REPORT NO. FRA/ORD-79/41

NUMERICAL DETERMINATION OF CONTACT PRESSURES BETWEEN CLOSELY CONFORMING WHEFIS AND RAILS

TECHNICAL REPORT NO. 8

™BY

PB 80120462

B. PAUL AND J. HASHEMI

JULY 1979

DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE

NATIONAL TECHNICAL INFORMATION SERVICE SPRINGFIELD, VIRGINIA 22161

PREPARED FOR THE

DEPARTMENT OF TRANSPORTATION

FEDERAL RAILROAD ADMINISTRATION WASHINGTON, DC. 20590

a start of here and

TECHNICAL REPORT STANDARD TITLE PAGE

.

FRA/ORD-79/41		•		* •	
	PB 80120462				
4. Title and Subsiste		5	Report Date	70	
Numerical Determinatio	ures	July 19			
Between Closely Confor	ils 🌔	 Performing Organization • 	n Code .		
7, Author's)	8	Performing Organization	n Report No.		
B. Paul and J. Ha		MEAM Re	port 79-4		
9. Performing Organization Name and Add	1	0. Work Unit No.			
Department of Mechanical	Engrg. & Applied 1	Mechanics	11. Contract or Grant No.		
University of Pennsylvan	ia – III Towne Bu	ilding/D3	D0T-0S-	60144	
Philadeiphia, PA 19104		1	3. Type of Report and Pe	eriod Covered	
12. Sponsoring Agency Nome and Address			Technical Repo	ort No. 8	
Department of Transporta	tion tration				
400 Seventh Street			14. Sponsoring Agency Code		
Washington, DC 20590	0, 11,				
15. Supplementory Notes				· · · · · · · · · · · · · · · · · · ·	
	•			_	
14 Abarrat					
of that recently develop	re pressed together bed by the authors technique for auto	r. The method for the case	l is a generaliza of counterforma	ation 1 hat	
of that recently develop contact, and includes a overlay the changing (lo implemented in a compute problems of wheel and ra with those generated by light wheel loading, whe formal. The results giv loading on the throat of formal contact between a	the pressed together bed by the authors technique for auto bad-dependent) cont er program called C til contact. The r an independent pro ere the contact is yen herein for a re the flange repres a railroad wheel an	r. The method for the case matically gen cact patches. CONFORM, and h results have b ogram for the known a-prior elatively heav sent the first ad rail.	l is a generalization of counterformation nerating meshes the mass been applied been verified by special case of to be essentiation (but realistic) known solution	ation l hat to comparison relatively lly counter- c) wheel for con-	
of that recently develop contact, and includes a overlay the changing (lo implemented in a compute problems of wheel and ra with those generated by light wheel loading, whe formal. The results giv loading on the throat of formal contact between a	e pressed together bed by the authors technique for auto bad-dependent) cont er program called C til contact. The r an independent pro ere the contact is yen herein for a re the flange repres a railroad wheel an	r. The method for the case matically gen cact patches. CONFORM, and h results have b ogram for the known a-prior elatively heav sent the first od rail.	l is a generalization of counterformation nerating meshes the The method has been verified by special case of to be essentiation (but realistic known solution	ation 1 hat been to comparison relatively 1ly counter- c) wheel for con-	
of that recently develop contact, and includes a overlay the changing (lo implemented in a compute problems of wheel and ra with those generated by light wheel loading, whe formal. The results giv loading on the throat of formal contact between a	e pressed together bed by the authors technique for auto bad-dependent) cont er program called C il contact. The r an independent pro ere the contact is yen herein for a re the flange repres a railroad wheel an	The method for the case matically gen cact patches. CONFORM, and h results have b gram for the known a-prior latively heav sent the first d rail.	l is a generalization of counterformation merating meshes the The method has been verified by special case of rito be essentiation y (but realistic known solution	ation l hat to comparison relatively lly counter- c) wheel for con-	
of that recently develop contact, and includes a overlay the changing (lo implemented in a compute problems of wheel and ra with those generated by light wheel loading, whe formal. The results giv loading on the throat of formal contact between a	e pressed together bed by the authors technique for auto bad-dependent) cont er program called C til contact. The r an independent pro ere the contact is yen herein for a re the flange repres a railroad wheel an	r. The method for the case matically gen cact patches. CONFORM, and h results have b ogram for the known a-prior elatively heav sent the first ad rail.	l is a generalization of counterformation nerating meshes the The method has been verified by special case of to be essentiation (but realistic known solution	ation l hat been to comparison relatively lly counter- c) wheel for con-	
of that recently develop contact, and includes a overlay the changing (lo implemented in a compute problems of wheel and ra with those generated by light wheel loading, whe formal. The results giv loading on the throat of formal contact between a	e pressed together bed by the authors technique for auto bad-dependent) cont er program called C til contact. The r an independent pro ere the contact is yen herein for a re the flange repres a railroad wheel an	The method for the case matically gen cact patches. CONFORM, and h results have b gram for the known a-prior elatively heav sent the first ad rail.	l is a generalization of counterformation nerating meshes the mas been applied been verified by special case of rito be essentiation (but realistic known solution	ation l hat been to comparison relatively lly counter- c) wheel for con-	
of that recently develop contact, and includes a overlay the changing (lo implemented in a compute problems of wheel and ra with those generated by light wheel loading, whe formal. The results giv loading on the throat of formal contact between a	e pressed together bed by the authors technique for auto bad-dependent) cont er program called C til contact. The r an independent pro ere the contact is yen herein for a re the flange repres a railroad wheel an	r. The method for the case matically gen cact patches. CONFORM, and h results have b ogram for the known a-prior elatively heav sent the first ad rail.	l is a generalization of counterformation nerating meshes the The method has been verified by special case of to be essentiation (but realistic known solution	ation l hat been to comparison relatively lly counter- c) wheel for con-	
 Arrite contracts surfaces and of that recently develop contact, and includes a overlay the changing (le implemented in a compute problems of wheel and rawith those generated by light wheel loading, whe formal. The results give loading on the throat of formal contact between a formal contact between a surface of the second s	re pressed together bed by the authors technique for auto bad-dependent) cont er program called C il contact. The r an independent pro ere the contact is yen herein for a re the flange repres a railroad wheel an contact stress, D contact stress, D sicity, S 2	The method for the case matically gen cact patches. CONFORM, and h results have b ogram for the known a-prior elatively heav sent the first id rail. Distribution Stoteme Document is National Tec Service, Spr 22161	l is a generalize of counterforma herating meshes the The method has been verified by special case of to be essentia by (but realistic the known solution we have a s	ation ation hat been to comparison relatively lly counter- c) wheel for con- rough the mation rginia	
 17. Key Words 17. Key Words 17. Key Words 18. Security Cleased, (of this report) 	e pressed together bed by the authors technique for auto bad-dependent) cont er program called C til contact. The r an independent pro ere the contact is yen herein for a re the flange repres trailroad wheel an contact stress, cicity, 20. Security Classes, C	Distribution Stoteme Document is National Tec Service, Spr 22161	available thi available thi class of counterforma inerating meshes the The method has been verified by special case of to be essentia y (but realistic known solution	ation ation hat been to comparison relatively lly counter- c) wheel for con- rough the mation rginia	
 Proctionless surfaces all of that recently develop contact, and includes a overlay the changing (lo implemented in a compute problems of wheel and rawith those generated by light wheel loading, whe formal. The results give loading on the throat of formal contact between a formal contact between a formal contact, elast non-Hertzian contact. Provide Closed (of the report) Unclassified 	e pressed together bed by the authors technique for auto bad-dependent) cont er program called C til contact. The r an independent pro ere the contact is ren herein for a re the flange repres trailroad wheel an contact stress, cicity,	Distribution Stoteme Document is National Tec Partice of the Anown a-prior Partice of the Partice of the Pa	available thr available thr cline formation available thr cline formation available thr cline for the second for the second for the second the second th	ation ation hat been to comparison relatively lly counter- c) wheel for con- rough the mation rginia	

TABLE OF CONTENTS

1.	Introduction 1
2.	Formulation of the Governing Integral Equation 3
3.	Discretization of the Integral Equation 8
4.	Initial Candidate Contact Boundaryll
5.	Mesh Generation and Contact Boundary Determination11
6.	Organization of Computer Program14
7.	Examples17
8.	Conclusions24
	References25
	Appendix A: Influence Functions for Rail and Wheel Surfaces26
	list of Related Publications27

.1

Э × . ç 6

1

1. INTRODUCTION

Elastic contact stress problems are classified as Hertzian if they satisfy the following five conditions:

1. The bodies are homogeneous, isotropic, obey Hooke's law, and experience small strains and rotations (i.e., the linear theory of elasticity applies).

2. The contacting surfaces are frictionless.

3. The dimensions of the deformed contact patch remain small compared to the principal radii of the undeformed surfaces.

4. The deformations are related to the stresses in the contact zones as predicted by the linear theory of elasticity for half spaces (Boussinesq's influence functions are valid).

5. The contacting surfaces are continuous, and may be represented by second degree polynomials (quadratic surfaces) prior to deformation.

Contact stress problems are also classified as:

a. <u>Counterformal</u> (or antiformal), if Condition 3 is satisfied, or

b. <u>Conformal</u>, if Condition 3 is violated.

Until recently, there existed no general way of handling any non-Hertzian problems. However, Singh and Paul [1974] showed how to solve antiformal non-Hertzian problems using the so-called Simply Discretized (S.D.) method. This method was applied by them to relatively simple geometries. Later, Woodward and Paul [1976] extended the S.D. method to the case of conformal problems, but restricted their attention to the cases of cylinders and spheres. More recently, Paul and Hashemi [1978-a] developed a modification of the S.D. method by means of which they were able to solve antiformal contact problems for virtually arbitrary geometries. By means of a computer program COUNTACT (see Paul and Hashemi [1977]) they found the first known solutions for realistic rail and wheel profiles in antiformal contact.

The present work represents an extension of the modified S.D. method to conformal problems with quite general geometries - including that of wheel and rail profiles in closely conforming regions of the flange throat. Based upon this analysis, a computer program (called CONFORM) has been developed and reported upon by Paul and Hashemi [1978-b].

Additional references on related literature will be found in the cited papers of Singh, Paul, and Woodward in the Ph.D. dissertation of Hashemi [1979].

In the next section, we formulate the based integral equations governing conformal contact stress problems. In Section 3, we show how the Modified Simply Discretized Method can be used to solve the governing integral equation.

In Section 4 the determination of the initial candidate contact boundary is discussed. This is a necessary preliminary for the numerical method being used.

In Section 5 methods are developed for mesh generation and boundary determination which are more general and efficient than those used in the previously cited references. Section 6 briefly explains the organization of computer programs developed for this work. Examples are given in Section 7 and Conclusions are stated in Section 8.

2. FORMULATION OF THE GOVERNING INTEGRAL EQUATION

Let the two bodies of general, but closely conforming, shape be denoted as body 1 and body 2. Cartesian coordinate axes are set up with the initial contact point as common origin. Axes (x,y) lie in the tangent plane of the two surfaces at the initial contact point, with the z-axis pointing into body 2. Both surfaces are frictionless. Due to the applied loads, material points in the two bodies undergo rigid-body translation and elastic deformation.

The initial separation of points on the two bodies with common (x,y) coordinates is given by the known surface functions, z_1 and z_2 , as: (see Fig. 1)

$$f(x,y) = z_2(x,y) - z_1(x,y)$$
(2-1)

If the bodies are pressed together, points that are well removed from the contact region will undergo a rigid body motion, whereas points near the contact region will undergo a rigid body motion plus superposed elastic deformations. In general, the rigid-body motion of body 2 relative to body 1 is defined by six parameters. For simplicity, we assume, at this point, that the rigid body motion of body 2 relative to body 1 consists of a translation through distance δ in the negative direction of axis z. The quantity δ is called the <u>rigid body approach</u>. The methods of this paper may be extended to cover the more general case where several or all of the six possible degrees of (rigid-body) freedom are permitted.

Let us consider two points M_1 and M_2 on the surfaces of bodies 1 and 2 with common coordinates (x,y) as in Fig. 1. The <u>initial separation vector</u> between the two points will be:

$$s_i = f(x,y) \frac{2}{2}$$
 (2-2)

where s_i is the initial separation between point M_1 and point M_2 . 2 is the unit normal vector in the z-direction, and f(x,y) is given by Eq. (2-1). After deformation occurs, points M_1 and M_2 move to M_1 and M_2 .

If w_1 and w_2 represent the elastic displacement vectors of the points M_1 and M_2 , then the final separation vector (i.e. separation vector after deformation), becomes (see Fig. 1)

$$\mathbf{s}_{\mathbf{f}} = \mathbf{s}_{\mathbf{i}} + \mathbf{w}_{2} - \mathbf{w}_{1} - \delta \hat{\mathbf{z}}$$
(2-3)

Δ

Fig. 1. The two bodies in contact under rigid body translation $\delta = -\delta \hat{z}$

- (a) Curved lines are intersections of given surfaces with a plane through the z axis. The line M_1M_2 is parallel to the z-axis. prior to deformation.
- (b) enlargement of region encircled in (a) showing the process of deformation

For closely conforming surfaces the normals to the two surfaces (at M_1 and M_2) differ very slightly in direction, and either of the two initial surfaces represents a good approximation to the deformed surface on which contact occurs. We will therefore assume that the contact patch lies on surface 1 (let body 1 be that of higher elastic modulus), and its unit normal vector n will be approximated by n_1 , the unit outward normal to surface 1.

Within the contact patch the component of separation s_f in the normal direction vanishes, i.e. (see Fig. 1).

$$s_{f} \cdot n = (f \hat{z} + w_{2} - w_{1} - \delta \hat{z}) \cdot n_{1} \approx 0$$
 (2-4)

or

 $w_2^n + w_1^n = (\delta - f) n_z$ (within contact patch) (2-5)

where

$$w_1^n = -w_1 \cdot m_1$$
$$w_2^n = -w_2 \cdot m_2 = w_2 \cdot m_1$$

are the components of w_1 and w_2 along the inward normals to surfaces 1 and 2; note that $v_1 \stackrel{\sim}{=} - v_2$, and v_1 is the z-component of v_1 .

The displacement w^n_i for body i is related to the pressure distribution over the contact region σ on body i by the expression

$$w_{i}(\underline{r}) = \int_{\sigma} G_{i}(\underline{r};\underline{r}') p(\underline{r}') d\sigma' \qquad (2-6)$$

where the so-called "Green's function" $G_i(\underline{r};\underline{r}')$ is the normal displacement of point \underline{r} due to a unit normal force on body i at \underline{r}' ." Denoting the projection of area element $d\sigma'$ on the x-y plane by

$$dA' \equiv n'_{7} d\sigma'$$
 (2-7)

where n_{z}^{\prime} is the z component of $n_{z}^{\prime},$ we may write Eq.(2-6)in the form

$$w_{i}(\underline{r}) = \int_{\Omega} G_{i}(\underline{r};\underline{r}')p(\underline{r}') \frac{dA}{n_{z}'}$$
(2-8)

where Ω , the projection of σ on the x-y plane will henceforth be called the <u>contact</u> region.

The tip of vector r(r') is called a field (source) point. Quantities evaluated at a source point will be marked by primes; e.g. p'=p(r'), but p=p(r).

Therefore equation (2-5) becomes

$$\int_{\Omega} (G_1 + G_2) p(r') \frac{dA'}{n_z'} = (\delta - f) n_z$$
 (2-9)

A physically meaningful solution requires that:

$$p(x,y) > 0$$
 within Ω (2-10)
 $p(x,y) = 0$ on C

where C is the boundary of the contact region Ω .

Equation (2-8) and condition (2-9) govern the conformal contact problem, and can be solved for p(x,y) and C, if a value of δ is specified.

The resultant force $F^{(p)}$ and moment $M^{(p)}$ (on body 1), may be found

(see Figure 2) from the expressions

$$z^{(p)} = -\int_{\Omega} pn \, d\sigma \qquad (2-11)$$

$$\mathcal{M}^{(p)} = -\int_{\Omega} \mathbf{r} \times \mathbf{p} \mathbf{n} \, d\sigma \qquad (2-12)$$

where r = (x,y,z), and $d\sigma = dA/n_z$ by Eq. (2-7). Thus the applied external force $F \equiv -F^{(p)}$ and moment $M = -M^{(p)}$ are given by

$$\{F_{x}, F_{y}, F_{z}\} = - \int_{\Omega} \{n_{x}, n_{y}, n_{z}\} \frac{dA}{n_{z}}$$
 (2-13)

$$M_{x} = \int_{\Omega} (y n_{z} - z n_{y}) p \frac{dA}{n_{z}}$$

$$M_{y} = \int_{\Omega} (-x n_{z} + z n_{x}) p \frac{dA}{n_{z}}$$

$$M_{z} = \int_{\Omega} (x n_{y} - y n_{x}) p \frac{dA}{n_{z}}$$
(2-14)

Fig. 2. Forces applied to body 1

3. DISCRETIZATION OF THE INTEGRAL EQUATION

For a given rigid body approach δ , Eq. (2-9) must be solved for the pressure field p(x,y) and for the contact region Ω . We will begin by assuming a candidate contact region Ω . The projection of the intersection curve which would arise if surface 1 were displaced relative to surface 2, along the z-axis by distance δ , on the x,y plane is called the <u>interpenetration curve</u> and is given by (see Fig. 3)

$$f(x,y) = z_2(x,y) - z_1(x,y)$$
(3-1)

The region bounded by the interpenetration curve is chosen as the initial candidate contact region. Equation (2-9) becomes an integral equation of the first kind, which we will then solve by the modified simply discretized method*. Let us discretize the region Ω of the integral equation into n subregions $\Omega_1, \Omega_2, \dots, \Omega_n$, where each subregion Ω_i is called cell j. Then, Eq. (2-8) reduces to

$$\int [G_1 + G_2] \frac{p'dA'}{n'_z} + \int [G_1 + G_2] \frac{p'dA'}{n'_z} \dots \int [G_1 + G_2] \frac{p'dA'}{n'_z} = [\delta - f(x,y)]n_z \quad (3-2)$$

If cell j is small enough so that p(x',y') and $n_z(x',y')$ over that cell can be considered as constants p_j and n_z^j then Eq. (3-2) reduces to:

$$\int_{\Omega} (G_{1}+G_{2}) \frac{p'dA'}{n_{z}} \approx \frac{p_{1}}{n_{z}^{1}} \int_{\Omega_{1}} (G_{1}+G_{2}) dA' + \frac{p_{2}}{n_{z}^{2}} \int_{\Omega_{2}} (G_{1}+G_{2}) dA' + \dots + \frac{p_{n}}{n_{z}^{n}} \int_{\Omega_{n}} (G_{1}+G_{2}) dA'$$
$$\approx [\delta - f(x,y)] n_{z}(x,y) \qquad (3-3)$$

The term (G_1+G_2) will be singular within certain cells and must therefore be kept under the integral sign, at least for such cells. In short,

$$\int_{\Omega} (G_1 + G_2) \frac{p' dA'}{n'_z} \approx \sum_{j=1}^{n} \frac{p_j}{n_z} \int_{\Omega_j} (G_1 + G_2) dA' \approx [\delta - f(x, y)] n_z(x, y)$$
(3-4)

Paul and Hashemi [1978-a]

a)

- Fig 3.
- Two bodies in conformal contact a) prior to deformation b) ficticious interpenetration c) initial candidate contact region

To find the unknown values of p_j we select n field points : (x_i, y_i) and write Eq. (3-4), for each of these points, in the form:

$$\sum_{j=1}^{n} b_{ij} p_{j} = d_{i} \quad (i = 1, n)$$
(3-5)

where

$$b_{ij} = \frac{1}{n_z} \int (G_1 + G_2) dA'$$
 (3-6)

$$d_{i} = [\delta - f(x_{i}, y_{i})](n_{z})_{i}$$
 (3-7)

If matrix $[b_{ij}]$ is nonsingular, Eq. (3-5) may be solved for the candidate pressures p_j . If these values of p_j do not satisfy boundary conditions (2-9) we must modify the assumed contact region boundary C. The method used to choose and modify the boundary of Ω will be described in Sec. 5.

The Green's functions used for the specific examples of rail and wheel considered in this paper (sec. 7) are discussed in Appendix A. For further discussion on Green's functions see Hashemi and Paul [1979].

The applied force and moment are obtained from equations (2-13) and (2-14) as

$$F_{x} = \int_{j=1}^{n} p_{j} \left(\frac{n_{x}}{n_{z}}\right)_{j}^{A} A_{j} \qquad M_{x} = \int_{j=1}^{n} p_{j} \left[y - z\frac{n_{y}}{n_{z}}\right]_{j}^{A} A_{j}$$

$$F_{y} = \int_{j=1}^{n} p_{j} \left(\frac{n_{y}}{n_{z}}\right)_{j}^{A} A_{j} \qquad (3-8) \qquad M_{y} = \int_{j=1}^{n} p_{j} \left[-x + z\frac{n_{x}}{n_{z}}\right]_{j}^{A} A_{j} \qquad (3-9)$$

$$F_{z} = \int_{j=1}^{n} p_{j} A_{j} \qquad M_{z} = \int_{j=1}^{n} p_{j} \left[(xn_{y} - yn_{x})/n_{z}\right]_{j}^{A} A_{j}$$

where A_j is area of cell j (in the x,y plane).

4. INITIAL CANDIDATE CONTACT BOUNDARY

The initial candidate contact region will be chosen as the region inside the "interpenetration curve," described in Sec. 3.

It was shown in Paul and Hashemi [1978-a] that for counterformal (but not necessarily Hertzian) contact, the actual contact region lies <u>inside</u> the interpenetration curve associated with a fixed approach. Similar reasoning shows that, in the case of conformal contact problems, the true contact patch lies inside the interpenetration curve, provided that the influence functions (Green's functions) used for both bodies are <u>unidirectional</u>,* over the initial candidate contact patch (see Hashemi [1979]). Experience to date suggests that the interpenetration curve is a good candidate for the initial contact patch, even for conformal contact.

5. MESH GENERATION AND CONTACT BOUNDARY DETERMINATION

The method devised by Paul and Hashemi [1978-a] for the mesh generation and boundary determination of counterformal problems has been improved and extended to the conformal problem. In the following, rectangular cells, with sides parallel to the x and y axis are utilized, and the contact region is assumed to be symmetric about the x-axis(as it would be for a wheel axis parallel to the x-axis, and a rail axis parallel to the y-axis); consequently, only half of the contact region (see Fig. 4) need be discussed. Both the field points and source points will be chosen to lie at the centroids of the rectangular cells. The scheme of subdivision for a candidate contact region is as follows:

Fig. 4 shows an example of such a region together with the coordinate axes (x,y). The x-diameter, which has known length a, may be divided into any number of segments (n_b) called <u>Bands</u>. A typical band (i) will be further divided into n_{si} number of segments called <u>strips</u>. That part of a strip which lies above the x-axis will be referred to as a <u>half-strip</u>. Then the "horizontal" length h_{xi} of cells in band i will be given by

$$h_{xi} = a_i / n_{si}$$
(5-1)

where

$$a_i = r_i a$$
 (5-2)

and r_i is a fixed positive constant (less than 1) associated with band i, such

An influence function will be described as <u>unidirectional</u> over a surface if a normal force applied to a point on the surface produces displacement at all points of the surface whose components in the direction of the applied force have the same sign everywhere.

that $\sum_{i} r_{i} = 1$

If we divide each half-strip j into a number of cells m_j , the "vertical" length h_v of each cell in that strip will be determined as:

$$h_{yj} = y_{max j} / m_j$$
 (5-3a)

where $y_{max j}$ is the y-coordinate of the point on the boundary curve corresponding to the centerline of half-strip j (see Fig. 4).

If it is desired to have a field point on the x-axis, then we let

$$h_{yj} = y_{max j} / (m_j - \frac{1}{2})$$
 (5-3b)

The x-coordinate of the field points of all cells in the first strip will be obtained as:

$$x_1 = a_L + \frac{h_{x1}}{2}$$
 (5.4)

where a_L is the left x-intercept of the boundary curve. Then the x-coordinate of the cell centroid in strip j > 1 becomes

 $x_{j} = x_{j-1} + h_{sj}$ (j > 1) (5-5)

where $h_{sj} = h_{xi}$ and strip j is in band i.

Having unambiguously defined the cell arrangement, we may use Eqs. (3-6) and (3-7) to evaluate b_{ij} and d_i . Then the unknowns p_j may be found by solving the linear equations (3-5).

If the pressure distribution p_j does not satisfy conditions (2-10) the procedure explained in Paul and Hashemi [1978-a] will be used to redefine the new contact region boundary C. The whole process will be repeated until the conditions (2-10) are satisfied within a desired tolerance.

Fig. 4. Mesh arrangement for sample interpenetration curve. Bands are shown separated by heavy vertical lines. Band 1 is subdivided into 5 strips, band 2 into 4 strips, band 3 into 5 strips. Note that the x-axis is a line of symmetry, and only half of the contact patch is shown. ω

6. ORGANIZATION OF COMPUTER PROGRAM

The main program is called CONFORM which stands for "<u>CONFORMal</u> contact." The program is able to handle all contact problems with one axis of symmetry in its contact patch. In rail-wheel problems there will always be at least one axis of symmetry (parallel to the wheel axis) for wheelsets at zero yaw angle.

MAIN PROGRAM--CONFORM

The purpose of the main program is to manage input and output, to call appropriate subprograms as needed, and to interlink the various components needed for the overall program logic.

Figure 5 shows the relationship of the main program to the subprograms. In Fig. 5, the arrows point from the calling program to the called program. The following subprograms are used:

<u>Subfunction PARAB</u>: does the parabolic interpolation (or extrapolation by a procedure referred to as PARAB2 in Paul and Hashemi [1978-a]. <u>Subfunction BIF</u>: calculates the integral $k \int dA/r$ of Boussinesq's function <u>Subfunction GDA</u>: calculates $\int G dA$ <u>Subfunction GR1</u>: calculates G(r,r') for body (1) (Rail)** <u>Subfunction GR2</u>: calculates G(r,r') for body (2) (Wheel)** <u>Subroutine LEQTIF</u>: solves the linear algebraic equations (3-5).

<u>Subroutine INSEP:</u> furnishes the initial separaration; i.e. the profile function, Eq. (2-1), by a method described in Paul and Hashemi [1979].

<u>Subroutine MIDWEL</u>: provides the coordinates of an axial cross-section of a railroad wheel (body 2); i.e. it computes the term $z_2(x,0)$ of Eq. (2-1) in an appropriate set of coordinates (ζ, ξ) localized at the initial point of contact (see Fig. 6).

<u>Subroutine WHEEL</u>: computes the profile function $z_2(x,y)$ for body (2) (wheel) for any (x,y) in contact region.

Subroutine RAIL: computes the profile function $z_1(x,y)$ for body (1), the railhead.

The program is described in greater depth in the User's manual [Paul and Hashemi, 1978-b].

** The Green's functions supplied with the program are described in Appendix A. Should the user wish to supply other types of Green's functions, he need only replace subroutines GRl and GR2 with his own subroutines of the same name. A discussion of alternative choices of Green's functions is given in Hashemi and Paul [1979]. <u>Subroutine WHEELO</u>: calculates z_w and dz/dx of the wheel profile at any point with coordinate x_w in middle plane with respect to wheel reference coordinates (x_w-z_w) fixed in an axial cross-section of the wheel.

Fig. 5 Organization of Program CONFORM. Arrows point from calling program to called program Dotted block may be user-supplied if user desires to override the standard subprograms provided.

16

. ef

7. EXAMPLES

The examples are given for rail and wheel contact where the wheel is so positioned that the problem could be either <u>counterformal</u> or <u>conformal</u> depending upon the magnitude of the applied load. In the first example, the applied load is relatively small so that the contact patch is counterformal, and the accuracy and reliability of the program <u>CONFORM</u> can be verified versus program <u>COUNTACT</u>* (see Fig. 7). In the second example the load is so high that the problem is highly conformal and the deviation between the two programs is significant (see Fig. 8).

The elastic properties of rail and wheel (steel) are

 $E = 30 \times 10^6$ psi (Modulus of Elasticity)

v = 0.3 (Poisson's Ratio)

Example 1. COUNTERFORMAL CASE OF RAIL AND WHEEL CONTACT STRESSES

Let the initial point of contact of rail and wheel be point C shown in Fig. 6. For $\delta = 0.005$ " the numerical solution was found by using the computer program "COUNTACT-1" (counterformal contact stresses between bodies with one axis of symmetry in contact patch) and also by "CONFORM" (conformal contact stresses between two elastic bodies).

The program CONFORM requires, as part of the input, the rigid body approach δ , an initial candidate contact region, and the desired initial mesh arrangement. The final results are given in Table 1 for: pressure distribution, load (force and moment), and boundary of contact region.

A plot of pressure distribution along the ζ -axis is given in Fig. 7-a, and the contact region is shown in Fig. 7-b for both programs. Note that for the very light load applied (1413 lb), the contact patch is small and the problem is counterformal (but non-Hertzian). The excellent agreement between the predictions of programs COUNTACT and CONFORM, represents a validation of the latter program.

Example 2. CONFORMAL CASE OF RAIL AND WHEEL CONTACT STRESSES

For the same initial point of contact as in example 1, but for a higher load, the problem becomes conformal, and again the numerical solution of the problem was obtained by both <u>CONFORM</u> and <u>COUNTACT</u>, for $\delta = 0.003$ " (see Tables 2 and 3). The plot of pressure distribution along the ξ -axis is shown in Fig. 8-a. The contact patch is shown in Fig. 8-b.

*See Paul and Hashemi [1978-a].

Fig. 6. Example of rail and wheel in conformal contact (unloaded case shown) Numerical data is for 140RE rail (AREA designation) and for SIG Metroliner wheel (SIG=Schweitzerische Industrie-Gesellschaft)

Table 1.

Contact boundary, pressure distribution, forces and moment (CONFORM), Example 1 (Normal force = 1413 lb)

BOUNDARY OF CONTACT REGION

XI.	ETA	XI	ETA	XI	ETA
-0.16421150 00	0.29014120-01	-0.14845470 00	0.48766560-01	-0.13269780 00	0.58816150-01
-0.11694090 00	0.66465210-01	-0.96154170-01	0.01226980-01	-0.52337650-01	0.92270630-01
-0.14521120-01	0-97115530-01	0.23295410-01	0.10030110 00	0.61111930-01	0.98481310-01
0.87898640-01	0.86723660-01	0.10365550 00	0.60535250-01	0.11941240 00	4.0804475D-01
0.13516930 00	0.44854400-01	÷		-	

NODE	XI	ETA	ZETA	P .
1	-0.16420 00	C.00000 00	-0-10830-01	0-12690-05
2	-0.16420 00	0-11610-01	-0.10830-01	0.11890 05
3	-0.16420 00	0-23210-01	-0.10830-01	0.71800 04
Ā	-D-14850 00	0.0000.0	-0.83470-02	0.22410 05
Ś	-0-14850 00	0-18710-01	-0-28470-02	0-20890 05
6	-0.14850 00	0.37410-01	-0-88470-02	0.12960 05
7	-0-1327p 00	00 40006-0	-0.70630-02	0.26910 05
8	-0-13279 00	0.16810-01	-0.70630-02	0.26250 05
9	-0-13270 00	6-33610-01	-0-70630-02	0.22420 05
10	-0-1327P 00	0.50420-01	-0-70630-02	0.12940 05
11	-0.11690 00	0.00000.00	-0-54820-02	0.30900 05
12	-0.11690 00	6.14770-01	-0-54820-02	0.30500 05
13	-0.11690 00	0.29540-01	-0-54820-02	0.28000 05
14	-0.11690 00	0.44310-01	-0.54820-02	0.23460 85
15	-0.11690 00	0-59080-01	-0-54820-02	0.13760 05
16	-0.90150-01	0.00000 00	-0-32550-02	0.36060 05
17	-0.90150-01	0.32490-01	-0.32550-02	0.33150 05
18	-0.90150-01	0.64980-01	-C-32550-02	0.18710 05
19	-0.52340-01	0.00000 00	-0.10960-02	0.40300 05
20	-0.52340-01	0.36910-01	-0.10960-02	0.37070 05
21	-0.52340-01	0.73820-01	-0.10960-02	0.20560 05
22	-0.14520-01	0.00000 00	-0.84350-04	0.42320 05
23	-0.14520-01	0.38850-01	-0.84350-04	0.38840 05
24	-0.14520-01	0.77690-01	-0.84350-04	0.21710 05
25	0.23300-01	0.00000 00	-0.72430-03	0.42270 05
26	0.23300-01	0.40120-01	-0.72430-03	0.33880 05
27	0.23300-01	0.30240-01	-0.72430-93	3.21730 05
. 58	0.61110-01	0.00000 00	-0.50130-02	0.38310 05
29	0.61110-01	0.39390-01	-0.50130-02	0.35250 05
30	0.61110-01	0.78790-01	-0.50130-02	0.19910 05
31	0.87900-01	0.00000 00	-0.10450-01	0.32940 05
32	0.87900-01	0.19270-01	-0.10450-01	0.33030 05
33	0.87900-01	0.39540-01	-0.10450-01	0.29790 05
34	0.27900-01	0.57820-01	-0.10450-01	0.25970 05
35	0.87900-01	0.77090-01	-0.1045D-01	0.15160 05
36	0.10370 00	C.000Cb 00	-0.14610-01	0.2854D 05
37	0.10370 00	0.17900-01	-0.14610-01	0.28420 05
38	0.10370 00	0.35790-01	-0.14610-01	0.26130 05
39	0.10370 00	0.53690-01	-0.14610-01	0.21930 05
40	0.10378 00	0./1590-01	-0-14610-01	0.12730 05
41	0.11948 00	0.00000 00	-0.19520-01	0.23550 05
. 42	U-11940 00	U.15120-U1	-0.19520-01	U-23410 US
- 43	U+11940 UU	0.30240-01	-0.19520-01	U.21640 05
44 44 7 E	0.11940 00	0.47300-01	-U.19520-U1	0.18100 05
43	U.11940 UU	0.0000	-U+19520-01	0.10470 05
40	0 17520 00	0.000000000	-0.25270-01	0.13490 05
47	0.00000	0.75995-01 0.75995-04	-0.25210-01	U.12490 US
-0	0. 67526 00	0.33030-01	-0.22210-01	U+15950 U4

ETA-FORCE= 1413.1 XI-FORCE= 1.68 ETA-MORENT= -7.5 LEFT XI-BOUNDARY= -0.17165 RIGHT XI-BOUNDARY= 0.14286

- Comparison of Programs CONFORM and COUNTACT for $\delta = 0.0005$." The corresponding forces are: F = 1413 1b (CONFORM), F = 1434 1b (COUNTACT) (a) Pressure distribution (b) Contact patch Fig. 7.

BOUNDARY OF CONTACT REGION

.

Ŋ

XI		ËTA		XI	ETA	XI		ETA	
-0.35917560	00	0.99183540	-01	-0.27550540.00	0.15820610 00	-0.1918351b	00	0.1937786D 00	0
0.15717890	00	0.21885040	00	0.17153640 00	0.23293950 00	0.1858944D	00	0.25974920 00	נ ס
0.20025210	C C	0.25720540	00	0.21460990 00	0.24760210 00	0.22896760	00	0.19099050 00	כ
N	ODE	XI		ETA	7FTA	p			
		0.70000							
	2	-0.35920	00	0.00000 00 0.22040-01	-0.52710-01	0.4703D 0.4554D	05		
	3	-0.35920	00	0.44080-01	-0.52710-01	0.4156D	05		
	- 4 - 5	-0.35920	00	0.66120-01 0.88160-01	-0.52710-01	0.34340 0.2120b	05		
	6	-0.27550	00	0.00000 00	-0.30740-01	0.79800	05		
	7	-0.2755D	00	0.35160-01	-0.30740-01	0.78000	05		
	9	-0.27550	00	0.10550 00	-0.30740-01	0.60580	05		
	10	-0.27550	00	0.14060 00	-0.30740-01	0.37020	05		
1997 - 19	11 .	-0.1918D	00	0.00000 00 0.43060-01	-0.14810-01	0.94530	05		
	13	-0.19180	00	0.86120-01	-0.14810-01	0.85090	05		
	14	-0.19180	00	0.12920 00	-0.14810-01	0.71800	05		
-	16	-0.19180 -0.10060	00	0.17220 00	-0.14810-01	0.4395D 0.1037h	05		
	17	-0.1000b	00	0.48630-01	-0.40060-02	0.10140	06		
	18	-0.10000	00	0.97270-01	-0.40060-02	0.93350	05		
	20	-0.1000b	00	0.19450 00	-0.40060-02	0.48110	05		
	21	0.00000	00	0.00000 00	0.00000 00	0.1104D	06		
	22	0.0000P	00	0.51760-01	0.00000 00	0.10760	06		
•	24	0.00000	00	0.15530 00	0.00000 00	0.81810	05		
	25	0.00000	00	0.20710 00	0.00000 00	0.4919D	05		
	27	C.1000D	00	0.00000 00	-0.13580-01	0.10270	06 06		
	28	0.10000	00	0.11540 00	-0.13580-01	0.92310	05		
	29 30	0.10000	00	0.17320 00	-0.1358D-01	0.77490	05		
	31	0.15720	00	0.00000 00	-0.34530-01	0.84830	05		
-	32	0.15720	00	0.59180-01	-0.34530-01	0.82750	05		
-	34	0.15720	00	0.17760 00	-0.34530-01	0.64120	US 05		
-	35	0.15720	00	0.23670 00	-0.3453D-01	0.39190	05		
	50 37	0.17150	00	0.000CD 00 0.58985-01	-0.4153D-01	0.78480	05		
	38	0.17150	00	0.11800 00	-0.41530-01	0.70410	05		
	39	0.17150	00	0.17690 00	-0.4153b-01	0.59290	05		
	41	0.18590	00	0.23590 00	-0.41530-01	0.35400 (05		
	42	0.18590	00	0.57910-01	-0.49320-01	0.69130 (05		
	43	D.1859D	00	0.11580 00 0.17370 00	-0.49320-01	0.63810 (05		
	65	0.18590	00	0.2316D 00	-0.49320-01	0.33780 (05		
	66	0.20030	00	0.00000 00	-0.57940-01	0.62980 (05		
	18	0.20030	00	0.11430 00	-0.57940-01	U+67590 U 0+56560 (US 05		
	9	0.20030	00	0.17150 00	-0.57940-01	0.4743D (05		
	5C 51	0.20030	00 00	0.22860 00	-0.57940-01	0.28120 (05		
5	52	0.21460	00	0+55020-01	-0.67480-01	0.49910 (05		
5	53	0.2146D	00	0.1100b 00	-0.67480-01	0.46260 (05		
. 5	55	0.21460	00	U.10570 00 0.22010 00	-U.07480-01 -0.67480-01	U.39350 (0,2542n (U5 05		
5	6	0.22960	00	0.00000 00	-0.78020-01	0.3924D (05		
5	57 58	0.2290D	00 00	0.42440-01 0.84880-01	-0.78020-01	0.39870 (05		
5	59	0.22900	00	0.12730 00	-0.78020-01	0.31250 (05		
6	0	0.22900	00	0.16980 00	-0.78020-01	0.22820 0	05		

XI-FORCE=1244.345 ZETA-FORCE =18965.182 ETA- MOMENT= 2158.806

LEFT XI-BOUNDARY=-0.4036896 RIGHT XI-BOUNDARY= 0.2484127

Table 3. Contact boundary, pressure distribution, forces and moment, Example 2, solved by program <u>COUNTACT</u>

d.

XI ETA XI ETA XI ETA XI ETA -0.37823360 0.0 0.81822350-01 -0.72234020 0.13302705 00 -0.26644675 00 0.16636800 00 -0.37820100 0.116499116 00 -0.139000000 0.0 0.13302705 00 -0.26644675 00 0.16636800 00 -0.3510±0000-01 0.22559110 00 -0.10600000 0.27185135 00 0.53000000-01 0.2455556 00 0.10000000 0.225191580 00 0.21280100 0.2278550 00 0.21280000 0.27855460 0.224017018 CC 0.377820 00 0.400000 0.27185140 00 0.16036418 00 0.24017018 CC 0.377820 00 0.400000 0.27185140 00 0.16036410 05 1 -0.37820 00 0.400000 -0.558600-01 0.409480 05 0.37740 05 0.409480 05 0.409480 05 0.60000	BOUNDARY OF CONTACT REGION						
-0.3782'360 GC 0.41822350-01 -0.72234'020 00 0.13302700 00 -0.26644676 00 0.16636800 00 -0.212L'U'UO UC 0.16899110 00 -0.15900U/D UO 0.2048676 00 -0.10640000 00 0.221695140 00 -0.3300'UOD-01 0.22559710 00 0.00000D 00 0.27183430 CU 0.2126000D 00 0.27835440 00 0.23587868 0C 0.23513680 00 0.23921580 00 0.18725920 00 0.2296930D 00 0.16036410 00 0.24017010 CC 0.47678C40-01 1 -0.37820 00 0.48170-01 -0.58600-01 0.49948 05 2 -0.37820 00 0.36370-01 -0.58600-01 0.39515 05 3 -0.37820 00 0.263750-01 -0.58600-01 0.39750 05 4 -0.37820 00 0.263750-01 -0.58600-01 0.37740 05 5 -0.37820 00 0.24550-01 -0.58600-01 0.37740 05 5 -0.37820 00 0.29580-01 -0.58600-01 0.70735 05 4 -0.37820 00 0.29580-01 -0.58600-01 0.47058 05 5 -0.37820 00 0.295750-01 -0.58600-01 0.42550 05 5 -0.37820 00 0.29580-01 -0.42280-01 0.43550 05 5 -0.32230 00 0.29580-01 -0.42280-01 0.43550 05 5 -0.32230 00 0.59170-01 -0.42280-01 0.43550 05 5 -0.32230 00 0.59170-01 -0.42280-01 0.43550 05 5 -0.32230 00 0.59170-01 -0.42280-01 0.53500 05 1 -0.32230 00 0.59170-01 -0.42280-01 0.5350 05 1 -0.32230 00 0.59170-01 -0.42280-01 0.53500 05 1 -0.32648 00 0.59170-01 -0.42780-01 0.53500 05 1 -0.226440 00 0.11070 00 -0.28730-01 0.54550 05 1 -0.226440 00 0.50070 00 -0.28730-01 0.53540 05 1 -0.22640 00 0.50070 00 -0.28730-01 0.53540 05 1 -0.22640 00 0.50070 00 -0.28730-01 0.53540 05 1 -0.22640 00 0.50070 00 -0.28730-01 0.53540 05 1 -0.226640 00 0.50070 00 -0.28730-01 0.53540 05 1 -0.226640 00 0.50070 00 -0.28730-01 0.53540 05 1 -0.226640 00 0.50070 00 -0.28730-01 0.5354	XI	ETA	XI	ETA	XI	ETA	
NODEXIETAZETAP1 $-0.3782b$ 00 $0.0007b$ $00.7580b$ $0.4094b$ 052 $-0.3782b$ 00 $0.1817b-01$ $-0.5860b-01$ $0.3951b$ 053 $-0.3782b$ 00 $0.3637b-01$ $-0.5860b-01$ $0.3951b$ 054 $-0.3782b$ 00 $0.3637b-01$ $-0.5860b-01$ $0.3951b$ 055 $-0.3782b$ 00 $0.5455b-01$ $-0.5860b-01$ $0.7271b$ 056 $-0.3223b$ 00 $0.2007b-01$ $-0.5860b-01$ $0.7073b$ 057 $-0.3223b$ 00 $0.2956b-01$ $-0.4228b-01$ $0.6355b$ 058 $-0.3223b$ 00 $0.2956b-01$ $-0.4228b-01$ $0.6355b$ 059 $-0.3223b$ 00 $0.8888b-01$ $-0.4228b-01$ $0.6355b$ 0510 $-0.3223b$ 00 $0.8888b-01$ $-0.4228b-01$ $0.6355b$ 0511 $-0.2664b$ 00 $0.0007b$ $0.2873b-01$ $0.6354b$ 0512 $-0.2664b$ 00 $0.3697b-01$ $-0.2873b-01$ $0.6354b$ 0513 $-0.2664b$ 00 $0.1109b$ $02873b-01$ $0.6354b$ 0514 $-0.2664b$ 00 $0.1109b$ $02873b-01$ $0.6354b$ 0514 $-0.2120b$ 00 $0.4207b-01$ $-0.2873b-01$ $0.6354b$ 0515 $-0.2120b$ 00 $0.0007b$ 00 $-0.2873b-01$ $0.6354b$ 0514 $-0.2266b$ <th>-0.37823360 GC -0.212LFUND UC -0.530UC00D-01 0.106CC00D CC 0.2387366D GC 0.24017010 CC</th> <th>0.81822350-01 0.18899118 C0 0.22559310 00 0.25588000 00 0.23518680 C0 0.87678C40-01</th> <th>-0.72234020 00 -0.15900000 00 0.0000000 00 0.15900000 00 0.23921580 00</th> <th>0.1330270b 00 0.20486876 00 0.22768530 00 0.27183430 CU 0.18725928 00</th> <th>-0.26644678 00 -0.1060000 00 0.53000000-01 0.2120000 00 0.23969300 00</th> <th>0.16636800 00 0.21695140 00 0.24552550 00 0.27835440 00 0.16036410 00</th>	-0.37823360 GC -0.212LFUND UC -0.530UC00D-01 0.106CC00D CC 0.2387366D GC 0.24017010 CC	0.81822350-01 0.18899118 C0 0.22559310 00 0.25588000 00 0.23518680 C0 0.87678C40-01	-0.72234020 00 -0.15900000 00 0.0000000 00 0.15900000 00 0.23921580 00	0.1330270b 00 0.20486876 00 0.22768530 00 0.27183430 CU 0.18725928 00	-0.26644678 00 -0.1060000 00 0.53000000-01 0.2120000 00 0.23969300 00	0.16636800 00 0.21695140 00 0.24552550 00 0.27835440 00 0.16036410 00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NODE	XI	ETA	ZETA	. •		
19 -0.21260 C0 0.120/D0 -0.18110-01 0.40040 D5 20 -0.21260 C0 0.000/D0 -0.10150-01 0.460040 D5 21 -0.15900 C0 0.000/D0 -0.10150-01 0.460040 D5 21 -0.15900 C0 0.45325-01 -0.10150-01 0.48330 D5 23 -0.15900 C0 0.13660 C0 -0.10150-01 0.473250 D5 24 -0.15900 C0 0.13660 C0 -0.40150-01 0.473250 D5 24 -0.1600 C0 0.00000 C0 -0.450350-02 0.473250 D5 25 -0.1600 C0 0.47420-01 -0.45030-02 0.473260 D5 26 -0.1600 C0 0.44420 C0 -0.45030-02 0.473260 D5 27 -0.1600 C0 0.14440 C0 -0.41240-02 0.45030 D5 27 -0.1600 C0 0.14440 C0 -0.11240-02 0.473260 D5 28 -0.1600 C0 0.16020 C0 -0.11240-02 0.473580 D5 29 -0.1600 C0 0.16020 C0 -0.11240-02 0.473580 D5 29 -0.1600 C0	NOBE NOBE 1 2 3 4 5 4 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 21 21 24 25 26 27 28 30 31 31 32 33 34 35 36 40 37 38 39 30 30 31 31 31 31 31 31 31 31 31 31	XI -0.3782b 00 -0.3782b 00 -0.3782b 00 -0.3782b 00 -0.3782b 00 -0.3782b 00 -0.3223b 00 -0.3223b 00 -0.3223b 00 -0.3223b 00 -0.3223b 00 -0.3223b 00 -0.2664b 00 -0.2664b 00 -0.2664b 00 -0.2664b 00 -0.22664b 00 -0.2120b 00 -0.15900 00 -0.15900 00 -0.15900 00 -0.15900 00 -0.1060b 00 -0.1060b 00 -0.1060b 00 -0.1060b 00 -0.1060b 00 -0.1060b 00 -0.3300b-01 -0.5300b-01 -0.5300b-01 -0.5300b-01 -0.5300b-01 0.5300	ETA 0.0000P 00 0.1A17b-01 0.3637b-01 0.7277b-01 0.0000P 00 0.2956b-01 0.5912b-01 0.5912b-01 0.1122b 00 0.0000P 00 0.3697b-01 0.11200 00 0.3697b-01 0.11200 00 0.3697b-01 0.14700 00 0.0000P 00 0.4200b-01 0.4200b-00 0.4253b-01 0.1366b 00 0.421b-01 0.4200b-00 0.421b-01 0.4200b-00 0.421b-01 0.1000b 00 0.5017b-01 0.1000b 00 0.5017b-01 0.1000b 00 0.5017b-01 0.1000b 00 0.5017b-01 0.1000b 00 0.5040 00 0.5040 00 0.5017b-01 0.1012b 00 0.5040 00 0.5040 00 0.5040 00 0.5040 00 0.51540 00 0.2050 00 0.51540 00 0.2050 00 0.5456b-01 0.1570 00 0.21627 00 0.221620 00 0.221620 00 0.5747b-01 0.17240 00 0.221620 00 0.5226b-01 0.16550 00 0.0200b 00 0.22146b 00 0.22146b 00 0.221474b 00 0.22147b 00 0.22167b 00 0.22167b 00 0.5226b-01 0.15550 00 0.22146b 00 0.22167b 0	ZETA -0.5860D-01 -0.5860D-01 -0.5860D-01 -0.5860D-01 -0.5860D-01 -0.4228D-01 -0.4228D-01 -0.4228D-01 -0.4228D-01 -0.4228D-01 -0.4228D-01 -0.4228D-01 -0.4228D-01 -0.4228D-01 -0.4228D-01 -0.2873D-01 -0.2873D-01 -0.2873D-01 -0.2873D-01 -0.2873D-01 -0.2873D-01 -0.2873D-01 -0.2873D-01 -0.2873D-01 -0.2873D-01 -0.1811D-01 -0.1811D-01 -0.1811D-01 -0.1811D-01 -0.1811D-01 -0.1811D-01 -0.1015D-01 -0.1015D-01 -0.4503D-02 -0.4503D-02 -0.4503D-02 -0.4503D-02 -0.4503D-02 -0.4503D-02 -0.4503D-02 -0.1124D-02 -0.1124D-02 -0.1124D-02 -0.1124D-02 -0.1124D-02 -0.1124D-02 -0.1124D-02 -0.1124D-02 -0.1124D-02 -0.1124D-02 -0.1124D-02 -0.1124D-02 -0.1124D-02 -0.1124D-02 -0.1124D-02 -0.1124D-02 -0.1124D-02 -0.3764D-02 -0.3764D-02 -0.3764D-02 -0.3538D-01	P 0.40940 05 0.39510 05 0.39510 05 0.39510 05 0.40920 05 0.40920 05 0.40920 05 0.43520 05 0.52800 05 0.52800 05 0.63540 05 0.63540 05 0.45500 05 0.454500 05 0.454500 05 0.454500 05 0.454500 05 0.454500 05 0.454500 05 0.45620 05 0.45620 05 0.45620 05 0.45620 05 0.45620 05 0.45620 05 0.45620 05 0.45620 05 0.45620 05 0.45620 05 0.45120 05 0.451230 05		

XI-FURCE =2541.523 ZETA-FORCE= 20552.141 ETA- MOMENT= 2022.316

.

LEFT XI-BOUNDARY=-C.4064102 RIGHT XI-BOUNDARY= 0.2403322

23

 $\partial \cdot$

(b) Contact patch

Note that the contact boundary predicted by COUNTACT is not too different from that predicted by CONFORM. However, COUNTACT predicts a very extreme pressure concentration (740,000 psi), whereas the more accurate program CONFORM shows that the peak pressure is actually 110,400 psi.

8. CONCLUSIONS

The modified simply discretized method of Paul and Hashemi [1978-a] has been extended to conformal problems. Methods for automatic mesh generation and contact patch boundary determination have also been extended to conformal contact problems.

Computer program CONFORM, based on these ideas, has been described and numerical results were presented for selected examples.

The first numerical example demonstrates the accuracy of program CONFORM for the special case of non-Hertzian counterformal contact problems. The accuracy of program CONFORM for this class of problems checked against the more specialized program COUNTACT, which is limited to strictly counterformal problems. Figure 7 illustrates the validity of program CONFORM for this verifiable case.

The second example presents the first known solution to the conformal contact stress problem for geometry as complex as that of a realistic railhead and wheel making contact on the throat of the flange.

Figure 8-a illustrates how important it is to use program CONFORM for truly conformal cases, and that practical cases of conformal problems occur, which cannot be adequately approximated by a procedure designed for counterformal cases.

REFERENCES

Hashemi, J. and Paul, B., "Contact Stresses on Bodies with Arbitrary Geometry, Applications to Wheels and Rails," Report No. FRA-ORD-79/23, Technical Report No. 7, April 1979, Also see Ph.D. dissertation of J. Hashemi, University of Pennsylvania (1979).

Lur'e, A. I., <u>Three Dimensional Problems of the Theory of Elasticity</u>, Interscience, N.Y. (1964).

Paul, B. and Hashemi, J., "User's Manual for Program COUNTACT (COUNTerformal cont<u>ACT</u> stress problems)", Technical Report No. 4, September 1977, FRA-ORD-78-27, Contract DOT-OS-60144, Federal Railroad Administration. Also MEAM Report 77-2, Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia (1977).

Paul, B., and Hashemi, J., "An Improved Numerical Method and Computer Program for Counterformal Contact Stress Problems," ASME, <u>Computational</u> <u>Techniques for Interfact Problems</u>, AMD-Vol. 30 (1978). Also Report No. FRA-ORD-78/26, Federal Railroad Administration, Technical Report No. 3, July 1977, and MEAM Report No. 77-1, University of Pennsylvania, Philadelphia, (1978-a).

Paul, B., and Hashemi, J., "User's Manual for Program CONFORM (<u>CONFORMal</u> contact stress problems)", Technical Report No. 5, June 1978, FRA/ORD-78/40, Contract No. DOT-OS-60144, Federal Railroad Administration. Also MEAM Report 78-1, Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, (1978-b).

Paul, B., and Hashemi, J., "Wheel-Rail Geometry Associated with Contact Stress Analysis," Technical Report No. 6, To be issued (1979).

Singh, K. P., and Paul, B., "Numerical Solution of Non-Hertzian Elastic Contact Problems", <u>Journal of Applied Mechanics</u>, <u>Transactions of ASME</u>, pp. 29-35 (1974).

Woodward, W., and Paul, B., "Contact Stresses for Closely Conforming Bodies - Application to Cylinders and Spheres", Technical Report No. 2, December 1976, DOT-TST-77-48, PB271033, Contract DOT-OS-40093(1976). APPENDIX A: Influence Function for Rail and Wheel Surfaces

One of the major difficulties in the solution of any contact problem is the determination of suitable Green's functions for the surfaces in contact. These "influence functions" relate the elastic displacement at a given point due to a unit applied force at some other point. In contact problems, we are concerned with the elastic displacements of surface points due to a unit load applied anywhere on the surface of a body.

্য

In <u>counterformal</u> contact of rail and wheel, the contact area is approximated by a plane, making it appropriate to use Boussinesq's influence function for all surfaces. However, in <u>conformal</u> contact (where the contact surface is not approximately plane), it is generally necessary to find more individualized influence functions for each of the two surfaces in contact. For many realistic surfaces, the exact influence functions cannot be found analytically; therefore, they must be generated numerically [Woodward and Paul, 1976], or else be approximated by some convenient mathematical expressions.

A study of various exact and approximate influence functions has been made by Hashemi and Paul[1979]. Although, in principle, one may generate accurate influence functions for arbitrary surface geometries with the aid of threedimensional finite element programs, their studies indicate that the costs of such an approach for rail and wheel geometries are prohibitive at this time. However, they have found that it is feasible to use various types of semi-empirical influence functions and have made error analyses which indicate that the Boussinesq influence function [Lur'e, 1964] is a reasonable first approximation for the range of wheel and rail geometries encompassed in the examples of this paper. That is, the normal displacement w_n at a point (x,y,z) of the wheel or rail surface, due to a unit normal force at another point (x',y',z') of the surface may be approximated by:

$$w_{n} = \frac{(1-v)/\pi E}{[(x-x')^{2}+(y-y')^{2}+(z-z')^{2}]^{1/2}}$$

where E and v are Young's modulus and Poisson's ratio, for the body in question. This was the influence function used by CONFORM in the examples of this report.

LIST OF RELATED REPORTS AND PUBLICATIONS

A. FRA Technical Reports (Available from National Technical Information Service)

- Al. Paul, B., "A Review of Rail-Wheel Contact Stress Problems," Technical Report No. 1, April 1975, FRA/ORD-76 141, PB 251238/AS, Contract DOT-OS-40093.
- A2. Woodward, W., and Paul, B., "Contact Stresses for Closely Conforming Bodies - Application to Cylinders and Spheres," Technical Report No. 2, December 1976, DOT/TST/77-48, PB 271033/AS, Contract DOT-OS-40093.
- A3. Paul, B., and Hashemi, J., "An Improved Numerical Method for Counterformal Contact Stress Problems," Technical Report No. 3, July 1977, FRA/ORD-78/26, Contract DOT-OS-60144, PB 286228/AS.
- A4. Paul, B., and Hashemi, J., "User's Manual for Program COUNTACT COUNTerformal contACT stress problems ", Technical Report No. 4, September 1977, FRA/ORD -78/27, Contract DOT-OS-60144, PB 286097/AS.
- A5. Paul, B., and Hashemi, J., "User's Manual for Program CONFORM (CONFORMal contact stresses between wheels and rails ", Technical Report No. 5, June 1978 FRA/ORD-78/40, Contract DOT-OS-60144, PB 288927/AS.
- A6. Paul, B., and Hashemi, J., "Rail-Wheel Geometry Associated with Contact Stress Analysis," Technical Report No. 6, 1978, FRA/ORD-78/41, Contract DOT-OS-60144, (to be issued).
- A7. Paul, B., and Hashemi, J., "Contact Stresses in Bodies with Arbitrary Geometry, Applications to Wheels and Rails," Technical Report No. 7, April 1979, FRA/ORD/79-23, Contract DOT-OS-60144.
- A8. Paul, B., and Hashemi, J., "Numerical Determination of Contact Pressures Between Closely Conforming Wheels and Rails", Technical Report No. 8. July, 1979, FRA/ORD-79/41, Contract DOT-OS-60144.

- B. <u>Related Papers Published in Various Journals and Proceedings</u>
- **B1.** Singh, K. P., and Paul, B., "A Method for Solving Ill-Posed Integral Equation of the First Kind," <u>Computer Methods in Applied Mechanics</u> and Engineering, Vol. 2, 1973, 339-348.
- B2. Singh, K. P., and Paul, B., "Numerical Solution of Non-Hertzian Elastic Contact Problems," <u>Journal of Applied Mechanics</u>, Vol. 41, <u>Trans. of ASME</u>, Series E, Vol. 96, June 1974, pp. 484-490.
- B3. Singh, K. P., and Paul, B., "Stress Concentration in Crowned Rollers," <u>Journal of Engineering for Industry</u>, <u>Trans. ASME</u>, Series B, Vol. 97, No. 3, 1975, pp. 990-994.
- B4. Paul, B., K. P. Singh., and Woodward, W., "Contact Stresses for Multiply-Connected Regions--The Case of Pitted Spheres," <u>Proceedings</u> of the Symposium on the Mechanics of Deformable Bodies, Delft University Press, 1975, pp. 264-281.
- B5. Paul, B., "A Review of Rail-Wheel Contact Stress Problems," in <u>Proceedings of Symposium on Railroad Track Mechanics</u>, Pergamon Press, 1978, Ed. by A. Kerr, pp. 323-351. (Based on Ref. Al).
- B6. Paul, B., and Hashemi, J., "An Improved Numerical Method for Counterformal Contact Stress Problems," in <u>Computational Techniques for Interface Problems</u>, <u>AMD-Vol, 30</u>, Ed. by K. C. Park and D. K. Gartlung, American Society of Mechanical Engineers, N.Y., 1978, pp. 165-180. (Same as Ref. A3).