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EXECUTIVE SUMMARY

The purpose of this work is to define methods for applying
the describing function (quasi-linearization) technique to realistic,
nonlinear dynamic rail vehicle models in order to predict important
performance indices such as critical speeds and the car vibration environ-
ment. In order to predict these performance indices quantitatively it
is necessary to include the effects of important ronlinearities such as
wheel/rail profile geometry and suspension properties. The describing
function technique enables the analyst to include the effects of non-
linearities in the analysis while avoiding the expense and complexity
of nonlinear digital simulations.

Quasi-linearization techniques offer the promise, in some
applications, of relieving the shortcomings of numerical integration
without sacrificing the fidelity of the simulation. De Pater and
his students van Bommel and Stassen used the method of Krylov
and Bogoliubov (K and B) and statistical Tinearization to investigate
the behavior of a two degree of freedom representation of a rigid dual
axle truck with several nontinearities. law , and Law and Brand
used the K and B method to study the 1imit cycle behavior of a

single wheelset with curved wheel profiles and flange contact.

These applications of quasi-linearization to simple vehicle
models demonstrated the feasibility of using such an approach for
vail vehicle dynamics study, and suggested that the use of such tech-

niques with more realistic models should be pursued. A pilot study

NS



was conducted by Garg to evaluate the feasibility of applying
describing function techniques, a generalized quasi-linearization

method, to the analysis of the Jimit cycle behavior of rail cars.

The objective of this research is to explain the describing
function technique, demonstrate how it can be applied to nonlinear
rail vehicle dynamic problems, describe algorithms that can be used
for such problems, and present results for typical nonlinear problems,

including wheel profile and suspension nonlinearities.

The nonlinearities that are encountered in rail vehicles
are described in Section 2 along with equations of motion
for some typical rail vehicle models that include these nonlinearities.
In Section 3, describing functions are defined and developed for many

nonlinearities of interest in rail vehicle dynamics.

Algorithms were developed to use the describing function tech-
nique to find Timit cycle behavior, forced sinusoidal response, and
forced statistical response of complex rail vehicle models. The theory
for each of these three situations is presented in Section 3 with simple
examples. The algorithms for Timit cycles are discussed in Section 4,
those for forced sinusoidal response in Section 6, and statistical
response in Section 7. Results of the application of the limit cycle
technique to study rail vehicle hunting are presented and discussed in

Section 5.

-xXvi-



This report has demonstrated that describing function analy-

sis can be successfully applied to rail vehicle analysis and design.

The results indicate that:

Quasi-linearization permits application of Tinear
frequency domain, eigenvalue/vector, and state space
methods for nonlinear rail system dynamics problems.

There are significant computational advantages to be
gained using quasi-linearization both for simple
(e.g. wheelset) and higher order (e.g. nine D.O.F.
Freight Car) dynamic models.

The parametric studies indicate that the wheel/rail
profile and suspension nonlinearities must be in-
cluded for analyzing medium-to-Targe amplitude rail
vehicle performance.

Quasi-linearization computational algorithms for
predicting rail vehicle hunting, forced sinusoidal
response, and forced statistical response can be
formulated and applied both for simple and higher
order rail vehicle dynamic models.

The success of these preliminary investigations points to

the need for further research and development in the following areas:

1.

Improvement of the coding of these algorithms, and
packaging them in a form that would be convenient to
a wide ranae of industrial users.

Further validation and definition of the range of appli-
cation of the quasi-linearization results by a direct
comparison with nonlinear digital simulations of rail
vehicle hunting, forced sinusoidal and statistical
respanse.

The application of parametric studies on higher order
dynamic models to determine the influence of wheel
profile, axle-load, gauge,and suspension parameters on
general primary and secondary suspension design.

-xvii-
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1, INTRODUCTION

1.1 BACKGROUND

Linear analyses of rail vehicle dynamics have provided
approximations for the critical speeds of hunting, values for the fre-
quency and mode shape of vehicle response at speeds below the critical
speed of hunting, and estimates for accelerations and force levels that
can be expected in response to deterministic and random roadbed
irregularities at sub-critical speeds. Such analyses are invaluable
in understanding the nature of the influences of the various vehicle
parameters on the hunting stability and forced response of rail
vehicles.

However, nonlinear characteristics must be considered to study
the behavior of any rail vehicle completely. The wheel flanaes, for
example, introduce a nonlinearity that must be considered for large
amplitudes of wheelset motion. In many cases, the vehicle behavior
may be approximated by linear characteristics for small motions of
the vehicle components, and the nonlinear need only be considered for
larger amplitude motions. However, for some vehicles, such as the
North American freight car with its three piece trucks, the nonlinear
characteristics can be important in all ranges of motion.

Nonlinear characteristics that are important in rail vehicle
behavior include dry friction, suspension clearances and stops,
rocking on the center plate, curved wheel and rail profiles, and non-

linear creep forces. With few exceptions nonlinear rail vehicle

-1-



studies have utilized analog or digital computers to integrate the
equations of motion. Matsudaira [2] and Cooperrider [3] have employed
numerical integration to find the influence of nonlinearities on
hunting stability. Gilchrist et al. [4], Law [5], and Sauvage [6]
studied the forced response of nonlinear rail vehicles by numerical
integration. Tse and Martin [7], Healey [8], Wiebe [9], and B.F. Platin
et al, [10] have applied numerical integration to the freight car rock
rock and roll problem,

Although very complete simulations of complex systems are possible
with this approach, the practicality of such simulations is severely
limited by the high computation cost associated with direct numerical
integration. In addition, to understand the system behavior thoroughly
one must simulate the response to a wide variety of initial conditions
because the nonlinear behavior depends on the motion amplitudes. In
practice, the high cost of numerical integration usually limits its
application to highly simplified models or restricted exploration of
more complex models.,

Quasi-Tinearization techniques offer the promise, in some
applications, of relieving the shortcomings of numerical integration
without sacrificing the fidelity of the simulation. De Pater [11]
and his studénts van Bommel [12] and Stassen [13] used the method of
Krylov® and Bogoliubov (K and B) and statistical linearization to
investigate the behavior of a two degree of freedom representation of
a rigid dual axle truck with several nonlinearities. Law [14], and
Law and Brand [15] used the K and B method to study the 1imit cycle

3



behavior of a single wheelset with curved wheel profiles and flange
contact.

These applications of quasi-linearization to simple vehicle
models demonstrated the feasibility of using such an approach for
rail vehicle dynamics study, and suggested that the use of such
techniques with more realistic models should be pursued. A pilot
study was conducted by Garg [16] to eva]ﬁate the feasibility of apply-
ing describing function techniques, a generalized quasi-linearization

method, to the analysis of the limit cycle behavior of rail cars.

1.2 OBJECTIVE

The objective of the work reported here was to develop methods
of applying the describing function technique to realistic models of
nonlinear rail cars. This work entailed the development of realistic
describing function representations for nonlinearities such as the
wheel/rail contact interaction and the develooment of algorithms for
using the describing functions to predict the occurence and stability
of 1imit cycles and the forced response of a rail vehicle to sinusoidal
and statistical track irregularities.

This report explains the describing function technique, demon-
strates how it can be applied to nonlinear rail vehicle dynamics prob-
lems, describes algorithms that can be used for such problems,and pre-
sents results for typical nonlinear problems, including wheel profile

and suspension nonlinearities.



1.3 APPROACH

The nonlinearities that are encountered in rail vehicles are
described in the following chapter along with equations of motion
for some typical rail vehicle models that include these nonlinearities.
In Section 3, describing functions are defined and developed for '
many nonlinearities of interest in rail vehicle dynamics.

Algorithms were developed to use the describing function tech-
nique to find 1imit cycle behavior, forced sinusoidal response, and
forced statistical response of complex rail vehicle models. The
theory for each of these three situations is presented in Section 3
with simple examples. The algorithms for Timit cycles are discussed
in Section 4, those for forced sinusoidal response in Section 6, and
statistical response in Section 7.‘ Results of the application of the
1imit cycle technique to study rail vehicle hunting are presented

and discussed in Section 5.



2. RAIL VEMICLE MONLINEARITIES

2.1 INTRODUCTION

Mathematical analysis of rai} vehicle dynamics requires the
development of an abstract model to represent the actual rail vehicle. '
The assumptions, approximations, and restrictions that are made in the
mathematical description of the vehicle dynamic behavior 1imit the
fidelity of the abstract model. In most cases, a tradeoff exists
between the fidelity of the model and the ease and cost of solving
the equations that describe the behavior of the model. The balance
point in this tradeoff, for any specific case, depends on the
intended use of the results, and on the resources available for the
analysis.

Mathematical analyses of rail vehicle dynamics are undertaken to
determine the stability of the vehicle motion and the accelerations
and forces that may arise in response to irregularities in the roadbed
and track. It is common to represent the vehicle by lumped parameters
that lead to a description of the vehicle dynamics by ordinary differ-
ential equations. The discussion in this report deals with models of

this type.



The objective of this study was to investigate the feasibility of
and demonstrate the methods of applying, quasi-linearization techniques to
solve nonlinear rail vehicle dynamics problems. This was done because the quasi-
Tinearization method appeared to provide greater fidelity in the rail vehicle
model, in the form of nonlinear characteristics, without as large a penalty
as other methods in difficulty or cost of solving the resutling nonlinear

equations of motion.

In the following sections of this chapter, the subject of rail
vehicle modeling is taken up, including a description of the nonlinear be-
havior found in rail vehicles and a presentation of some exaple of rail
vehicle models and equations of motion. Succeeding chapters deal with the
quasi-linear representations of the nonlinear effects and the solution of the

quasi-linear equations of motion.
2.2 RAIL VEHICLE MODELING

Typical examples of rail passenger and freight trucks are shown
in Figure 2-1, A Tumped parameter model of such vehicles requires division
of the vehicle into discrete components that can be treated as rigid bodies
or flexible body modes in a mathematical analysis. The number of subdivisions
needed depends on the desired Tevel of accuracy and the intended use of the
analysis resuts. An analysis of the shock environment of the axle roller
bearings, for example, requires a model with more subdivisions than an analy-

sis of the ride quality in the vehicle body.
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The forces and moments acting on the components or subdivisions
of the model are determined in the second modeling step. Often these
forces and moments can be described in terms of the relative displacements
and velocities between components. The suspension system forces and mom-
ents, for example, are described in terms of displacements across springs
and velocities across friction snubbers or viscous dampers. These forces,
due to relative motion, ususally include terms that account for deformation
of the components. For example, the lateral bending of the truck sideframe

may be included in the lateral suspension sitffness terms.

Additional forces and moments due to interaction of the vehicle
components with outside bodies or elements must also be described. The
most important of these forces and moments for rail vehicle dynamic analy-

sis are those acting at the wheel/rail contact surfaces.

The discussion below will first describe the typical suspension
forces, then the wheel/rail contact forces. This discussion focuses on
presentation of the nonlinear effects that may be found in conventional
passenger and freight rail cars. At the close of this chaoter, equations
of motion are presented for models that are used in illustrative examples

in Section 3-7.



2.3 SUSPENSION NONLINEARITIES

Suspensions are made up of restoring force elements providing
stiffness and energy absorbing elements providing damping. When these
elements are linear springs and dampers the forces or moments are de-
scribed quite simply. However, for many rail vehicles these forces
and moments either cannot be described by linear relationships at all,
or the motion does not remain within a Timited range where linear de-
scription holds.

Nearly all the nonlinearities found in rail car suspensions
may be described by combinations of the following three nonlinearities.

1. Deadband spring:

Fx) |
K,
— X
18, -
Where: dd - one half the deadband region

Kr - spring rate

X - spring displacement

F(x) - spring force or moment

FIGURE 2-2. DEAD BAND SPRING



2. Hardening/scftening Spring

F(x)
I
7 L X
/,, Sps I~
Where: 6Hs - One half the range of spring, K]

K1, K2 - Spring rates
X - Spring displacement
F(x) - Spring force or moment

FIGURE 2-3. HARDENING/SOFTENING SPRING

3. Coulumb Friction:

F(X)
FO o mmii—
X
——— _Fo
Where: F0 - Breakout friction force or moment
i.e. X - Velocity
F(Xx) - Friction force or moment

FIGURE 2-4. COULOMB OR DRY FRICTION

Several combinations of these elements that are frequently encoun-

tered in rail car suspension modeling are described below.

-10-



2.3.1 Suspension Stops

The travel 1in nearly all suspensions is Timited by stops. The
suspension stop does not completely restrict suspension travel because
once the stop is engaged, further increase in force causes de-
flection of the stop and the structure supporting it. Thus the stop
may be represented by a stiff spring, and the overall suspension stiff-

ness by a hardening spring:

F(x) A /

Where:
GX ~-Limit of linear displacement
KS -Nominal suspension stiffness
KSt ~-Stop- stiffness
FIGURE 2-5. SUSPEMSION STOP CHARACTERISTIC
The physical stops may be rubber pads, as often found in rail
passenger truck suspensiofns, spring bottoming, as occurs with coil
snrings or metal-te-metal contact, as are the gibs on the freight truck

bolster.

2.3.2 Truck/Car_Body_Re]atjye“Yaw

The yaw motion of the truck relative to the car body almost uni-
versally allows the possibility of sliding motion between the truck and

car body. In many designs this sliding occurs at a centerplate,
-11-



other designs provide for sliding on bearing pads outboard on the trucks.
In either case, this sliding motion is resisted by friction that is usu-
ally best represented by the Coulomb frirtion characteristic.

In many cases, there is enough flexibility in the supports or
connections to the sliding surfaces that significant relative yaw de-
flection occurs before sliding begins. One common passenger truck de-
sign, for example, connects the truck bolster to the car body through
Tongitudinal rods with rubber bushings. The flexibility of the rubber
bushings in this truck allows relative yaw displacements. This situation
can be modeled by a linear spring in series with a Coulomb friction

element. The behavior of this combined characteristic is shown in Fig-

ure 2-6.
F(x)
To
/
K #
/ v /
AY
/// To _///
Where: T0 - Break out friction torque
Kw - Yaw stiffness

Ay - Relative yaw displacement

FIGURE 2-6. SERIES COULOMB FRICTION-SPRING CHARACTERISTIC

Note that this combination exhibits hysteretic behavior where the

torque generated by the components depends on the previous motions.

-12-



2.3.3 Freight Car Lateral and Vertical Suspension

In the conventional freight truck, the only intentional suspension
components are in the connection between the bolster and the sideframes.
This connection consists of the coil springs and friction wedges shown
schematically in Figure,217(a), This suspension connection has been
modeled [17] by the three parallel elements shown schematically in
Figure 2-7(b): a Tinear spring, a lTinear spring with deadband, and a
series combination of spring and friction element. The vertical spring
rate is the spring rate of the coil springs, and the lateral spring
rate is the softer, shear stiffness of the spring groups. The friction

Jevel is the same in the lateral and vertical directions.

2.3.4 Freight Truck Bolster/Centernlate/Sideframe System

The nonlinear characteristics of the bolster/centerplate/sideframe
of a conventional freight truck are of interest in studying problems
such as the "rock and roll" phemomena. When the car body rocks it can
assume eight positions relative to the bo]sfer:

1. Distributed contact across the center plate (one position),

2. Sing1e‘p01nt contact on the left or right edge of the
centerplate (two positions),

3. Two point contact on the left or right edge of the
centerplaté ‘and the sidebearing on the same side (two
positions),

4. Single point contact on the left or right sidebearing
(two positions), and

5. Complete separation between truck and car body (one position).

Four of the eight positions are shown in Figure 2-8.

-13-
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The behavior of this connection can be represented by nonlinear
springs arranged as shown in Figure 2-9. The characteristics of the
three nonlinear springs are shown in Figure 2-10.

“—-—-—-...__________\_‘1

] ~

N . W —
P\A/(__/ \._] N .f{\__/"\___/\_l

-

. ¢
i\~/\ ﬁ/\} [ *_/ A :_\‘]

FIGURE 2-8. FQOUR BASIC CAR BODY-BOLSTER RELATIVE POSITIONS
CORRESPONDING TO DIFFERENT ROCKING CONDITIONS

Coefficients for the parameters of this model have been obtained from

tests of two types of freight trucks [17], [18].

2.4 WHEEL/RAIL GEOMETRY NONLINEARITIES

The nature of the forces exerted between the wheel and rail, both
in the plane of contact and normal to it, is determined by the geometry
of the wheel and rail. Railway wheelsets, as they roll along the track,

are constrained to move laterally and vertically in prescribed space

-15-
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determined by the geometry of the wheels, rails, and track structure.
The wheelset position may be described by two independent variables,
the lateral position of its geometric center relative to the track
centerline, Yy o and the angular rotation of the wheelset about a ver-
tical axis, ew. The remaining motions of the wheelset, such as roll
or vertical movement, are determined by the geometric constraints.

To study the lateral dynamics of rail vehicles, the following

information is required as a function of the independent variables,

Y and ew :

r, - instantaneous rolling radius of the left wheel
'R - instantaneous rolling radius of the right wheel

ZL - instantaneous height of contact point on the left rail

L, - instantaneous height of contact point on the right rail

GL - angle between the contact plane on the left wheel and
the axle centerline

Sp - angle between the contact plane on the right wheel and
the axle centerline

¢w - roll angle of the wheelset with respect to the plane of
the rails.

These constrained variables, corresponding coordinate systems, and con-
téct point definitions are illustrated in Figures 2-11 and 2-12.

The rolling radii constraints enter the wheelset equations of
motion as the difference between the rolling radii at the two wheels
of the wheelset. When the wheelset is displaced from a centered position

between the rails the difference between the rolling radii at the left

-18-
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and right wheels requires that the velocities of the two wheels at their
contact points differ. The result is partial slip, or creep, at the
wheel/rail interface giving rise to a moment which results from the tan-
gential or creep forces at the wheel/rail interfaces. This moment tends,
in most cases, to steer the wheelset towards the centered position of
the rails.

It is useful, in studying rail vehicle dynamics, to examine the

rolling radii difference function, "L (yw) B rR(yw) _ The nature of
2a

this relationship between rolling radii difference and wheelset lateral
position varies widely. For a new wheel with a conical taper, the nor-
malized difference in rolling radii depends linearly on the wheelset
lateral displacement, Y » until flange contact is made. The constant
of proportionality, called the wheelset conicity, 1is the wheel pro-
file taper (usually 1/20 or 0.05). As the wheels wear, the change in
rolling radii difference with wheelset lateral displacement becomes
more nonltinear, and over certain ranges, ismuch greater than the
rolling radii differences for new wheels.

The contact angle constraints enter the rail vehicle equations
of motion in the description of the magnitude and direction of the con-
tact forces between the wheel and rail. The contact angles for new wheels
when centered are, of course, the angles of the wheel tread taper. The
angle of contact with respect to the axle remains at this value until
the wheelset is shifted laterally far enough for the contact point to
move to the flange. For worn wheels, the contact angles usually vary

continuously as the wheelset moves laterally.
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The third geometrically constrained variable on the equa-
tions of motion describes the roll of the wheelset about a longitudinal
axis. This variable also enters the description of the contact
forces between wheel and rail.

Solutions for the wheel/rail geometric constraint functions can
be obtained numerically by the technique described in reference [19].
A typical result for a wheelset with new wheels on worn rails is shown
in Figure 2-13. One function, in addition to the rolling radii, con-
tact angle, roll angle, and normalized rolling radii difference is,

nlotted in Fiagure 2-13, This function,

is used to compute the "gravitational stiffness" forces acting
between wheel and rail, as discussed later in this Section . The
highly nonlinear character of these functions is evident in these
plots.

The wheel/rail geometry nonlinearities enter the rail
vehicle dynamics through the expressions for the contact forces
Hetween the wheel and rail. The role of the wheel/rail geometry 1in

determining these forces is explained in the next section.

Bl
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2.5 CREEP FORCES AND MOMENT NONLINEARITIES

The creep forces and moments are exerted between the wheel and
rail in the plane of contact due to a difference in the strain rates
of the two bodies in the contact region. Although these forces and mo-
ments are not uniformly distributed over the contact region, and the
relative strain between the two bodies also varies over the plane of
contact, this situation can be modeled as a point contact problem where
the creep forces and moments are expressed as functions of the strain
rate, for creepage between the wheel and rail at the point of contact.
The theory used to develop these characteristics must, of course, deal
with the actual, distributed contact problem.

In general, two e]astic bodies in rolling contact may bhoth have
a relative translational creepage and a relative spin creepage. For
the wheel/rail contact problem, the translational Creepage is the rela-
tive sliding velocity of the wheel over rail divided by the forward
velocity of the wheel, and the spin creepage is the component of the
wheelset angular velocity normal to the wheel/rail contact plane divided
by the wheel forward velocity.

The relationships between the creep forces and moments and the
creepages are nonlinear, due primarily to the Timitation imposed by the
available adhesion between wheel and rail. At present, the available
theory [20] to deal with this nonlinear problem requires an iterative
solution technique that must be implemented on a digital computer. The
problem can be simplified by neglecting the effects of spin creepage.
This step is reasonable when the contact angles between the wheel and
rail are small, but may introduce serious errors when the contact angles

are large. _04-



The creepages for the wheel/rail problem depend on the wheelset
variables and the wheel/rail contact geometry. Under the usual, small
motion assumptions the translational creepages for a single symetric
wheelset with only track alignment irregularities are given by the fol-

lowing relationships:

y
T ]
E =g = - aby, ~ "L (yw - yR) - "R (yw - yR) (2-2)
zR zL v 2 IS

Where a - One-half the rail gauge
"R*"L - Rolling radii
ro ~ Centered rolling radius

V - Forward velocity

EyR’ EyL’ EzR’ EL - Creepages.

The spin creepage is the component of the wheelset angular velocity
that is normal to the wheel/rail contact plane divided by the wheelset
forward velocity. For a single,symmetric wheelset, the spin creepages

at the left and right wheels are given by the following expressions:

[og]
= -

= W (2-3)

3l W (2-4)
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Note that the nonlinear geometric constraint functions for the
wheel rolling radii, r. (yw) and R (yw) , enter the equations of
motion through the longitudinal creepage terms. The contact angle
functions enter in the spin creepage as well as in the graviational stiff-
ness terms described later in this Section.

For small values of the creepages the creep forces may be approximated
by Tinear relationships where the constants of proportionality are re-
ferred to as the creep coefficients. These expressions for the forces

on the right wheel are given below.

YR = Fridyr * frofR (2-5)

Fxr = Faséxr (2-6)

MR = ool —  Tiodye (2-7)
Where:

fH - lateral creep coefficient

f]z - Lateral/spin creep coefficient

f22 - Spin creep coefficient

f33 - Longitudinal creep coefficient

FYR - Lateral creep force

FXR - Longitudinal creep force

MwR - Spin creep moment

The-creep coefficients depend on the wheel and rail geometry, wheel
and rail materials, and the normal force between the two bodies. The
theory developed by Kalker [21] s generally used to compute these

coefficients.

When the spin creepage is neglected, the creep force characteristic

-26-



has the form as shown in figure 2-14a, where the creepage is the resultant
creepage between the two bodies and the creep force the resultant creep

force. Johnson [22] in his theoretical treatment of this situation
developed the cubic expression shown in figure 2-14 relating the
resultant creepage and resultant creep force. In general, the
resultant force may not be in the same direction as the resultant
creepage. For the wheel/rail contact problem at small contact

angles, the two are nearly coincident, and the difference can be
ignored. Relationship of Figure 2-T4a applies to the resultant force
and resultant creepage where these resultants are related to the Tinear

components by the following relationships:

[, 2 2
= / -
gR v E"x * gy (2-8)
Fp - /ey g (2-9)
x y

However, functions of this nature complicate the quasi-linearization
problem.  The complications, in obtaining the quasi-linear representa-
tion of the functions above may be avoided by assuming that the lateral
and longitudinal creepages would not be large ét the same time. This
allows application of the saturation function of figure 2-14b to the
lateral and longitudinal creepages individually. This assumption can be
justified on the basis that % and }, are usually 90° out of phase, and
consequently the lateral creepage (that depends on 9w and ww) and the
longitudinal creepage (that depends on y_ and iw) are also 90° out of
phase.

To further simplify the creep force computation, the saturation
effect can be modeled by the piecewise linear characterization shown

in figure 2-14b. This assumption allows use of a readily available
-27-
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describing function for the force creepage relationship.
To summarize, the creep forces, neglecting spin effects, are re-

presented by the following functions:

- '
f/ uN gX B %33
FX - f33 EX f33 -2 f23 (2“]0)

(; ! N é et =

: uhl
y ~ tn
l\_ UN Ey B2 ¥T1
Where: fi, - Lateral creep coefficient

f33 - tongitudinal creep coefficient
N~ Normal wheel load

H - Adhesion coefficient.

2.6 FLANGE CONTACT AND GRAYITATIONAL STIFFNESS NONLINEARITIES

The remaining contact forces between the wheel and the rail are
the normal forces exerted in a direction perpendicular to the plane of
contact. When a symmetric wheelset is centered on a symmetric track,
the normal forces on left and right wheels will be equal in magnitude and
slightly inclined inward from the vertical. The sum of the vertical
components of the two normal forces will equal the axle Toad and the
Tateral components will be oppostie in sign with a zero resultant lateral
force on the wheelset. The angle of the contact plane is determined
by the wheel and rail profiles.

-29-



In general, the contact angle of the contact plane with réspect to
the axle centerline will vary as the wheelset moves laterally and will
be different on the left and right wheels. An example of how these angles
vary for a wheelset with new wheels on worn rails is shown in Figure 2-13(g).

The magnitude of the lateral component of the normal force is deter-
mined by the magnitude of the vertical force at the contact and by the
angle of the contact plane. One usually assumes, in analyzing vehicle
behavior on tangent track, that the weight of the vehicle components is
equally distributed among the wheels at all times. Variations in vertical
forces at the wheel contact due to vertical vehicle dynamics are also
small enough to be neglected. With these assumptions, the vertical com-
ponent of the normal forces at all wheels are equal, and equal to the
proportionate share of the vehicle weight.

The Tateral resultant of the normal contact forces on the wheelset

is given by the expression

- W - :
Nyr + Ny = 5 &an(dR + ¢W) tan(cSL - ¢W)] (2-12)
Where: W - Axle load
NyR - lLateral component of contact force at right wheel
NyL - Lateral component of contact force at left wheel.

When the wheelset motion does not involve flange contact, the small angle

rapproximations can be made. Then the expression above reduces to:

$ S
SR, (2-13)

N R i W

y - -

yL
This term is often called the gravitational stiffness.

A typical example of the §L_%_EB function is shown in Figure 2-13.
Note that the contact angle difference is nearly zero until the flange

contacts the rail. This is characteristic of new wheel profiles. More
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hollowed wheel profiles have a discernible slope at the origin.
For wheelsets with new wheels, the gravitational stiffness has been
approximated by a deadband spring [3] with the characteristic shown

in figure 2-15. This characteristic,

Kelyy = ¥y (v, = ¥p) > 8¢

Fooeq = 0 _

rail sy, -~y <8 (2-14)
-Kply, = ¥y) (y, = ¥p) <= 8¢

has been used in many nonlinear rail vehicle dynamics studies.

2.7 TYPICAL NONLINEAR EQUATIONS OF MOTION
Nonlinear equations of motion are presented below for several
models that include combinations of the nonlinear characteristics
discussed in the preceding sections. These nonlinear equations are
used in later examples that illustrate the quasi-linear solution tech-
niques.

2.7.1 Single Wheelset with Deadband Rail Soring

Considerable insight into the dynamic behavior of rail

vehicles can be gained by studying the behavior of a single

wheelset. The lateral dynamics of a single wheelset, such as

that shown in Figure 2-16, may be described by two degrees of freedom:
Yo ~ Wheelset lateral displacement,
ww - Wheelset yaw displacement.

In the simplest case, one neglects the track flexibility and assumes
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FIGURE 2-16. SINGLE WHEELSET MODEL
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that the wheelset reacts to lateral track alignment irregularities
described by the variable, Y-

In order to include the suspension forces, one assumes that the
wheelset is connected through a suspension system to a moving reference
that travels along the track at a constant velocity, V, without later-
al or vertical deviations. To represent several types of vehicles
with a single wheelset model the possibility of Coulomb friction can
be incorporated in both the lateral and yaw suspension connections
as follows. The lateral suspension consists of a linear spring, Ky,
connected in parallel with a Coulomb friction element with breakout
force Foy' The composite force characteristic Fys for this connec-
tion is shown in Figure 2-17a), The yaw connection is a linear spring,
Kw in series with a Coulomb friction element with a breakout angle, wo'
Figure 2-17b) illustrates the composite yaw suspbension characteristics,
Mws'

To complete this simple wheelset model, the creep forces and wheel/
rail constraints are represented with linear functions while a deadband
spring represents the effect of flange contact-with the rail.

The equations of motion for this simple wheelset model follow:

2y, W(ay +ay)

My Yo © Yo T T a Y
W(A] + a1)
T Wt Ry R T (2-15)
2f
33 2 a
Iwzww oy ay, - W Soat, ¥ 2f33 r Y

Moo= 2f,, 2

s 33 v MR (2-16)
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Where: a - One-half the rail gauge

a - Coefficient of Ve in linearized expression for
9, (v,)

fi1 - Lateral creep coefficient

i3 - Longitudinal creep coefficient

D Wheelset yaw moment of inertia

MW - Wheelset mass

Mfs - Yaw suspension characteristic shown in Figure 2-

v - Forward velocity

W - Axle Toad

60 - Wheel/rail contact angle when wheelset is centered

A - Coefficient of Yoo in lTinearized expression for
T17208 () =6 o))

A - coefficient of Yo in linearized expression for
a

1720 v (y,) -rp (y,)) 7 a
Typical parameters for such a wheelset are given in Table 2-1*.

TABLE 2-1. WHEELSET PARAMETERS

a - 2.5 ft

a = 0.05 (new wheels) 8 = 0.05 (new wheels)

fi1 =3 x10°% 1b Ay = 0.0 (new wheels)

fas =3 x10°% 1b A = 0.05 (new wheels)

_ - 2 =

I, = 360 slug-ft Foy 1,000 1b

M= 90 sTugs K, = 10,000 1b/ft

r = 1.75 ft K =1 x 10°% 1b/Ft

0 R

W = 30,000 1b KP = 105,630 ft-1b/radian
sy = 0.03 ft
v, = 0.25°

* From Reference [14]
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2.7.2 Single Wheelset with Nonlinear Wheel/Rail Geometry

A more realistic model for the single wheelset dynamic behavior
incorporates the nonlinear wheel/rail constraint functions described
earlier in this chapter. These nonlinear functions provide a better
rep#esentation of the rolling radii difference for use in the lateral
creep expression, and a better description of the contact angles for
calculating the "gravitational" stiffness.

The creep forces may be also represented by the nonlinear function
described earlier that accounts for saturation of the lateral and Tlon-
gitudinal creep forces separately.

The equations of motion for the single wheelset with the nonlinear

suspension described in the preceding section and the nonlinear wheel/

rail constraint functions and creep force relationship are as follows:

m Y, * Fir (&) + W Loly, - yp) + 8 (v, - yg)]

tFys (y) =0 e
Iwzww + quf (EX) = Wﬁoaww + Mws (ww) =0 (2-18)
Where: -
ere: £y =V ww
i1 uN
£ e, | #5==
Fi1 (&) = Y f1n
’ N | &, | M
i y fi11
&~ @%ﬂ_+ My, - vR)
N
(v g |
Fas (5 ) =
X uN_
uN l EX | 2_f33

= gY=



My) =172 [ (y) - 65 (y)]

¢(y) = wheelset roll angle
roo{y) - rply)

My) = =+ B .

The nonlinear wheel/rail constraint functions A(y), ¢(y), and A(y)
are obtained using the procedures and computer programs described
in reference [19]. Examples of such functions are shown in that re-
port.

When linear creep relationships are used, these equations take

thg following form:

MY+ 251] o FHEO(Y, - Y+ aly, - Yp)] - 2f Ly + Flelty) =0 (2-17a)
L 2 - 2f,q0° r (Y, - YR) - (Y, - Ye)
Iwzww b WdOaww'+Mws ¥ r I ke 1=0.
"2-18a)

The "rock and rol1" behavior of freight cars has been a major
source of problems for North American railroads [10]. The "rock and rol]"
phenomena is a mode of freight car dynamics response to cross-level
track disturbances that involves 1ifting and succeeding impact at the
car/truck bolster and wheel/rail interfaces. Very high forces are
experienced during these impacts, at times approaching 2.5 times the
static Toad at the interfaces [10]. Such forces can cause serious

damage to track, vehicle and lading.
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A half freight car model is illustrated in Figure 2-9 that can be
used to illustrate this rock and roll behavior [10]. In this model the
wheelset is subjected to a sinusoidal cross-level input, ¢R’ transmitted
through the rails that are modeled by stiff, nonlinear compression
springs. The wheelset has two degrees of freedom: vertical trans-
lation, z, and roll rotation, ¢, . Because it is free to rotate
for small angles about either rail, a constrained lateral motion, Yo
may also occur. The bolster has two degrees of freedom; vertical trans-
lation, Zy and a roll rotation, ¢b . Small lateral displacements, Yh
may occur when the bolster rotates. The car body also has two degrees
of freedom: vertical translation, zC , and roll rotation, ¢C . Small
lateral displacements, Y. » occur when the car body rocks on either the
centerplate or the sidebearing.

The bolster/sideframe suspension group is modeled in the vertical
and lateral directions by the parallel spring and coulomb friction
combination described earlier. The car body/bolster behavior is repre-
sented by the piecewise linear springs shown in Ffigure 2-10.

The equations describing the half car body motion have been derived
[10] directly from force and moment balance conditions as well as kine-
matic constraints. The vertical force balance equations on the car body,

bolster, and wheelset are:

M2 = Fy+ Fpt Fyt Fy - Mg (2-19)
M, %, = g+ Fg = Fy = Fy = Fy - Fp - Mg (2-20)
My 2y = F7 * Fg - Fg - Fg - Mo e
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where F] through F8 are the forces acting at points 1 through 8 in
Figure 2-9 and are the nonlinear spring forces defined in Figure 2-10.

The moment balance equations are:

[0+ 2y ch = 2](F2 - F]) - 24(F4 - F3)
IF ¢y * % Fyb = 2](F] - F2) + 24(F4 - F3) - 23(F6 - F5)
I, 8, + 2g Fy = 23(F6 - F5) - 25(F8 - F7),

W
where the forces F , F » and F_ are the lateral forces exerted on
Yoo b Y
the car body, bolster and wheelset respectively. If it is assumed that
the angles of rotation are small and that no relative lateral motion
can occur between the bolster and wheelset the following kinematic
constraints exist:
Yo @ JL2¢c ¥ 26¢b * Yh
Yy & 28¢
Yw ™ JL7¢ ;
Using these relationships in the moment balance equations yields:

I &C SN PY g, * Mo 208 Gp = - 2](F2 - F]) - 24(F4 - F3) (2-22)
Iy dg ¥ Mo 2o bt Me Lg% &, = 21(F] B Fg) + 24(F4 - F3)

t25(Fp - Fp) (2-23)
L, $W + MC Lokg §. + M. Letg B = 23(F6 - F5) - 25(F8 - F7)_ (2-24)

The track input to the dynamic equations occurs through F7 and
Fg which are functions of 25(¢w - ¢1) where ¢ . is the track angular

displacement.
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Typical

are given in

Nonlinear spring force acting at point i in Figure 2-9.

Dimensions defined in Figure 2-9.

Bolster mass

Car body mass

Wheelset mass

2
6

2
2

: )
7 b 8

Bolster moment of inertia in roll

i

+M 2
c

I +M 2
o

E—0 O -

I +MW5L +(MC+M

Car body moment of inertia in roll

Wheelset roll moment of inertia

values of the parameters used in this rock and roll model

Table 2-2.
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TABLE 2-2. PARAMETERS USED IN SIMULATIONS OF 70 AND 100 TON CARS

( Car Parameters 70 Ton o
- B PRI

Weight of Car Body and Two Bolsters for Loaded Car [1bs] . . . . . . .172,650

Empty Car [1bs]. T ST L]0}
Weight of Each Wheelset [1bs]. e e e . . . .. .6,380
Rol1l Moment of Inertia of Car Body for Loaded Car [1b in-sec ] . .1,288,800

Empty Car [1b—1n-sec 1 . . .. . .. .. ... 346,000
Suspension Spring Vertical Rate [1b/in]. e e e e e e e e . .. o.o.o.20,840
Suspension Spring Lateral Rate [1b/in] . e e . e . . . . .8,850
Gib Stop Lateral Spring Rate at One End of Bolster [1b/1n] . . .660,000
Bottoming Stiffness for Vertical Spring Group [1b/in}. . . . . . . . .660,000
Centerplate Stiffness [1b/in]. . . . . . . . . . . . . . . .. . . .4,240,000
Sidebearing Stiffness [1b/in]. . . . . . . . . . . . . . . . . . . .7,160,000
Rail Vertical Stiffness [1b/in]. . . . . . . . . . . . . . . . . . . .420,000
Vertical Coulomb Friction Force Between Bolster and Side Frame

at One End of Bolster [1bs]. . . . . . . . . . . . . . .+ . .. .. .4,000
Lateral Coulomb Friction Force Between Bolster and Side Frame

at One End of Bolster [ibs]. . . . . . . . « « . . .« .+ .« . .. .. .4,000
Height of Car Body CG Above Center Plate for Loaded Car. . . . . . . . . . 72.5

Empty Car. . . . . . . " m . " . . e e e v s o wdmas . . 35.0
Height of Center Plate Above Top of the Spr1nos [1n] e e e e e .. .7.878
Side Bearings Spacing from Center Line [in]. . . . . . . . . . . . . . . . 250
Height of Side Bearing Above Top of the Springs [in] . . . . . . . . . . . 12.1875
Height of Top of the Springs (Uncompressed) Above Rails [in] . . . . . . . 20.125
Spring Group Spacing from Center Line [in] . . . . . . . . . . . . . . . . 39.0
Half of the Total Gib Clearance [in] . . . . . . . . . . . . <« .« .+« . . .0.375
Spring Travel-From Free Height to Bottomed [in]. . . . . . . . . . . . . . .3.6875
Rail Gauge [in]. . . . . © .« v v e e e e e e e e e e e e e e ... . bbb
Rail Length [ft] . . . . . . . « .« « . . o o . o v v v v v v o« .. 3%0
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2.7.4 Rail Freight Car Lateral Dynamics Model

The lateral behavior of a complete rail freight car is of great
practical interest to railway operating personnel. The North American
freight truck has the following five major components, as shown in
Figure 2-18: two wheelsets, two side frames, and one bolster. The
side frames rest directly on bearing adapters that sit on the bearings.
The bolster is connected to the side frames by & suspension system that
allows relative vertical movement, relative lateral movement within
limits, and relative angular motion about all axes. Very little
relative longitudinal motion is possible between bolster and side frame.

+_As described in the preceding section, the freight car body rests
directly on the truck bolster centerplate. Rotation about a vertical
axis of the truck bolster relative to the car body is resisted by fric-
tion at the centerplate. Under the conditions previously discussed,
the car body will rock on the centerplate, transferring the contact
point to the edge of the centerplate, or,under more extreme conditions,
shifting contact to a side bearing located toward the end of the
bolster.

One model for the Tateral dynamics of this freight car assumes that
the side frames are attached to the wheelsets by the equivalent of a ball
joint that allows relative angular rotation but precludes any relative
translational motion. The additional assumption is also made that there
is no relative Tongitudinal motion between the bolster and the side

frames. Then, the Tateral truck motions can be described by the following
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SIDE BEARING
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g

-

FIGURE 2-18. THREE PIECE FREIGHT TRUCK
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three degrees of freedom:

Truck lateral displacement - YTF (front truck)
YR (rear truck)
Truck yaw displacement - y o (front truck)
Yrp (rear truck)
Truck warp displacement - y, - (front truck)
YR (rear truck).

These variables are illustrated in Figure 2-19. When the car body
is relatively rigid it will have the following three degrees of freedom,

Lateral displacement - Ye

Yaw displacement - wc

Roll displacement - ¢C

Note that this model neglects roll motions of the side frames,
assumes that the bolster remains parallel to the wheelsets while trans-
lating laterally and vertically with the car body, and does not account
for rocking of the car body on the centerplate.

A11 of the suspension connections in the freight car include dry
friction. Within the truck itself, warp motion of the truck is resisted
at the six connections between the side frames and bolster by friction
and stiffness that can be modeled by a linear spring with stiffness wa,
in parallel with Coulomb friction of magnitude TOW‘ This composite
torque is represented by the function TwW' The characteristic is illus-
trated in Figure 2-20(a).

The suspension between the bolster and the sideframes also can

be modeled in both the vertical and lateral directions by a linear spring
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FIGURE 2-19. TYPICAL FREIGHT CAR MODEL
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c.)VERTICAL SUSPENSION CHARACTERISTIC

FIGURE 2-20. FREIGHT CAR SUSPENSION NONLINEARITIES
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parallel with dry friction. The spring rates and friction force

levels in the two directions may be different.

Rotation of the truck bolster relative to the car body is resisted

by friction at the centerplate. This resistance can be represented
by dry friction with a breakout torque of T°B‘

Equations of motion for this freight car model with linear creep
force expressions but nonlinear wheel/rail geometry are given below.
The effects of spin creep, in addition to those of lateral and long-
itudinal creep, are represented in this model.

FRONT TRUCK LATERAL

2(Me + M )F7e + Fq(Bypy * Eypy * Eypp * 5YL2)

+ 2F

12(0R1 * Byt Epre t Eyn) t 2Py

P 227RE) Ly ) =0  (2-25)
5 7 )t WG o,

FRONT TRUCK YAW

2

(21, + 2Tg + 2L %M+ 2d + 1)

+2dM + 1 3

+ (21, FtIp)lye @ aa(Ey 1 - Byt Exn - Eypo)

+ Lo

"% OS2 -8
? ?

R2

s
L]
* oo (Bym * Egy t Bype * Eya) Lo

t 01 Gup) - kRS (e + ye) + T = 0 (2-26)
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FRONT TRUCK WARP

2

(21w + 2d MF + IB)({pTF + wWF)

2
tatfag(Ey g - Expr * Syl T Exre)

- FroEyry * By y * Eyvpe * Eyie) * T2 (Burt t Eut T Egre T EyLe)

- 2al o (Wyyr *+ Upp) * Tyue + Tge = 0 (2-27)

REAR TRUCK LATERAL
2(Me + Mg + Fyq(Eypg * Eyg * Eypg * Eyg)

* Fo(Egpg + Ea g * Bapg * Eapg) * 2Fyop

§ -3 § -6
L0137 %3, %La T 4 ) i
+ NR( 5 + 5 by * ¢w4) = (2-28)

REAR TRUCK YAW

2 2 " 2 .
(21w t2lgp + 2L M+ 2dTM + IB)q)TR + (21w t2d7M + IB)xpWR

2 2
ta™faa(Ey3 - Expa * Exea " Bxra) T LT T11(EyRs * Byis T Eyrg T Eyia)

“F12(Eyra + By s * Eypa * Eyia) * Top(Eypa t By 3- Eyvra - SyvLa)

§ -6 5 . -6
L3 %3 OS14 " Spa _
Ll (= - 7 t by = byg) - 2aWpo(Ypp + Yyp) + Tpp = 0

(2-29)

REAR TRUCK WARP

2

. . 2
(21 + 2d"Mc + 1) (g + Byp) + aF3a(Ey) 3 - Exps + Ex1a = Eypa)

-F12(8yr3 * Eyia * Eypa * Eyia) * Too(Baps * &4 3 * Eapa * Egra)

“2aHRSeliyp *+ Upp) * Tyyp + Tgg = 0 (2-30)

-49-



CAR BODY LATERAL

(mC + 2mB)yC + 2h2mBEﬁC = 2FYSF + 2FYSR (2-31)

CAR BODY YAW

(Iy + 2L2mB)ipC = 2L.Fy - 2L.F

C cFye cFysp * Tgp * T

BE (2-32)

BR

CAR BODY ROLL

. 2 .. _
2hompye + (Igg + 2Ig; + 2homg)§e - hy(me + 2mp)ocg = 2 Fyep +

2h,F

oFygp - 2df

YSF " 2dFYSR (2-33)

The additional parameters appearing in these equations are de-
fined as follows:

FYSF - Lateral suspension force, front
FYSR - Lateral suspension force, rear
FZSF - Vertical suspension force, front
FZSR - VYertical suspension force, rear
g - Gravitational constant = 32.2 s1ug-ft/sec2
Ly - One half truck wheelbase
LC - One half the truck spacing
Iw - Wheelset yaw moment of inertia
ISF - Side frame yaw moment of inertia
IBX - Bolster roll moment of inertia
IBZ - Bolster yaw moment of inertia
ICX - Car body rollment of inertia
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Tayr

TawR -

Car body yaw moment of inertia
Wheelset mass

Sideframe mass

Bolster mass

Car body mass

Centerplate torque, front
Centerplate torque, rear

Warp torque, front

Warp torque, rear

The following expressions describe the lateral, longitudinal, and spin

creepages for the leading wheelset of the front truck in terms of the

vehicle degrees of freedom and the vehicle parameters:

Syr

EXR

Edn
4 =

Where :

1~ .
By = v Wpp * Ly dpp) - Oye + Vpp)

e
Sy T v (e + )

E?;'(rL(yw1 - Ypy) - Ry - YRy))

bR, V1F ; YwF
A
0 - .
B ; Vi
e
0

Eyr? SyL - Lateral creepages

gXR’ EXL - Longitudinal creepages

- Spin creepages

-5]-

(2-34)

(2-35)

(2-36)

(2-37)



LT - Bne half truck wheel base
Va1 ¥ Y7F * bp¥ee

Similar expressions can be written for the other wheelsets. Details
of the derivation of these equations may be found in References [23 and 24].
The complete equations of motion for the freight vehicle subject to these
forces are given in Figure 2-21.

Only track centerline alignment variations are accounted for 1in
the equations above, although cross-level irregularities can be easily
added to the equations.

Typical values for the parameters appearing in these equations are
given in Table 2-3. These parameters are for a 80 ton hopper car on
70 ton, Ride Control trucks. Most of these values were obtained by tests
conducted as part of the Government-Industry, Track-Train Dynamics Pro-

gram administered by and reported in references [17] and [18].

2.7.5 Track Irregularities

Individual consideration of track centerline alignment
or profile variations are easily handled by describing function
methods. However, simultaneous consideration of several irregularities
such as alignment and cross-level is a dual input problem that requires
an extension of the quasi-linearization methods used here.

The track alignment irregularities enter the equations of motion
through the wheel/rail geometric constraint functions. The argument
of these functions becomes Yy = Yp- For the sinusoidal response studies,

the track alignment was represented by a sinusoidal function of the following

52



NOTLOW 40 SNOILvND3 TwdIlv uyd iHO9I3dd *1g-¢ FdN9I4

¥hppy - AShipy - K2, 4K 20 - es(ug + JyZy - Do(Rudz + P01z 4 By) 4 Ay
th,
L - L=
{IWIDVIASI0 1708 LISTITHM UL ) o W
INTWIOYIASIO TI0Y AQOS ¥YD = 09
_oam,
INTWIDYTISIO dUyM ¥ONUL Y3y 5 ¥, 48, UKDy, IS0y L Jg(Rdey 4 A0
an 2
INIWIDVIASIO duyM wonuL Inows - M .
ININIDYIISIO MYA ADOS WYD - 6
INWIOYISIO MyA HONSL Av3E - Ole MyA A00E ¥¥D
m
INTWIOVIASIO MyA Wonu)L INows - e
WK L A, . D482y - (B 4 D
INIWIOVTASIO TWEILYT A0S ¥YD - X 42+ 2 = Tt - x(Tuz 4 )
INIWIOVIASIO WHILYT WYL Wyl - Oy
INWIOVIISIO TAILYT HONEL INows - X WHILYT ATCE ¥YD
uno % %z, g€
LTI ) FEy e -

vd, v, "8, €1

a M
Bl (Og¥yes - Zlypy o Wlg Ay Ay NGRS dy gy My 8GOl - Clypy
e, T, 2 z
2

-1 Z
Lo Ggt, @
0
A ) 4 Zl
9) +
eI,
mZQAwm>il Lol A>mH + du 12) + mhq M»l v -
4,8 P
4
YA WONBL WYY
Wy - L e 4
s ¢ mﬁw . ﬁ—m .

TPY3LYT AINYL YR

48, _ 4o ho, 2 z
L= = 2 - + )
o, YN 2, ey Ty g
iy ooz - Zyp) + )+ MMy dupz 4 M Aoy ¢ ey dupz o Mz
! N M 2
) d¥YM ML LNOYA
0 [e] [}
49 £ 4z, €€ z z B
L- = + AU AR + ) == 7 -
2, _ o1, T, L ZIRNEANACRC I
o
2Hy LK A 2y N A M. LMy Lad 2 2 4 dylay L 3Mged 2l
(M« ey ——f— - (Mo - ) 2+ (C70 - YN (S - Y= — - )+ Pa(Fnez - “Tap) +
a0, (10, 2 A T NS PTG
Mo )+ M8 4 dupz 4 Mgy o FoOednez - Clpy - oty Puleg o Mpg o Mgy o 3Ly Ay
€€, o s 2 ST L z -2
4, 1 3
2
MYA YONHL LNOHA
o
ISy, L 2y, gy A My, Wgydy 2 4 S My, 4
42 = (T4 ) oI, Z 4 (C70 e TN ﬂmmo 7 AT :quJN b+ S Fw)z

TYY3LYT NoNYL INOYd

~53-



TABLE 2-3. TYPICAL PARAMETER VALUES FOR FREIGHT CAR

Dimensions Light Loaded
a (One half rail gauge) 2.48 2.48 ft
d (One half side frame 3.25 3.25 ft
spacing)
hy (Vertical distance, truck 2.99 4.62 ft
c.g. to car body c.g.)
h2 (Vertical distance, car 2.99 4,62 ft
body c.g. to bolster)
LC (One half distance between 16.9 16.9 ft
truck centers)
"o (Nominal wheel radius) 1.375 1.375 ft
Mass Properties
IBY (Bolster yaw moment of 178.6 173.6 s'lug—ft2
inertia)
I, (Bolster roll moment of 173.6 178.6 sTug-ft?
inertia)
) 7
Iy (Car body yaw moment of 2.38 X 10°  1.07 x 105s1ug-ft?
inertia)
4 4 2
Loy (Car body roll moment 1.3 X 10 8.77 X 10'slug-ft
of inertia)
IFY (Side frame yaw moment 77.6 77.6 s]ug—ft2
of inertia)
wa (Wheelset spin moment 8. i 53.1 s]ug-ft2
of inertia)
I (Wheelset yaw moment 448.5 448.5 s]ug-ft2
WY . 4
of inertia)
MB (Bolster mass) 36.1 36.1 slugs
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TABLE 2-3. (CONT.)

(Car body mass)
MF (Side frame mass)

Mw (Wheelset mass)

f1] (Lateral creep coefficient)

f12 (Lateral/spin creep
coefficient)

fsr (Spin creep coefficient)

f (Longitudinal creep
coefficient)

Suspension Properties

KXS (Lateral suspension stiff-
ness, per side frame)

K . (Vertical suspension stiff-

M ness, per side frame)

KeY (Yaw suspension stiffness,
per truck)

Ke (Warp stiffness, per truck)

- (Lateral friction force,
per side frame)

F (Vertical friction force,

Yso

per side frame)

5O (Friction torque at center-
plate, per truck)

(Warp friction torque, per
truck)

sto (Lateral equivalent viscous
' damping coefficient, per

side frame)

-55-

Coefficients (Full Kalker Values)

Light

6750.

4z2.

0.

5200,

o
jan
(@2}

4271.

9520.

J

Loaded
6252, slugs
24, LA
76.6 sTugs
3.034 X 10%7b
28950 ft-1b
293 fta—]b
3.3305 X 1%
. 5.
1.116 X 10710/ ft

2.658 X 107ib/ft

.0 ft-1b/rad

4.61 X 10%F¢-1b/

rad
5200. b
3120, b
3056,  Ft 1b
17084,  ft 1b
9520, U3§§C



TABLE 2-3.

D - (Vertical cquivalent viscous
J damping coefficient, per
side frame)
D (Yaw equivalent viscous
damping coefficient at
centerplate, per truck)

BO

DWO (Warp equivalent viscous
damping coefficient,
per truck)

-56-

(CONT.)

Light Loaded

3035, 3035,

2270, 1.27 X 10
1.322 x 107 5.29 x 10

4

4

ft 1o Sec

ft 1b sec



form:

= A, cos (w (t + Li/V)) ,

YRi T R
where AR is the magnitude of the irregularity and Li is the distance
along the track from the leading wheelset to the ith wheelset.

Cross-level and profile irregularities enter the equations of motion
directly, causing motions of masses or suspension components. Continuous
track gauge variations can be handled, but introduce numerical complexity
that requires great effort. The difficulty with gauge variation is
that the wheel/rail geometric constraint functions become functions of
two variables, the wheelset position and the track gauge, and consequently
the amount of stored data that is required increases geometrically.
Simultaneous consideration of gauge and alignment variations is also a
dual input problem. Track gauge can be introduced, however, as a dis-

crete parameter as was done in the single wheelset 1imit cycle studies

reported in Chapter 5.

2.8 SUMMARY

Nonlinearities for many characteristics found in rail vehicles have
been described in this chapter. This discussion is not intended to be
all inclusive, and other nonlinearities, particularly combinations of

those discussed here, may be seen in rail car operation.

The examples of equations of motion presented in this chapter
for typical rail vehicle models will be used in subsequent chapters

to illustrate the quasi-linearization techniques.
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3, THE QUAST-LINEARIZATION TECHNIQUE
3.1 INTRODUCTIOWN

This chapter presents analytical techniques that may be used
to predict the response of rail vehicles that contain significant
nonlinearities. Traditionally, the rail vehicle analyst has had two
options for computing nonlinear response: 1) Tlinearize the non-
linearities and use well established linear analytical techniques
such as frequency domain methods or 2) simulate the nonlinear
system using numerical integration methods. The first method, although
convenient and relatively inexpensive,is not accurate enough for pro-
blems where there is essential nonlinear behavior. The second method,
although accurate,leads to very Tittle physical insight and can be
extremely expensive, especially for parametric studies.

The describing function (D.F) or "quasi-linearization" method is an
attempt to combine the computational efficiency of Tinear analysis
with the accuracy of numerical simulation. References [25, 26, 27, 28]
provide a theoretical background for quasi-linearization.

Figure 3-1 is a schematic diagram of a nonlinear element, y = f(x),
and an approximate signal, Yy = K(+)x. The notation K(+) implies that
the gain, K, is a function in some sense, of the input x(t). In
general the functional dependence will depend upon the specific signal
form that x(t) takes. In fact one drawback of the D.F. method is that
the form of the signal must be assumed before the gain, K(-), is com-
puted. In order to approximate the nonlinearity with a signal
Yy = KX, the error, or difference between the nonlinear output, y(x), and

the approximate output, Yy is defined to be the error signal e, i.e.:
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> f(x)

FIGURE 3-1. NONLINEAR ELEMENT AND ITS QUASI-
LINEAR APPROXIMATOR

€Y -V, < f(x) - Kx. (3-1)
If K is required to be a constant, independent of x, then the well
known linear approximation is K = gi lx » where X0 is the nominal

)
value of x. In many rail applications, assuming that K remains con-

stant is an invalid assumption and leads to incorrect predictions of
dynamic behavior.

The basic method for developing a quasi-Tlinear approximator for
the nonlinear element is to choose K so that the error, e, between the
nonlinear element and its quasi-linear approximation is minimized. The
precise criterion is to choose K so that the average square error,

%
2 . e .
", is minimized, i.e.,

-
€

(f(x) - Kx)°

f()2 - 2 KxFXT + K2 X8 (3-2)

The K which minimizes =2 .an be found by differentiating 22 with

respect to K, i.e.,

2R+ 2K X =0

or ¢ = KR (3-3)
"
Equation (3-3) expresses the quasi-linear gain, K, as a function of both

T
* The notation { ) denotes the average value of (), i.e. Tim %»f () dt.
To0
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the input, x, and the nonlinearity, f(x). It is important to note that
the quantities on the right side of equation (3-3) cannot be computed
unless the form of the input is known.

In general the nonlinearity, f(x), is part of a dynamic system
containing either internal or external (control) feedback paths; thus
the output, y, passes through the rest of the system oﬁ its way back
to the input, x. If we assume that the signal x(t) has a certain form,
then in order for the D.F. approach to be useful, the signal form should
not change significantly after it has passed through the nonlinearity
and the rest of the system. Signals that pass through linear systems
essentially unchanged are biases, sinusoids, exponentials, and Gaussian
random variables. Therefore,if x(t) has one of these signal forms, and
if the system is "predominantly" linear, the D.F. approach 1is quite
powerful. Stated in feedback control terms, the system must possess
"sufficient low pass filtering" after the nonlinearities in order to
assure good results. In almost every case where the D.F. approach
fails it can be shown that insufficient filtering existed. Unfortun-
ately a quantitative description of how much filtering (or integration)

is required is not currently available.

This section illustrates how the D.F. can be used to predict
the dynamic response of nonlinear systems that have this property
of Msufficient filtering". Computational algorithms to predict
the response to sinusoids and Gaussian random variables are

described and illustrated by practical examples.
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A theoretical framework for quasi-linearization that includes
general multiple inputs of any wave form is described in Gelb and
Vander Velde [25]. Figure 3-2, adapted from [25], shows the signal
x(t) that is composed of Xpe X ie., x(t) = x](t)+...+xn(t).

This is a generalization of figure 3-1, where the quasi-linear oper-

ator is described by its impulse response, Wi(t)' There will be a

(t).

i

"filter" wi(t) for each input signal x

x(1)

N.L.

o W (1)

b 4

Vi, (1)

|
i
|
L

> W, (1)

FIGURE 3-2. A GENERAL REPRESENTATION OF THE
QUAST-LINEAR APPROXIMATION

The optimum quasi-linear impulse response functions, w](t)...
wn(t), are found by choosing them to minimize the mean square error
between the actual signal, y(t), and the approximate signal, yd(t),

j.e., to minimize the following integral:
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T

Him H (y(t) -y (t) )7 dt. (3-4)
-T

The derivation of the solution for the optimum wi(t)'s is found

in [25, 26]. In general the solution will involve a difficult set of

n coupled integral equations, known as Wiener-Hopf integral equations.

The assumptions necessary to simplify these integral equations, such

as statistical independence of the inputs, stationarity, symmetric

single valued nonlinearities, etc., are outlined in [25]. Equation

3-3 represents the solution of the Wiener-Hopf equation for the very

practical case of static nonlinearities.

With this general theoretical framework, the various combinations
of input signals can be considered and describing functions computed.
It should be clear, from this formulation, that the quasi-linear
approach requires that the form of the input signal be known and that
this wave form remain essentially unchanged as it propagates through
the system. For this reason, the most commonly considered signals
are sinusoids, biases, and aussian random variables, although some
useful results have been achieved by considering damped exponentials.

In the following sections some of the more useful input combinations

are considered.

3.2 DESCRIBING FUNCTIONS FOR RAIL VEHICLE NONLINEARITIES
Section 2 describes the common suspension and wheel/rail profile
nonlinearities of rail vehicles. 1In this section the sinusoidal and

random input describing functions are presented.
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3.2.1 Sinusoidal Describing Functions
If we assume that x(t) in Figure 3-1 is a sine wave, x = A sinwt,
then the describing function gain given by equation 3-3 can be aver-
aged over one period yielding:

2m/w
{ A sinwt f(a sinwt) dt

0
K = 2m/w
f A sin? wt dt
0
21
K = E%' £ f(Asinwt) sinwt d(wt) (3-5)

Equation (3-5) is used to compute the sinusoidal describing
function for any single input-single output nonlinearity whose
input is sinusoidal. Tables of most common describing functions

are found in references [25, 26, 27].

3.2.2 Deadband Spring

As described in Section 2, the deadband spring is commonly
used in the nonlinear modeling of rail vehicles. Figure 2-2  shows
the force-displacement relationship for a deadband spring. The
Sinusoidal Input Describing Function (SIDF) s  found by using (3-5)
or by referring to the appendices of well known texts. The result is:

fo.p. () = Ky X (3-6)

K . = KR[] - f*(do/A)] .
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Where

()

Figure 3-3

=1 ) Yy < -1
€ (sin"hy 4y /(1 —s ly < 1 (3-7)
1 y > 1

shows equation (3-6) graphically

DB

FIGURE 3-3. DEAD BAND SPRING DESCRIBING FUNCTION

3.2.3 Hardening or Softening Springs

Figure 2-3 shows the force-displacement relationship for
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hardening and softening springs where a linear hardening and soften-
ing effect is modeled. The D.F. approximation for this nonlinearity
is:

fH/S(x) ~ KH/S X (3-8)

k = (Ky - Ky) f*(67/A) + K

H/S 2

where f*(y) is given by equation (3-7). Figure 3-4 shows equation (3-8)

graphically.

H/S

| A/§

FIGURE 3-4. D.F. FOR LINEAR HARDENING/SOFTENING SPRINGS
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3.2.4 Coulomb or Dry Friction

Figure 2-4 shows the force-velocity relationship for dry

friction. Since x = A sinwt, we have x = Awcos wt and AV = Aw where AV

is the amplitude of the velocity across the friction damper.

approximation for this nonlinearity is:

fc(x) =z CC X
4 F 4 F
where C = ° = oy
C WAV mAw

Figure 3-5 shows equation (3-9 ) graphically.

gﬂ

FIGURE 3-5. D.F. GAIN FOR COULOMB FRICTION
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3.2.5 Parallel Spring-Dry Friction Combination
As mentioned in Section 2 a commonly used suspension grouping
is a parallel combination of a linear spring and coulomb damper.

The total force through the suspension can be expressed as:

FS = Ks X + FO sgn(x) .

The quasi-linear approximation,if x = A sinwt,is:

4 F

Foov Ko x ¥ ﬂAwO X : (3-10)

3.2.6 Series Spring-Dry Friction Combination

As mentioned in Section 2 a series spring-dry friction combina-
tion is commonly used to model suspension elements where for small
deflections the suspension is linear but for larger deflections the
contacting surfaces break away. Figure 2-17a shows a schematic re-

presentation as well as the force displacement characteristic.

The D. F. formulation for this nonlinearity is:

Mg~ Ko +Co (3-11a)
K
where K, = = [1+F(-p)] (3-11b)
and 1 0 s B < wo
G = K (3-11c)
S [y 2
J‘ ﬁ(]—B) ] B > wo

and
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B = B"ZII)O R

B

and ¢ was assumed to be B sinwt.

Section 2 described the wheel/rail geometric constraint functions.
The important functions are:
1. The difference in wheel rolling radii at
the contact point (rL - rR)
2. The difference in contact angles at the
contact point (SL - SR)
3. The wheelset roll1 angle (¢).

The describing function approximations for these geometric constraint

functions are:

r -r ~ A Yy/a
L__R Y (3-12)
2a
6 = 8p = 8y y/a (3-13)
2
¢ ¥ a4y y/a (3-14)

where XA{A), A](A), and a](A) are the describing function gains and

are computed by minimizing the following integrals:
27/ w

r,o-r
[ (_E_E__R_ - xy)Z dt



- b, y/a)2 dt

J (¢ - a, y/a)® dt.
0
The minimization of these integrals leads to the following equations

(equation 3-5), if we let y = Asinwt, and let wt = y:

2m . .
R r, (Asiny) - rp (Asing)
ORI L ) sin ydp (3-15)
0
2m
A 3 f §, (Asiny) - &, (Asiny) 3-1
b(A) = og o(L — ) sin payp OO

27

">
[

a,(h) = £ o(Asiny) sin ydy Sl
The integrals defined by equations ( 3-15 » 3-17) have been numerically
integrated using the data from new, worn, and Heumann profiles ( such as Fig-
ure 2-13). Some examples of these describing function gains as a func-
tion of amplitude are shown in Figures 3-6 t0 3-8.

A(A) is called the "effective" conicity while A] and a, are gen-
erally combined to form what is commonly called the "gravitational"

stiffness term, i.e.,

§ = 0 a A
w o+ #L——2~—R]x w[—al+ %]y (3-18)
= Ky(A)y
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DESCRIBING FUNCTION FOR THE WHEELSET

ROLL CONSTRAINT (RADIANS)
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FIGURE 3-7.
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FIGURE 3-8.
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or

KA 2 Hpa () + 8,1, (3-19)

g

3.2.8 Random Input Describing Functions

Track irregularities such as surface, cross-level, and align-
ment are typically modeled as statistical variables. In general these
irregularities are modeled [29] as stationary Gaussian proce;ses. If
we assume that x(t) in Figure 3-1 is a Gaussian random variable then

the describing function gain given by equation (3-3) becomes:

« = xf(x)
2
xf(x) = ( xf(x)p(x) dx (3-20)
_ 2
where =
1 2 o
p( ) = e
v 2w Oy

and 9y is the standard deviation of the Gaussian distribution. The

averaging process defined by equation (3-20) becomes:

X F(x) = { x f(x) p(x) dx = [ — (3-21)
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X~ = o dx =o0 (3-22)
Thus equation (3-3) becomes

1

— dx (3-23)
Ven o, -

Equatian (3-23) defines the statistical describing function gain for any
single input-single output nonlinearity whose input is a zero mean

Gaussian random variable. References [25, 26, 27, 28] establish the

theoretical foundations for statistical describing functions and derive
numerous examples using equation (3-23). Equation (3-23) can be used to
calculate the random input describing function gains as a function of
the input standard deviation for the common nonlinearities that appear

in rail vehicle dynamics.

3.2.9 Deadband Spring (Figure 2-2)
fpg. (X)) = Kyp o« (3-24)

K = Ky [1 - erf (—=2—)] (3-25)

Ve 9y

D.B.

where erf( ) is the well known error function and is tabulated in

most mathematical handbooks.
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Figure 3-9 shows equation (3-25) graphically.

KD.B

[ %/

FIGURE 3-9. D.F. FOR A DEADBAND RAIL SPRING

3.2.10 Hardening or Softening Springs (Figure 2-3)

fiys (X0 = Kyyg X (3-26)
Kis = Kyt (K - Kq) [T - erf (/E'o ) 1 (3-27)
X

Figure 3-10 shows equation (3-27) graphically.

FIGURE 3-10. D.F. FOR A HARDENING/SOFTENING SPRING
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3.2.11 Coulomb or Dry Friction (Figure 2-4)

f(X) = ¢ X (3-28)
where /Z/m F
Cc = 0 , as shown in Figure 3-11.
O‘o
Ce
9x

FIGURE 3-11. D.F. GAIN FOR COULOMB FRICTION

3.2.12 Parallel Spring-Dry Friction Combination

Fg = Kg x + F_ san(x) (3-29)
v 2/m FO .
Fo = K x+=—=—sn X, (3-30)
O L]
X

3.2.13 Series_Spring-Dry Friction Combindtion (Figure 2-6)

The series spring-dry friction combination is more difficult to
describe for a random input describing function due to its hystere-

tic force-displacement relationship (Figure 2-6). This hysteresis
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effect can be eliminated by employing an additional coordinate as shown
in Figure 3-12 where the yaw suspension has been modeled with 5 the

breakaway angle and K  the rotational stiffness.

¥
AN e
Ky A

RSN
%:_1 gs

FIGURE 3-12. SERIES SPRING-DRY FRICTION ELEMENT

M .= Kw (v -n) ' (3-31)
By equating this to the moment across the coulomb element we have:
MI,US = Kw lf)o sgn (T]) (3_32)

Eliminating n from (3-31) and (3-32) one obtains:

M _ = Kw Uy sgn{y -

¥s W (3-33)

| =-
<
wn
~—

It is extremely important to take account of casuality before we quasi-
linearize equation (3-33), i.e., the moment across the spring determines the
velocity across the damper, thus we need to express (3-33) as,

. M M

R LI e (3-34)

v Koo

where sgn_] is the inverse sgn function shown in Figure 3-13.
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sgn™' (x)

FIGURE 3-13. Sgn_] FUNCTION AND ITS APPROXIMATION

The slope of the sgn-](x) function should be infinite at x = =1 but can
be approximated numerically by a finite K. The approximate sgn_1 func-
tion has the same form as a deadband spring and its statistical describ-

ing function can be found in many standard texts [25]., i.e.,

M _ K M
sgn”! (K—%—) = K[1 - erf (—£2—9)] . K‘llﬁ%— (3-35)
Ao} v 2 O 0
ys

where K~ 2, erf is the "error function" and is tabulated [25], and
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My is the rms value of My,. Thus ( 2-36) can be quasi-linearized
S

as

. Moo K v M )
oo L R0 -erf (L ] B (9790
U v 2 oy Y o

s

Summarizing, the yaw moment, M¢B,'is defined by a quasi-linear differ-

ential equation:

K 4
[1-em°(—M )]Mws= K, b,

M
Z oy v (3-37)
ys

K
+ —
vs LPo v 2 o

3.2.14 Wheel/Rail Geometry Nonlinearities

The same approach to finding the random input describing func-

tion gains as was used for the sinusoidal input case can be used by

changing equations ( 3-15 to 3-17) to: _ x2
o 7
1 (r (x) - rp(x)) 20,
AMo,) = — J X e dx
X e 2 (3-38)
X =0 2
- X
© (5 (X - 50 ) e
§ (x) - 8,(x) ) e
Moy) = —=2 x Lt R & (3-39)
v 21 o
- X2
a : 20x2 (3-40)
a1(ox) = — ( x ¢(x) e dx .
2m o,

The gravitational stiffness is defined by:
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K(0,) = = [ay(0,) + 1y(0,)] . (3-41)

An example of these describing function gains are shown in Fiqures 3-14 and 3-15.

A

e

0 | I l 1
0 A 2 15) 4 S

oy (in.)
FIGURE 3-T4. EFFECTIVE CONICITY D.F. FOR A NEW WHEEL ON WORN RAIL

\

20— O]
_ e
10\ — 4
B 2
0 I J | | >~ 0 -
0 I 2 3 4 :

o, (in.)

FIGURE 3-15. D.F.'s FOR HALF THE DIFFERENCE IN CONTACT ANGLES AND THE
WHEELSET ROLL ANGLE

3.3 THE SINUSOIDAL SINGLE-INPUT DESCRIBING FUNCTION (SIDF) METHOD
Historically, the original and most popular input is the single sin-
usoid. The work of Krylov and Bogoliubov [30], and Bogoluibov and Mitro-

poisky [31] introduced the method of averaging and form the basis for the
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widely used K & B method. Although extremely useful for low order
systems the K & B method does not lend itself to the analysis of higher
order systems.

Around 1950 the concept of harmonic linearization was introduced
by numerous people. Koehenburger [32] in the U.S. and Goldfarb [33]
in Russia are generally given credit for the concept. The concept of
harmonic linearization has evolved into what is commonly called the
SIDF method, i.e., using the fundamental harmonic of the nonlinearity
and neglecting the higher harmonics. Figure 3-16a shows a linear systems
response to a sine wave input while Figure 3-16b shows the response of

a nonlinear system.*

Asinwt LINEAR |————B sin (wt + )
(a)
2
Asin Wt | onLINEAR ; n%o B, sin(nwt + )
(b)

FIGURE 3-16, LINEAR AND NONLINEAR SINUSOIDAL RESPONSE
Figure 3-16b is the Fourier series representation of the periodic output..
If the nonlinearity is symmetric then the bias term, B will be zero.
The signal will then be composed of the fundamental harmonic, B]
sin (wt+¢]), plus the higher harmonics, B, sin(Zwt+¢2) +.... The
single input describing function (SIDF) is defined to be the amplitude

and phase of the first harmonic, i.e.,

*  This assumes that the nonlinearity is such that the output is periodic
and that subharmonics are not generated.
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: B
~ Fundamental Harmonic _ 1
A Input AmpTlitude A g (3-42)

The complex describing function, N, can be evaluated by the single
complex Fourier integral for the first harmonic [25],
m

N = lA f f(e)e 3 go | (3-43)

il
In general N will be a function of A, the input amplitude, and w,
the input frequency. Figure 3-17 shows the quasi-linear system that is

used to replace iqure 3-16b. Note that the effect of the higher har-

monics can be included by the remnant term.

[}

Describing Remnant = anin(nwt+¢n)

Function h//lﬁ\ n=2
Asingt .| N(A,u) Y "2

I il

FIGURE 3-17. QUASI-LINEAR APPROXIMATOR PLUS REMNANT

If the rest of the system, of which figure 3-16b is part, is "pre-
dominantly" linear, i.e., there exists a great deal of filtering in
the feedback path between the output of the nonlinearity and the input,
then the remnant terms will be attenuated and "filtered out". Thus
in general, the more filtering that occurs in the system the more the
input s{gnal will look like a sinusoid, Asinwt.

The SIDF can be used to predict. the occurrence of free oscilla-
tion or limit cycles and also the forced sinusoidal response of nonlinear
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systems in which all of the system variables are responding at a
single frequency. Therefore, it is necessary that:

a) A1l transients have died out

b) There is no bias term in input or output

c) Any higher or Tower harmonics generated by the

d) System nonlinearities are filtered out.
System conditions that help to insure that these requirements are
satisfied are:

a) Symmetric non1inearit1és

b) A "predominantly" linear system

c) No "sharp" resonant peaks in the linear portion

[t is interesting to note that, as pointed out in [25], the mini-

mum mean square error and fundamental harmonic approach yields precisely

the same describing function, i.e.,

N = K = —«/ [ f(Asing) sino do . (3-44)

Thus, the optimum quasi-Tinear gain is just the ratio of the fundamental

harmonic to the input amplitude.

3.4 LIMIT CYCLE DETERMINATION

Nonlinear systems exhibit many phenomena [26] that do not occur in
linear systems and which are of concern to the analyst. One of the most
1mportant of these phenomena is the Timit cycle, a periodic,se1f—

sustained oscillation of fixed frequency and ampiitude. Note that
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this differs from an undamped linear oscillation whose amplitude is
dependent on initial conditions. Limit cycles are usually undesirable
and the control engineer designs the system so that they do not occur in
the normal operating range. There are a few instances when Timit cycles
are used intentionally, e.g., in detector and oscillator circuits.

The sinusoidal SIDF is a very convenient analytical tool for pre-
dicting the amplitude and frequency of 1imit cycles for many systems.

A first example of this method is the well known Rayleigh equation:

y-2c00 - af?) J+y=0
or (3-45)

V+2cy -2cayity=0.

The sinusoidal SIDF for a cubic nonlinearity can be calculated using
(3-44) or it can be found in numerous texts [25]:

+3
i e

A2 (3- 46)

lw

The right side of equation (3-46) is the describing function approxima-

tion for 93 when y = A coswt. Substituting (3-46) into (3-47) yields:
2 .
yrer -9 yey-a, (3-47)

If it is assumed that y = Acoswt, equation (3-47) demands that:

A = /{ZE— - (3-48)

3o

Therefore the SIDF modified predicts a limit cycle at a frequency of
w =1 and an amplitude of A = / §g—. Ref [28] shows that (3-48) is an

excellent approximation for small .
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A 1imit cycle that occurs in a rail vehicle system is commonly
called hunting. The forward speed of the vehicle at which hunting first
occurs is commonly called the critical speed. SIDF method is a particu-
larly useful tool for predicting the critical speed and the amplitude
and frequency of the hunting motion.

Section 2 derived the equations of motion for the simple wheel-
set suspended from a fixed truck, moving at constant forward speed. It
is easily shown from the linearized equations that if the wheelset
were not suspended it would exhibit an undamped oscillation at a]}ﬁ

N

forward speeds at the kinematic frequency,
o= v S (3-49)
ar,

When the wheelset is suspended, the oscillations will damp out disturb-
ances for forward speeds below a critical forward speed Vc’ and
oscillate at speeds above this value. The calculation of this critical
speed at which "hunting" occurs is of paramount importance to the truck
designer. 1In real rail vehicles there exist significant nonlinearities
such as variations in the wheel/rail profile geometry, and coulomb
friction in the suspension which complicate the analytical prediction
of the critical speed.

First consider the nonlinear model of the wheelset with a stiff
deadband spring to describe the effect of flanging (equations (2-15)

- (2-16) ) and the parallel and series spring/dry friction suspension.
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The guasi-Tinear version of these equations obtained by substituting

the appropriate describing functions in place of the nonlinearities

are: ( 2 )
W(A; +
o . 1 ne
vt Vn j + gy, - 2 Tiq¥
4 F0 n
+ K,y o+ y +K Ay =0
A D.B.
Yy 7w wr W w (3-50)
2
2 f,, a 2 f,, a
33 33
IW U] + V w - W(SO a 'J) + Y‘O )\0 .YW
tKB)w +C(B)y =0

where the describing function gains KD R Ks’ and CS are defined by
equations (3-6), (3-11b), and (3-11c)  for a solution of the

form, Y, = Asinut, 6, =B sin(wt + ¢]). The quasi-linear equations

(3-50), are placed in “"state" form by defining the state vector,

where X] = Yy Xy = V> X3 = Yo, Xy = Y.
The state form of equations (3-50) is:
X =N x (3-51)
where the. 4x4 N matrix contains various constants and D.F. gains.

The condition for an undamped oscillation to occur is:

- Jwt
FLE (3-52)
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where % is a complex eigenvector corresponding to the undamped eigen-

value, w. Substituting (3-52) into (3-51) yields:

14

.

e
]
Q=
—

X=0. (3-53)

A necessary condition for a nontrivial solution of (3-53) to exist is:

14

=

GI-npgo (3-54)

Equation (3-54) represents 2 nonlinear algebraic equations (real and
imaginary parts) in terms of w, A, and B since & is a function of
ws A, and B. An additional independent equation can be obtained
from equation (3-53). There are several numerical techniques that can
be used to solve tnese nonlinear algebraic equations. A particularly
efficient routine called LIMCY will be described in Section4.

Typical numerical results for a wheelset based upon these
computations are shown in Figure 3-18. Curve 1 represents
the solution for a purely linear model, i.e., there exists a
critical speed, independent of amplitude, below which oscillations
decay and above which oscillations grow. Curve 2 represents the
model described by equation (3-50) and clearly indicates
the importance of including nonlinearities in the analysis. Notice
that the speed at which hunting can occur is substantially below
that predicted by the linear analysis and that the amplitude of
the oscillation is a fun;tﬁon of the forward speed. Curve 3
represents the results of a model that includes the realistic
wheel/rail profile geometries described earlier. Note that the
results of the realistic profile model are similar to the deadband spring
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model at low amplitudes. However, at higher amplitudes (close to wheel
climb) the flange cannot supply the required restoring force that the
deadband spring model does.

It is clear from Figure 3-18 that the effect of the nonlinear-
ities is very significant and must be included in rail vehicle hunting

predictions.

3.5 FORCED RESPONSE USING THE SIDF
The SIDF is also a very useful analytical tool for predicting

the forced sinusoidal response of a nonlinear system where subharmonics
are substantially filtered out. The procedure outlined in [25,26,27,28]
is basically to replace the nonlinearity with its SIDF and to proceed
as if the system was linear. The added computation will involve an
iterative solution at each freguency since the "transfer function"
will be a function of the unknown amplitude. This procedure is
best illustrated by a simple example. The equation of motion for a
single degree of freedom mass with a linear viscous damper and a
nonlinear spring forced by a sinusoidal applied force is:

myx +c¢cx + f(x) = FO sinwt (3-55)
where we will let f(x) = Kx + 6x3,g >0 represents a "hardening"
spring and B<0 represents a "softening" spring.

The SIDF for a cubic nonlinearity is:

3 3
T g A X (3- 56

where we have assumed that x = Asin(wt +¢). Substituting (3-56)
into (3-55) and computing the transfer function between the input and

output yields:
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1
//QK + %_ A2 g - mw2)2 o w2c2 (3-57)

H(jw) | =

o_r'|>

Equation (3-57) represents a nonlinear algebraic equation for A as a

function of FO, i.e., the amplitude ratio %i- is a function of Fo.
0
Typical results for a softening spring (8<0) are shown in Figure 3-19,

FIGURE 3-19. SOFTENING SPRING-MASS-DAMPER
FREQUENCY RESPONSE

Figure 3-19 also illustrates a nonlinear phenomena known as "jump
resonance” [28]. The first curve in Figure 3-19 was computed for an in-
put value of Fo]; if we follow this curve starting at Tow frequencies

and gradually increase the forcing frequency, w, we proceed to the right
until we reach the point of infinite slope at which point there occurs

a sudden jump in output amplitude. If we had started at high fre-
Quencies and had reduced the forcing frequencies gradually we would have
proceeded to the left until the infinite slope point was reached and the

response would have jumped down discontinuously.
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The accuracy of the SIDF approach in computing the forced sin-
usoidal response is strongly dependent upon the nature and location
of the nonlinearities. A rigorous and quantitative description of the
amount of filtering required is not available at present.

The application of the SIDF to predict the forced sinusoidal
response of rail vehicles is discussed in detail in Section 6. A
simple wheelset example will be discussed here to illustrate the
technique.

The quasi-Tlinearized equation of motion of a rail vehicle can be
placed in the following form:

F ol (3-8)

where x is an nx1 vector, N] is a nxn D.F. matrix and N2

vector. u has been assumed for simplicity to be a scalar. Since we

is a 4x1 D.F.

are Tooking for the steady-state sinusoidal response we let, u = G'ejwt,
and x =X ejwt where u is the input amplitude, % is the complex
response vector, and w is the forcing frequency. Substituting
these expressions into (3-58) yields:

X = (jul - N)V N, @

~ ~ ~2 (3-59)

Equation (3-62)represents a set of nonlinear algebraic equations (since

Q], and @2 are both functions of w, and X) that can be solved numer-

ically. Typical results for a two degree of freedom wheelset with
nonlinear contact geometry and nonlinear suspension (equations (2-17) -
2-18)) are shown for a wheelset with the Heumann wheel profile in
tigure 3-20,
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FIGURE 3-20. WHEELSET SINUSOIDAL RESPONSE USING D.F.'S

3.6 A GENERAL METHOD FOR SINGLY PERIODIC SYSTEMS
The describing function approach is not Timited to the SIDF method.
Fig. 3:20 shows that the input signal to the nonlinearity can be a
sum of input signals. Some of the multi-input describing functions
that have been described in the literature [25,26,27,28] are the

dual input describing function (bias + sinusoid) and the two sinusoid
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describing function. This section describes a general approach for
an arbitrary number of sinusoids that are harmonically related, i.e.,
singly periodic systems.

We will assume that the nonlinear equations of motion can be
expressed as:

x = g(x, X, u(t)) (3-60)

where u(t) is a scalar, Uy sinwt. If we assume that the system re-
sponds with a single period, T, then the Fourier expansion of x(t)

can be expressed as:

x(t) = z x_ eIt (3-61)

6 gJnut (3-62)

where Xn and §n are complex Fourier coefficients and w= 2n/T. The

Fourier coefficients of g(t) can be expressed as:
v 2

- L f glwt)ed™ dwt) . (363

&
0

If we substitute (3-61) and (3-62) into (3-60) we have:

B - (nw)z X = % 6. . (3-64)

Taking advantage of the orthogonality property of a Fourier series we

can write:
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G = 0

2o

G = —wZX

! N (3-65)
_ 2 ' a

, -y

gn B _(nw)Z X

In any particular problem the analyst must decide how many terms
of the Fourier series he needs for the desired accuracy, i.e., how
large should n be. If the amplitudes of the position variables are

sought then rearranging the last equation yields:

2 & (3-66)

Thus the consecutive harmonic amplitudes are decreased by a factor of
1

Tﬁajz-; if an estimate of 9n is made, then the importance of En can be
determined.

The ease of this method is determined by the computation of the
describing functions (equation (3-63))and the algebraic solution of
equations (3-65). The first expression represents n algebraic equations
for the bias terms while each succeeding expression represents 2n
algebraic quations since 9n and §n are complex. '

It is interesting to note that the SIDF is Jjust n=1 with the im-
plicit assumption that %0 = 0. The dual input describing function is
n=1 with %0 # 0, and the two sinusoid input describing function is any

two of equation (3-65) as long as the periods of the two sinusoids

are integrally related.*

* The case of two non-integrally related sinusoids is treated in [25]
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3.7 Freight Car Rock and Roll

As in the previous cases this method is best illustrated by a prac-
tical example. Figure 2-8 shows a cross-section of a typical freight car.
The freight car responds to periodic cross-level (difference in eleva-
tion between the rails) inputs, as might be induced by the staggered
39 feet rail joints, with a periodic 'rock and roll' motion. At
certain critical or resonant speeds the motion can become dangerous
with high roll amplitude, and wheel Tift. Nonlinear digital simula-
tions [10, 8] have been used but are costly to run parametric studies
with.

The general describing function approach was applied to this pro-
blem to take advantage of the "quasi-linear" computational advantages.
Figure 2-9 shows the simplified model used in this study [10] which
included nonlinear springs to model the center plate, side bearings, and
rail spring as well as coulomb friction. These nonlinear force expres-
sions are shown in Figure 2-10. The centerplate is modeled as a very stiff
compression spring with no tensions; the rail is modeled similarily; the
side bearings are similar except that a deadzone is required to account

for the clearance at equilibrium.
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The number of harmonics needed (number of terms in equation(3-65))
was determined by observing a few digital simulations and noticing
that a bias, the fundamental frequency, and the second harmonic were
clearly evident. Thus the first three terms (n=2) were used in this

analysis, i.e.,

~0 . 0
2

Gy W Ky (3-67)
o o ol

G, = -(20)" X,

The model employed had six degrees of freedom; thus equations (3-67)
reﬁresents thirty (6+12+12) nonlinear algebraic equations. In order
to reduce this number, the symmetry properties of the freight car were
exploited, i.e., all of the nonlinearities occur in symmetric pairs
about a vertical centerline; thus the thirty equations can be reduced
to fifteen. The fifteen independent scalar equations require the first
three Fourier coefficients for each force. A1l of the nonlinearities
.are piecewise linear, hence the required integrations to compute the
coefficients can be performed analytically once the zero crossings
are known. Thus the solution of the freight car steady state rock
and‘ro11 response to sinusoidal cross level inputs involves two major
subtasks:

1) Evaluation of appropriate Fourier coefficients for the

nonlinear forces.

2) Solution of a set of fifteen nonlinear algebraic equations.
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A particularly efficient root solving algorithm developed by
Powell [ 39 ] was used to solve the nonlinear equations.

Figure (3-21) shows the numerical results for three values of rail
cross-level input amplitude. Note how the jump resonance phenomena 1is
present. This can be very important from a safety point of view.

The utility of this quasi-linear approach depends upon a comparison
between numerical integration and the solution of nonlinear algebraic
equations. Experience to date indicates that the quasi-linear methods
allows greater computer time saving in the generation of parametric
steady-state solutions. The numerical procedures required converge
extremely rapidly when a good initial guess is available, as is the

case when a parameter variation is being made.

10 =
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FIGURE 3-21. CAR BODY ROLL ANGLE FOR 70 TON CAR OBTAINED FROM A
DESCRIBING FUNCTION ANALYSIS
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3.8 FORCED RANDOM RESPONSE ANALYSIS

This section describes the application of quasi-linearization to
predict the statistical response of nonlinear systems. The concept
of statistical Tinearization was approached by several investigators
in the early 1950's (Booton [40], West [41], Kazakov [42] and Sawaragi
[44]). There were a number of different techniques proposed for the
selection of the quasi-linear gain. The most popular technique is to
minimize the mean squared error between the nonlinearity and its
approximator as was outlined earlier (equation (3-2)). Two differ-
ent approaches to this task are: 1) equate the mean square value of
the nonlinearity with the output of its approximator, and 2) match as
closely as possible the two autocorrelation functions. Smith's study
[43] comparing these different approaches concluded that all of the
methods were very similar in their accuracy. The minimum mean squared
error approach is in general computationally easier and has been used
more frequently.

As was stated earlier, when quasi-linearization is used the form
of the signal at the input to the nonlinearity must be known or assumed.
Some authors [ 45,46 ] have proposed using the exact probability density
function rather than an assumed Gaussian one. This has been shown to
yield more accurate results for those systems where the statistics of
the input to the nonlinearity can be computed. However, for high order
systems with multiple nonlinearities this is a very difficult task.

Statistical linearization has been used to predict the response of
nonlinear systems to stationary and non-stationary Gaussian inputs. In

stationary systems the quantities desired are, in general, the variances
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and spectral densities of the output variables. In non-stationary sys-
tems the time-varying rms values are sought. For stationary systems

both time domain [48 ] and frequency domain methods [25,26,27,44] have
been used while time domain methods [47 , 48] are used for non-stationary
systems. This report will concentrate on the stationary response of non-

linear systems.*

3.8.1 Frequency Domain Methods

A few simple examples will help to illustrate this method of analysis.
The normalized equation of motion for a mass, viscous damper, and non-
lTinear spring is given by equation (3-68), where the forcing function

is a stationary Gaussian white noise process:

%o+ 2ex + x(1 + w) = wit) (3-68)
where,
Elw(t)] = 0, E[w(t)w(t-1)] = q8(T). (3-69)

Ref.[49] provides a very nice comparison of three methods of determin-
ing the rms value of x. The first is the Fokker-Planck-Kolmogorov method
that yields, for this simple probiem, the exact solution since the proba-
bility density function of x can be found. The second is the statistical
linearization and the third is the method of Wiener.

The statistical describing function for a cubic nonlinearity

can be found from equation (3-23) or from standard texts [ 25,26,27]; the

result is:

* E gy Am . (3-70)

*Ref. [47] provides a tutorial paper on the use of describing
functions for nonstationary nonlinear systems.
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Substituting (3-70) into (3-69) yields:

2

X +28x + (1 + u3o, “)x = w(t) (3-71)

The transfer function between x and w is:

1
H(Jw) = (1 + 3UGX2 = wZ) + j28w

(3-72)

The rms value of a stationary random process can be found by integrating

the power spectral density function, i.e.,

2 q

S, (w) = [H(jw)| 5 (3-73)
6.2 =L 1 |Hjw|? d (3-74)
X —2,”0 Jw w .

Tables of integrals for equation (3-74) for typical H(jw) are available [25],

The result is :

5. 2 T . (3-75)
48(1 + 3uo, )

Solving for 0X2 (u # 0) yields:

O" —
X 3 (3-76)
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Reference [49] shows a plot of how the statistical linearization result

compares with the exact solution. Figure 3-22 is adapted from this

reference.

FIGURE 3-22. A COMPARISON OF STATISTICAL LINEARIZATION WITH
AN EXACT SOLUTION
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Figure 3-22 shows that the error increases as the relative strength of
the nonlinearity increases (u), as the white noise signals strength
increases (q), and as the damping decreases. It is surprising how good
the results are even for the worst cases, e.g., for u = .1 and q/4¢ = 45.
The error is about 10 percent. Thus, even for a second order system

that has very 1ittle filtering the results are quite good.

3.8.2 State Space Method

The rms values for this system cam also be comptued using
state variable methods [48]. A Tinear system forced with white noise

can be placed in the following form:

X = 5 X + i w(t) (3-77)
where, E[y(t)yT(t—T)] = é S (1)
Elw(t)] = 0.
The covariance matrix is defined to be, X,é EEE.ET]- The diagonal ele-

ments of the covariance matrix are the variances of the state variables.
If w(t) is a stationary Gaussian random vector, the steady state co-
variance matrix can be found from the following linear matrix equation
[48]:

X +

(an]
I
I
|><t
Q=
+
12
L
2 2

(3-78)

Thus the mean square values of the state variables can be found by

solving for the diagonal elements of (3-78).
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For a nonlinear system forced with Gaussian white noise the

quasi-linearized equations can be placed in a form similar to (3-77):

22X
1l
==
>
+
[ ¢

W (t) (3-79

where N, and T matrices may contain describing function gains. Since

the D.F. gains are a function of the rms values of the states, we have

(X), and T =

that N =

[ =]
[ B

(X). Using the same approach that we did for
the Tinear system the steady-state covariance matrix of the quasi-linear

system can be found from:

(]

1]

=
<t
+

>
=
+
IR
¥
[ X4

(3-80)

14

Equation (3-80) is now a nonlinear algebraic matrix equation due to the
functional dependence of N and i matrices on the state variances.

Applying this method to the nonlinear spring system (equation (3-68))

yields:
tX N 0 . ]
X = N = 2 5
~ L( & _—(1+3u0x Y s -2¢
0 I R E[x x]
1" = Q = q 5 _)i =
1l s E[x X], O>'(2
Equation (3-80) yields:
E[x x] = 0 (3-81)
g:l =4 (3-82)

X ag



0 = X;Z?35I5_5> . (3-83)
X

Thus the state variable approach (equation (3-83)) yields the same
result as the frequency domain method (equation 3-75)). The preferred
approach depends upon whether, in a given problem, the integral equations
of the frequency domain approach or the algebraic equations of the state
variable approach are easier to solve.

The statistical response of the simple rail vehicle wheelset de-
scribed in equations (63, 50) provides a good practical illustra-
tion of the statistical linearization method.

The first task as always is to replace the nonlinearities with the
appropriate describing functions. The statistical describing function
for the deadband rail spring, lateral and yaw suspensions are given by

equations 3-24, 3-30, and 3-37, substituting these expressions into

3-50 yields:
- Zf]] o wa} + /n— )-/W
M ¥V YT Y vt kyyw Fo V2™ 53
Y
6C GC Wa]
+ Kg [1 - erf(- )] D, = KR[1 - erf(—~—-~_)]yr R (3-84)
/?_OA V2 o 0
A
2f 400" 2F 402k
Lyt vV vo- W6Oaw N S Yw
2f,a
3370
LR e (3-85)
N v K l’) -
f, o+ 55- [V - erf (LT - Kk v =0 (3-86)
0 /?_OM

where 02 = E[(y -y )2].
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A commonly used form to model [37] the spectral density
of rail alignment variations as the vehicle travels at a constant forward

speed, V, is:

2 (3-87)

Either the frequency domain or state variable approach can
be used to compute the statistical response of the wheelset, using
equations (3-51) - (3-53). If the state space method is chosen equation
(3-54) must be placed in the form of white noise into a first order filter,
i.e.,
y

r T 0¥y ¥ w(t) (3-88)

Efw(t)] = 0, E[w(t)w(t-1)] = mkV§ (1)

3.9 SUMMARY

This section on quasi-linearization was intended to describe
and illustrate by simple and practical problems a very useful analytical
technique. The fundamental contribution of the quasi-linearization
(or D.F.) method is that the convenient and powerful analytical procedures
developed for linear systems such as frequency domain and state variable
methods can be applied to nonlinear systems. It should be recognized
that these linear methods must be applied in an iterative fashion since
the D.F. matrices are functions of the unknown response variables.
Therefore, an iterative procedure that initially guesses the unknown
response variables that are required to compute the D.F. matrices is used.

The Tinear methods are then used to compute the response variables which
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are then compared to the guessed values. The cycle is repeated until
satisfactory convergence is obtained.

In general the D.F. method converts a set of nonlinear differential
equations into a set of nonlinear algebraic equations. The advantages
of the D.F. method over numerical integration depends upon the com-
plexity of the describing function (e.g. how many harmonics are required)
and the efficiency of the algebraic equation solver.

An important prerequisite to using the D.F. method is that the
form of the signal at the input to the nonlinearity must be known. This
requirement has led to the use of sinusoids, biases, Gaussian random
variables, exponentials,* and linear combinations of all four forms.

The SIDF has been the most widely used wave form and can be used
to predict either unforced oscillations (1imit cycles) or forced steady
state sinusoidal response. The SIDF method works quite well in systems
where subharmonics are not generated and higher harmonics are filtered;
thus the systems respond predominantly at the fundamental frequency.

For systems where the assumption described above is not true other
D.F. techniques can be used. The Dual Input Describing Function
(DIDF, bias plus sinusoid) and the Two Sinusoid Input Describing Function
(TSIDF, two sinusoids of different frequencies) methods have been success-
fully applied to many practical problems and extensive tables of these
D.F.'s for most common nonlinearities exist in standard texts [25].

A general method for analyzing singly periodic systems using
harmonic Tinearization was presented in this section. The method was

illustrated on a six degree of freedom system with multiple nonlinearities.

*Some success has been achieved by the use of exponential D.F.'s
to compute the transient response of nonlinear systems [25, 27 ].
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Finally the random input describing function method was described
and both frequency domain and state variable methods were 1llustrated

via practical examples.

-107-



If,  ALGORITHMS FOR STABILITY ANALYSIS

4.1 INTRODUCTION

The hunting behavior of rail vehicles, as explained eariier, is
a matter of great practical interest in the railroad community. Actual
derailment is obviously a matter of even greater interest. Both of
these situations, hunting and derailment, bring into play the non-
Tinear mechanisms described in previous chapters, and can be studied
by the quasi-linearization techniques discussed in Section 3.

Rail vehicle hunting is a stable Timit cycle. In studying this
phenomenon, one is interested in determining the conditions for the
existence of such 1imit cycles. For a rail vehicle, the vehicle
speeds and corresponding amplitudes of the stable Timit cycles are
of particular interest.

Unstable Timit cycles are also of practical interest because
they describe boundaries between stable and unstable performance.
Derailment, for example, occurs when the vehicle motion exceeds the
amplitude of an unstable Timit cycle that marks the boundary between
bounded and divergent motion.

Techniques of applying quasi-linearization to find rail vehicle
Timit cycles are discussed in this chapter. Two approaches were
developed: a technique based on optimization methods and a technique:
that employs eigenvalue/eigenvector solutions. Both techniques are

described and results for a typical rail vehicle problem presented.
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4.2 LIMIT CYCLE PREDICTION USING AN OPTIMIZATION ALGORITHM
The discussion of quasi-linearization presented in Section 3 can
be integratad to construct an algorithm capable of predicting hunting
of nonlinear rail vehicles. The essential steps are:
1) Develop sinusoidal describing functions for the nonlinear
elements
2) Solve the nonlinear algebraic equations that determine an
undamped oscillation (equations 3-56 and 3-57)
3) Check for physical significance of the solution (examine
eigenvector relationships)
4) Determine the Timit cycle stability or instability.
In a 1imit cycling system the describing function technique
assumes all states to be sinusoidally escillating with frequency, w.

For example, the wheelset, the state vector, x, can be defined

X = fyw‘ Asin wt E
ol Bsin(wt +¢)j
}ywl_ \wAcos wt
JDJ ;chos(wt +
Actually,
x = Ff(x) (4-1)

where f(x) represents the nonlinear wheelset equations that may
include the effects of nonlinear creep, contact geometry, and suspen-
sion elements as qualitatively discussed earlier. To investigate the

stability of this nonlinear wheelset, the four above steps are then
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followed.

The describing function matrix [N(A, B, w, V)] is computed by
replacing each nonlinear term of f(x)* with its describing function
approximation. This produces the following quasi-linear description

of the vehicle behavior :
X = [N(Bs w, V)] x . (4-2)

Note that the describing functions depends only on A,B, and w. How-
ever, since the Timit cycle condition also depends upon the wheelset
forward velocity, V, it too is included as an unknown in (4-2). The
actual determination of the individual elements of [N(A,B, w, V)] is
is detailed later.
The necessary condition for 1limit cycle existence is given by

equation (3-56). Solving that eguation is the second step in solving
the Timit cycle problem. For the wheelset, equation (3-57) is written

as follows:

]jwi - [B(AaBs w,V)]I =0 (4_3)
This characteristic equation will, in general, have both real and
imaginary parts. Obtaining a solution to (4-3) requires satisfying
both the real and imaginary parts of the equation. One approach to

this is to minimize the function 0BJ where

0BJ = ABS[Re(|juwl - [M(A,B,w,V)]|)] + ABS[Im(|duwI-
EE(A,B,M,V)]I)] (4'4)

and thus obtain values for A,B,w, and V.

- i
This step is more complex when nonlinear creep as well as nonlinear
wheel/rail geometry is modeled.
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The solution of (4-3) is not necessarily unique due to an excess
of unknowns. A means of determining whether the solution of (4-3)
actually depicts a limit cycle is required. To do this, the third
solution step involves examining the eigenvectors of [N(A,B,w,V)].
For the wheelset, the complex eigenvector X corresponding to an

eigenvalue, jw, will satisfy

[T - [N(AB,w,V)] T X = 0 (4-5)

where X = Bt W
yw

L v

Thus for a physically meaningful solution to (4-3) the solution must

also satisfy the following eigenvector relationships

x|
leI:B
(4-6)
| Xe | = whA
yW
|XLL|=(»B

Values of A,B,w,V satisfying (4-3) but not (4-6) are not valid des-
criptions of the limit cycle, i.e., the combination of (4-3) and

(4-6) are necessary and sufficient 1imit cycle criteria.
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4.2.1 LIMCY Program

LIMCY*, a program for investigating the nonlinear stability of the
wheelset, was formulated based on the preceding discussion. Its basic
structure is discussed in this section. A flow chart has been included
as Figure 4-1,

Values of the wheelset physical constants are read into the pro-
gram MAIN. The quasi-linear form of the wheelset equations, as given
by equation (4-2) are placed in subroutine DFMAT with the values of
A,B,w, and V left as unknowns in the expression for the describing
function matrix elements.

The first goal of the program is to minimize (4-4), a function
of four variables. However, if one of these parameters is held fixed,
i.e., read into MAIN as a constant, the unknowns are reduced to three.
Since a reasonable range of limit cycle lateral amplitudes is known,
j.e., A< 1.2 in., A will be held constant and values of B, w, and
V that satisfy the 1imit cycle criteria will be sought. Various
optimization techniques are available for minimizing equations such as
(4-4). Some require gradient computation, some do not. The technique
used here to miﬁimize (4-4) is a pattern search method proposed by
Hooke and Jeeves [50]. Its attributes include no need for gradient
computation, coding simplicity, and fast solution speed. Simply
put, given an initial guess for B,w, and V the method searches the

variable space computing (4-4) until a minimum OBJ is found. One

* A user's manual for LIMCY was prepared as a separate document under
this contract.
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drawback to the pattern search algorithm is that it may find only

local minima. Hence, if the value of OBJ returned is not "sufficiently
small" then the search must be restarted with a new set of initial
values. Subroutine PATSH performs the pattern search in LIMCY.

Since PATSH requires evaluation of (4-4) for every variable
change, an efficient method of computing the characteristic poly-
nomial of [N(A,B,w,V)] is needed. The method of A.M. Danilevsky
[ 51 ] was chosen to perform this function. Based on successive
similarity transformations of E(A,B,w,v), the technique is easily
coded for digital computation and is one of the most efficient schemes
for obtaining the characteristic polynomial. Furthermore, the method
retains information that allows easy computation of the system eigen-
vectors when needed. Subroutine CHEQN computes the characteristic
polynomial.

when PATSH returns values of B,w,V, subroutine CHECK determines
if the value of OBJ is "sufficiently small" to qualify A,B,w, and V
as a possible 1imit cycle condition. If it does not qualify sub-
routine SETPT changes the initial values of B,w,V and the pattern
search is restarted. If the values doqualifyas a possible limit
cycle description, subroutine EIGVEC is called to evaluate the system
eigenvectors using the most recent similarity transformations of CHEQN.
The eigenvector magnitudes are returned to CHECK for comparison with
A,B, and w; good agreement indicates satisfaction of (4-6) and signifies
that a valid Timit cycle condition described by A,B,w, and V has been

found. If the eigenvector magnitudes do not agree with A,B, and w, then
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return is made to SETPT where new initial values are chosen.

After (4-3) and (4-6) have been satisfied, the value of A is
perturbed by an amount £, the Timit cycle values of B,w, and V re-
tained, and the eigenvalues of [N(A,B,w,V)"] computed in order to
determine the stability of the 1imit cycle. Subroutine EISPAC per-
forms this function.

A1l subroutines used in LIMCY were written specifically for it
with the exception of PATSH and EISPAC which are available in disc
libraries at the Joint Civil-Mechanical Engineering Computing Center

at. M.I.T.

4.2.2. The MWheelset Example Using LIMCY

The quasi-linearized equations for the wheelset including the
describing functions for the nonlinear wheel/rail profile and non-
linear suspension elements described in Section 3 (equations 3-10,

3-1la, 3-12, 3-13, and 3-14) are:

) 2, 4F,
My Syt ) Byt KA + K Ty,
-2 f,v=0 (4-7)
Ly e f33 E P2 [k—g (1 + £(-8)) - ws,, aly
M MA), = 0 (4-8)

Figure 4-2 shows the effective conicity and gravitational stiff-

ness describing functions used in this example that are illustrative
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of new wheels on worn rail. These figures represent a new wheel on
worn rails at standard gauge (56.5"). Note how the functions increase
sharply at a lateral amplitude of .3 in. where flange contact is made,
and then decrease as the amplitude increases. Recall that an increased
effective conicity A (A) is generally considered a destabilizing effect
while large kg(A) is known to be a stabilizing influence. Physical

constants used in this model were:

MW = 90 slugs kw = 105,630 ft-1b/rad re = 1.75 ft
_ 2 _ _ 6 _
th = 360 slug-ft f]] = f33 = 3x10” 1b/wheel & = .024 ft
W = 30000 1b a = 2.5 ft Fo = 4000 1b
6 - _ o
kR = 1071b/ft Ao .05 b, = .125
ky = 10000 1b/ft 60 = .05

Equations (4-7) and (4-8) were placed in the form of equations
(4-2) and LIMCY was used to compute the hunting behavior. Numerical
results are shown in Figure 4-3. The region to the left of the A(or B)
vs. V plots can be considered stable and that to the right unstable.
The significance of the contact geometry describing functions is easily
seen, i.e., stable 1imit cycles (hunting oscillations) will only occur
over a limited speed range. If such an oscillation is encountered it
will be maintained at an ever increasing amplitude as speed is increased
until the speed indicated by the right extreme of the stable Timit
cycle is reached. Beyond that speed the response will become unstable
possibly indicating derailment. Note that this limited range of

stable Timit cycles is due to the decrease in the restoring force of
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eigenvalue as well as the condition that E(A,w) have such a pair of
imaginary eigenvalues.

The 1imit cycle conditions may be determined by investigating,
in an iterative fashion, the eigenvalues of the linear problem that
corresponds to a motion at a given amplitude. Limit cycles are found,
in this approach, by employing information in one of the least damped
eigenvalues of the describing function matrix, E(A,w), to lead itera-
tively to the values of amplitude and frequency that correspond to
purely imaginary eigenvalues.

In this iterative technique, the amplitude of one state, Ai’ is
chosen, and the remaining amplitudes and the system frequency are found
from the eigenvalue with the smallest real part and its associated
eigenvector. At each step, initial values for evaluating the describ-
ing function matrix are found by employing the frequency and eigen-
vector of the preceding step. The eigenvalue/eigenvector computation
is repeated to improve the correspondence between the amplitudes and
frequency used in computing the describing functions, and those that
result from the eigenvalue/eigenvector computation. New values for
one of the system parameters, such as the vehicle speed, are chosen
to move in a direction that drives the real part of the eigenvalue with
the smallest real part toward zero.

Information about the stability of the limit cycles is a side pro-
duct of this technique. The limit cycle stability is found by varying
the amplitude of the Timit cycle a small amount. If the Timit cycle 1is

stable, slightly smaller amplitudes should result in the corresponding
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eigenvalue having a positive real part, and larger amplitudes should
produce a negative real part. The opposite situation should prevail
for an unstable limit cycle [51].

The approach described above was implemented in the form of com-
puter algorithms written in FORTRAN for computation on a digital com-
puter. The basic procedures and analytical expressions are given
here.

A flow chart of the computer algorithms used to find the lTimit
cycles is shown in Figure 4-4. 1In the procedure, the first value of
the maximum* wheelset lateral displacement amplitude is specified,
and estimates of the critical velocity, state vector and frequency
are made. In an inner loop describing functions are obtained corres-
ponding to these estimates, and eigenvalues and eigenvectors calcu-
Tated. Repeated estimates of the frequency and the state vector are
made until the estimates are consistent with the least damped eigen-
value and eigenvector computed. An outer loop iteratively estimates
velocity to find the critical velocity at whiéh the 1imit cycle occurs.
The process is repeated for the next value of maximum wheelset lateral
displacement.

New estimates for the frequency and state vector in the inner loop
are made by choosing, as improved guesses, the frequency and the eigen-
vector relationship of one of the least damped modes. Generally, the

iteration procedure will then converge to a frequency and state vector

*  "Maximum" means the maximum value for any of the four wheelsets.
Each wheelset generally has a different amplitude.
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FIGURE 4-4. EIGENVALUE/EIGENVECTOR ALGORITHM FLOWCHART
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that are consistent with the frequency and eigenvector of the chosen

mode .

An Example Using the Eigenvalue/Eigenvector Method

The eigenvalue/eigenvector technique was used to determine the
hunting stability of a nine degree of freedom representation of a
North American rail freight car. This freight car model, as described
in Section 2 and shown in Figure 2-19, includes nonlinearities in the
suspension and at the wheei/rail contact. The suspension nonlinear-
ities involve Coulomb friction in the warp, yaw, lateral and vertical
motions. These nonlinear characteristics are discussed in Section 2
and their describing functions given in Section 3. In this applica-

tion those describing functions take the following form:

Lateral Suspension

Fyse = Kyslrpp = ve = hpte - Ledg

* 4320 Ure = 3¢ = Myt = Loie) S
Fys = Kyslyp = ¥ = hate * Lewc)

' 4_52\? (g = 3¢ - hpog * Letg) SIeg

where Ag = Amplitude of (yTF - Yo - hyoe - LCwC)

A6 = Amplitude of (yTR - Yo - h2¢c + Lcwc)
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Vertical Suspension

Fuse 7 Fosw Kyglddg) + =5

where: A, = Amplitude of (dp.)

Warp Suspension
e T by

3 (o 4 b iy
10NR _ KkawR) ' AL <LHR>

where AS = Amptiloae O {WH%}
A, = Anplitode of {4 4)
Y 'l ‘UH)

Yaw Suspension

I = Uy h
BF A KVMI YT I()

! = I
(L‘JHR i . - 1' l"}

BR hﬁ%i s
wheyve: A - Amp b tude or bl i
10 = Wy ¥ Wy = )
Ali Aaplitude of (i ¥ pn 00

The nonlinearities in the wheaol/vatl conlacl geomeliy oty od o
describe the nature of the wheol/rail contact forces avo abso dysousioi
in Section 2 and. their describing runciions given in Seciinn 5. AL
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explained previously, the suspension describing functions are repre-
sented analytically while the wheel/rail geometry describing func-
tions are defined in tabular form.

The amplitude of the largest lateral wheelset motion at
any of the four wheelsets was chosen as the independent variable in
the eigenvalue/eigenvector algorithm for this example. This meant
that at times during the iteration process the independent variable
would shift from one wheelset to another. The computer program began
with a small lateral amplitude value and proceeded in small incre-
ments to larger values of the lateral wheelset amplitude.

Results for this freight car example showing the Targest wheel-
set lateral amplitude as a function of vehicle speed at Timit cycle
conditions are presented in iqure 4-5. These results are for a
freight car with Tinear viscous damping that is independent of the
motion amplitude and frequency, and nonlinear wheel/rail geometry re-
presenting a new wheel on worn rail.

This example model behaves 1ike a linear system at amplitudes
below flange contact. 1In this range, the wheel/rail geometric con-
straint functions are nearly linear and thus the system is effectively
Tinear. The stability of vehicle motion, in this linear region, does
not depend on the motion amplitude as indicated by the vertical line
depicting unstable Timit cycles at a speed of 144 ft/sec.

In this figure the region to the right and above the unstable

Timit cycles may be regarded as an unstable region while the region
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below and to the right is stable. Thus, at any speed below 144
ft/sec. the vehicle response to disturbances with amplitudes

Tess than the upper unstable 1imit cycle will damp out. At these
speeds, amplitudes above the unstable Tlimit cycle will diverge,
presumably representing derailment. These results indicate that the
stable 1imit cycles, representing vehicle hunting, only exist at
speeds between 144 and 204 ft/sec. In this range, disturbances with
amplitudes up to the upper unstable 1imit cycle will settle into a
Timit cycle or hunting behavior. Larger disturbances will result in

divergent motion.

4.4  SUMMARY

This chapter has illustrated two numerical methods that can be
used to predict the nonlinear hunting phenomena of rail vehicles
using the describing function method.

The first method was the optimization technique that directly

seeks a solution of equation (3-56), i.e.,

Gul -M x=0.

The necessary condition for a non-trivial solution is:

/jwl-N=0.
This determent contains a real and imaginary part, both of which
must be zero. In order to find values of the amplitudes and frequency

that satisfy this equation an objective function of the form,
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08B0 = Re {/jwlI-N}+ Im {/jul-NI.
A parameter search method is employed Ref. [50] to minimize
this objective function. The program developed using this method is
called LIMCY and has been used successfully to investigate the hunt-
ing of a nonlinear wheelset.

The second method was the eigenvector/eigenvalue method that
seeks to drive the real part of the eigenvalue closest to the im-
aginary axis to zero. The eigenvector corresponding to this particular
eigenvalue is used to improve the subsequent iterations. This method
was successfully used to investigate the hunting of a nine degree of
freedom freight car model.

The relative efficiency of these two methods was not  investi-

gated but will be the subject of future research.
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5, APPLICATIONS OF STABILITY ANALYSIS ALGORITHMS

5.1 INTRODUCTION

The two nonlinear stability analysis programs described in Sec-
tion 4 were applied to the prediction of rail vehicle hunting for
different vehicle models. A parametric study of the influence of
suspension parameters, axle-load, gauge, and wheel profile on the
critical speed of a simple nonlinear wheelset was performed using the
optimization algorithm. The eigenvector/eigenvalue method was applied
to a nine degree of freedom freight car model to determine the influ-

ence of nonlinear wheel/rail contact geometry on vehicle stability.

5.2 WHEELSET STABILITY RESULTS WITH LIMCY

It is well known that track gauge, axle loading, and wheel profile
greatly influence wheelset stability. However, the methods used through-
out the literature have only considered idealizations of these effects. In
this section many of these idealizations are replaced by more realistic
quasi-linear modeling techniques.

Modeling flange contact as a dead band rail spring can indirectly
account for' track gauge by changing the dead band (flange clearance)
size. Increasing axle load is generally thought to be a stabilizing
effect because of its impact on the gravitational stiffness term in
the wheelset equations of motion. However, it has been determined by
measurement [20] that changing axle Toad also changes some of the
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suspension characteristics as well as the creep coefficients. Previous
investigators have considered wheel profile effects by varying a con-
stant taper ratio (conicity) [8, 9]. Nonlinear profiles have been
considered [ 2, 11 ] to a limited extent on models that were other-
wise linear. With the methods developed in this report actual profiles
can be included in the describing function analysis of the wheelset
without compromising the wheelset geometry.

The model that will be used in this study is defined by equatiohs
(2-17p) and (2-18 ). However, the values of the constants will be
changed from those used in the previous section. The new values chosen

to model the wheelset of a 70 ton freight truck are:

1.375 ft

il

M
W

I
Wz

76.6 slugs s

5200 1bs

148 slug-ft2, Fo

A11 of the other parameters depend upon the gauge, profile, or axle-
loading used.

A1l combinations of three axle Tloadings (15000 1bs, 35000 1bs,

70000 1bs), three track gauges (tight, a = 56é0 ; standard, a = §§§§—g

and wide, a = §Z§§__)’ and three profiles (new, slightly worn, and

Heumann) were considered. Note that the gauge variation spans the

allowable range for Class 5 track or better. The contact geometry
describing functions are functions both of profile and gauge and were
computed by the method described in Section 3. All were made for
s1ightly worn rail profiles. Typical dependence on these parameters

is shown in Figures 5-1 and 5-2.
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The steep rises of these functions in Figure 5-1 are due to
flange contact and hence occur at different amplitudes. 1In Figure
5-2 the variations are due to different design profiles (new
standard AAR, and Heumann wheels) as well as wheel tread and flange
wear (worn AAR wheel).

The dependence of suspension characteristics and creep coeffi-;
cients upon axle loading and track gauge is shown in Table 5-1, 5-2,
and 5-3.

Generally, the creep coefficients, f]] and f

to We/3 [217.

33> are proportional

5.2.1 Parametric Study Results

The results of the parametric studies are presented in Figures
5-3 to 5-11. These results are arranged so that one may choose any
combination (of the possible 27) of wheel profile, track gauge, and
axle loading and, by consulting the proper figure, determine the
effects of varying any one of those parameters.

A1l plots are of 1imit cycle lateral amplitude vs. velocity, and
are interpreted in the same manner as those shown earlier, i.e., the
space to the Teft of the curve indicates that all of the system eigen-
values have negative real parts (stable system), while that to the
right indicates that one pair of eigenvalues has positive real parts
(unstable system). Note, though, that for these plots all Timit cycles
(stable and unstable) are shown as solid lines. The determination of
Timit cycle stability will be discussed later in this section.
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5.2.2 Effects of Track Gauge Variations

In Figures 5-3to 5-5 it is seen that, for any wheel profile and
axle loading, increasing track gauge increases the stable regime to
the left of the curves. This implies that, at a given velocity, larger
track irregularities can be tolerated on wide gauge than on tight.

This effect is directly related to flange contact occurring sooner at
tighter gauges. Figure 5-3 indicates that the minimum velocity below
which all response is guaranteed stable is changed Tittle by varying
gauge. However, for worn and Heumann profiles this minimum velocity is
more dependent upon gauge.

A11 curves in Figures £-3 and 5-4 possess a high speed, low amp-
litude stable region that can be attributed to the high effective
lateral suspension damping for these small displacements. In addition,
this effect is reinforced in the new wheel, standard gauge plots by
using values of effective conicity lower than the design value of .05.
This may be the result of the worn rail profile and/or of difficulty in
gathering Tow amplitude data for the describing function program dis-
cussed earlier. Thus the destabilizing effect of increasing conicity
is seen.

Note that, using the stability argument developed earlier, there
are few instances of stable Timit cycles in these plots. Only when the

ampTlitude locus increases with velocity can the curve be interpreted as

a stable Timit cycle (Figure 5-3a, wide gauge; Figure 5-5 a-c, wide gauge).

Hence, most of the curves represent unstable limit cycles and are inter-

preted as stability boundaries rather than observable hunting oscillations.
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5.2.3 Effects of Axle Load Variations

Figures 5-6 to 5-8 indicate that for any guage and wheel profile,
increasing axle load has a definite stabilizing effect especially at
the higher amplitudes, i.e., for a given velocity, increasing axle
Toad permits larger track irregularities to be encountered before the
onset of instability. Also, the velocity range for guaranteed stable
response is improved by increasing axle load. Axle load is found 1in
the gravitational stiffness term, thus explaining this stabilizing in-
fluence. Note that for most of the Figures, the results for a given
gauge and profile with various axle loads are similar at lTow ampli-
tudes. Again, this trend is attributed to the wheelset being influenced
primarily by the suspension elements (rather than the conicity or

gravitational stiffness terms) at low amplitudes.

5.2.4 Effects of Wheel Profile Variations

Figures 5-8 to 5-11 examine the stability differences between wheel
profiles for fixed combinations of axle load and gauge. Nearly all the
figures exhibit identical traits. For instance, for a given speed at
Tow amplitudes, the worn wheel may provide a slightly more stable re-
sponse that the new wheel. For these amplitudes, the effective conici-
ties of the worn wheel is generally a bit larger than those of the new
but its gravitational stiffness contributions are considerably greater.
Thus the gravitational stiffness counteracts the effective conicity at

Jeast in the new wheel/worn wheel comparisons for low amplitudes. The
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Heumann profile clearly exhibits poorer stability at low amplitudes,
an effect owed to its high conicities in this range.

At higher amplitudes the new wheel clearly allows the highest
speeds to be attained. The velocity locus given at the high amplitude
is probably a more important design consideration than that at the
lower amplitudes since, as mentioned earlier, the low amplitude, high
stability region cannot be counted on for absolute wheelset stability.

Also, at these higher amplitudes the Heumann wheel exhibits
slightly better stability than does the worn wheel. However, the real
benefit from Heumann wheels may be in their tendency to wear more evenly
and thus maintain their original stability locus. In contrast the
geometry of the standard AAR profile will change unpredictably with

wear making it difficult to design for long term use.

5.2.5 Further Explanation of the Exhibited Trends

It can be seen that Figures 5-3to5-11 do not, in general, possess
characteristics similar to the earlier lateral amplitude vs. velocity
plot of Figure 3-18. In this plot, stable Timit cycles were encountered
at flange contact whereas the plots of Figures 5-3 to 5-11 generally do
not show these trends. The describing functions are not that much
“different for the comparable new wheel/rail standard gauge cases of
these sections However, the suspension elements have very different
constants for the two models examined. The much higher yaw suspension
stiffness and lateral coulomb force act as stablizing terms in this new

model. Thus the loci are located at very high velocities for some of
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the amplitude range. As a result, the describing function terms are
overshadowed by the suspension terms in the amplitude ranges where the

geometry changes considerably with displacement.

5.2.6 Possible Errors Due to Violation of Small Contact Angle Approximation

The describing function for contact angle difference, A(A),
(equation 3-16) was obtained after making small contact angle assump-
tions. However, when flange contact is first made, these angles can
be of the order of 60°, thus violating that assumption. The resulting
error in the small contact angle assumption (Figure 5-12) can cause
errors of the same magnitude in the gravitational stiffness term. New
describing functions that included the contact geometry trigonometric
terms were computed and some of the cases rerun. A typical result,
as shown in Figure 5-13, (new wheel, standard gauge, 35000 1b axle load)
proved to be qualitatively similar to the original locus (i.e., the
shape of the locus did not change) although all of the plots were
shifted slightly to higher velocities. Thus, apparently, the con-
icity and suspension terms were predominant in affecting stability

in these parametric studies.

5.3 FREIGHT CAR STABILITY EXAMPLE USING EIGENVALUE METHOD

The application of quasi-linearization techniques to the problem
of determining the hunting stability of a more complex rail vehicle

model is discussed in this section. The nine degree of freedom
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representation of a North American rail freight car described

in Section 2 was used with the nominal parameters given in

Table 2-4. Results were obtained with the eigenvalue/eigenvector
algorithm described in the preceding Section.

Stable and unstable 1imit cycle wheelset lateral amplitudes
as a function of speed for three wheel profiles are shown for
a vehicle with linear viscous damping in Figure 4-5 and for a
vehicle with nonlinear, Coulomb suspension friction in Figure 5-14,
The linear damping descriptions were computed by the describing
function method, assuming constant amplitudes and frequencies.

The wheelset Tateral amplitude in these figures is the maximum
Tateral amplitude of any of the four wheelsets. The four whee]-
sets do not generally have the same amplitude of lateral dis-
placement. Stable Timit cycles (hunting) are again indicated

by solid Tines and unstable 1imit cycles (stability boundaries)
by dashed lines.

When Tinear, viscous suspension damping is used, the critical
velocity, shown in Figure 4-5, is almost independent of amplitude
until flange contact is reached. For the new, "conical", wheel the
unstable 1imit cycle curve is vertical until flange contact. This
same result was found with the single wheelset model.

The first occurence of flange contact is characterized by a stable

limit cycle that extends to a high velocity. The velocity is quite
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large for the new wheel case. The hunting phenomenon, that has been
observed for actual rail vehicles, is described by such stable Timit
cycles.

The stabilizing effect of flange contact was also observed in the
single wheelset results, except for the Tlight vehicle configuration with
new wheels, as was discussed.

In Figure 4-5 the freight car running on new wheels is the most
stable. The freight vehicle on wheels with modified Heumann profiles,
which are representative of severely worn wheels, is least stable and
the stability of the freight vehicle on wheels with Canadian National
wheel profiles, which are representative of slightly worn wheels, falls
in between.

Stable limit cycles occur at two distinct regions of flange con-
tact for the Canadian National wheel profile. The indication is that two
distinct modes of hunting are possible here. In the lower mode, only a
wheelset of the rear truck contacts the flange. In the higher one, a
wheelset of each truck experiences flange contact.

The modified Heumann profile configuration experiences hunting over
a limited range of speeds at low amplitudes that do not include flange
contact. This probably occurs because the "conicity", or describing
function for the difference in wheel radii, decreases with amplitude 1in
this range. The effect is a result of the extreme nonlinearity of the
contact geometry.

The effects of nonlinear friction on the critical velocity are shown

in Figure 5-14. Note that at low amplitudes the stability was drastically



reduced. Although stable Timit cycles are predicted at low speeds,
these have very low amplitudes. Stable limit cycles are also

found at large amplitudes. The stable limit cycles, or hunting,

in which flange contact is present occur at higher speeds, closer
to, but still below, that which has been found in linear analyses
[3].

The low critical speeds found with nonlinear damping at Tow ampli-
tudes are the result of the vehicle tending to perform as a rigid body.
This is because the forces at low amplitudes due to dry friction are
relatively Targe. At larger amplitudes the initial "breakaway"
force of the dry friction is easily overcome and the vehicle acts more
as a system of separate elements that allows large amount of relative
motion. In fact, after flange contact, the wheelset and truck
become essentially uncoupled from the car body. This is discussed
further on the following pages.

In the computer algorithm, in order to prevent the dynamical
matrix from becoming singular when the vehicle model tended to
perform as a rigid body at Tow amplitudes, lower Timits were placed
on the magnitudes of the relative motions across the dry friction
contacts. The lower limits on the motions imposed upper limits on
the values of the friction force describing functions. In retro-
spect, it appears that this 1imiting effect would be better modeled
by a stiff spring in series with the friction element. In this case,
the spring would be the dominant suspension element at small amplitudes

of relative suspension motion.
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The dry friction results for low amplitude limit cycles

are contrary to those found with the single wheelset model.

See igures 4-7 and 4-8. In those cases dry friction was

found to be very stabilizing at lower amplitudes. This difference
occurs because the single wheelset model was assumed sprung

to a reference body. As discussed in the previous section,

the large force provided by the friction elements at small amp-~
litudes stabilized the wheelset against the reference. The
friction elements at low amplitudes forced the complete vehicle

to behave as a large, rigid body which would have a low critical
hunting speed.

Examination of recent freight car test data indicates that
quite frequently there is Tittle or no motion across friction
elements such as the snubbers or centerplate. Consequently, this
small amplitude behavior should receive closer attention in future
studies.

Figure 5-14 also shows the effects of varying the friction
level. The freight car running on wheels with Canadian National
profiles was more stable when the friction levels were reduced by
one half than when the full friction forces were used.

Eigenvector relationships, or mode shapes, for the limit cycles
found for the new wheel case are shown in Figure 5-15. The abrupt change

in mode shape upon flange contact is quite apparent here. Before flange
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contact the mode shape is characterized by approximately equal front and
rear truck Tateral displacements, and the vehicle components essentially
move as a unit. This shape is constant until flange contact. After
flange contact the rear wheelset and truck become essentially uncoupled
from the car body. The mode shape can be described as "fishtailing".
The frequency is much higher than when the components moved as a unit;
30 rad/sec compared to 12 rad/sec.

Tread contact for all three wheel profile cases was characterized
by the front and rear trucks having approximately equal, and out of
phase, lateral amplitudes. In the worn wheel cases, though, there was
negligible car body motion. This can be explained by the higher fre-
quency of the Timit cycles in the worn wheel cases, as shown in figure
5-16. The frequency was probably below the resonant frequency for car
body motion in the new wheel case, and above it in the worn wheel cases.

After flange contact, the worn wheel configurations experienced
"fishtailing" 1imit cycles similar to those of the new wheel case.

[t should also be noted here that the limit cycles shown plotted
in figures 4-5, 5-14 and 5-15 were not the only Timit cycles found.
Limit cycles for speeds higher than the critical speeds could be found.
These secondary limit cycles had different mode shapes than the primary
1imit cycles occurring at Tower speeds. During flange contact these
secondary 1imit cycles could be described as "nosing" modes, while the
primary limit cycles would be "fishtailing" modes. It would be expected that
the Timit cycles occurring in practice would depend on the initial condi-
tions and inputs to the vehicle. In the study of rail vehicle dynamics,
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the greatest interest is in the Towest speeds at which the rail vehicle
might become unstable. Consequently, only the primary limit cycles
need to be found.

Some of the results found here correlate witﬁ rail vehicle operating
experience. Reynolds [33] mentions observing a fishtailing mode where
a rail vehicle started to yaw and then to fishtail. The yawing
could have been the low amplitude 1imit cycling found here that changed
to the high ampiitude fishtailing upon flange contact.

Reynolds and others have found that reducing the yaw friction
level can induce hunting, while increasing it stabilizes hunting.
The results found here showed that halving the friction forces in all
of the suspension elements at one time made the vehicle more stable.
This implies that a full parametric study, varying the friction elements
one at a time rather than all together should be performed to understand
the contribution of each friction element.

5.4 SUMMARY

The results of this study indicate that nonlinear wheel/rail contact
geometry and dry friction should be considered in rail vehicle analysis
because they significantly influence the hunting behavior of such
vehicles. Nonlinear contact geometry must be considered to study the
1imit cycle motion that can occur when the wheelset lateral motion
exceeds the flange contact boundary. It appears that Tinear descriptions
of the wheel/rail contact geometry may be sufficient for studying small
amplitude motions, although the critical hunting speed for small motions

varies widely with different wheel/rail geometry.
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Stable Timit cycles, representing vehicle hunting behavior, were
found to exist above certain speed ranges that were determined, in part,
by the wheel/rail geometry. The speed ranges associated with flange con-
tact were generally among these. The large gravitational forces at flange
contact produced stable 1imit cycles, or hunting.

The parametric variations of axle loading, track gauge, and wheel
profile presented in this section indicate that increasing gauge allows
larger track irregularities to be tolerated while still insuring a stable
response. However, Cooperrider [10] has shown that wide gauge may also cause
more violent and potentially destructive wheel/rail forces to arise dur-
ing flange contact. Hence, another design compromise is necessary.

Increasing axle load was shown to be a definite stabilizing in-
fluence because of its effect in the gravitational stiffness term. Design
compromise here though may need to consider realistic Timits imposed by
the structural properties of the rolling stock and track.

New wheels were shown to possess the most desirable stability
characteristics since they exhibited the highest velocities below which
a stable response is guaranteed. Heumann wheels generally provided a
smaller stability regime at Tow amplitudes (due to their high conicities
at small displacement) than new and worn wheels but were comparable to
worn wheels at higher amplitudes. It is noted though that since all
wheelsets will wear differently the worn wheel trends may change with
each specific wheelset. Also the Heumann profile may be counted on to

wear more evenly (because of its single contact point design for all
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amplitudes) and thus retain its stability locus longer than the standard
AAR profile.

In the freight car example, 1imit cycles for motions not exceeding
the flange contact boundary were symmetric, with similar front and rear
truck Tateral motions. After flange contact the 1imit cycles were
asymmetric, fishtailing modes. Nosing shaped 1imit cycles could be
found at slightly higher velocities than the primary limit cycles.

The freight car results gave different critical speeds with
dry friction than with linear damping. This indicates that dry fric-
tion must be considered in rail vehicle analysis. For small motions,
friction causes the full vehicle to tend to perform as one rigid body,
which results in Tow amplitude 1imit cycles at low speeds. However,
with the single wheelset, friction has a similar, stabilizing effect
at low amplitudes. It is probable that the single wheelset results
are of questionable practical importance because the car body, re-
presented by the reference, would follow the wheelset in an actual
vehicle. Because the small motion case appears to be of practical im-
portance, additional study of this regime should be made.

At large amplitudes the dry friction caused the Timit cycles to
occur at speeds Tower than predicted with equivalent linear damping.
This indicates that the amplitudes and frequencies used to obtain
the equivalent Tinear values were too large, and points out the importance

of the quasi-Tinear techniques for handling such nonlinearities.
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Qualitative results about the effects of such variables as wheel
profile design, and vehicle Toad found with the single wheelset, were
similar to the freight vehicle results, but the numerical values for
such results as the critical speeds differed. Part of the difference
can be explained by the difficulty in choosing representative data for
the suspension parameters on the single wheelset. Also friction has a
different effect on the wheelset at low amplitudes than on the freight
vehicle.

The results obtained from the describing function quasi-
linearization and eigenvalue/eigenvector procedure are more general than
could have been obtained with conventional numerical integration which
would have given results pertaining only to the specific initial con-
ditions and inputs considered. The results indicate that nonlinear
wheel/rail contact geometry and dry friction should be considered.

Thus linear analysis would not be sufficient.

Future work on the present algorithms should entail improving the
iteration procedures to make the consideration of creep saturation pos-
sible and to make convergence to the correct mode in the full vehicle
routine more efficient. Describing functions for the tangent of the con-
tact angles and wheelset roll angle should be used as input to the Timit
cycle programs to make the modeling of gravitational stiffness forces more
accurate. The effects of this change on the results found with flange
contact should be investigated. Additionally, more data points should be
input for the contact describing functions so that the result curves
would be smoother.

After the improvements described above, the quasi-linear procedure

should be validated by comparison with numerical integration and experi-

mental results.
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6. FORCED SINUSOIDAL RESPONSE

6.1 IMTRODUCTION

In this chapter, we discuss the use of quasi-linearization to solve
for the response of rail vehicles to sinusoidal forcing introduced through
the rail alignment irregularities. The discussion in Section 3 illustrated
that the forced sinusoidal response problem involves solution of coupled,
simultaneous, nonlinear algebraic equations. The techniques available for
numerically solving such equations vary widely in complexity and in their
ability to converge on a solution to the nonlinear equations. The feas-
ibility of quasi-linearization for solving rail vehicle response problems
depends on finding a simple algorithm that has good convergence proper-
ties when applied to rail vehicle problems.

The two numerical techniques used in this study are described and
discussed in the following section. Results of applying these algorithms
to the single wheelset model and the freight car model are presented in

the succeeding sections.

6.2 SOLUTION TECHNIQUES
The quasi-linear equations of motion of a railway vehicle with

sinusoidal forcing can be expressed in the following form:

MR+ Nx + N x = Ny + Neu (6-1)
where: M - Mass matrix
Nc - Describing function matrix for damping
Nk - Describing function matrix for stiffness
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N - Describing function matrix for input vector

u

NG - Describing function matrix for derivative of input vector
X - State vector

u - Input vector

The mass matrix terms are constants for most rail vehicle problems, but
the damping and stiffness matrices contain terms that may depend on the
amplitude and phase of the system response, and the amplitude and fre-
quency ofi the forcing function.

When the only input to the vehicle is variation in centerline
alignment, then the forcing terms, which enter through the wheel/rail
constraint functions at each axle, are related by time delays. The input
to the second axle, for example, is the input to the leading axle delayed
by the time the vehicle takes to travel the distance between the axles.
Thus, the input terms can be reduced to a scalar term, YR and a vector
of time delays, U, that depend on the vehicle speed and the distance
between the axles.

In the quasi-linear sinusoidal response problem, we assume that,
if the scalar input, Yps has the form

Yp = AR cos wt, (6-2)
theq the system response is also sinusoidal,

X; = Ai cos (wt + ¢i)' (6-3)
If expressions (6-2) and (6-3) are substituted into equation

(6-1) the following set of equations is obtained:
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(A_9 AR’ UU) + 1U)NL" (As AR’ U))] QAR ° (6'4)

Complex notation has been used to represent the in phase and out of
phase components of the system response. The symbols in this equation
are defined as follows:

iz V-1

A = Complex vector of state amplitudes.
Thus, our quasi-linear sinusoidal response problem involves solving
this coupled set of 2n noniinear algebraic equations.

One promising solution appvoach utilizes the special

form of the above equations to employ readily available techniques for
solving Tinear algebraic equations. This approach is shown in the flow
chart of Figure 6-1. For a specified input amplitude and frequency, an

initial guess is made for the amplitude and phase of the state variables,
AE E

Ros 4 This information is used to compute the elements of the describ-

ing function matrices. The linear response problem with these describing
functions s then solved to obtain new values for the amplitude and
phase of the state variables, Ag, ¢g. The computed values are compared
with the estimates used to obtain the describing function values, and

new estimates are made if the comparisons do not agree as closely as
desired. The new amplitude and phase estimates are based on the previous
estimates and computed responses. The process is repeated until the de-
sired agreement is obtained. The entire process can be repeated for as

many input amplitudes and frequencies as desired.
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The success of the approach described above depends in part on
the initial gquess, Ag and ¢E, for the amplitude and phase of the state
variables. Previous knowledge obtained from linear response studies
can be used to estimate the initial state for a given input amplitude.
After converging on a solution at a low frequency, this solution can
be used as an initial guess for an increased frequency. This process
is repeated until the highest desired frequency is reached. The
ability of some iterative algorithms to converge on a solution to equa-
tion (6-4) depends on the proximity of the initial guess to the final
solution.

Convergence was particularly touchy near the first resonance
of the system response. It proved helpful to limit the fre-
quency step between solution points when the phase of the variables
changed rapidly with frequency. A check was made in the computer
programs to cut back the frequency step when the phase change for any
state between the two previous frequency values exceeded a 1imit, such
as 10 degrees.

The success of such an approach depends most strongly on the
algorithm used to estimate new state conditions from the previous
estimates and computed responses. Two techniques for the forced si-
nusoidal response problem were used in this study. The first approach
was to simply base the new estimates on the difference between the most
recent computed values and the values computed in the previous itera-
tion, i.e. for the ith state, the estimated value for thé k+1 interation

is given by
E - aC c C
AMer,i = At P (A - A (6-5)
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where p is set between 0 and 1. A similar equation defines the new
estimate of the phases. The parameter p is selected to obtain numeri-
cal stability, and can be varied during the iteration process. In
general, the range of stability is greater for smaller values of p,
but convergence speed is better with larger values of p.

A second iterative algorithm, loosely based on the Newton-Rapheson
search technique, was also used in this study because the techniques
described above did not converge under certain conditions. This tech-
nique involved numerically estimating the rate of change of the computed
response to changes in the estimated state, and using this estimate to
Tinearly extrapolate to a point where the two are equal. If we regard

the computed response as a function of the estimate, i.e.

o £ (A , (6-6)

-1 o ‘=i 7 =i

and ignore the coupling between the estimate for one state and the response

of another, so that

c =
A{ k= fag !

c E
'¢1,k = f . (¢1,k) ]

then we want to find Ak ; and ¢i K such that
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Define the function,

F (L AE :

Ak 1,k) f

) - A

(6-9)

Ak, ( .k

Then, if we apply the Newton-Rapheson procedure to find the zeros of

this function we require that

Ak ) (6-10)

If we use a two point estimate for

——-——A —
E
dA, (6-11)

E

APk Fak(Ay «
E
o At

E
SR
1 ], s A
E
s K

where: p - parameter between 0 and 1 that controls the size of the

change in step.
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Because this algorithm ignores the coupling between equations there is
no apriori reason to expect it to converge. However, this approach had
better convergence properties for the problems studied here than the

algorithm described earlier. Additional Togic was needed in the computer
dF

programs to avoid overflow problems when the ——ék- or FAk(AE k)
dA: i
i,k

expressions approached zero.
As mentioned earlier, convergence of the iteration procedure often

failed at frequencies near the first resonance of the system response.

At this position small changes in the estimated state amplitudes and

phases caused large changes in the computed state amplitudes and phases.

As expected, the numerical stability was poor in this situation with a

high gain between the input and output of the process. The

second technique described above was more stable in this situation

than the simpler technique described first. Reducing the change in

estimated state and phase at each iteration, by using a smaller value

of the parameter p, also improves numerical stability at the expense

of convergence time. In order to improve stability when needed without

increasing computation time when the improved stability was not needed,

the parameter p was made a function of the number of iterations. The

following relationship between p and the number of iterations, I, was

found to work well:

1 3
1 -10 1.0

11 - 20 0.50
21 - 30 0.25
31 - 40 0.125
41 - 50 0.0625
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6.3 TYPICAL WHEELSET RESULTS

6.3.1 Computational Considerations

The behavior of the algorithms described in the previous section is
most easily illustrated by a simple example. The two algorithms built
around linear system analysis techniques were applied to the equations
describing the response of a single wheelset with nonlinear wheel/rail
geometry and Coulomb friction in the suspension connection to a sinusoidal
track alignment input. The equations of motion for this example are
developed in Section 2, and the sinusoidal input describing functions for
these nonlinearities are given in Section 3. A normalized form of the
equations with the nominal parameters given in Table 2-1 was used to
develop the results discussed below.

The forced sinusoidal response of the single wheelset with new
wheels and nominal values for friction is illustrated in Figures 6-2 and
6-3. Figure 6-2 shows lateral wheelset amplitude as a function of fre-
quency, while the amplitude of the yaw motion is shown in Figure 6-3.
Neither of the two algorithms converged reliably in the region from 1 Hz
to 2 Hz.

[t appears that the convergence difficulty is due to the fact that,
in the wheelset amplitude region near flange contact, very small changes
in amplitude cause large changes in the describing function values. This
can be seen in the steep slopes of the describing functions for the wheel/
rail geometry functions shown in Figures 3-14 and 3-15. These Steep

slopes mean a high gain in the feedback of the iteration process, which
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leads to numerical stability problems. The convergence difficulty with
this example occurred at frequencies near the "kinematic" mode of the

new wheel frequency where amplitudes large enough to cause flange contact
occur. At other frequencies flange contact did not occur, and there the
algorithm converged within 3 or 4 iterations.

Several approaches were tried to improve numerical stability in this
region. In the direct substitution algorithm, the percentage of the
difference between new and old values was reduced. At small percent-
ages, near 1 percent, the range of stability increased, but did not provide
convergence at all frequencies. The stability of the technique appears
to be strongly dependent on initial conditions. Convergence will occur
at some frequencies when the initial guess is close to the final solu-
tion, but will diverge for large differences between initial guess and
solution. To improve convergence smaller frequency steps were tried.
This provided a better initial estimate at each new frequency, and
increased the region of stable solutions. However, even frequency steps
as small as 0.001 Hz were not sufficient to converge throughout the
frequency range of interest.

The approximate Newton-Rapheson technique was more reliable than the
direct substitution method. To improve its numerical stability the change
in the independent variable was limited to a percentage of the estimated
value. Again, this improved convergence at the expense of computation
time but did not provide convergence at all frequencies. The most suc-

cessful technique found for applying the approximate Newton-Rapheson
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method was to initially use the full estimated value of the independent
variable, and if convergence was not obtained after a given number of
iterations to cut the step size of the independent variable to one-half

the estimate. This process was continued, cutting the step size by 50 percent
after running through a fixed number of iterations until the solution
converged, or a limit on the ndmber of iterations was reached. This

approach was considerably more reliable than the direct substitution
algorithms,

If one desires the quasi-linear response of a system with a "stiff"
nonlinearity as is found in the model of a wheelset with new wheels used
here, then a more sophisticated numerical iteration algorithm should be
considered. However, in some cases it may be possible to soften the
nonlinearity without compromising the integrity of the model. 1In the
wheelset, for example, the rail structure itself has some flexibility
that will reduce the effective stiffness. The small angle assumptions
used for the contact angle describing functions should also be replaced
with the trigonometric functions, a change that may increase the effec-
tive stiffness.

The Tateral wheelset amplitude vs. frequency relationship found for
a single wheelset with Heumann profile wheels by the approximate Newton-
Rapheson algorithm is shown in Figure 6-4. Better convergence is ob-
tained for this problem because the wheel/rail geometry functions for the
Heumann wheel profile are not as "stiff" as those for the new wheel pro-

file.
-176-



LATERAL

AMPLITUDE

10

10°2

1073

- HEUMANN WHEELS
| | lllll1| | | | |l|||| | | | ll[lll
107! 100 10! 102
FREQUENCY (HZ)
FIGURE 6-4. WHEELSET LATERAL RESPONSE WITH HEUMANN WHEEL PROFILES

-177-



6.3.2 Parametric Variations

The nonlinear sinusoidal response computed for the single wheel-
set revealed several interesting, and somewhat unexpected, character-
istics. In the new wheel response curves shown in Figures 6-2 and 6-3,
the second peak at about 3.5 Hz is well above the kinematic frequency
for this wheelset. It appears that this higher frequency resonance is
a large amplitude oscillation dominated By the contact of the flange on
the rail. One might think of this as analogous to the wheelset mass
oscillating on a stiff spring that represents the gravitational stiff-
ness of the rail. The high conicity at large amplitudes no doubt also
influences this mode. This interpretation of the high frequency peak
is borne out by the results of varying the rail alignment amplitude
discussed later in this section. At Tow input amplitudes, flange con-
tact does not occur at the higher frequencies, and the response drops
off rapidly, as one would expect in a linear system.

The sinusoidal response for the wheelset with Heumann wheel profiles
shown in igures 5-20 and 6-4 demonstrate the nonlinear character of the
system a bit more directly. The dips in this response curve directly
reflect the corresponding dips in the numerically computed wheel/rail
geometric constraint functions. Perhaps the most interesting aspect of
the Heumann response curve is that the single peak occurs at about 3.5
Hz, the same frequency as the high frequency peak found with new wheels.
This is not so surprising if we recall that both the Heumann and new

wheels have the same wheel/rail geometry describing functions at large
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amplitudes. Thus, this peak also corresponds to a flange contact oscilla-
tion of the wheelset.

The variation in wheelset response to changes in sinusoidal align-
ment amplitude revealed several characteristics typical of nonlinear
systems. Figure 6-5 depicts the wheelset lateral amplitude as a func-
tion of frequency for new wheels at two additional input amplitudes. As
mentioned above, the response at low input amplitudes is quite similar
to that of a linear system, as expected. At high amplitudes, however,
a jump resonance is seen at higher frequencies. This jump resonance,
simi]ar to that seen in a simple mass - hardening spring system, is pro-
bably due to the hardening character of the gravitational stiffness.

The wheelset lateral response to different input amplitudes with
Heumann profile wheels, shown in Figure 6-6, indicates similar results
to those found for the new wheel. At very high amplitudes the jump
resonance behavior does not appear, but it is evident at smaller input
amplitudes.

The friction levels in the parallel and series suspension connec-
tions were varied independently over wide ranges for the new and
Heumann wheel profiles. For these conditions, the variation in
friction Tevels had no perceptible influence on the response curves.
Thus, it appears that the wheelset response is dominated by the wheel/

rail geometry nonlinearities.

-179-



AMPLITUDE

LATERAL

NEW
VARYING

WHEELS

INPUT

TilITll

AMPLITUDE

T 11 11] I

-

t

T TTTI

| I A A T II | i\$\|1| | L — 1 | ll_J}
ok 10° 10’ 102
FREQUENCY  (HZ)
FIGURE 6-5. WHEELSET LATERAL RESPONSE WITH NEW WHEELS FOR TWO

INPUT AMPLITUDES

-180-



AMPLITUDE

LATERAL

[ | TR O T Ili

I

| L III‘

HEUMANN WHEELS

o4 l

N T I | | S - 1 l | I T N I ILl

o™

FIGURE 6-6.

10° 10'
FREQUENCY (HZ)

WHEELSET LATERAL AMPLITUDE IN RESPONSE TO SINUSOIDAL
INPUTS AT DIFFERENT AMPLITUDES WITH HEUMANN WHEEL
PROFILES

-181-



6.4 FREIGHT CAR EXAMPLE

The response of the nonlinear nine degree of freedom freight car
model described in Section 2 to sinusoidal roadbed alignment irregular-
ities was computed with the modified Newton-Rapheson algorithm. The
baseline values for vehicle characteristics in this study are given in
Table 2-3. In general, the algorithm converged more reliably for this
example than it did for the single wheelset. This may be due to the
greater filtering of the outputs from the nonlinear elements in this larger
system. Some convergence problems were encountered, however, always near
the system resonances.

The'resu1ts for the freight car with new wheel profiles, shown in
Figures 6-7, 6-8, 6-9 and 6-10, are similar to the wheelset results de-
scribed earlier. Figures 6-7 and 6-8 illustrate the front, rear, and car
body lateral amplitudes as functions of frequency when the suspension
friction level is reduced to zero, the rail alignment amplitude is 0.0133
feet (0.16 inches), and the vehicle speed is 50 ft/sec. The only ronlinearities
in this case, are the wheel/rail geometric functions. The dropout in the
truck response at about 5 Hz is due to the filtering effect of the truck
wheelbase on a response measured at the truck center. The dropout at
about 1.3 Hz is another matter. It appears, based on results for other
cases, that this dropout is really a jump from the upper to the lower
branch of the nonlinear response curve. The actual response curve pro-
bably appears as shown in the dashed 1ine on this illustration.

The car body response shown in Figure 6-8 appears quite similar to
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those found in a linear analysis. The numerous dropouts seen

in this figure are due to filtering at wavelengths corresponding to
twice the truck center distance and its multiples. The first reson-
ance at about 2 Hz corresponds to one of the lateral/roll modes of
the car body on the truck suspension.

The freight car response at the same speed and alignment amplitude
with nominal values for the friction in the suspension is shown in Fig-
ures 6-9 and 6-10. The truck response, shown in Figure 6-9, differs from
the case without friction in that the jump behavior near 1.5 Hz is more
evident. Keep in mind that the algorithm does not necessarily seek the
most physically realizable branch of the response curve at each frequen-
cy. Consequently the jumps in the calculations from one branch to
another may not occur at the same frequency that would be seen for the
actual vehicle. For example, the response might continue on the upper
branch beyond the frequencies shown in this figure.

The car body tateral response shown in Figure 6-11 differs from the
response without friction in that jumps are quite evident at about 1.4
and 2.0 Hz, and the response at high frequencies, above 4 Hz, is nearly
a couple of orders of magnitudes higher. The latter behavior is to be
expected. Increased frequency increases the high frequency transmiss-
ibility. The two jumps correspond identically to the jumps in the re-
sponse of the front and rear truck. A close inspection of the truck and
car body response reveals that with, the nominal friction in the suspension,

the car body follows the trucks nearly identically except for the dropouts
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due to geometric filtering.

Results computed for smaller amplitudes showed, as one would
expect, less tendency to jump. The truck response to an input amplitude
of 0.00667 feet, for example, dropped off smoothly and continuously from
about 0.7 Hz.

The freight car response to sinusoidal alignment inputs when the
wheels have a Heumann profile is shown in Figures 6-11 and 6-12. This
response, computed for the vehicle with nominal friction in the suspen-
sion and an alignment amplitude of 0.00667 feet (0.080 inches), is similar
to the response computed for the single wheelset with Heumann wheel pro-
files. The peak frequency here is somewhat lower than that for Ehe
single wheelset, due to differences in the vehicle characteristics.
However, jump resonance is evident here that did not show up in the parti-
cular cases studied for the single wheelset. As expected, the track
response with Heumann profiles remains flat to a higher frequency than
with new wheels, due to the fact that the kinematic mode has a higher
frequency with the Heumann profile. Interestingly, the high frequency

response for the two cases is nearly identical.

6.5 SUMMARY

The computational feasibility of the quasi-Tinearization method for
determining nonlinear rail car response has been demonstrated. However,
additional work is needed to improve its reliability when the vehicle

contains hard nonlinearities. Methods that warrant investigation for
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this application include the many optimization search routines, the false
position method, and an improved Newton-Rapheson approximation that in-
cludes cross-derivatives of the search variables. As noted in Section 3,
the S-roots algorithm has been used with success for the freight car
rock and roll problem.

The example results calculated here illustrate the jump resonance
phenomena characteristic of certain nonlinear systems. These jumps
might account for the bursts of activity often seen in rail car test

data.
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/. ALGORITHMS FOR FORCED RANDOM RESPONSE

7.1 INTRODUCTION

Chapter 3 discussed the use of statistical describing
functions to predict the response of a nonlinear system subject to
Gaussian random inputs. Equation (3-23) defines the quasi-linear gain
for any memory-less single input-single output nonlinearity. Several
examples of typical rail vehicle nonlinearities (deadband spring,
hardening/softening spring, dry friction, parallel spring/dry friction,
series spring/dry friction, and wheel/rail nonlinearities) were defined
and their quasi-linearized approximation derived.

A sample example of a mass-damper-nonlinear spring subjected to
Gaussian white noise was analyzed to compute the spectral density and
r.m.s. value of the position variable. The r.m.s value was computed
using both frequency domain and time domain methods.

Finally, in Section 3, the nonlinear wheelset subject to Gaussian
random alignment inputs was analyzed by means of describing functions.
Equations (3-87 to 3-89) are the quasi-linearized equations for the wheel-
set with nonlinear suspensions and a deadband spring to model flange
contact. Equation (3-90) is a standard spectral density that is often
used to model typical random alignment irregularities.

The purpose of this chapter is to illustrate how statistical des-
cribing functions can be applied to analyze a nine degree of freedom
freight car subject to Gaussian random alignment irregularities.
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7.2 STATISTICAL RESPONSE ALGORITHM

This section describes an algorithm that was developed to compute the
statistical response of the full freight car model defined in Table 2-2.
This nine degree of freedom model is described in detail in Section 2.
Either the time domain or frequency domain approach could be used. How-
ever, it was decided to use the frequency domain method outlined in

Sectijon 3 becuase:

1) The size of the matrices in the time domain method are 2n x 2n
where n is the number of degrees of freedom whereas the fre-
quency domain matrices are nxn. For n=9 the difference is
appreciable.

2) The alignment inputs to the 4-axle vehicle appear as time de-
lays to the trailing wheelsets. Time delays are handled more
easily in the frequency domain.

3) Most descriptions of the irregularity inputs are in experimental
spectral density form. Although they can be modeled in the time
domain for rational spectra they are handled easier in the fre-
quency domain

4) The state space approach yields only the mean square values, the
spectral density has to be computed separately.

5) The algorithms for frequency response and statistical response
can use the same basic input-output programs if the statistical
response is done in the frequency domain thus eliminating un-
necessary duplication.

7.2.1 Rail Vehicle Quasi-Linear Equations

The quasi-linear equations of motion for the lateral behavior of a
rail vehicle may be expressed in the following form.

(39 + oIy v+ [Klp p v = (Bl p U+ (Bl ¢ u (7-1)
where [D]D.F.’ [K]D.F.’ [B1JD.F.‘ [BZJD.F. matrices contain constants and
describing function gains. The alignment input enters the equations
of motion through the wheelsets. If a single car is considered
there are four wheelsets and thus four inputs tc be considered. The
input to each trailing wheelset is just the input to the leading wheelset

delayed by the time it takes for each wheelset to reach the same point
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in the rail. Thus the four inputs to the rail vehicle can be ex-

pressed as:
[uy (t) ‘
lup (8- 1)
u(t) = o (¢ - Tz)I
CE

or using Laplace transforms with s = juw:

T
e-T]ij
|

u(s) = frpde|  up(de) & By up(Ge) (7-2)

_e-T3J“:
where Ty» Ty Ty are the time delays between successive wheelsets and
u is the 4x1 vector of rail alignment inputs. If we take the Laplace

transform of (7-1) using (7-2):

-1
X(Jw) = [[K]DF = wz[M] + Jw[D]DFJ I:[BZJDF + jw[B]]D.F. _B_3u'| (J’k‘)]

_I

H(Jw) u; (Jw) (7-3)
where H(jw) is the transfer function vector.

The describing function gains within H(jw) are functions of
the rms values of the inputs to each nonlinearity. For the freight car
model used there are twelve rms values that must be computed in order to

determine the D.F. gains. These variables can be expressed as a linear

combination of the position vector, Y, and the velocity vector, i} i.e.,
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Z,(ju) = [e(im)]y y(u)e 1 =100, 02 (7-4)

where Zi is an input to a nonlinearity and [c(jm)]j is a 1x9 complex

vector that relates Zi to y. Using (7-3) and (7-4) yields:

Zi(jw) [C]'i H U] (Jw)

Hzi(jw) U](jw) ; (7-5)

Thus HZ (jw) is the complex scalar transfer function that relates the

.i
inputs to the nonlinearities to the rail alignment input. The relation-
ship between the output spectral density, ¢z-(w)’ and the input spec-

:
tral density is:

(Ju)| o, (w). (7-6)

o, = | J ¢Z_(w)dw : (7-7)

A typical form for ¢ (w) was given by equation (3-90):

0y, ) = KY (7-8)

where K and w, are determined experimentally for class 1-6 track [371].

7.2.2 Solution Procedure

The following algorithm can be used to solve for the system

rms response and spectral densities:
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1. Guess the values of o_ , . . . © . i.e., those rms
X 22
values that required to compute [D], [K]. [B]] and [82].

2. By computing H(jw) and thus HZ.(jw) over a range of
frequencies, compute 021, ;& ? 0212 using (7-7)

3. Compare the computed values of . to the guessed values,
and iterate until a consistent of]czi is obtained.

Figure 7-1 is a flow chart of this procedure.

7.3 FREIGHT CAR EXAMPLE

The procedure described above was applied to the nine degree of
freedom freight car model described in Section 2. The nonlinearities
included in this model are the wheel/rail contact forces (gravitational
stiffness, effective conicity) of each of the four wheels as well as
coulomb friction resistance to truck warp, lateral, and vertical motion.
The rotation of the truck bolster relative to the car body is modeled

also as dry friction.

The numerical values for the North American Freight car are given
in Section 2 (Table 2-4). These values were used along with the
statistical describing functions for the wheel/profile geometry (Fig-

ures 3-14, 3-15) of a new AAR wheel on a typical worn rail.
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MAIN

Reads All Input Data (Vehicle Parameters, Track
Parameters, D.F. Tables, Frequency Range of Interest, oio acs ()

Prints and Plots Output Data (rms values, spectral
densities)

|
\

FCFRSP

Computes transfer functions and spectral demnsities
for z .
1’ 12

Compute OZ sy was O by integrating spectral densities

1 212

Iterate until all OZ converge

i
* N
v ]
Invert FCDE
Computes Inverse Sets up [M], [K], [DI,
of and [B] matrices
2 .
[K]-w"[M] + jw[D]
4
DSF4 =1 LDP4
Computes all Interpolates descring
describing function function tables
gains -

FIGURE 7-1. FLOW DIAGRAM AND SUBROUTINES USED IN
STATISTICAL RESPONSE COMPUTER PROGRAM
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The nine degrees of freedom for this model are:

Yy =¥ T Lateral displacement of front truck
Yo = eTF = Yaw angle of front truck

Ygq = GWF = Warp angle of front truck

Yy =Yg T Lateral displacement of rear truck
g = GTR = Yaw angle of rear truck

Ye = GWR = Warp angle of rear truck

Yo = Yo O 7 Lateral displacement of car body
Yg = ec = Yaw angle of car body

Yg = ¢C = Rol1 angle of car body.

In order to evaluate the describing functions for the nonlinearities

we need to compute 12 r.m.s. values. They are:

Z] = Y1F + L] eTF ~Yp1 T wheelset displacement
22 = Y1 - L] eTF " Ypp T Wheelset displacement
23 = Y1R + L] eTR - Yp3 T Wheelset displacement
Z4 = YR + L] eTR ~ Ypa T Wheelset displacement
25 = }C + hZ éc + LZ éc - &TF = Velocity across friction damper
26 = déc = Velocity across friction damper
Z7 = 'éwF = Velocity across friction damper
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Velocity across friction damper

Zg = 8. - O = Oy

9= Ve + hZ ¢C - L3 ec - YR T Velocity across friction damper

™~
i

velocity across friction damper

I
a.
=

1]

Velocity across friction damper

|
1
D -
1"

12 = ec - eTR . ewR velocity across friction damper

As described in the previous section the r.m.s. values of these
12 quantities were guessed and then evaluated by equation (7-7). This
process was continued until convergence was obtained, i.e.,
(Ozi)guessed - (Ozi)computed .

The following approximate track alignment spectral density inputs

were used {equation 7-8):
5

Class 4 track: K = 9.9x10 ° rad. ft.
Class 5 track: K = 2.47x10—5 rad. ft.
Class 6 track: K = 1.1x10'5 rad. ft.

It was assumed that the vehicle was traveling at a constant forward
speed of V = 50 ft/sec, and that the break frequency (wo in eqn. 7-8) is
approximately zero. Figure 7-2 shows the lateral acceleration spectral
densities for the car body c.g. for the class 4, 5, and 6 inputs.

Table 7-1 shows some of the r.m.,s. values of the freight car,

TABLE 7-1. NUMERICAL RESULTS FOR FREIGHT CAR R.M.S. VALUES
Track Class

4 5 6

[¢§]

= I

~ yc(g s)|.09|.04| .03
-

5 Zyling) |21 a2
£ .

K 22(1n.) .80 | .42} .29
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where Z] is the leading wheelset relative displacement and 22 is the
second wheelset relative displacement. Note that in the rough track
case (Class 4) that the second wheelset's r.m.s. value is extremely large.
It is clear from these r.m.s. displacements that a nonlinear analysis

is required.

7.4  SUMMARY

An algorithm for computing the statistical response of a nonlinear
rail vehicle subject to random track inputs was demonstrated. The
algorithm was applied to a nine degree of freedom freight car model

and rapid convergence was obtained.
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8., SUMMARY AND CONCLUSIONS

This report has demonstrated that describing function analy-
sis can be successfully applied to rail vehicle analysis and design.

The results have indicated that:

1 Quasi-linearization permits application of linear
frequency domain, eigenvalue/vector, and state
space methods to nonlinear rail system dynamics
problems.

2 There are significant computational advantages to
be gained using quasi-linearizations both for simple
(e.g. wheelset) and higher order (e.g. nine D.0.F.
Freight Car) dynamic models.

3 The parametric studies indicate that the wheel/rail
profile and suspension nonlinearities must be in-
cluded for analyzing medium to Targe amplitude rail
vehicle performance.

4 Quasi-linearization computational algorithms for
predicting rail vehicle hunting, forced sinusoidal
response, and forced statistical response can be

formulated and applied both for simple and higher
order rail vehicle dynamic models.

Section 2 described typical rail vehicle nonlinearities in-
cluding suspension, wheel/rail geometry, wheel contact forces, as well as
the nonlinear differential equations of motion for a suspended wheel-

set and a nine degree of freedom freight car model.

Section 3 presented the fundamentals of quasi-Tinearization in-
ctuding sinusoidal input describing functions and random input des-
cribing functions. The single input describing function (SIDF) was
used to calculate the critical speed (speed at which hunting occurs) of
the wheelset and also to predict the forced sinusoidal response of the
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wheelset. The method was extended to include all singly periodic sys-
tems. The response of a freight car to periodic cross-level inputs
was computed via a multiple input describing function. Finally, the
response of the nonlinear wheelset to a random alignment input was

computed by use of the Gaussian statistical describing function.

Section 4 discussed two algorithms for computing the hunting
behavior of rail vehicles. The first was an optimization algorithm
that was presented and applied to the nonlinear wheelset. The
second was the eigenvalue/eigenvector method that was presented and

applied to the nine degree of freedom model.

Section 5 used these two algorithms to parametricai]y study the
wheelset and freight car model. The optimization algorithm was
used to study the influence of axle load, track gauge, suspension
parameters, and wheel profile on the hunting behavior of the nonlinear
wheelset. The eigenvector/eigenvalue algorithm was used to study
the influence of wheel/rail profile geometry on the hunting behavior

of the nine degree of freedom freight car model.

Section 6 presented a numerical algorithm using sinusoidal des-
cribing functions to predict the forced sinusoidal response of the
nine degree of freedom freight car model. The algorithm was discussed

and numerical results presented.

Section 7 presented a numerical algorithm using Gaussian random
input describing functions to predict the spectral density and r.m.s.

response of the nine degree of freedom model. The algorithm was discussed
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and numerical results presented.

The quasi-Tinearization method appears to be a very powerful
analytical technique for predicting the response of rail vehicles.
In their present form the computational algorithms appear to offer
significant advantages over nonlinear digital simulation for the

computation of:

1) Unforced oscillatory motion, e.g. primary and
secondary hunting.

2) Forced periodic motion, e.g. freight car rock and
roll.

3) Forced statistical motion, e.g. response to ran-
dom alignment, cross-level, and surface irregularities.

Quasi-linearization is not intended to replace nonlinear digital
simulation, but rather to complement it during parametric analysis. It
should also be pointed out that digital simulation is appropriate when
transient dynamic phenomena, such as the response to frogs and switches,

is to be predicted.

The success of these preliminary investigations points to

the need for further research and development in the following areas:

1) Improve the coding of these algorithms and package
them in a form that would be convenient to a wide
range of industrial users.

2) Further validation and definition of the range of
application of the quasi-linearization results by
a direct comparison with nonlinear digital simulations
of rail vehicle hunting, forced sinusoidal, and stat-
istical response.
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3) The application of parametric studies on higher
order dynamic models to determine the influence
of wheel profile, axle-load, gauge, and suspension
parameters on general primary and secondary
suspension design.
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APPENDIX
REPORT OF INVENTIONS

The material presented 1n this report has been
thoroughly reviewed and does not contain patentable or copyrightable
material. The innovations reported in this document are of both an
analytical and a computational nature. The analytical innovations
are described in Sections 2 and 3 and concern the modeling of important

rail vehicle nonlinearities and their describing function representations.

The computational innovations are described in Sections 4,
5, 6, and 7 and concern numerical algorithms that are used to compute
1imit cycles, forced sinusoidal. and forced statistical response of
nonlinear rail vehicle systems. These algorithms can be used to analyze
and design rail vehicles including the effects of significant nonlin-

earities.
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