

U.S. Department of Transportation Federal Railroad Administration

TREAD METAL BUILDUP ON RAILWAY WHEELS -**Dynamometer Simulation**

Office of Research and Development Washington, D.C. 20590

DOT/FRA/ORD-

April 2003 Draft Report This document is available to the U.S. public through the National Technical Information Service Springfield, Virginia 22161

Disclaimer: This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of the report.

5. 2° 5

······································			
REPORT DOCUMENTATION PAGE		Form approved	
		OMB No. 0704-0188	
Public reporting burden for this collection searching existing data sources, gather comments regarding this burden estime Washington Headquarters Services, Dir 22202-4302, and to the Office of Manage 1. AGENCY USE ONLY (Leave black)	on of information is estimated to a ring and maintaining the data ne ate or any other aspect of this co rectorate for Information Operation ement and Budget, Paperwork Red ank) 2. REPORT DA April 2003	Pereage 1 hour per response, including the time for reviewing eded, and completing and reviewing the collection of inform llection of information, including suggestions for reducing thi s and Reports, 1215 Jefferson Davis Highway, Suite 1204, A luction Project (0702-0288), Washington, D.C. 20503 Test Report	instructions, ation. Send s burden to rlington, VA DVERED
4 TITLE AND SUBTITLE			
Trand Motel Duildur on Deilusu I	Wheele Demonstrate 0: 1	3. FUNDING NUMBERS	
6. AUTHOR(S)	Dynamometer Simul	DTFR53-93-C-00001	
Joseph Kristan and Dan Stone			
7. PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(E	S) 8. PERFORMING ORGANIZATION BEPORT NUMBERS	
Transportation Technology Cen P.O. Box 11130 Pueblo, CO 81001	ter, Inc.		
9. SPONSORING/MONITORING A	GENGY NAME(S) AND ADD	RESS(ES) 10. SPONSORING/MONITORING	AGENCY
Federal Railroad Administration Office of Research and Develop 1120 Vermont Avenue, NW Washington, DC 20590 11. SUPPLEMENTARY NOTES	iment		
	V STATEMENT		
This document is available th	rough National Technical	Information	
Service, Springfield, VA 22161			
IS. ABSTRACT			· ····································
Recent dynamometer tests on a con- testing at TTC. Additionally, the b magnetized. A dynamometer test n both typical and abnormal brake fu No metal pickup was observed on combination, do not appear to be s	nposition metal shoe with a hi rake shoes and wheels that dev natrix was created. The matrix inction as well as water spray any of the test wheels. The ufficient in them to produce w	gh metal powder content developed tread metal pick u reloped tread metal buildup during these tests became a included a range of brake application pressures to en n an attempt to influence the resultant friction. refore, brake shoe force, moisture, and magnetism a heel built-up tread based on the dynamometer tests co	ip during iulate lone, or ir nducted.
14. SUBJECT TERMS		15. NUMBER	OF
Tread Metal Buildup Dynamometer Railroad Wheel		PAGES	
		16. PRICE C	ODE
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION 20. LIMITATIO	N OF
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED SAR	
NSN 7540-01-280-5500		Standard Form 25 Prescribed by At	8 (Rec. 2-89) SI/NISO Std.

Approximate Conversions to Metric Measures

Symbol	When You Know	Multiply by	To Find	Symbol
		<u>LENGTH</u>		•
in ft yd mi	inches feet yards miles	*2.50 . 30.00 0.90 1.60	centimeters centimeters meters kilometers	cm cm m km
:		AREA		
ın² ft² yd² mi²	square inches square feet square yards square miles acres	6.50 0.09 0.80 2.60 0.40	square centimeters square meters square meters square kilometers hectares	cm² m² m² km² ha
	1	ASS (weigh	ıt)	
oz Ib	ounces pounds short tons (2000 lb)	28.00 0.45 0.90	grams kilograms tonnes	g kg t
, 1 1		VOLUME		
tsp Tbsp fl oz c pt qt gal ft ³ yd ³	teaspoons tablespoons fluid ounces cups pints quarts gallons cubic feet cubic yards	5.00 15.00 30.00 0.24 0.47 0.95 3.80 0.03 0.76	milliliters milliliters milliliters liters liters liters cubic meters cubic meters cubic meters	៣! ៣! ៣ ³ ៣ ³
	IE	MPERATUR	E (exact)	
۰F	Fahrenheit temperature	5/9 (after subtracting 32)	Celsius temperature	·c

METRIC CONVERSION FACTORS

.

Approximate Conversions from Metric Measures

Symbol	When You 'Know	Multiply by	To.Find	Symbol	
		LENGTH			
mm cm m m km	millimeters centimeters meters meters kilometers	0.04 0.40 3.30 1.10 0.60	inches inches feet yards miles	in in ft yd mi	
		AREA			
cm² m² km² ha	square centim. square meters square kilom. hectares (10,000 m²)	0.16 1.20 0.40 2.50	square inches square yards square miles acres	in² yd² mi²	
	4	AASS (weig	iht)		
9 kg t	grams kilograms tonnes (1000 kg	0.035 2.2 3) 1.1	ounces pounds short tons	oz Ib	
		VOLUME			
ml l l m ³ m ³	milliliters liters liters liters cubic meters cubic meters	0.03 2.10 1.06 0.26 36.00 1.30	fluid ounces pints quarts gallons cubic leet cubic yards	fl oz pt qt gal ft ³ yd ⁹	
TEMPERATURE (exact)					
·c	Celsius' temperature	9/5 (then add 32	Fahrenheit temperature	'F	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					

* 1 in. = 2.54 cm (exactly)

EXECUTIVE SUMMARY

There is a limited history of documented information on the formation of wheel tread metal buildup. The occurrence of tread metal buildup in service is infrequent. However, its presence can influence the performance and safety of the vehicle.

Recent dynamometer tests on a composition shoe with a high metal powder content developed slight tread metal pick up during testing at Transportation Technology Center, Pueblo, Colorado. Further, the brake shoes and wheels that developed the slight buildup became magnetized.

Thus, building on the available knowledge about tread metal buildup, a dynamometer test matrix was created. The matrix included a range of brake application pressures to emulate both typical and abnormal brake function as well as water spray in an attempt to influence the resultant friction.

No metal pickup was observed on any of the test wheels during this testing even though two high metal content brake shoes were included in the testing. Thus, even the slight metal buildup appears to be from metal transferred to the wheel tread, because under similar conditions the slight tread metal formation could not be reproduced. Therefore, brake shoe forces and moisture do not appear to be sufficient to produce wheel tread buildup based on the dynamometer tests conducted.

From these tests, it appears that the mechanisms that produce substantial tread buildup are possibly caused or catalyzed by wheel/rail contact and sliding. Wheel slides cannot be performed as part of the current dynamometer capabilities. Thus, additional research should likely address the sliding of the wheel on the rail as part of full-scale trials.

Valuable information was gained in the unsuccessful attempt to produce thread metal buildup through dynamometer testing. This information along with previous data has been critical in narrowing the likely sources of this defect. However, additional investigation is required to determine the source of the metal and the mechanism by which it is transferred to the wheel tread from the source.

ii

Ĵ.

Table of Contents

1.0	INTRODUCTION	.1
2.0	OBJECTIVE	.2
3.0	FIELD OBSERVATIONS & PRELIMINARY INTERPRETATION	.2
4.0	DYNAMOMETER TESTS	.3
	4.1 Test Matrix	.4
	4.2 Dynamometer Test Results	.5
5.0	DISCUSSION	.6
	5.1 Additional Tread Metal Build-Up Theories	.6
	5.2 Suggested Future Research	.6
Referer	nces	.7
Append	lix: Data for Wheels Removed from Service	

٦

1.0 INTRODUCTION

There is a limited history of documented information on the formation of wheel tread metal buildup. The occurrence of tread metal buildup in service is infrequent. However, its presence can influence the performance and safety of the vehicle as is obvious for the wheel shown in Figure 1.

In the early 1980s, the Association of American Railroads performed an on full-scale track brake shoe performance test at the Transportation Test Center (TTC), Pueblo, Colorado, that showed built-up tread to be associated with wet conditions.¹ Further, all of the different types of shoes in the brake shoe performance test had metal pick up, but each associated wheel did not necessarily pick up metal. Metal pick up seemed to be associated with hydroplaning (or at least a drop in the apparent coefficient of friction.) There was also no correlation between wheel location (R1, L2, etc.) and the presence of metal buildup.

In another study, Tse and Steets reported that the built-up tread problem could be attributed to malfunctioning quick service valves or high pressure spool valves, which caused the brake cylinder pressure to rise to high levels.² Additionally, studies by Canadian National have shown increased metal pick up during winter months.³

Recent dynamometer tests on a composition metal shoe with a high metal powder content developed tread metal pick up during testing at TTC. Additionally, the brake shoes and wheels that developed tread metal buildup during these tests became magnetized.

Thus, building on the available knowledge about tread metal buildup, a dynamometer test matrix was created. The matrix included a range of brake application pressures to emulate both typical and abnormal brake function as well as water spray in an attempt to influence the resultant friction.

Figure 1. Built-up Metal on the Tread of a Wheel

2.0 OBJECTIVE

The objective of this research was to produce tread metal buildup on wheels tested with Transportation Technology Center, Inc.'s dynamometer, while simulating conditions by which it forms in service. In an attempt to simulate these conditions, a test matrix was created that included a range of brake pressures to simulate proper and improper brake operation. Additionally, a water spray was added to the wheel intended to influence the friction between the wheel and brake shoe to emulate wet conditions.

The ability to produce tread metal buildup in the laboratory during dynamometer tests was intended to allow modifications to equipment and/or train handling to reduce the occurrence of this phenomena in service. The conditions under which tread metal buildup have been consistently observed to occur in service include rain and/or snow at times in combination with improper brake operation.

3.0 FIELD OBSERVATIONS AND PRELIMINARY INTERPRETATION

To characterize wheels that developed built-up treads in service with those that were removed without surface damage, 12 wheels were examined June 5, 2002, by Progress Rail Service, Corp. in Sydney, Nebraska. Tread profile, magnetism, surface roughness, and hardness were measured at various locations around the circumference of each wheel. The results of these measurements are shown in Table 1 and detailed in the appendix.

Tread profile appears to have no effect on the formation of built-up treads. Built-up treads typically have developed a level of magnetism that is an order of magnitude higher than wheels without metal pick up. Further, the level of magnetism appears to increase with increasing tread metal buildup. Wheels with built-up treads have a higher surface roughness. This may be associated with the fact that metal picked up on the brake shoe surface probably occurs before transfer to the tread. The metal imbedded on the surface of the shoe is probably the cause of the roughened tread. It is speculated that the rough tread surface may facilitate the transfer of metal to the wheel. The tread hardness is, in all cases, harder than the specified 321-363 Bhn of new Class C wheels due to work hardening from wheel/rail contact. The higher hardness of the investigated wheels is consistent between both the built-up tread and undamaged wheels tested as Table 1 shows.

Wheel Number	Built-up Tread?	Maximum Magnetism, Gauss	Tread Profile	Average Hardness, Bhn	Average Surface Roughness, µ inches
07534	No	6.0	Normal	519	25
07598	No	6.3	2 mm hollow	505	43
12222	No	4.9	2 mm hollow	460	28
15489	No	7.1	3 mm hollow	512	44
50469	No	7.3	2 mm hollow	501	169
53168	No	7.3	Spalled	430	78
Ave	rage	6.5		488	64.5
49933	Slight	3.9	2 mm hollow	538	186
51124	Moderate	7.5	Normal	556	68
Ave	rage	5.7		547	127
10988	Heavy	36.5	Normal	494	310
10989	Heavy	12.6	Slight wear	487	401
14073	Heavy	44.5	Normal	430	434
38299	Heavy	22.0	Normal	428	372
Ave	rage	28.9		460	379

Table 1.	Field Observations of Magnetism, Tread Profile, Tread Surface Roughness, and
	Tread Hardness of Wheels with and without Tread Metal Buildup

Tread Buildup Classification:

Slight = Less than 1-inch circumference: very minimal thin formation on wheel tread. Moderate = Less than 3 inches: beginning of formations that could influence wheel performance. Heavy = More than 3 inches: extremely large formations that would influence wheel performance.

4.0 DYNAMOMETER TESTS

A series of dynamometer tests were conducted to determine if tread buildup could be induced under a matrix of varying conditions of brake shoe force and moisture. Moisture was controlled and applied by a spray system that was capable of producing a fine spray at rates up to 800 ml/min. Figure 2 shows the spray system.

Figure 2. Dynamometer Spray Apparatus

4.1 Test Matrix

Fourteen dynamometer tests were performed, as Table 2 shows. Tests 1 through 7 were conducted at a constant speed of 20 mph with brake shoe forces varying between each of the tests from 400 to 10,000 pounds. Tests 8 and 10 were conducted at 20 mph with a 925-pound brake shoe force for 20 minutes followed by 20 mph with a 1,450-pound brake shoe force for 20 minutes and ended with a series of light braking stop tests from 80, 60, 40, and 20 mph using a 3,298-pound brake shoe force. These tests were designed in an attempt to produce metal pickup on the shoe and then subsequently deposit it on the wheel, as this may be a mechanism of occurrence. Test 9 was conducted at 80 mph with a 925-pound brake shoe force for 20 minutes followed by 80 mph with a 1,450-pound brake shoe force for 20 minutes, with a series of light braking stop tests from 80, 60, 40, and 20 mph using a 2,000-pound brake shoe force. Tests 11 through 14 were conducted at a constant speed of 20 mph using a variety of different brake shoes. Tests 13 and 14 employed test wheels that were pre-magnetized. The tests were again designed to produce metal pickup in the shoe with subsequent deposit on the wheel tread. Tests 6 through 14 also employed test wheels using a load of 7,500 pounds in an attempt to roughen the wheel tread surface.

Test Number	Brake Shoe Force (lb)	Test Time (min)	Water Flow Rate (ml/min)	Rail Wheel Load (ib)	Brake Shoe	Metal Pick Up
1	10000	4	800	0	H4	No
2	6000	20	800	0	H4	No
3	4000	30	800	0	H4	No
4	2000	50	800	0	H4	No
5	800	105	800	0	H4	No
6	800	96	800	7500	H4	No
7	400	120	800	7500	H4	No
8	925 1450	45 45	0 0	7500 7500	High Abrasion	No
9	925 1450	45 45	0 0	7500 7500	High Metal Content A	No
10	925 1450	45 45	0 0	7500 7500	High Metal Content B	No
11	1450	60	0	7500	H4 with Metal Pick up	No
12	1450	60	0	7500	H4 removed From service	No
13*	1450	60	0	7500	H4 with Metal Pick up	No
14*	1450	60	0	7500	H4 removed From service	No

Table 2. Built-up Tread Matrix. *Test wheels pre-magnetized

4.2 Dynamometer Test Results

No metal pickup was observed on any of the test wheels during this testing even though two high metal content brake shoes were included in the testing. Thus, even the slight metal buildup appears to be from metal transferred to the wheel tread, because under similar conditions the slight tread metal formation could not be reproduced. Therefore, brake shoe forces and moisture do not appear to be sufficient to produce wheel tread buildup based on the dynamometer tests conducted.

From these tests, it appears that the mechanisms that produce substantial tread buildup are possibly caused or catalyzed by wheel/rail contact and sliding. Wheel slides cannot be performed as part of the current dynamometer capabilities. Thus, additional research should likely address the sliding of the wheel on the rail as part of full-scale trials.

5.0 **DISCUSSION**

Examination of wheels that have formed metal buildup in service indicates the following:

- 1. Tread profile does not appear to be a factor in the formation of tread metal buildup.
- 2. Wheels with tread metal buildup have developed a surface roughness. However, it is unknown if this is a precursor of metal buildup or the result of brake shoe metal buildup.
- 3. Wheels with tread metal buildup have become magnetized. However, as with the case of surface roughness, it is unknown if this is a precursor of metal buildup or the result of brake shoe metal buildup. Further, the level of magnetism appears to increase with increasing tread metal buildup.
- 4. Dynamometer tests indicate that high brake shoe force and moisture are likely not sufficient to cause tread metal buildup.

5.1 Additional Tread Metal Build-Up Theories

A study of tread metal buildup was done at the University of Illinois at Urbana-Champaign (UIUC) during the 1980s that surmised that the metal pickup was, in fact, an alloy steel that was formed in situ, using iron oxides from the lining and wear debris from the rail and wheel.⁴ Carbonaceous material from the brake shoe binder resin and rubber particles provided the energy for this alloy formation. It was found that, after only two snow brake applications of 1 minute duration each, smelted alloy steel formed as thick as 10 millimeters. A sample of the metal pickup material was mounted to prepare a metallographic sample of the longitudinal or lateral cross section. The "grain" path is totally inconsistent with the possible rubbing paths. Elemental mapping of the metal pickup material showed that it had a composition that was different from the rail, the wheel, or the iron particles in the brake linings. However, other analyses of built-up material have shown the composition of wheel or rail steel. It is difficult to imagine that such a reduction proposed by the research at UIUC would produce a steel composition and not a higher carbon "pig iron" composition.

5.2 Suggested Future Research

Valuable information was gained in the unsuccessful attempt to produce tread metal buildup through dynamometer testing. This information along with previous data has been critical in narrowing the likely sources of this defect. However, additional investigation is required to determine the source of the metal and the mechanism by which it is transferred to the wheel tread from the source. It is obvious that the mechanism is more complicated than can be reproduced on the dynamometer using water spray and varying brake shoe forces and wheel speeds. Thus, if additional trials were to be conducted in the attempt to intentionally produce metal buildup on the wheel tread, track tests would likely be required with moisture added to the rail to allow significant wheel slip. The sliding of the wheel on the rail and the subsequent metal removal and wheel profile change are possibly contributing to the tread buildup mechanism and should be addressed in order to clarify this phenomenon.

REFERENCES

- 1. Anderson, G. B. W. P. Manos, and N. G. Wilson. "Brake Shoe Performance Test II," Association of American Railroads Research Report R-565A, December 1983.
- Tse, Y. H. and P. G. Steets. "Wheel Impact Detection Cost Savings and Safety through Management by Prevention," *Rail Transportation – 1996*, RTD Vol. 12, ASME, (New York, 1996) pp. 1-10.
- 3. W. Blevins, "CN Wheel Spalling and Shelling," *Proceedings of the 91st Air Brake Association Technical Conference*, (Chicago, 1999) pp. 98-102.
- 4. Personal communication with Harry Wettencamp, Prof. Emeritus, UIUC, October 2002.

Ï

ゴート ーノ

 $\left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\}$

Second Second

) \downarrow

 $\left(\right)$

APPENDIX

Data for Wheels Removed from Service

Wheel 07534 No Tread Damage

F.R.A. TREAD BUILD-UP TEST SURFACE CONDITION and HARDNESS READINGS WHEEL # 07534 Progress Rail Services Corp., Sidney, NE June 5, 2002

SURFACE CONDITION READINGS of TREAD FACE

Location	Near flange	Center	Near outer rim
0 degrees	056	053	029
45 degrees	027	039	018
90 degrees	033	024	035
135 degrees	098	075	039
180 degrees	027	051	043
225 degrees	026	023	058
270 degrees	066	024	021
315 degrees	019	040	025

HARDNESS READINGS (HB) of TREAD FACE

Location	Near Flange	Center	Near outer rim
0 degrees	522	540	511
45 degrees	526	529	444
90 degrees	503	511	535
135 degrees	383	487	471
180 degrees	430	577	492
225 degrees	427	510	404
270 degrees	424	467	529
315 degrees	531	531	501

TRANSPORTATION TECHNOLOGY CENTER, INC. Non-destructive Testing Report

DATE: June 5, 2002

INSPECTION SUBJECT: TEST WHEEL #07534 This is a test of a wheel which was selected at the Progress Wheel Shop in Sidney, NE for use on the F.R.A. TREAD BUILD-UP TEST (A1K1T1).

INSPECTION METHOD(S): This test was conducted using an RFL Industries, Model 750A, Gaussmeter, to determine if there is any residual magnetism in the various areas around the wheel.

FINDINGS: The gaussmeter charts are on an attached page, and show a chart for each of the following locations:

0 degrees. Flange rim around to tread rim. Gauss range read: -2.5 to +1.3 = 3.845 degrees. Flange rim around to tread rim. Gauss range read: -3.1 to +0.1 = 4.290 degrees. Flange rim around to tread rim. Gauss range read: -4.1 to +0.8 = 4.9135 degrees. Flange rim around to tread rim. Gauss range read: -3.3 to +0.6 = 3.9180 degrees. Flange rim around to tread rim. Gauss range read: -3.1 to +1.9=5.0225 degrees. Flange rim around to tread rim. Gauss range read: -2.7 to +1.1 = 3.8270 degrees. Flange rim around to tread rim. Gauss range read: -3.4 to +0.3 = 3.7315 degrees. Flange rim around to tread rim. Gauss range read: -2.6 to +0.7 = 3.3The maximum range of gauss in this wheel was from -4.1 to +1.9 or 6 gauss.

Wheel 07598 No Tread Damage

F.R.A. TREAD BUILD-UP TEST SURFACE CONDITION and HARDNESS READINGS WHEEL # 07598 Progress Rail Services Corp., Sidney, NE June 5, 2002

SURFACE CONDITION READINGS of TREAD FACE

Location	Near flange	Center	Near outer rim
0 degrees	150	043	047
45 degrees	128	091	026
90 degrees	122	045	026
135 degrees	114	041	039
180 degrees	112	024	023
225 degrees	144	034	025
270 degrees	106	018	026
315 degrees	107	048	040

HARDNESS READINGS (HB) of TREAD FACE

Location	Near Flange	Center	Near outer rim
0 degrees	529	520	538
45 degrees	540	548	526
90 degrees	494	466	458
135 degrees	456	518	463
180 degrees	518	533	515
225 degrees	497	436	482
270 degrees	555	503	585
315 degrees	439	520	459

TRANSPORTATION TECHNOLOGY CENTER, INC. Non-destructive Testing Report

DATE: June 5, 2002

- INSPECTION SUBJECT: TEST WHEEL #07598 This is a test of a wheel which was selected at the Progress Wheel Shop in Sidney, NE for use on the F.R.A. TREAD BUILD-UP TEST (A1K1T1).
- INSPECTION METHOD(S): This test was conducted using an RFL Industries, Model 750A, Gaussmeter, to determine if there is any residual magnetism in the various areas around the wheel.
- FINDINGS: The gaussmeter charts are on an attached page, and show a chart for each of the following locations:

0 degrees. Flange rim around to tread rim. Gauss range read: -1.8 to +0.4 = 2.245 degrees. Flange rim around to tread rim. Gauss range read: -2.5 to +0.5 = 3.090 degrees. Flange rim around to tread rim. Gauss range read: -3.2 to +0.6 = 3.8135 degrees. Flange rim around to tread rim. Gauss range read: -1.9 to +1.5 = 3.4180 degrees. Flange rim around to tread rim. Gauss range read: -3.3 to +1.0= 4.3225 degrees. Flange rim around to tread rim. Gauss range read: -4.5 to +0.6 = 3.8270 degrees. Flange rim around to tread rim. Gauss range read: -4.6 to +1.5 = 6.1315 degrees. Flange rim around to tread rim. Gauss range read: -4.6 to +1.5 = 6.1315 degrees. Flange rim around to tread rim. Gauss range read: -2.9 to +1.7 = 4.6The maximum range of gauss in this wheel was from -4.6 to +1.7 or 6.3 gauss.

Tip to Flange

Wheel 10988 Built Up Tread

F.R.A. TREAD BUILD-UP TEST SURFACE CONDITION and HARDNESS READINGS WHEEL # 10988 Progress Rail Services Corp., Sidney, NE June 5, 2002

SURFACE CONDITION READINGS of TREAD FACE

Location	Near flange	Center	Near outer rim
0 degrees	274	331	335
45 degrees	652	273	223
90 degrees	205	546	205
135 degrees	290	170	181
180 degrees	234	168	158
225 degrees	170	225	133
270 degrees	276	687	593
315 degrees	199	085	175

HARDNESS READINGS (HB) of TREAD FACE

Location	Near Flange	Center	Near outer rim
0 degrees	647	497	438
45 degrees	317	674	471
90 degrees	520	557	484
135 degrees	427	354	463
180 degrees	472	554	435
225 degrees	313	250	286
270 degrees	387	542	321
315 degrees	517	529	339

TRANSPORTATION TECHNOLOGY CENTER, INC. Non-destructive Testing Report

DATE: June 5, 2002

- INSPECTION SUBJECT: TEST WHEEL #10988 This is a test of a wheel which was selected at the Progress Wheel Shop in Sidney, NE for use on the F.R.A. TREAD BUILD-UP TEST (A1K1T1).
- INSPECTION METHOD(S): This test was conducted using an RFL Industries, Model 750A, Gaussmeter, to determine if there is any residual magnetism in the various areas around the wheel.
- FINDINGS: The gaussmeter charts are on an attached page, and show a chart for each of the following locations:

0 degrees. Flange rim around to tread rim. Gauss range read: -3.5 to +3.0 = 6.545 degrees. Flange rim around to tread rim. Gauss range read: -1.0 to +4.0 = 5.090 degrees. Flange rim around to tread rim. Gauss range read: -4.0 to +7.0 = 11.0135 degrees. Flange rim around to tread rim. Gauss range read: -28.0 to +8.5 = 36.5180 degrees. Flange rim around to tread rim. Gauss range read: -26.0 to +0.0 = 26.0225 degrees. Flange rim around to tread rim. Gauss range read: -5.0 to +0.0 = 5.0270 degrees. Flange rim around to tread rim. Gauss range read: -9.0 to +0.0 = 6.1315 degrees. Flange rim around to tread rim. Gauss range read: -9.0 to +0.0 = 6.1315 degrees. Flange rim around to tread rim. Gauss range read: -8.0 to +0.0 = 8.0The maximum range of gauss in this wheel was from -28.0 to +8.5 or 36.5 gauss.

Wheel 10989 Built Up Tread

F.R.A. TREAD BUILD-UP TEST SURFACE CONDITION and HARDNESS READINGS WHEEL # 10989 Progress Rail Services Corp., Sidney, NE June 5, 2002

SURFACE CONDITION READINGS of TREAD FACE

Location	Near flange	Center	Near outer rim
0 degrees	761	497	282
45 degrees	530	1091	311
90 degrees	238	392	184
135 degrees	231	290	213
180 degrees	187	258	149
225 degrees	232	212	196
270 degrees	271	211	815
315 degrees	317	261	154

HARDNESS READINGS (HB) of TREAD FACE

Location	Near Flange	Center	Near outer rim
0 degrees	371	632	460.
45 degrees	365	304	517
90 degrees	337	410	461
135 degrees	489	517	- 503
180 degrees	477	517	391
225 degrees	643	577	524
270 degrees	472	367	463
315 degrees	489	573	496

TRANSPORTATION TECHNOLOGY CENTER, INC. Non-destructive Testing Report

DATE: June 5, 2002

- INSPECTION SUBJECT: TEST WHEEL #12222 This is a test of a wheel which was selected at the Progress Wheel Shop in Sidney, NE for use on the F.R.A. TREAD BUILD-UP TEST (A1K1T1).
- INSPECTION METHOD(S): This test was conducted using an RFL Industries, Model 750A, Gaussmeter, to determine if there is any residual magnetism in the various areas around the wheel.
- FINDINGS: The gaussmeter charts are on an attached page, and show a chart for each of the following locations:

0 degrees. Flange rim around to tread rim. Gauss range read: -3.3 to +1.5 = 4.845 degrees. Flange rim around to tread rim. Gauss range read: -2.5 to +0.6 = 3.190 degrees. Flange rim around to tread rim. Gauss range read: -3.3 to +0.8 = 4.1135 degrees. Flange rim around to tread rim. Gauss range read: -2.2 to +1.0 = 3.2180 degrees. Flange rim around to tread rim. Gauss range read: -3.0 to +0.4 = 3.4225 degrees. Flange rim around to tread rim. Gauss range read: -2.9 to +0.7 = 3.6270 degrees. Flange rim around to tread rim. Gauss range read: -3.4 to +0.2 = 3.6315 degrees. Flange rim around to tread rim. Gauss range read: -2.8 to +1.5 = 4.3The maximum range of gauss in this wheel was from -3.4 to +1.5 or 4.9 gauss.

Wheel 12222 Slight Metal Build Up

Wheel #12222 a "No tread damage" wheel at Progress Wheel Shop

F.R.A. TREAD BUILD-UP TEST SURFACE CONDITION and HARDNESS READINGS WHEEL # 12222 Progress Rail Services Corp., Sidney, NE June 5, 2002

SURFACE CONDITION READINGS of TREAD FACE

Location	Near flange	Center	Near outer rim
0 degrees	107	022	077
45 degrees	022	022	027
90 degrees	099	020	038
135 degrees	086	049	068
180 degrees	079	017	024
225 degrees	100	022	043
270 degrees	096	041	030
315 degrees	128	030	053

HARDNESS READINGS (HB) of TREAD FACE

Location	Near Flange	Center	Near outer rim
0 degrees	589	452	494
45 degrees	531	487	497
90 degrees	513	407	561
135 degrees	463	438	415
180 degrees	533	405	455
225 degrees	518	453	464
270 degrees	464	511	417
315 degrees	520	527	571

TRANSPORTATION TECHNOLOGY CENTER, INC. Non-destructive Testing Report

DATE: June 5, 2002

INSPECTION SUBJECT: TEST WHEEL #12222 This is a test of a wheel which was selected at the Progress Wheel Shop in Sidney, NE for use on the F.R.A. TREAD BUILD-UP TEST (A1K1T1).

INSPECTION METHOD(S): This test was conducted using an RFL Industries, Model 750A, Gaussmeter, to determine if there is any residual magnetism in the various areas around the wheel.

FINDINGS: The gaussmeter charts are on an attached page, and show a chart for each of the following locations:

0 degrees. Flange rim around to tread rim. Gauss range read: -3.3 to +1.5 = 4.845 degrees. Flange rim around to tread rim. Gauss range read: -2.5 to +0.6 = 3.190 degrees. Flange rim around to tread rim. Gauss range read: -3.3 to +0.8 = 4.1135 degrees. Flange rim around to tread rim. Gauss range read: -2.2 to +1.0 = 3.2180 degrees. Flange rim around to tread rim. Gauss range read: -3.0 to +0.4=3.4225 degrees. Flange rim around to tread rim. Gauss range read: -2.9 to +0.7 = 3.6270 degrees. Flange rim around to tread rim. Gauss range read: -3.4 to +0.2 = 3.6315 degrees. Flange rim around to tread rim. Gauss range read: -2.8 to +1.5 = 4.3The maximum range of gauss in this wheel was from -3.4 to +1.5 or 4.9 gauss.

Wheel 14073 Built Up Tread

F.R.A. TREAD BUILD-UP TEST SURFACE CONDITION and HARDNESS READINGS WHEEL # 14073 Progress Rail Services Corp., Sidney, NE June 5, 2002

SURFACE CONDITION READINGS of TREAD FACE

Location	Near flange	Center	Near outer rim
0 degrees	318	203	142
45 degrees	250	360	216
90 degrees	212	427	506
135 degrees	1089	339	341
180 degrees	678	441	826
225 degrees	156	991	164
270 degrees	229	282	243
315 degrees	159	429	178

HARDNESS READINGS (HB) of TREAD FACE

Location	Near Flange	Center	Near outer rim
0 degrees	538	492	474
45 degrees	538	405	471
90 degrees	610	450	461
135 degrees	293	393	430
180 degrees	318	552	439
225 degrees	222	387	435
270 degrees	503	432	389
315 degrees	496	335	486

TRANSPORTATION TECHNOLOGY CENTER, INC. Non-destructive Testing Report

DATE: June 5, 2002

- INSPECTION SUBJECT: TEST WHEEL #15489 This is a test of a wheel which was selected at the Progress Wheel Shop in Sidney, NE for use on the F.R.A. TREAD BUILD-UP TEST (A1K1T1).
- INSPECTION METHOD(S): This test was conducted using an RFL Industries, Model 750A, Gaussmeter, to determine if there is any residual magnetism in the various areas around the wheel.
- FINDINGS: The gaussmeter charts are on an attached page, and show a chart for each of the following locations:

0 degrees. Flange rim around to tread rim. Gauss range read: -5.4 to +1.0 = 6.445 degrees. Flange rim around to tread rim. Gauss range read: -3.2 to +0.8 = 4.090 degrees. Flange rim around to tread rim. Gauss range read: -3.7 to +1.7 = 5.4135 degrees. Flange rim around to tread rim. Gauss range read: -3.3 to +0.5 = 3.8180 degrees. Flange rim around to tread rim. Gauss range read: -3.9 to +0.5 = 5.0225 degrees. Flange rim around to tread rim. Gauss range read: -1.7 to +0.8 = 12.0270 degrees. Flange rim around to tread rim. Gauss range read: -4.7 to +1.0 = 5.7315 degrees. Flange rim around to tread rim. Gauss range read: -5.0 to +1.2 = 6.2The maximum range of gauss in this wheel was from -5.4 to +1.7 or 7.1 gauss.

June 5, 2002 Progress Wheel Shop, Sidney, NE 0 to 135 degree readings Outer Rim to Tread Face Tread Face Ń m Ŷ Tread Ŋ Face to Flange Tip Flange Tip to Flange Rim ±25 425

F.R.A. TREAD BUILD-UP TEST

GAUSSMETER READINGS OF WHEEL #14073 (on axle #6767)

Wheel 15489 Thermal Cracks on Tread

F.R.A. TREAD BUILD-UP TEST SURFACE CONDITION and HARDNESS READINGS WHEEL # 15489 Progress Rail Services Corp., Sidney, NE June 5, 2002

SURFACE CONDITION READINGS of TREAD FACE

Location	Near flange	Center	Near outer rim
0 degrees	091	026	067
45 degrees	038	042	084
90 degrees	025	053	028
135 degrees	025	016	028
180 degrees	052	022	032
225 degrees	026	024	078
270 degrees	026	041	045
315 degrees	033	028	036

HARDNESS READINGS (HB) of TREAD FACE

Location	Near Flange	Center	Near outer rim
0 degrees	.479	506	542
45 degrees	513	602	643
90 degrees	411	453	538
135 degrees	421	510	587
180 degrees	474	522	550
225 degrees	486	448	577
270 degrees	472	484	464
315 degrees	554	569	577

TRANSPORTATION TECHNOLOGY CENTER, INC. Non-destructive Testing Report

DATE: June 5, 2002

- INSPECTION SUBJECT: TEST WHEEL #15489 This is a test of a wheel which was selected at the Progress Wheel Shop in Sidney, NE for use on the F.R.A. TREAD BUILD-UP TEST (A1K1T1).
- INSPECTION METHOD(S): This test was conducted using an RFL Industries, Model 750A, Gaussmeter, to determine if there is any residual magnetism in the various areas around the wheel.
- FINDINGS: The gaussmeter charts are on an attached page, and show a chart for each of the following locations:

0 degrees. Flange rim around to tread rim. Gauss range read: -5.4 to +1.0 = 6.445 degrees. Flange rim around to tread rim. Gauss range read: -3.2 to +0.8 = 4.090 degrees. Flange rim around to tread rim. Gauss range read: -3.7 to +1.7 = 5.4135 degrees. Flange rim around to tread rim. Gauss range read: -3.3 to +0.5 = 3.8180 degrees. Flange rim around to tread rim. Gauss range read: -3.9 to +0.5 = 5.0225 degrees. Flange rim around to tread rim. Gauss range read: -1.7 to +0.8 = 12.0270 degrees. Flange rim around to tread rim. Gauss range read: -4.7 to +1.0 = 5.7315 degrees. Flange rim around to tread rim. Gauss range read: -5.0 to +1.2 = 6.2The maximum range of gauss in this wheel was from -5.4 to +1.7 or 7.1 gauss.

Wheel 38299 Tread Metal Build Up

i

Wheel #38299 a tread damaged wheel at Progress Wheel Shop

F.R.A. TREAD BUILD-UP TEST SURFACE CONDITION and HARDNESS READINGS WHEEL # 38299 Progress Rail Services Corp., Sidney, NE June 5, 2002

SURFACE CONDITION READINGS of TREAD FACE

Location	Near flange	Center	Near outer rim
0 degrees	451	173	122
45 degrees	188	281	110
90 degrees	357	191	209
135 degrees	745	553	123
180 degrees	362	550	516
225 degrees	1284	326	581
270 degrees	422	334	380
315 degrees	307	570	254

HARDNESS READINGS (HB) of TREAD FACE

Location	Near Flange	Center	Near outer rim
0 degrees	576	499	472
45 degrees	348	482	333
90 degrees	469	374	450
135 degrees	430	366	423
180 degrees	394	455	438
225 degrees	497	383	455
270 degrees	396	472	397
315 degrees	415	390	415

TRANSPORTATION TECHNOLOGY CENTER, INC. Non-destructive Testing Report

DATE: June 5, 2002

- INSPECTION SUBJECT: TEST WHEEL #38299 This is a test of a wheel which was selected at the Progress Wheel Shop in Sidney, NE for use on the F.R.A. TREAD BUILD-UP TEST (A1K1T1).
- INSPECTION METHOD(S): This test was conducted using an RFL Industries, Model 750A, Gaussmeter, to determine if there is any residual magnetism in the various areas around the wheel.
- FINDINGS: The gaussmeter charts are on an attached page, and show a chart for each of the following locations:

0 degrees. Flange rim around to tread rim. Gauss range read: -4.4 to + 6.6 = 11.0 45 degrees. Flange rim around to tread rim. Gauss range read: -7.8 to + 4.8 = 12.6 90 degrees. Flange rim around to tread rim. Gauss range read: -6.0 to + 1.4 = 7.4 135 degrees. Flange rim around to tread rim. Gauss range read: -12.0 to + 2.2 = 14.2 180 degrees. Flange rim around to tread rim. Gauss range read: -2.4 to + 1.4= 3.8 225 degrees. Flange rim around to tread rim. Gauss range read: -1.0 to + 2.6 = 3.6 270 degrees. Flange rim around to tread rim. Gauss range read: -0.0 to + 5.0 = 5.0 315 degrees. Flange rim around to tread rim. Gauss range read: -0.0 to + 10.0 = 10.0 The maximum range of gauss in this wheel was from -12.0 to +10.0 or 22.0 gauss.

GAUSSMETER READINGS OF WHEEL #38299 (on axle #6767)

Wheel 49933 Tread Metal Build Up

J

F.R.A. TREAD BUILD-UP TEST

F.R.A. TREAD BUILD-UP TEST SURFACE CONDITION and HARDNESS READINGS WHEEL # 49933 Progress Rail Services Corp., Sidney, NE June 4, 2002

SURFACE CONDITION READINGS of TREAD FACE

Location	Near flange	Center	Near outer rim
0 degrees	338	073	154
45 degrees	058	066	137
90 degrees	499	066	303
135 degrees	125	069	145
180 degrees	115	137	150
225 degrees	155	086	314
270 degrees	099	103	158
315 degrees	070	231	075

HARDNESS READINGS (HB) of TREAD FACE

Location	Near Flange	Center	Near outer rim
0 degrees	. 486	491	591
45 degrees	415	453	513
90 degrees	400	494	332
135 degrees	529	589	540
180 degrees	494	610	479
225 degrees	442	585	612
270 degrees	424	569	455
315 degrees	458	518	486

TRANSPORTATION TECHNOLOGY CENTER, INC. Non-destructive Testing Report

DATE: June 4, 2002

INSPECTION SUBJECT: TEST WHEEL #49933 This is a test of a wheel which was selected at the Progress Wheel Shop in Sidney, NE for use on the F.R.A. TREAD BUILD-UP TEST (A1K1T1).

INSPECTION METHOD(S): This test was conducted using an RFL Industries, Model 750A, Gaussmeter, to determine if there is any residual magnetism in the various areas around the wheel.

FINDINGS: The gaussmeter charts are on an attached page, and show a chart for each of the following locations:

0 degrees. Flange rim around to tread rim. Gauss range read: -0.5 to +0.2 = 0.745 degrees. Flange rim around to tread rim. Gauss range read: -0.9 to +2.0 = 2.990 degrees. Flange rim around to tread rim. Gauss range read: -1.9 to +0.2 = 2.1135 degrees. Flange rim around to tread rim. Gauss range read: -1.1 to +0.1 = 1.2180 degrees. Flange rim around to tread rim. Gauss range read: -1.2 to +0.3 = 1.5225 degrees. Flange rim around to tread rim. Gauss range read: -0.4 to +0.9 = 1.3270 degrees. Flange rim around to tread rim. Gauss range read: -0.6 to +0.9 = 1.5315 degrees. Flange rim around to tread rim. Gauss range read: -0.5 to +0.6 = 1.1The maximum range of gauss in this wheel was from -1.9 to +2.0 or 3.9 gauss.

F.R.A. TREAD BUILD-UP TEST

Wheel 50469 Minor Tread Build Up

F.R.A. TREAD BUILD-UP TEST

F.R.A. TREAD BUILD-UP TEST SURFACE CONDITION and HARDNESS READINGS WHEEL # 50469 Progress Rail Services Corp., Sidney, NE June 4, 2002

SURFACE CONDITION READINGS of TREAD FACE

Location	Near flange	Center	Near outer rim
0 degrees	050	358	065
45 degrees	156	174	091
90 degrees	114	052	074
135 degrees	136	141	090
180 degrees	151	060	079
225 degrees	129	070	040
270 degrees	203	238	048
315 degrees	151	259	057

HARDNESS READINGS (HB) of TREAD FACE

Location	Near Flange	Center	Near outer rim
0 degrees	567	387	522
45 degrees	442	540	499
90 degrees	524	546	575
135 degrees	444	567	472
180 degrees	513	518	491
225 degrees	537	497	489
270 degrees	535	448	517
315 degrees	474	508	508

TRANSPORTATION TECHNOLOGY CENTER, INC. Non-destructive Testing Report

DATE: June 4, 2002

INSPECTION SUBJECT: TEST WHEEL #50469 This is a test of a wheel which was selected at the Progress Wheel Shop in Sidney, NE for use on the F.R.A. TREAD BUILD-UP TEST (A1K1T1).

INSPECTION METHOD(S): This test was conducted using an RFL Industries, Model 750A, Gaussmeter, to determine if there is any residual magnetism in the various areas around the wheel.

FINDINGS: The gaussmeter charts are on an attached page, and show a chart for each of the following locations:

0 degrees. Flange rim around to tread rim. Gauss range read: -3.3 to + 0.1 = 3.445 degrees. Flange rim around to tread rim. Gauss range read: -4.6 to + 0.0 = 4.690 degrees. Flange rim around to tread rim. Gauss range read: -4.7 to + 0.5 = 5.2135 degrees. Flange rim around to tread rim. Gauss range read: -4.5 to + 0.3 = 4.8180 degrees. Flange rim around to tread rim. Gauss range read: -3.6 to + 1.9 = 5.5225 degrees. Flange rim around to tread rim. Gauss range read: -5.4 to + 0.7 = 6.1270 degrees. Flange rim around to tread rim. Gauss range read: -5.4 to + 0.0 = 5.4315 degrees. Flange rim around to tread rim. Gauss range read: -4.8 to + 0.0 = 5.4315 degrees. Flange rim around to tread rim. Gauss range read: -4.8 to + 0.8 = 5.6The maximum range of gauss in this wheel was from -5.4 to + 1.9 or 7.3 gauss.

F.R.A. TREAD BUILD-UP TEST

Wheel 51124 Tread Metal Build Up

F.R.A. TREAD BUILD-UP TEST

F.R.A. TREAD BUILD-UP TEST SURFACE CONDITION and HARDNESS READINGS WHEEL # 51124 Progress Rail Services Corp., Sidney, NE June 4, 2002

SURFACE CONDITION READINGS of TREAD FACE

Location	Near flange	Center	Near outor rim
Doodton	riour mange	Center	Incal outer min
0 degrees	107	060	071
45 degrees	089	069	105
90 degrees	120	050	060
135 degrees	054	101	080
180 degrees	065	071	061
225 degrees	130	064	119
270 degrees	046	061	062
315 degrees	046	068	094

HARDNESS READINGS (HB) of TREAD FACE

Location	Near Flange	Center	Near outer rim
0 degrees	375	373	433
45 degrees	448	438	455
90 degrees	591	423	. 444
135 degrees	497	487	405
180 degrees	441	496	429
225 degrees	408	441	448
270 degrees	455	456	447
315 degree	367	398	439

TRANSPORTATION TECHNOLOGY CENTER, INC. Non-destructive Testing Report

DATE: June 4, 2002

INSPECTION SUBJECT: TEST WHEEL #51124 This is a test of a wheel which was selected at the Progress Wheel Shop in Sidney, NE for use on the F.R.A. TREAD BUILD-UP TEST (A1K1T1).

INSPECTION METHOD(S): This test was conducted using an RFL Industries, Model 750A, Gaussmeter, to determine if there is any residual magnetism in the various areas around the wheel.

FINDINGS: The gaussmeter charts are on an attached page, and show a chart for each of the following locations:

0 degrees. Flange rim around to tread rim. Gauss range read: -2.3 to +0.1 = 2.445 degrees. Flange rim around to tread rim. Gauss range read: -3.7 to +2.3 = 6.090 degrees. Flange rim around to tread rim. Gauss range read: -3.5 to +0.1 = 3.6135 degrees. Flange rim around to tread rim. Gauss range read: -5.2 to +0.1 = 5.3180 degrees. Flange rim around to tread rim. Gauss range read: -2.4 to +0.7 = 3.1225 degrees. Flange rim around to tread rim. Gauss range read: -2.5 to +1.1 = 3.6270 degrees. Flange rim around to tread rim. Gauss range read: -4.0 to +0.0 = 4.0315 degrees. Flange rim around to tread rim. Gauss range read: -4.0 to +0.2 = 4.2The maximum range of gauss in this wheel was from -5.2 to +2.3 or 7.5 gauss.

Wheel 53168 Built Up Tread

Wheel #53168 a tread damaged wheel at Progress Wheel Shop

F.R.A. TREAD BUILD-UP TEST SURFACE CONDITION and HARDNESS READINGS WHEEL # 53168 Progress Rail Services Corp., Sidney, NE June 4, 2002

SURFACE CONDITION READINGS of TREAD FACE

Location	Near flange	Center	Near outer rim
0 degrees	069	110	089
45 degrees	065	053	065
90 degrees	079	052	084
135 degrees	069	047	118
180 degrees	067	060	060
225 degrees	153	104	097
270 degrees	107	104	048
315 degrees	125	093	065

HARDNESS READINGS (HB) of TREAD FACE

Location	Near Flange	Center	Near outer rim
0 degrees	391	413	314
45 degrees	439	407	329
90 degrees	466	393	347
135 degrees	366	427	408
180 degrees	433	421	351
225 degrees	386	417	370
270 degrees	394	433	344
315 degrees	387	533	499

TRANSPORTATION TECHNOLOGY CENTER, INC. Non-destructive Testing Report

DATE: June 4, 2002

INSPECTION SUBJECT: TEST WHEEL #53168 This is a test of a wheel which was selected at the Progress Wheel Shop in Sidney, NE for use on the F.R.A. TREAD BUILD-UP TEST (A1K1T1).

INSPECTION METHOD(S): This test was conducted using an RFL Industries, Model 750A, Gaussmeter, to determine if there is any residual magnetism in the various areas around the wheel.

FINDINGS: The gaussmeter charts are on an attached page, and show a chart for each of the following locations:

0 degrees. Flange rim around to tread rim. Gauss range read: -3.1 to +0.7 = 3.845 degrees. Flange rim around to tread rim. Gauss range read: -3.3 to +3.7 = 7.090 degrees. Flange rim around to tread rim. Gauss range read: -2.9 to +0.5 = 3.4135 degrees. Flange rim around to tread rim. Gauss range read: -1.3 to +0.9 = 2.2180 degrees. Flange rim around to tread rim. Gauss range read: -3.6 to +0.2 = 3.8225 degrees. Flange rim around to tread rim. Gauss range read: -2.5 to +0.8 = 3.3270 degrees. Flange rim around to tread rim. Gauss range read: -2.4 to +0.0 = 2.4315 degrees. Flange rim around to tread rim. Gauss range read: -3.3 to +0.0 = 3.3The maximum range of gauss in this wheel was from -3.6 to +3.7 or 7.3 gauss.

-10.0 -20.0 -30.0

-20.0

سلىسى 0.0 ; .] _____) })

)

 $\Big)$