0.27960-01
0.87530-01
0.2790p-01
0.87600-01
0.1037p 00
0.10270 00
0.1G270 00
0.10370 00
0.10370 0Q
0.1194d 03
0.11940 00
0.11940 00
0.1194d 0Q
0.11940 00
0.125¢p 00
0.135¢0 00
0.13520 00

XI=FORCE= 68e1

LEFT XI-BOUNDARY=

19

0.290G14120-01 -0.14P45470 00
0.66465210-01 ~0.50154170-01
0.97115550-0D1
0.86723660~01
0.448544C0-01%

0.23295410-01
0.10365550v 00

ETA

C.0000p 00
Ge11610-01
0.23210-01
0.0000p GO
C.18710-01
0.37410-0C1
C.C00CDp 00
0.16810~01
Ce33610-01
C.50420-01
-G. 00070 00
Ce14770~01
0.29540-01
0.44310-01
0.5%080-01
G.0000D 00
0.32490-01
0.6498D-01
0.00000 0O
0.36910-01
C.73820-01
0.C0G0D 00
0.32850-01
0.77690-01
0.00000 00
G.40120~01
0.80240~01
06.00000 00

«31939p-01
0.7879p-01%
0.00000 QO
0.19270-01
0.39540-01
0.57820-01
Oe77009D0~-01
C.003Cb 0O
0.17300~-01
0.35790~01
0.53690-01
0.715%90-01
0.000CPp 00

0.15120-~01 -

0.30240~-01
0.4536D0~01
0.60470-01
0.00020 00
0.17940-01
0.35830-01

ETA-FORCE=

~0.17165

1431%.1

BOUNDARY OF CONTACY REGION

ETA

0.012269860-01
0.1C030110 00
"0.60535250~-01

ZETR

-0.1083p-01
-0.10&30~01
-0,108309-01
-0.88470-02
-0.28470~-02
-0.88470-02
-0.70630-02
~C.70630-02
-0.70630-02
-0.70630-02
-0.54820-02
~-0.54820-02
~L.54820-02
~0.54820=-02
-0.54820-02
~0.32550-02
-0.32550~-02
~-C.32550-02
-2.10960-02
~0.10960-02
~-0.10960~-02
-0.%4350-04
-0.84350-04
-0.84350~04

. =0.72430-03

-0.7243D-03
-0.72430-03
-0.50130-02
~0.50130-02
-0.50130~-02
~0.10450-01

"=~0.70450-01

~0.10450~01
~0.1C450~01
-0.10450-01
-0.14610-01
=0.14610~01
-3.14610-01
-0.14610~01
-J.14610~01
~C.19520~01
-0.19520-01
-0.19520-01
-0,19520-01
-N.19520-01
-0.25210-01%
=0.25210-01
~0.25210-01

RIGHT xU-BOUNDARY=

ETA-MORENT=

1413 1b)

xI

0.46766560-01 -0,1326978d 0O
-0.52337650-01
0.61111930-01
0.11941240 CO

[ 4

0.12690 0S
6.1159p 05
0.71800 04
0.2241p 05
0.2089p 05
0.12960 05
0.26910 05
0.26250 05
0.22420 05
0.1294p 05
0.30900 0S
0.30500 05
0.2800> 05
0.23460 05
0.1376D 05
0.36060 05
0.3315p 05
0.18710 05
0.4030p 05
0.37070 05
0.2056D 05

0.42320 0S

0.33340 05
0.21710 OS
0.42270 G5
2.33880 05
J.21730 05
0.38310 05
0.3525p 05
0.19910 05
0.3294D0 05
0.33030 05
0.29790 0S
0.25970 05
0.15160 05
0.2854D 05
0.286420 05
G.26130 0S
0.2193D 0S5
0.12730 05
0.23550 05
0.2¢3410 05
0.2164D 05
0.18100 05
0.10470 OS5
0.1349D 0S5
0.1249%0 0S5
0.75950 04

=7.5

0.34286

Contact boundary, pressure distribution, forces and moment
(CONFORM), Example 1 (Normal force

ETA

0.58816150-01
0.92270¢30~01
J.98421310-01
Le©8044750-01
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Fig. 7. Comparison of Programs CONFORM and COUNTACT for § = 0.0005."

The corresponding forces are: F = 1413 1b (CONFORM),
F = 1434 1b (COUNTACT)

(a) Pressure distribution ..

(b) Contact patch



Table 2.

3

~0.35917560D
-0.100CC00D
0.15717890
0.20025210

ce
0¢
a0
cC

-t - .
DDV NS N -

N oad b ad od cd b wd wh
COONO NSNS

NN
N -

NNNNNN
W ~NOw

ETA

Contact boundary
solved by program CONFORM.

BOUNDARY OF CONTACY REGION

- 2]

» pressure distribution, forces and moment,

XI

0.99183540~01 ~0.27550540 00

0.21685040
0426632730
0425720540

NODE X1

-0.35920
~0.35920
-0+35920
-0.35920
«0.35920
~0.2755p
~0.2755p
-0.27550
~0427550
-0.27550
-0.19180
~0.191&0
-0.19180
~0.191&D
~0.191&0
~0.100Gp
-0.10000
~0.10000
-0.10000
-0.10000
0.00000
0.00000
0.00000
0.00000
0.00000p
0.10000
C.1600D
0.10000
0.10000
0.10000
0.15720
0.15720
0.15720
0.1572p
0.15720
0.17150
0.17150
0.1715p
0.17150
0.17150
0.1859p
0.1359%0
0.18590
0.1859%0
0.18590
0.20030
0.2003p
0.2003»
0.20C3p
0.2003p
0.27460D
0.21460
"042146D
0.21460
0.214¢0
0.229GD
0.22900
0.22900
0.22900
0.22%00

LEFT XI-BOUNDARY=~0.4036896

00
00
00

0.00000000 00
0.1715366D 00
0.21460990 00

ETA

0.00000 0O
0.22040-01
0.44080-01
0.6612p-01
0.88160-01
0.00000 00
0.35160-01
0.7031p-01%
0.1055p 00
0.14060 00
0.0000p 0D
0.43060-01
0.86120-01
0.12925 00
0.17220 00
0.00000 0O
0.42620-01
0.9727p-01
0.145%9p 00
0.19450 00
0.00000 00
0.51760-01
0.10350 00
0.1553p 00

"0.20710 00

0.000CD 00
0.57720-01
0.11540 00
0.17320 00
0.230%0 00
0.0000p 00
0.59125-01
0.1184Dp 00
0.17760 Q0
0.2367p 00
0.000CD 0O
0.53980-01
0.1180D0 0O
0.176%p 00
0.23590 0O
0.0000p 00
0.57910-01
0.11520 QO
0.17370 00
0.23160 00
C.00000 00
0.57160-01
011430 00
0.17150 00
0.22860 00
0.00000 0O
0.55020-01
0.11000 00
D.16510 00
0.22010 00
0.00000 00
0.4244D~01
0.84880-01
0.127%p 00
0.1698p 0O

O.
0.
C.

ETA

15820610 00
23293950 00
26541810 00

0.24760210 00

ZETA

-0.,52710-01
-0.52710~01
-0.52710-01
-0.52710-01
=0.52710-01
-0.30740-01
-0.30740-01
-0,30740-01
-0.30740-01
-0.30740-01
-0,1481p-01
-0.14810-01
-0.14810-01
-0.1451p-01
-0.14810-01
-0.,40060-02
~0.40060-02
-0.40060-02
~0.40060-02
-0.40060~02
0.00000 0O
0.00000 00
0.00000 00
0.00000 00
0.00000 0O
-0.13580-01
-0.1358p~-01
«0.13580-01
-0.1358p~-01
-0.13580-01
~0.34530-01
-0.34530-01
~0434530-01
~0.34530-01
~0.,34530-01
-0.4153D0-01
-0.41530~-01
«0.41530~-01
-0.4153p-01
~0.4153p-01
-0.49320-01
-0.49320~01
~0,49320-01
~0.49320-01
~0.49320-01
=0.57940-01
=0.57940=-01
-0.57940-01
=0.57940-01
-0.5794p~01
~0.67460-01
-0.67480~01
-0.67480-01
=0.67480~-01
-0.67480-01%
~0.78020-01
~0.78020~01
-0,78020-01
-0.78020~-01
-0.78020-01

XI-FORCEx1244 ¢ 345 ZETA-FORCE s18965.182 ETA- FOMENT=

X1

=0.1918351p
0.10000000
018589440
0.22896760

P

0.47030
045540
0.41560D
0«3434D
G.2120D
0.79800
0.78000
0.7214D
0.6058p
0.37020
094530
0.9226D
0.85090
0.71800
0.4395D
0.10370
0.1014p
0.9335p
0.78670
0.48110
0.11040D
0.107¢0
0.9841D
0.818170
0.4919D
0.10270
0.10010
0.92310
0.,77490
0.4659p
G.84830
0.8275p
0.76050
0.64120
0.39190
0.78480
Ce7654D
0.7041D
0.59290
0435400
0.70900
0.6913D
0.6381D
0454040
D.33780
0.62980D
0.615%90
056560
0.4743D
0.28120
0.51730
0.4991D
066260
0.39350
0.25420
0.39240
0.39870
0437160
0.31250
0.22520

2158.806

RIGHT XT-BOUNDARY= (.,2484127

00
00
00
00

05
05
05
05
05
05
05
0s
0s
05
05
05
05
05
05
06
06
05
0s
05
06
06
05
05
0s
06
06
05
05
0s
05
05
05
035
as
05
05
05
05
0s
05
05
05
05
05
05
0s
05
05
0s
05
05
05
05
05
05
05
05
05
05

ETA

0.19377860
0.25974920
0.26058130
0.19099050p

00

00
00



Table 3. Contact boundary, pressure distribution, forces and moment,
Example 2, solved by program COUNTACT

SOUNDARY OF CONTACT REGION
Xl ETA X ETA X1 ETA

~0.37R2%360 GC 0.81822350-09 ~0,72234020 00 0.1330270p 00 -0.26644670 00 0.16636800 00

«0.2120M000 UC 0.16599110 00 -0415900000 00 0.,:04H6270 OU -0.10600000 00 G,21695140 OC

«0.530L0000-01 0.22559710 00 0.000000PD O0 0.22768530 00 0.53000000-C1  U.24552550 CO
0.106GC00D OC 0.25L660NUd 0O 0.1590000p G0 0.2718343D (0 0.21260080 00 0.27835440 00
0.2387%660 0C 0.23513650 00 0.23921580 00 0.18725920 00 0.23969300 00 0.16030410 0O
0.24017010 CC  0.87678C40-01

NOOE X1 ETA 2ZETA 4

1 -0.37820 00 0.0000% 00 ~-0.58600-01 0.40940 0S5

2 =0,37R20 00 O.18120-01 ~0.5%8600~-01 0.39510 05

3 -0.37820 0O 0.36370-01% -0.58600-01 0.35740 05

4 ~0.37820 N0 0.54550-01 -0.58600-01 0.29150 05

§ - =-0.37820 00 0.72770-01 -0.58¢00-01 0.17080 05

[ -0.32230 0O 0.00000 00 ~D,42260-01 0.70730 05

? ~0.32230 00 0.29560-01 -0.42280-01 0.69020 05

[ ] =-0.32230 00 0.59120-01 -0.42280-01% 0.63650 05

9 -0.32230 00 0.88680-01 -0.42250-01 0.52800 05
10 ~0.32230 00 0.11z20 0O -0.42280-01 0.29800 05
1" ~0.26640 00 0.00000 0O -0,28730-01 0.84560 05
12 «0.26640 0C 0.3697p-01 -0.2873p~01 0.52450 GS
12 =0.26640 00 0.73940-01 -0.28730-01 0.75890 05
14 ~0.26640 00 0.t1090 00 -0.28730~01 0.6354p 05
13 =0.26640 QO Ce.347%0 QO ~0.,28730-01 0.35840 0S5
16 ~0.21200 00 0.00000 0C -0.,18110-C1 C.9319D 05
"7 ~0.21200 00 0.42C00~01 -0.18110-01 0.90900 05
18 -0.21200 00 0.84000-01 ~0.16110-01 0.£3620 05
19 ~0.212C0 0C 0.12600 0O -0.18110-01% 0.70050 05
20 -0.212C0 00 G.166C0 00 -0.13110-01 0.40C40 05
21 -0.15900 00 0.000C0 00 -0.10150-01 0.98470 05
22 -0.15900 00 0.45520-01 -0.10150-C1 0.96060 0G5
23 ~0.,159C0 00 0.51050-01 ~0.10150-01 0.88380 05
24 -0.159C 00 0.13660 00 ~0.10150~01% 0.74130 05
235 ~0.159Co 00 0.1821p 00 -0.10150~01 0.43230 05
26 -0.10600 00 0.00000 0O ~0.45030-02 0.10160 08
27 -0.10600 0O Q.4%210-01 ~0.45030-02 0.9915p 0S5
28 -0.1060p 00 0.96420-01 ~0.45C30-02 0.91230 05
29 -0.1086C0 00 G.14460 0O =0.45030~02 0.76540 05
3¢ ~0.10600 CO 0.19z%0 00 ~0.45030-02 0.45059 CS
n «0.53000-01 0.00000 00 -0.11240-~02 0.10320 06
32 -=0.53000-01 0.5017p-01 =0.11240-02 0.10060 06
33 -0.530G0-01 . 0.10G0%0 00 -0.11240-C2 0.9248Dp 05
34 -0.53000-01 0.15040 0C -0.11240-02 0.77540 05
335 -0.53000-01 0.20050 OO -0.11240-02 0.4571p 0S5
36 0.00000 QOO0 0.00070 00 G.00C0D0 GG 0.10360 06
37 0.000Cy» 00 0.506C0-01 0.00000 00 0.1007p 06
38 0.00000 00 8.1012> 00 0.00C00 00 0.92240 05
3¢ 0.C0000 0C 0.15180 00 0.06600 00 0.75980 05
40 0.000Gp 00 0.20240 00 0.00000 0C Q.44480 05
41 0.53000-01 0.00000 0O -0a37640~02. 0.1031p 06
42 0.53000-01 0.54560-01 ~0.37640-02 0.10050 Cé
43 0.53000-01 0.10910 00 -0.37640-02 0.92160 G5
44 6.53000~014 0.16370 CO =0.37640-02 0.77430 05
43 0.53000-01 0.21620 00 ~0437640~C2 0.4507p 05
4 0.10600 00 0.000Cs 00 -0.15290-01 0.1030p Qe
47 6.10600 00 0.57420-01 -0.15290~-01 0.10040 06
48 0.10600 CO 0.11500 QO -0.15290-01 0.92G90 05
49 0.10600 CO 0.17240 00 =0.15290-01 0.77170 Q5
sC 0.106G0 00 0.229%0 00 -0.15298-01 0.452909 05
51 0.15900 €0 0.0C0%6 00 -0.35380~-01 0.10530 06
52 0.15900 0O 0.604109-01 -0.35380-01 0.10240 06
3 0.15900 00 0.12020 00 ~0.35380-01 0.94140 05
34 0.1590p 00 0.128120 GO ~0.35380-01 0.7852p Q5
33 0.15%00 00 g.24160 00 -0.35380-01 0.45640 C5
S 0.212¢0 00 ¢.000C0 OO -0.85680~01 0.97350 0S5
s$? 06.21200 00 C.618¢0-01 ~0.65¢60-01 0.95329 05
s8 0.21200 00 0.12370 00 -0,65680~01 0.87740 05
39 0.2120G0 €O 0.18560 0O -0.65680-01 0.7322p0 05
(1] 0.212C00 OO 024740 0O -0.45680-01 0.42560 05
61 0.2387» €O 0.00000 0O -0.85810~01 0.74010 06
2 0.23870 0C 0.522¢60-01 -0.25610-01 0.65890 0¢
[ 2] 0.23270 00 0.104%0 CO -0.35&10-01% 0.65610 G6
[ 1] 0.23870 00 0.15670 00 ~0.85810-01 D.68620 06
(3] 0.23870 00 0.20910 00 ~0.85610-01 0.46159 06
(1] 0.23920 00 0.00000 00 -0.86210-01 0.23190 Q&
7 0.23%:z0 OO 0.41610-01 -0.26218~01 0.40000 06
(1] 0.23920 00 0.83220-01 =0.86210-01% Q0.44250 06
(3] 0.23920 00 0.12480 00 -=0.86210-01 0.25500 06
0 0.23920 00 0.16650 00O -D.26210-01 0.14320 06
1 0.23970 €0 g.Cooco 00 -0.¢6400-01 0.2136p 06
7 0.23970 00 0.35640-01 ~0.86600~01 0.25820 06
73 0.23570 00 0.71270-01 ~0.86600-01 0.1575¢ 0é
4 0.2397p 0O 0.106%9 0C =0.86600~-01 0.19140 Cé
75 0.23970 00 0.14250 00 -0.26600-01 0.13320 Q6
76 0.24020 00 0.00000 00 -0.27000~01 Q.11010 06
n 0.24020 00 0.194?0-01 ~0.87006-~G1 0.62130 05
kil 0.24020 00 0.38970-G1 -0,87000-01 Oe14470 06
19 0.24020 00 0.58450-01 -0.87060-01% 0.83579 05
[ 1] 0.24020 00 0.77940-01 «0.87000-01 0.29400 05

X1 FURCE *2541.523 ZETA-FORCE™ 20552.141 ETA- momENTs 2022.316

LEFT XI-00UNDARY =-0, 4064102 RIGHT X1-oUNDARYZ 0.2403322
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Fig. 8 Comparison of Programs CONFORM and COUNTACT for § = 0.003"
F = 20550 1b (COUNTACT), F = 19000 1b (CONFORM)
(a) Pressure distribution along the & axis

(b) Contact patch
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Note that the contact boundary predicted by COUNTACT is not too
different from that predicted by CONFORM. However, COUNTACT predicts
a very extreme pressure concentration (740,000 psi), whereas the more
accurate program CONFORM shows that the peak pressure is actually
110,400 psi.

8. CONCLUSIONS

The modified simply discretized method of Paul and Hashemi [1978-a]
has been extended to conformal problems. Methods for automatic mesh
generation and contact patch boundary determination have also been extended
to conformal contact problems.

Computer program CONFORM, based on these ideas, has been  described
and numerical results were presented for selected examples.

The first numerical example demonstrates the accuracy of program
CONFORM for the special case of non-Hertzian counterformal contact
problems. The accuracy of program CONFORM for this class of problems
checked against the more specialized program COUNTACT, which is 1limited
to strictly counterformal problems. Figure 7 illustrates the validity
of program CONFORM for this verifiable case.

The second example presents the first known solution to the conformal
contact stress problem for geometry as complex as that of a realistic rail-
~ head and wheel making contact on the throat of the flange.

Figure 8-a illustrates how important it is to use program CONFORM
for truly conformal cases, and that practical cases of conformal problems
occur, which cannot be adequately approximated by a procedure designed
for counterformal cases.
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APPENDIX A: Influence Function for Rail and Wheel Surfaces

One of the major difficulties in the solution of any contact problem
is the determination of suitable Green's functions for the surfaces in con-
tact. These "influence functions" relate the elastic displacement at a given
point due to a unit applied force at some other point. In contact
problems, we are concerned with the elastic displacements of surface points
due to a unit load applied anywhere on the surface of a body.

In counterformal contact of rail and wheel, the contact area is approxi-

mated by a plane, makirg it appropriate to use Boussinesq's influence function
for all surfaces. However, in conformal contact (where the contact surface

is not approximately plane), it is generally necessary to find more indivi-
dualized influence functions for each of the two surfaces in contact. For
many realistic surfaces, the exact influence functions cannot be found
analytically; therefore, they must be generated numerically [Woodward and Paul,
19761, or else be approximated by some convenient mathematical expresssions.

A study of various exact and approximate influence functions has been .made
by Hashemi and Paul[1979]. Although,in principle,one may generate accurate
influence functions for arbitrary surface geometries with the aid of three-
dimensional finite element programs, their  studies indicate that the costs
of such an approach for rail and wheel geometries are prohibitive at this time.
However, they have found that it is feasible to use various types of
semi-empirical influence functions and havemade error analyses which indi-
cate that the Boussinesq influence function [Lur'e, 1964] is a reasonable
first approximation for the range of wheel and rail geometries encompassed
in the examples of this paper. That is, the normal displacement W, at a
point (x,y,z) of the wheel or rail surface, due to a unit normal force at
another point (x',y',z') of the surface may be approximated by:

W = (1-v)/7E) i
N [(xex')24(y-y')2+(z-2")T/?

where E and v are Young's modulus and Poisson's ratio, for the body in question.
This was the influence function used by CONFORM in the examples of this report.
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