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PREFACE

The growth in the speeds and loads intensities at which
railroads are operated demand a further improvement in track
facilities. This important problem can be solved by the
installation of CWR track and long rails in stations
and as part of open track. In evaluating the possibility
of installing CWR track and long rails, and in solving the
problem of anchoring the track against creep, the calculation
of longitudinal forces and displacements is of great importance.
In the present work an attempt is made to fill an existing gap
in this very important area of railroad track analysis.

4

The basic results of this investigation are connected with
the operation of CWR railroad track; however, whenever
necessary they can also be applied to the calculation of lbngi—
tudinal forces and displacements in long rails, and in conven-

tional jointed track.

This work examines from a unified point of view questions
connected with the influence on the track of all types of
longitudinal forces, those produced by moving rolling stock
(creep) as well as those due to temperature changes of rails.
In so doing, the basic viewpoint of examining all longitudinal
displacements simultaneously is adopted.

A. F. Zolotarskii, Assistant Director of the
Institute

V. G. Al'brecht, Head of the Track and Track
Operation Section
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SUMMARY

The work is devoted to the theory of design computations for
track subjected to thermal and creep forces. The theory of
longitudinal forces and displacements arising in continuous welded
rail (CWR) track due to temperature changes is developed. (The
problem is solved in a general formulation which takes into account
the hereditary nature of tie.displacement processes; A solution
to the problem of finding the longitudinal forces and displace-
ments as random functions of distance along the track, is given
in the form of characteristic functionals.) A description of
results of experimental investigations of the operation of CWR
track is given, with the subsequent determination of parameters
and functions which characterize the behaviour of the track

under the influence of temperature changes.

An integro-differential equation, which describes the
relaxation of the 10ngitudinal.forces in CWR track, is 4
derived and solved for different forms of track deflection

and for different tie resistance vs. displacement relations.

Results of investigations of longitudinal forces in
CWR track in the zone of the moving train are presented.
(The equation for longitudinal displacements in a moving
train zone is derived, and its solution is given for the case
of frictional and elastic interaction between the rail and the

rail supporting foundation.)

The work contains an investigation of railroad track
stability. The problem is solved in a nonlinear formulation,
under the assumption that the rail is subjected to passive
distributed tangential and normal loads and bending moments,
without any restrictions on the dependence of these gquantities
on the corresponding displacements.



The work is illustrated by the construction of longitudinal
force-displacement diagrams, which facilitate the practical
application of the formulas presented for the analysis of the

operation of CWR track and of long rails.

The book is intended for engineers, scientific investigators,

and advanced students in institutes of transportation.

This is a translation from the Russian of "Prodol'nve
Sily v Zheleznodorozhnom Puti' by A. Ya. Kogan, published in 1967
as the 332nd issue of the Trudy Vsesoyuznogo Naucho-Isseledovatel'
skogo Institute Zheleznodorozhnogo Transporta, by the Izdatel stve

"Transport".




CHAPTER I

BRIEF SURVEY OF EXISTING METHODS FOR COMPUTING LONGITUDINAL
FORCES IN CONTINUOUS WELDED RAIL TRACK AND
ANALYSIS OF CONDITIONS FOR ITS STABILITY

Because of its technical and economic advantages,
CWR track is at the present time gradually beginning to
replace bolted track.

Bolted rail joints constitute the weakest part of the
superstructure of the present day railroad track. This
explains why since 1884 engineering thinking has been
continuously aimed at perfecting rail joints and decreasing
their number in the track.

The economic superiority of CWR track is determined
by the following factors: decrease in the amount of labor
required for track maintenance; diminished wear of rolling
stock; improvement of electrical conductivity of rail lines;
diminished resistance to train motion; improvement in paséenger
comfort; increased life of rails, ballast, and ties at or near
welded joints, because of decreased impact at these joints.

The initial cost of CWR track is somewhat greater than
the cost of conventional 12.5 and 25 meter rails, but it
is amortized comparatively quickly. The economic problems
pertaining to CWR track have been studied in the U.S.S.R.
and abroad by many specialists. Of particular importance
are the studies by Candidate of Technical Sciences V. Ya. Shul'ge.

Theoretical and experimental investigations of CWR track
have been made and are continuing in the U.S.S.R.

The first experimental section of CWR track was laid in
1933 at Podmoskovnaya, on the Kalinin railroad, by scientists
of the Moscow Institute of Railroad Engineers [38].

Operation of this experimental section has yielded data essential
to theoretical planning and to the solution of practical problems

in subsequent design of CWR track.



Several designs for CWR track were worked out in 1940
at the Scientific Research Institute of Ways and Construction,
but the track was not laid because of the beginning of the
war in 1941. Experimental investigations of stability of
CWR track were conducted in West Germany and in Japan.

Experience in operating CWR track shows that the rail
line is completely stable if specified conditions are observed
in the installation and maintenance of the track. However,
the stability problem has not been solved completely. Cases
of track buckling indicate the existence of certain critical
parameters which determine track stability. It is essential
to determine these parameters as accurately as possible, to
find how they are related to each other, and to construct in
the parameter space the regions of stability and instability.
Theoretical investigations have a great importance in connec-
tion with these problems.

A fairly complete account of the theory of thermal effects
on rails was given by Candidate of Technical Sciences M. T. Chlenov
in his book [38]. 1In 1948 Professor G. M. Shakhunyants proposed
a more refined method for computing thermal stresses in rails,
including the effects of the eccentricities of the forces [39].
Préfessor K. N. Mischenko [25] worked out a scheme for computing
the stability of CWR track based on the energy method. 1In
1952 Cand. Tech. Sc. A. A. Krivobodryi [22] propdsed scmewhat
different formulas for computing track stability. These were
based on the method of integral equations, and differ but
slightly from the formulas of Mischenko, since the only novelty
consisted in the method of solution.

Some questions pertaining to longitudinal forces in
CWR track with automatic stress relaxation were investigated
by Cand. Tech. Sc. M. S. Bochenkov.

In West Germany I. Wattmann has conducted some investigations
[8) devoted to longitudinal forces in railroad track.

In all the studies it was always assumed that all the

parameters and characteristics were constant along the track, and
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were obtained by averaging with respect to the stresses.

In view of the spreading use of CWR track, such an approximate
solution could not satisfy the demands of practice and called
forth new theoretical developments which are continuing to
this day.

Of the recent works devoted to methods of computing the
stability of thermally stressed track one must single out the
dissertation of Cand. Tech. Sc. C. P. Pershin. A number of
proposals were made in this work to improve the accuracy of
existing methods of computation. 1In the first place Pershin
discarded the assumption of constant parameters (obtained
by averaging with respect to the stresses) and instead solved
the problem assuming functional relations between the resistance
of the ties and their displacement, and of the rail fastenings
and their twist. Although the relationships were assumed
to be linear, the accuracy of the formulas was considerably ,
improved and the formulas obtained have a structure fairly
close to that of formulas obtained with nonlinear dependence
between track characteristics and deformations

Of particular importance in Pershin's work is the inclusion
of the effect of initial nonuniformities of the track on its
stability. However, the work also contains some inaccuracies.
Thus, for example, the slope of the curve defining the relation
between the resistance of the tie and the displacement is
assumed to be constant, in view of the assumption of linearity.
On the other hand, this parameter, one of the most important
in determining the zones of stability and instability of contin-
uous track, decreases by a large factor when the ties are displaced
by a few millimeters.

Furthermore, it is not so much the dependence of tie resist-
ance on its displacement in the ballast that is of interest.
Rather, it is the functional dependence between the force
transmitted by the rail to the tie and the displacement of the
rail which is important, since it includes the effect of the
intermediate fasteners. It is guite evident that the displace-

ments of the rail and of the ties 'are in general not the same



even with the strongest possible intermediate fasteners, and it

is the deformations of the rails which must be taken into account
in the computation, since they are the cause of the eccentricities
of the longitudinal forces.

In solving the fundamental problem Pershin did not make a
detailed study of the longitudinal forces in the track produced
by its deformations, and therefore, the relaxation of the longitudinal
forces connected with the curvature of the rails was not taken
into account.

In solving the stability problem for CWR track it has
been customary until now to consider the section of track
which is subjected to thermal stresses only. However, the track
is more likely to buckle laterally immediately in front or behind
a moving train, where the track characteristics can be weakened
by vibrations, which can partially eliminate the forces of dry
friction. 1In addition, rail creepage in the moving train zone
produces longitudinal forces due to the interaction of the elastic
rail with the supporting foundation. The interaction between
the track and rolling stock, connected with the production of
rail creepage, is of great importance and has been studied by
many épecialists in the U.S.S.R. and abroad. The fundamental
work devoted to rail creep is the monograph [1l] of Dr. Tech. Sc.
v. &. Al'brecht. |

The author of the present work has attempted to solve the
problem of longitudinal forces in the moving train zone assuming b

purely frictional and elastic interaction between rails and the

supporting foundation.

Making use of the force~-displacement diagrams constructed
for the moving train zone, once can solve the track stability
problem in this zone. Until now, the horizontal longitudinal
forces acting on the railroad track have been divided into two
categories. To the first category belong all the forces which
arise from temperature changes which tend to altcr the length
of the rails. The second category includes horizontal longi-

tudinal forces produced by the movement of the train, which
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tends to shift the rails in the direction of motion. It appears
to be worth while to attempt an examination of all longitudinal
forces from a unified point of view, irrespective of how they
are produced, based on the utilization of the continuity of the
longitudinal track deformations.

In order to be able to solve problems of stability and strength
of CWR track, it is essential to be able to determine the forces
produced in the track. A great deal of work of Soviet and
foreign scientists has been devoted to this extremely important
question. Particularly important progress has been made recently
in connection with the introduction of wider use of stochastic
methods. The credit for the utilization of the powerful methods
of moder probability theory in the design of railroad track
belongs to Prof. M. F. Verigo [10].

A large contribution to the development of design methods
for railroad track has been made by Professors N. T. Mityushin,
A. M. Godytskii-T. Svirko, K. N. Mishchenko, P. G. Koziichuk,

V. N. Danilov, K. P. Korolev, Candidates of Technical Sciendes
E. M. Bromberg, O. P. Ershkov, and many other Soviet scientists.

However, although methods for computing rail forces due to
transverse loads are well developed, methods for computing
longitudinal forces remain somewhat arbitrary until this day.
Until most recently all the work devoted to longitudinal forces
produced by increasing temperature was based on the assumption
that a uniformly distributed tangential load, due to frictional
forces between the rail and the foundation, acts on the rail.

In view of the increasing use of CWR track, the currently
employed methods for computing longitudinal forces are becoming
inadequate, since the thermally induced forces may reach a
significant magnitude - up to 100 tons and more in each rail line.

In designing CWR track it is also important to know the
magnitude of the oscillations of the ends of the lengths of con-

*
tinuously welded rail, the extent of the "transition" zone,

* Also referred to as the "breathing" zone. (Trans.)



along which the rail cross-sections undergo longitudinal displace-
ments, and the laws governing the variation of the longitudinal force
displacements, and the linear resistance* along the rail line.

In view of what has been said above, one can see the importance
of determining correctly the longitudinal rail forces caused by
temperature changes, or by the simultaneous action of temperature
changes and forces due to rail creep which results from the
rolling of the train wheels on flexible rails.

The laws of variation along the track length of the longitudinal
forces and track displacements are determined by the interaction
of the rails, fastenings, ties, and ballast. These characteristics
change not only with time but also along the length of the track,
in addition to which the character of the changes is, to a large
extent, random.

The random nature of the dependence of the linear resistance
on the point at which it is determined, is particularly evident.

If it is assumed that the resistance does not depend on time, nor
on the magnitude of the displacements of the rail cross-sections,
it will be seen to vary from point to point since each individual
rail tie has its own characteristics, while the reaction of the
fasteners and of the ballast to the displacement of the rail also
varies. Furthermore, the values of the linear resistance have

a large scatter, and averaging them yields values of qualitative

siénifican&aonly. Thus, the parameter values used by different

investigators in computations according to accepted formulas

differ from each other by large amounts. Errors of 30 to 40%

in the determinations of the parameters are considered acceptable.
In general, the linear resistance is a weakly correlated

function which, for practical purposes, can be considered to be

delta-correlated, since the characteristics of a tie in one cross-

section arc practically independent of the characteristics in

* The term linear resistance will be used tc denote the
resistance per unit length along the track. (Trans.)
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another cross-section.

The present level of the theory of stochastic processes
permits a complete solution of the problem posed above. The
theory of stochastic processes is one of the most rapidly
developing branches of probability theory.

Begun by Academician A. A. Markov, who examined discrete
stochastic processes (Markov chains), this theory attained its
definitive formulation after the appearance of the fundamental
works of A. N. Kolmogorov and A. Ya. Khinchin.

The theory of stochastic processes finds its application
in the most diverse areas of science and technology: medicine,
biology, cybernetics, communication theory, theory of elementary
particles, and many others. The application of the theory of
stochastic processes to the design of CWR track may be of more
general theoretical interest since time series are here replaced
by series of fandom values along the length of the track, which,
in the ideal case, can be considered to be infinitely long.t

When the problem is formulated statistically, the construction
of longitudinal force diagrams in CWR track can be related to
the theories of random walks and Brownian motion, which have
been treated quite extensively in modern physics (see Chapter II).

Finally, the investigation of hysteresis phenomena in the
displacements of the rail ends is of great interest in the solution
of problems connected with the design and operation of CWR track.
Many specialists have concerned themselves with the construction
of hysteresis loops when the ends of the rails undergo displace-
ments, and with the investigation of questions connected with
the existence of internal friction in the track. One of the
early, but sufficiently detailed, works is the book of
M. T. Chlenov [38].

Professors G. M. Shakhunyants and V. G. Al'brecht, Cand.
Tech. Sc. M. S. Bochenkov, and many other specialists in the

U.S.S.R. and abroad have studied the construction of diagrams of



displacement of rail ends with temperature. However, until the
present time questions connected with track hysteresis have been
solved under the assumption that the linear resistance acting

on the rail is constant along it. Such solutions can be considered
acceptable for short rails and simple* spike fastenings, in which
case the resistance is close to being constant, and the small rail
length guarantees a small absolute error in the computation of

the displacements of the rail ends.

The fastenings coming into use at the present time ensure
the application of 800 to 1000 kg to the clamps. Under these
conditions the rail is displaced together with the tie, and the
assumption of constant linear resistance is inaccurate.

The application of currently available formulas for the
calculation of the displacements of the end points of thermally-
stressed CWR track, taking into account the fairly large
"transition" zone, is of doubtful validity and can be used to give
only gqualitatively correct results.

At the present time CWR track has become a reality, and to
further expand its use it is essential to have more accurate
methods of computation. Consequently, there arises the necessity
of conducting a whole series of experiments, directed first
of all towards the determination of the statistical parameters
of %he track. A portion of this task was accomplished by the
author during the period 1957-1959. The problems examined in
this book were first worked out by the author before 1962,
and were described in a candidate's dissertation defended early
in 1963.

It is important to conduct precise experiments to determine
how the force transmitted by the rail to the tie depends on the
displacement of the rail. Until the present time only the
dependence of the tie resistance on the displacement has been
investigated. However, this relation does not take into account
the play and the elastic unloading in the intermediate fastenings,
and consequently cannot be used in the stability computation.

The longitudinal forces and bending moments are applied to the

* Fastenings which have no tie-plate and cannot be readily

disassembled will be referred to as "simple fastenings", to
distinguish them from "tie-plate fastening assemblies". (Trans.)

10
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rail and, consequently, it is only the dependence of: the forces
resisting the track buckling on the deformation of the rails
which is of interest, and not the dependence on the displacement
of the ties and ballast.

11






CHAPTER I

THERMALLY INDUCED STRESSES AND
DISPLACEMENTS IN CWR TRACK

l. Derivation of the differential equation for longitudinal
railroad track displacement.
In recent years the investigation of the character of the

distribution of longitudinal track forces, and of rail and tie

displacements induced by these, has acquired more and more importance.

This can be explained primarily by the expanding use of long rails
and of CWR track in railroads in the Soviet Union and abroad.
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Fig. II.l. Temperature induced displacement of the endstof a
string of welded rails
It is well known that in a string of welded rails it is only the
end sections which suffer displacement, the middle portion
remaining stationary, in a stressed state. Let us examine
half of a rail string am (Fig. II.l). Since the mid point will

not move when the temperature changes, it can be regarded as fixed.

Let p(x) be the resistance of the rail due to the supporting
foundation, and Py - the resistance in the joint bars (or in
the rail expansion joints). Let us suppose that the rail had been
laid unstressed, and that its temperature has been raised by
t°. If x is an arbitrary point sufficiently close to a free
end of the rail, then the elongation of the middle section mx,
produced by the temperature rise, will cause the end section of
the rail ax to be displaced along the ties, or to displace the
ties in the ballast. In each of these cases, the frictional
force P, at the end of the rail section a and the resistance

H
from the foundation (i.e. the integrated effect of the linear

13




a
resistance to the displacement of the rail) P = fxp(y)dy over

the segment ax, produce a force P, + PTr which opposes the elonga-

H
tion of the middle section mx. Cbnsequently, along the whole
segment mx and at the point x there arises a compressive force
gt Pnif the length of the middle section

can increase. As long as the compressive force at point x has

P with magnitude P

not reached the value Py + P_ the glongation is impossible
and, consequently, one can regard the rail over this section
as a compressed rod, with the stress increasing in proportion
to the rise in temperature.

When making computation for CWR track and for long
rails it is important to establish the magnitude of the displace-
ment of the ends of the rail strings, the size of the "transition"
zone, and how the longitudinal forces vary within it. To make
the computations it is essential to know the linear resistance
of the rail to longitudinal displacements, which depends on the
displacement of the tie along the direction of the track. On
crushed stone of 25 to 70 mm one can observe an increase in the
resistance when the displacement is 3 to 5 mm or greater. With
a worn spike fastener, the coupling between the tie plate and
the rail base is insignificant. As the rail increases in
lepgth, after the tie has been displaced by 2 to 4 mm, the rail
base begins to slide along the tie plate. The magnitude of the
linear resistance in this case is determined by the frictional
forces and is constant. With heavy duty fastenings, for example,
of type K, the displacement of the end of the CWR track leads
to a continuous change in the linear resistance: the larger
the displacement of a given section, the larger will be

the linear resistance

-] AT == Ak an
|
) t
L0 i (Lraf_

e N S

Fig. II.2. Equilibrium conditions of an element
of a #Btring of welded rails
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Let us solve the problem of constructing the longitudinal
force vs track displacement curve due to temperature changes of
the rails, assuming the most general relation between the resist-
ance of the ties to displacement and the magnitude of the
displacement. It will be supposed that both rail lines are in
the same state, so that the longitudinal forces and displacements
of both rails are the same in every section.

Let us consider an element 4x of a string of welded rails,
located between the center lines of two adjacent ties, and let
us determine its deformation due to the action of the temperature
and of the impressed forces (see Fig. II.2). As is well known,
the elongation of the element Ax due to the temperature change
is given by the formula

A)\t=at AX,

where Ay is the elongation in em due to a rise in temperatufe
of IOL

, o is the coefficient of linear expansion of steel;

t is the rise in temperature of the rail string from the

time it is installed in the track.

The elongation of the same element due to the action of

a longitudinal force P is determined, according to Hooke's Law,
from

1

) 2
where E is the modulus of elasticity of rail steel, kg/cm ;
i 2
and F is the cross~sectional area of rail, cm .
The total elongation of the element Ax produced by a
temperature change of t° and a tensile force P is
_ _ P
AN = AAt+AAP = at + 5F AX. (I1.1)
Since the track is subdivided into equal elements Ax, the
length of each of which is considerably smaller than the "transition"

2one, ratios of increments can be replaced by derivatives. Thus, -

dr __, X _ P
ax T rx Tt R (II.2)

15



Differentiation of expression (II.2) yields

dz i I dpP I AP

dx* TEF 'dx EF Ax’ (II.3)
where AP 1s the longitudinal force transmitted by the rail to the
tie.

The force 2AP, transmitted by the rails to the tie, depends
in general on the displacement of the rails in the section where
the tie is located, and on the initial displacement of the tie A*,
produced by previous displacements of the rails and characterizing
the state of contact between the tie and the ballast.

In earlier investigations [17], [18] it was always assumed
that the force transmitted from the rails to the tie depends
only on the displacement of the rails. Although this relation
was an improvement over previous methods, which assumed a
constant linear resistance, p (x) = const, at the surface of
contact between the rail base and the underlying foundation, it
constitutes only a particular case, appropriate to the first
loading of the system. Averaging with respect to A* yields
results of acceptable accuracy for Iongitudinal forces in
CAR track, but make it impossible to explain such important
phe%omena as the appearance of residual stresses when the tempera-
ture is first raised and then decreased, and the residual displace-
ments of the ends of the rail lengths produced by these stresses.

The quantity 2AP depends on many factors: the degree of
compression between the rail and the tie, the distance between
adjacent ties, their weight, ballast grade, degree of packing of
the ballast, etc.,; however, when the problem is formulated .
statistically, all these factors are taken into account indirectly.
An analytical representation of the result can be put in the form

®*
ap = 2 v (A2 )y (11.4)
2

*
where Y(A: A ) is, in general, a random function of two arguments,

16
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determined statistically by analysing experimental results.
Substitution of (II.4) into expression (II.3) yields an

equation for thermally induced longitudinal displacements,

S '
: YA e i) (I1.5)

dx* T 9FEF Ax

The relation (II.5) characterizes a random process of track
displacements produced by temperature changes. Since the deriva-
tive is the limit of the ratio of the increment of the function
to the increment of the argument, and the mathematical expectation
of the difference of two random quantities is equal to the differ-
ence of their expected values, the operations of differentiation
and taking the expected value can be interchanged. Consequegtly,

taking the expected value of equation (II.5) yields

LA BAMA 1 "
Mk _EME L Me 0., (II.6)

where

[~ -]

Mo, ) = § 9 (b 2" [ig0., 29)1dg (b A%),

—00

(I1.7)

*
where f[¢(Ai,Aj)] is the probability density of the random
. *
variable ¢(Ai,Aj), which can be considered statistically prescribed.
Since formula (II.6) determines the mean value of the random
. * *
variable ¢[A(xk),A (xk)] = ¢(Ai,Aj) for every value of x = Xy
R . . *
and the probability density f[¢(Ai,Aj)] is given, the process

*
P(X) = ¢[r(x),r (x)] is completely determined.
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The process is completely described by the characteristic
functional [30], defined by

I}‘p(.\')p(x)dx (11.8)
g, 1 ()] -—v-Mlc ’ ]

P 4
T —Jutnrptode
_—.:Se 0
-0

Ao M (), M ()1} dex),

where i = /=1, is the imaginary unit; u(x) is an arbitrary
function.

Let p(x) be a linear combination of n = [x/Ax] é6-functions;
here [x/Ax] denotes the largest integer less than or equal to
X/AX. Then ‘

) = ) = M8 (e— n &)

[ <]
d(x — nAx) = je”“”@”dh

1
2n
Taking into account the properties of the é-function, we

obtain
?

\ Pl w0 (50
g, 1 (x) =M[e ot J

Il- * n
[zzpnfé(x——nAx)poodx] [,zpnMnA”]
el "o =Mle!

(IT.9)

The quantity gp[p(x)] is the characteristic function of an
n-dimensional random vector p, with components pl(AX), pz(ZAx),
. pn(nAx).
It is evident that except for the multiplying constant

1/ax, the random components of the vector are
forces transmitted from the rail to the tie at the

8




discrete set of points x = Ax, X = 24X, ..., X = nAx. Thus,
in replacing the discrete process by a continuous one, its
statistical properties are completely preserved.

If a random function &(x,x*) is considered prescribed,
its variance is determined by a (nonrandom) function of the
arguments A and A*, so that 3y = aw(x,x*), or, going over to

the variable x, we obtain

Dy (0) =2 -5 00 1A (), A" (9]

[}

From their nature, the quantities Axp (nAk) and Axp (max)
are uncorrelated since the mean value of the random
variable w[k(mAx),k*(mAx)] does not depend on the value
taken on by the random functioﬁ w{k(x),k*(x)] at the point
X = nAXx.

In view of the above, the covariance matrix of the

n-dimensional random vector Txp takes the form

D,,,(Ax) 0 0 0 i
0 Dy (2040) 0 .. O \

iR pax (i AX, ] Ax)]= 0 0 D,;,(3)y) ... O
0 0 0 ven [)ng(fll.\.\’):

Now, let us examine the random function P(x), which represents
the longitudinal forces in the track. It is evident that the
magnitude of the longitudinal forces in the section x = nax

can be computed from the formula

P(x) = P(0) >.“ (k Ax) Ax. (11.10)
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The process under examination splits up into two. The first
one, P(0), is preécribed and represents a random variable with
the characteristic function gP(O)(v) = M[exp ivP(0)], where v

is an arbitrary parameter. Since the random variables ol(A X),

92(2AX) IR (gax) are independent and have the

characteristic functions (II.9), letting Hy=Ho =ecee= uq = v , and
taking into account the fact that when independent quantitites
are added their characteristic functions are multiplied, one can

compute the characteristic function of the random variable P(gax):

q
gPWM)(v) o gl'(”)(v) n gl.r;.'(v)'
S (II.11)

If the characteristic function gP(qAx)(v) is known, one
can use the inversion formula to determine the distribution

function of the random variable P(gAX):
o

1 - .
F[P(q Ax)] -z ﬂ \ pivl (a “)g/’(qu)(\') dv, (II . 12)

o«

The distribution function for P(gAx) can be determined
by ﬁaking the composition of the ‘distributions of the gquantities

in (II.10).
F[P(O)] = Fy, [lAxny(AY)) .- [y,

Letting
FENMYa, (230)] fa, .., [L\.\‘pq (g Av)] - [(I,
we obtain FIP(qAO] Forfrwfon favo ], (I1.13)
with frefy= § Fi@xpe— Ava) [, (Axp) d Axs, -

o
== { (@) (A, — Axa)) didsg,

-~
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Formula (II.13) is cumbersome for computing purposes, and
it is somewhat simpler to compose directly the distribution laws
of flaxp(kax)] ; however, the moments of P(gax) are easy to
compute once the characteristic function of (II.ll) is
known.

Indeed, expanding gP(qAx)(v) in a Maclaurin series, we obtain:

I3 ~ ‘V’ n v’i ’
g @on® = s (1 8 OV +8r, O g7+ o+ gra(0) +‘. ..

where 0 |
gr (O = [ FIP(qan1dF (P (g A0

—c0

gr,(0) = § P80 F[P(q 801 4F P(gA);

-

avt va=0

—co

25 (0) = S (5" enp(qm) F [P (g Ax)| dF [P (q Ax)].. ‘
q

Consequently, ® ({v)" aty

8pqan™) = i nl

where ®ng is the n-th moment at x = gAx.
Using the last equation, we can express the moments of the

distribution by means of the coefficients of the expansion of
9p (gax) (v) :

Cng = i“"g(,';"()q-_,,)(v) (I1.14)

Knowledge of the first three or four moments is sufficient
for practical purposes, and the first two moments have the greatest

significance.
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The covariance matrix of the n-dimensional vector ?L , with
components Axgpi(iAx) PR Axgpk(kAx), can be computed directly,
taking into account the fact that the covariance matrix of the
n-dimensional random vector Axp is known.

The formula for the covariance of a sum of random guantities
has the form [30]:

Kp, (mAx, mAx) = 5 ¥ K(iAx, j ), (II.15)

{=1 j==1

Thus, the required covariance matrix has the form:
”KPp (mAx, nAx)| ==
I)A 1\ (A.\') D_\XF (A.\') [)_\)\r‘ (Z\.\') I)A,\'.': (\\‘) y
2
F Dy, ((A%) X D, (i A)
1

e

w —[_\/c.v _.[

2

Dsy (Ax) X Dy, (£ Q)
]

3

2
Dix, (A%) X Dy (iA%) 3 Dirp (1AX) X Dy (0 A)
1 1

2 4
Dy (Ax) XDy (EAx) X Dy (EAx) 33D, (1 Ax)
1 1 ]

2 3 n
Dy, (Ax) 2;, D,y (i Ax) 2}] D, (i AX) DDy Av)
i

The variance of the random variable P(gax) with x = gix,

’
taking into account (II.10), is given by

q X '
Dy (x) = Dp (0) 4 D, Dy (i A) A x= Dp(0) - § D, () dx, (I1.16)
{==] 0
where Dp(x) = (l/Ax)DAxg(x).

Instead of the covariance matrix, it is convenient to use
the correlation function considering the process to be continuous.

Making use of the commutativity of the correlation function, we can

write r.
Dy(x)dx - Dp (0)  upn x> x,
K” (xh XQ) = x
[g Dy (¥)dx |- Dp(0) npu v, < x,. (II.17)

by analogy with (II.16).
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The general form of this function is shown in Fig. II.3.

Fig. II.3. Correlation function Kp(xl,xz) of the process
of variation of the longitudinal forces along the length of the
track.

Making use of the functional relation between the correlation
functions of integral and differential random processes, one dan
show that the correlation function of the process p(x) is given by:

02 Kp(xy, x2)

Koln )= g™

Taking into account the relation

0K p (x4, X2) - [ 0- np - Xg > X
0x, D, (x2) - upit xp < Xy

and making use of the integral representation of a step function,

=) 0 CMPH Xy >'x1
D, 6 (xg— x))d =[ !
ES b (X1) 6 (X9 — x1) dx; lDe (x2) upn xy<xy

and of the symmetry of the correlation function, we obtain

K, (xy, x2) = Dy (%)) O (xy—xy) ==
Co= Dy (xy)d (X1 — X3).

Thus, if we consider the procegs p(X) as continuous, the

(II.18)

external influences must be regarded as a series of elementary
impulses of infinitesimally short duration.
In the special case when Dp(x) = Dy the correlation

function Kp(xl,xz) depends only on the difference Xy = Xy and not
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on X; Or X, separately. Processes for which the correlation

function satisfies these conditions are stationary in the restricted
sense. A special feature of stationary processes is the possibility
of expanding them with respect to the spectrum of frequencies.

It is well known from the theory of stationary random processes
that the spectral density can be expressed in terms of the correla-

tion function by means of the relation.

[o o]
. 1
SP ((l)) = é’i 5‘ KP (x: -—_ xl) e—le (—x) d (.Vg e xl).
—c0

Substituting the relation Kp(xl,xz) = DOG(xz—xl) just obtained,
results in
D, [ D
S, (w) = 5111' S‘ 8 (xa—xJe— it (X — ) = -}r‘f.
~—00
*
Thus, when D (x) = DO , the random process p(x) represents

"white noise".

It should be noted that viewing the processes p(x) as continuousf
has a significance beyond the’mere fact that such processes preserve
the &ttatistical characteristics of discrete processes. For.
example, in examining a track on a continuous foundation, it is
found that the approximate relations become considerably more
accurate and permit a deeper understanding of the physical nature
of the processes. A process, which has a correlation function

of the form (II.18) is said to be delta-correlated, or uncorrelated.

For an uncorrelated disturbance,

Kp (%1, %2)
the mean square value is infinite, which
is evident from (II.18) if we set x;= Xx,. %}/%
Consequently, such a disturbance has _____i-_m_ :
infinite energy. This result is a mg' e

consequence of idealizing the proper-

Fig. II.4. Correlation
ties of the actual disturbance.

function K (xlxz) of the
process of variation along §
the length of logitudinal
24 forces per unit length.




Porve

ted Let us note that an uncorrelated disturbance can create a finite
‘te

:.ty response only if its mean square value is infinite. In order to

understand this, let us introduce the notion of specific energy

es of the disturbance, by which we will mean the energy developed

by the disturbance in a given section. If we now regard the

disturbance as a succession of contiguous elementary impulses

(with the amplitudes of the separate impulses uncorrelated), the

graph of the correlation function for the case Dp(x) = D, = const

d, will have the form illustrated in Fix. II.4. The area under the
curve represents the mean specific energy of the elementary impulses.

Finally, let us examine the random function i (x), which

represents the lorgitudinal displacement function along the track.
¢

In accordance with (II.l), one can write

. Ax q‘ ;
AMgAy)y=A0) -} alqgde- w5 N Py(kdx). (I1.19)
10us EF am k

The above process splits up into three, the first of which,
A(0), is given and represents a random quantity with the character-
istic function gx(o)(v) = M[exp ivA(0)], while the second is a
nonrandom furiction of the argument x = gAx. The covariance matrix

of the third process Ap = (Ax/EF) % P, (kax), which represents a
1

sum of dependent random quantities,. can be determined, Ly analogy

ted. with (1I.15), by means of the relations

Kopn B0 =5 3 3 K, (v ) - (11.20)

m lnr_
a R m n
:(Ax) Zz/}-’ K ({ Ax, j Ax).
m 14

Instead of the covariance matrix, it is more convenient

€ in practice to use the correlation function KA(xlxz), which can
ong
al
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be determined directly from the correlation function KP(xl,xz),
recalling that the latter describes a differential process with
respect to the process of displacements. Letting Q represent

the domain of the values of the arguments xland Xy 4 WE obtain,

in accordance with (II.17),

Kyp (%1, Kp (%1, x:) dx, dxy =

(EF) Y (11.21)

%21 Xy Xy
(EFVSJD ndxmf{DpthF ¥,y

+ % bF Kpoypo) X1 + EF pr(O) p(0) Xz -
+Dip(0)  mpn x> x

Xy Xy

(EF)zijp(x Ydxdx 4- D,:(O)(EF) _ X1 X2 +

+EF Kp (o), 2p (O)Xz+ pr . P (0 X1 -
+DAP(O) npn xp < Xy

It is easy t h i =
asy to show that the quantity KP(O),AP(O) KAP(O),P(O)

represents the covariance of the random variables P(0)
?
and A;(0). Indeed, taking the partial derivative of (II.21) with

respect to X0 we obtain

X

D, (x)dx ! "‘”A - K

(_[‘- [‘) (r I) E-‘I—I' CITRITN
(l
(‘){)— K)AP (xl, ,\’2) e . “I)ll X2>.\-1 ‘
A l 3
Xy N e Droo -
—Zae ) (W) d o) STE
([;F}-J e (el (L1 ! AA(U).Z.-'F/'((')
e xy << Xy
or, letting X=X, = 0,
2 Kip(0,0) - K K
0x, Ap Vs Y, ' AT PR Lp (0N, T/ Py
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0)

on the other hand,

pr (1, X) = —M [Ap (x1) Ap (x2)] =
— lim [ M [AP (% + h)p (-\'e)] M) e (x)] } _
R0 h )
- M [“m Ap (xy - I)—hp (\’]l (A'z)] _

h~0 h

[ 9 1
=M[a—xl‘(7w(;¥x)7~p(xz)}J:~ [ P(h)’»(xz)] Kp . (x1 1),
EF
i.e. the partial derivative with respect to the xlof the correlation
function of the process Ap(x) is the correlation function of
two processes: P(x)/EF and i(x). In the special case when
X = X, = O, we obtain

Ki,,, 00 =K,

EF F P(o) 1p(0)

where K = K is the covariance

P (0) /EF, A, (0) AP(O),P(O)/EF '

of the random quantities AP(O) and P(0)/EF. It is completely

evident that the same result can be obtained by differentiating

the correlation function KA (xl,xz) with respect to Xge In particular

P
the covariance is zero when the random variables AP(O)

and P(0) are independent. Finally, it is easy to see that the

guantity DA (0) in (II.21) is the wvariance of the random variable

P
AP(O), which is easy to verify by setting X; = X, = O in this formula,
anc taking note of the fact that DA (0) = K, (0,0).

P P
In accordance with expression (II.21), the variance of the

random function X (x) is equal to

~

D, (x) = S‘S D, (¥)dxdx 4 T I(T)) A 2K p o @ XL Di(0). (11.22)
0

X
LTy
(Ery

In the above formula, the subscript P on A is omitted since .

the total displacement process consists of two processes: the



random process AP with variance DA (x), and the nonrandom one
I
A (x) identically equal to zero, so that
t
D.(x) =D, (x) +D (x) = D, (x).
A AP At )\0

In the same way, one can omit the index P on A in (II.21),

At(x), with variance D

since the correlation functions of the sum of two random processes
are added and, at the same time, it is known that KA (xl,xz) = 0,
t
Sometimes it is more convenient to use normalized correlation

functions of the form

K, (x4, X3)

R, (xy, x,) = ,
4 ( 10 X2 VKP (x“ xl) KF (xz' xz)
Gy, X Kp (x5, x5)
R (xy, x2) — ,'
P («\1 X) V %, o) K,,_(xm =
Ry (xy, x3) == Ki (21, 2y

VKl (1, Xy) Kx (%2, x3) .
' Fig. II.5. Normalized correla-

tion function R, (x,,x.,) of the
process of varigti n 6f longi-
tudinal forces along the length
of the rail
The general form of the normalized correlation function of the
progess P(x) is shown in Fig. II.5. Since the random variable
¢(Ai,A;) depends on very many faétors: the extent to which the
rail is pressed into the tie, the weight, height, and width of
the tie, the distance between the ties, the quality of the ballast
and the degree of the packing, the dampness of the tie and of the
ballast, the air temperature, the presence of clay particles in
the ballast, and many other factors of approximately eqgual impor-
tance, there is every reason to suppose that this quantity has a

normal distribution. This hypothesis is substantiated by a series

of experiments conducted by the author.
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If one assumes the random variable ¢(Ai, A;) to be normally
distributed, it follows immediately that the centered process po(x)
is Gaussian, i.e. its n-dimensional probability density is normal
with respect to the variables pl(Ax), 02(2Ax),...,pn(nAx) and

can be computed by the formula [30]

fl. 2....n [.nl (AX)' (2 (QA\)v ey by (n \\)]

1 A ;
o e €Xp (._—§ > K“'/ gi (P M) o (/ A,\')) .
@ % VK] =

(I1.23)

The quantity |Kq| is the determinant of the correlation matrix

|B0Ax(iAx,ij)| . The quantities K;ij , which are elements of the
matrix inverse to the covariance matrix is obtained by solving the
2

n~ equations
0 npuisE*k

n
/§1 K""/ K‘T"’l‘ = [l npu i =£k°
Since the sums of normally distributed quantities are also

normally distributed, we can conclude that the centered processes
P°(x) and 1°(x) are also Gaussian. Its n-dimensional probability
densities can be determined from expressions, analogous to formula
(I1.23), for the n-dimensional probability density of the process
p°(x) replacing the covariance matrix lkpr(iAx,ij)Hand its

elements by the matricies ||KP (max,nax) || and [[K

(sax,rax)||
p -]

A
and their elements.

A random process is completely characterised by its character-
istic functional. Since the processes are normally distributed,

their characteristic functionals can be computed by means of the

formulas [30]
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i .
Ip (x) My (x) =58 (X) (x') Ky (v, x7) (II.24) S€
gl (0)] == ¢ = 3
p(x) Mj.(.t)-—-?lx(.\') ul(v)y Kp (x, n’). th
gr [P' (x)] =e ¥ '
1
Ip () Mylx) =i (xh o (67 K (v, x0)
alpx)]=e 2 - pe

. ch
Here ¢(x) is an arbitrary function, particular forms of which

tc
determine all the distribution laws of the random function. 1In
the special case when ¢(x) is given to be a combination of

n = [x/Ax] §-functions, the first equation of (IT.24), after

inverting by means of the Fourier integral, yields the n-dimensional

probability density of the quantities pl(AX),...,pn(nAx), described

by (II.23), the second equation yields the n-dimensional probability
Fr
distribution of the quantities Pl(Ax),...,Pn(nAx), and the third
th
equation, the n-dimensional probability density of the quantities
ne

Ay (Ax), Ay (2AN), . A, (n AY).
pr
In conclusion, let us note that the random variables eq

' *
¢[A(x1),k*(xl)] and ¢ [A(xz),k (x2)] may be statistically related. tF

Indged, the track may contain two types of ties, for example: pr
old and new ties, each of which has its own random function of
the tie resistance to displacement. Since the old and new ties occur
randomly on the track section in use, in addition to the probability
of occurrence of a new tie, determined by the fraction of the new
ties in the section, we must consider the probability of transi-

tion from a new tie in section x to a new tie in section x + Ax,

which we will denote by g. Corresponding to this, the probability

of transition from a new tie in section x to an old tie in
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section x + Ax will be equal to p = 1 - g. Under these conditions,
the probability of occurrence of resistaﬁce characteristics
pertaining to new ties and to old ties are connected by a Markov
chain. If the characteristics ¢(A,A*) are classified according

to more than two criteria, the probabkility of transition from

a tie with characteristic ¢i(x,x*) in section X to a tie with

characteristic ¢j(x,x*) in section x + AxX is determined by

el a Markov chain with transition matrix m,= ||pij | ¢(i,3 = 1,2,3,...,n),
4 where n is the number of criteria used to classify ¢(A,A*).
.Zét Let L. denote the matrix of transition across m ties.
e From the theory or homogeneous Markov chains [9], is is known
that this matrix is related to the matrix of transition to the
) next tie by means of L n? . For practical purpoSes the
probabilities of occurrence of any of the n functions ¢i(x,§f) are
equal after a passage across three ties. Consequently, in practice,
d. the linear resistance can be considered to be an uncorrelated
process, as noted earlier.
occur
lity
W
ty
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2. Solution of the equation of longitudinal track
displacements for the case of the first temperature
rise after the continuous welded rails are installed

in the track

For the case of the first temperature rise of the rail strings

*
after their installation in the track, it is evident that A (x) =
which corresponds to the absence of previous tie displacements
from their neutral positions. Consequently, (II.5) takes on the

form

g;;=:'§g%ja;¢(l’o) (1I.25)
To determine the function y(A,0) it is necessary to know
two relations: the displacement resistance wl(Gl) of the tie
(here 61 is the displacement of the tie in the ballast), and the
resistance w2(62) of a pair of intermediate fastenings located
on ?ne tie to the displacement of the rail along that tie (62

is the displacement of the rail with respect to the tie). It

should be noted that 6, + §, = A.

1 2
Fiqure II.6a shows the form of wl(él) for the case of wooden
ties of type IA, crushed stone ballast, and distance between ties

AX = 55 cm; Fig. II.6b shows the same function for wooden ties

of type IIA, sand ballast, and distance between ties 4x = 55 cm.
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Fig. II.6. Realizations of the random process of tie resistance

to displacement along the track in the form of functions of

displacement (Ax = 55 cm): (a) ties IA, crushed stone

ballast; (b) ties IIA, sand ballast.

The heavily drawn curves represent the expected value of the
function wl(él). The graphs show that the rate of growth of the
displacement resistance of the ties decreases with the growth of

the displacement, and that the resistance reaches a maximum yalue

for some displacement GJ = 6lmax' and stays approximately constant

as the displacement is increased further. This critical state is
characterized by the formation of a sliding surface in the ballast.
The resistance to displacement of a single unloaded tie consists
basically of the resistance due to the lower bed and of the resist-
ance to displacement of the ballast in the tie crib. Consequently,
the tie dimensions and the degree of packing of the ballast in the
tie crib have a large influence on the resistance to displacement.
In addition to the factors indicated above, the dimensions of
the tie crib play a decisive role. For a sufficiently large tie
crib, a displacement of the tie results in a displacement of the
ballast prism ABC (Fig. II.7), where the sliding surface is
determined by the condition of least resistance to displacement.

Usually, the angle aq of the sliding surface is about 30-33°. -

33



If all the ties are fastened to the rails in the same way
(which is true, for example, for the case of a multiple component
fastening of type K, or for a simple fastening if the rails are
anchored to all the ties), a decrease in the distance{between
the ties leads to a decrease in the resistance. Indeed, Fig. ITI.8
shows that even with the same sliding angle a, as before, the
volume of the displaced prism and the sliding surface area decrease

because of the preceding tie. Actually, the angle ey decreases,

which leads to a further decrease in the tie resistance.

TR DO D
— ‘ |

Fig. II.7. Formation of a sliding surface in the ballast
if the displaced tie is sufficiently far from the preceding one

Fig. II.9 shows the relation between the magnitude of the
tie displacement along the track and the expected value of its
resistance to displacement in medium grain sand ballast for

4

different sizes of tie crib. The curves are steeper for larger

sizes of tie crib.

Fig. II.8. Formation of sliding surface in the ballast
if the displaced tie is close to the preceding one
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8 % Fig. II.9. Mathematical expectation of the displacement
’ resistance of the ties vs displacement. (1}4%275 cm;
(2)ax = 55 cm; " (3) Ax = 50 cm
:Lse When the distance Ax between the ties exceeds 70-~75 cm, the
ballast is pushed out according to the scheme indicated in
Fig. II.7. Consequently, the function Wl(Gl) has the same form
. for all cases where the distance between the ties Axz 75 cm.

If the track is anchored against the action of longitudinal
forces in sectioné, these forces are not transmitted uniformly
to the ties in each section, as a result of which the average

e ‘utilization of the displacement resistance of each tie is
decreased. Experiments conducted at the Moscow Institute of
Railroad Engineers show that if the displacement resistance of
a single tie is taken to be 100%, the resistance of an anticreep

section consisting of two, three, four, or five ties will be

considerably less (Table 1).

Table 1
r-‘
Number of ties Resistance of the section Average utilization
in section to displacement as a per- of the resistance
centage of the resistance of each tie in the
of a single tie section,
1 100 100
2 156.6 78.3
3 202.2 78.3
4 244.8 61.2
5 298.5 59.7 -
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The maximum resistance of a three tie section corresponds
approximately to the resistance of two independently operating
ties. The resistance of a five tie section is approximately
equal to that of three ties, each equipped with an anticreeper.

These data are corroborated by practical experiences with
track anchored against creep.

In computing the longitudinal forces and displacements
in track fastened against creep in sections, we must take Wl(dl)
to be the resistance of the tie section divided by the number of
ties in the section. Similarly, W2(62) must be understood to
represent the resistance against rail displacements along the
track from the fastenings and anticreep devices in the tie
section, divided by the number of ties in the section.

The resistance of the tie to displacement depends vitally
on the degree of packing of the ballast. The importance of
tamping the ballast in the tie cribs for track operation can be
deffonstrated by determining the resistance after tamping the
ballast, and after packing it by tramping on it. -The maximum
resistance in the second case is only about 70-80% of the resist-
ance after tamping.

Let us note that in the absence of vertical loads the tie

resistance usually fluctuates in the following ranges: 800-1000 kg

per tie in crushed stone ballast, 600-800 kg per tie in sand ballastQE
Let us examine now in greater detail the function Wz(éz),

which represents the resistance to displacements of two_rails over

a tie. This function depends chiefly on the degree of compression
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between the tie and the rail and on the quality of the anticreep
devices, which is determined, in turn, by the type of intermediate
fastening, the type of rail anchor, and also the quality of track
maintenance. 1In a multiple component clamp fastening, which

assures a pressure force on each clamp of 800-1000 kg, the force
necessary to displace two rails over a tie exceeds 1000 kg. Under
these conditions the tie will be practically displaced together
with the rail, and the function ¥(1,0) is determined with sufficient
accuracy by the dependence of the resistance of the tie to displace-
ment, Wl(dl)z Wl(x). With a worn spike fastener, the force needed
for the displacement of two rails not fastened to the tie by rail
anchors, does hot exceed 200-300 kg. When 61 reaches the value

¢

) there will occur a sudden displacement along the surface

Imax’
of cohtact between the rail gnd the tie (tie plate), and if the
force is increased, the rail will be displaced with respect to
the tie.
To construct the function ¥(A,0) from the graphs of Wl(dl)
and WZ(GZ) one can use the following method. Assuming a certain
value of the force Wi(ki,o) transmitted from the rail to the tie,
let us compute the displacements 814 and 654 produced by this force.
The sum of these displacements yield the total rail displace-
ment, X = Gli+52i’ Thus, for every value of the function Y¥(i,0)
one can determine a value of the argument A, i.e. the graph of

the force transmitted by the rail to the tie vs. the rail displace-

ment is completely determined.
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It should be noted that the function WZ(GZ) assumes not only
the existence of dry friction between the rail and the tie plate,
but also takes into account the play in the fastenings, the elastic
unloading of the bolts and screw spikes, the compression of the
wood under the rail anchors, and many other factors, so that
w2(62) is, in general, a random function with a nonlinear
mathematical expectation. An especially large effect on the spread
of the values of w2(62) is produced by the nonuniform pressure
of the clamps and the fastening spikes, and also of the rail anchors
along the track. Consequently, the determination of the random
function ¥(A,0) from the random functions wl(él) and W2(62)
presents certain technical difficulties.

The author has conducted a series of experiments to determine
directly the graph of ¥(A,0) for a t;ack with wooden ties of type
IA on crushed stone ballast, with fastenings of type K, and
also for a track with wooden ties of type IIA on a sand ballast,
wigh spike fastenings and with the track anchored in sections
against longitudinal displacements (five ties to a - section).

The general form of these functions is shown in Fig. 1I.10, a

and b.
o yf.'x,o),kg—r— ;77 by, gk
500 7 (,é; ] 600 | — |
/]
v00 f- 400 |-
200 _ —_— 200 |.
¢ 5 10 15 Amm 0 5015 A

Fig. II.10. Realizations of the random process of force

transmitted from rail to tie vs rail displacement (Ax = 55 cm)!

(a) ties IA, crushed stone ballast, fastenings of type K
(b) ties IIA, sand ballast, aimple fastenings
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Comparing figures II.6b and II.1l0b, it is evident that
for the track with spike fastenings, the graph of the function
¥(1,0) is less steep than the corresponding graph for Wl(Gl).
This can be explained by the fact that the same longitudinal
force, transmitted from rail to tie, produces simultaneously a
displacement of the rail with respect to the tié, and a displace-
ment of the tie with respect to the ballast. For a track with
fastenings of type K, the difference between the graphs of
¥(x,0) and Wl(ﬁl) is less noticeable. This is explained by the
circumstance that the tie is displaced together with the rail.

For a fixed value of the displacement Ai’ the random
fuction ¥(x,0) is transformed into the random variable Wi(Ai,O),
the distribution for which can be obtained from experiments ;n
the usual way without any difficulty. The author's experiments
show that the distribution of the centered random variable
W;(Ai,O) is close to normal. The fact that the random variable
W;(Ai,O) consists of a sum of at least ten different factors with
comparable weights can serve as a basis for the adoption of the
normal law for its distribution. Since the random variables
W[l(xl)] and W[A(xz)] are uncorrelated, it is sufficient to know
the variance 3Y¥()) for every value of A in order to characterize
the random process p(x) completely.

Let us return now to the previously obtained equation (II.25)
Taking the expected value of (II1.25), we obtain

a M, 1
= gy Me (. 0). (II.26)
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Equation (II.26) can be integrated by quadratures. Indeed,

multiplying both sides of the equation by 2(dMA/dx), we obtain

M, a2 M, 1 dM r

— ) — L S—— 0
2‘dx dx? EFAx b )

or, in terms of differentials,

dMiy? | (. 0) dM;
d( dx) = fFar k. 0 dM,

from which
My

("’_M*)2 - -ﬁ,'_j-; j Mg (h, 0) A cy.

{)4

One can solve the last equation for the derivative

M e i
o B Tr?\?j My (A, 0)dM, -1 ¢, .

M,

Separating the variables in this expression, we obtain

My

x + 02 T g Ai;"—"'?;};_‘: TILLIII I I T T e

]/ ”A g My (A, 0)dM, - ¢,
? My,

For boundary values we must take the following:

dM,

) Mp
! dx

= al -}- EF

X=X,

My

=20,

X=3Xxg

x==x,

Physically, these conditions are a reflection of the fact
that at a fixed point X the expected value of thelongitudinal force
is given by MP = =-qtEF. The minus sign indicates that a
positive temperature increase in the rail produces a compressive

force. Finally,we obtain

T , ‘ (II.27)
MP :-..‘.- W‘Y M\I’ (7\,, ()) (cﬂ{:\ — at[.r,
0
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- (II.28)
]/EFA fop(A O)de |

Equation (II.27) relates the expected value of thelongitudinal
force to Ehe magnitude of the longitudinal displacement at the same
section.

Taking into account the fact that thelongitudinal force at
the end of a rail string is equal to the resistance against the
displacement of the rails from the joint bars (rail expansion joints),
MP=PH’ one can easily obtain on the basis of (II1.27) the relation
between the temperature rise after the installation of the rail
in the track and the expected value of the displacement A, of the

. &
end of the rail string produced by the temperature rise:

1 Mu P” (I1.29)
t-=—&— ['[‘AA. 5‘ Mo (L, 0)dMD. ]

The resistance against rail displacement in the joint bars

fluctuates between 4000 and 1000 kg.

If in (II.28) we assume MY¥(A0) = ¢ = const, which corresponds
to the case of constantlongitudinal resistance per unit length,
and if we take as the origin of the coordinates the fixed point

X, of the rail string, integration of the expression yields

M),

_—___—(!lel/‘;[ll'Ax M}::x;
/ My 4

[+
l EFA};'(S 4,

solving the resulting eguation for MA’ we arrive at
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x 0 x M, (II.30)

M= 5EF*2ax = 2EF
where Mp = (c/248x) is the expected value of the resistance to

longitudinal rail displacement per unit length.

The equation of the expected value of thelongitudinal forces

can be obtained from (II.27):
(I1.30)

My

Mp= EF f My (A, 0)dM. —alEF = l/—-c‘h—alfl"
0

substituting from (II.30) for the value of MA’ we finally obtain

Mp= I/EFCMX —alEF = M, x —atEF. (IT.31)

Finally, the equation (II.29) for our case will take the form

P, (I1.32)

2Mx
b= EF Mo "'au

The general form of the graph of the function t(MA) is

shown in fig. II.Il.

0 HA,kg'

Fig. II.ll. Dependence of the expected value of the
displacement of the free end of a rail string on the rise
in rail temperature.

For our case of constant resistance per unit length, the

variance of the random quantity p(x)Ax is constant, i.e.

D = D A X
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Since the process p(x) is delta-correlated, we find, in
accordance with the results of the previous section, that the

correlation function of the process is given by

Kp(xl,x2)= Doé(xz-xl). (IT1.33)
Let us recall that a process which has a correlation function
satisfying a relation of type (II.33) represents "white noisge",
since its spectral density is constant over the whole frequency
range, from -« to =,
Taking into account the boundary condition DP(O), the correla-
tion function of the process P(x) can be computed according to

(11.17):

: . Do x, npH x, >x j
Kp(xy, x;) = Domin (x,, xz)-.={ 0¥t PR & ~% (II434)

Dy xy npu X, <Xy

The surface described in (II.34) is shown in Fig. II.l2.

Fig. II.12. Correlation function X, (x,,x,)of the process
of the variation of thelongitudinal” rall forces.

Finally, taking into account the boundary conditions DP(O) = 0;

KP(O)/EF,A (0) = O; DAP(O) = 0, we can determine the correlation
function of the process XA (x) according to (II.21):

K s Xy X npy x, > (II.35)
' Do _ TRE e Mk 2 > X
ap (X1 Xp) = 2(52‘)2 Xy % min (g, X,) -- 2(EF) 2 1

'Q_'(L;)‘ Xy X3 npH x, < x4 '
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The surface described by (II.35) is represented in Fig. II.13,

K)(I',,I(,
Iy

I

Fig. II.13. Correlation function K, (x,,%,) of the process
. : . ATTLrT2
of displacements of rail sections

Finally, let us determine the correlation functions of the

processes Pp(x) and A_(x). For the first of these we find, from

P

the results of the previous section

1‘) '(1. X ) — _______K{‘ ("_"l' x"’)_., . _I.-).limiu (-\']v ~\._v)
T VK o ) K (v x2) VDV Dy ;
min (xy, x,) o
= ==, ”.-5“ !
V., % ( ) ’

For the process AP(x), the normalized correlation function

has the form

Ry(xy, X)) = _ Kb x)
v V Ka(xy, %) Ko (v, x2) (I1.37)
D, .
# : (EF)? Xy X, min (g, xy) min(y, )
T ) Dy 2,/ Do 3 Vaxn

Thus, the normalized correlation functions of the processes
P(x) and A{(X) coincide.
Let us go over to cylindrical coordinates. Setting

X /%y = tan o, and taking into account the equation

. l//)i‘- npH X, > X
min (%;, X,) Xy
— - ]

Vs l/ ;%2— pu x, <Xy
1
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we obtain Viga ‘upn-. 0<a <4y

RP (xlv Xz) == Ry (xl' x2) == V‘m npu 45° <a<90*

o alctgxz.
Consequently, the surface consists of the intersection of
two conoids. Fig. II.14 shows what such a surface looks like.

Ry(1,%,)

I

7] 2,:Tp

Fig. II.l4. Normalized correlation functlon R (xl
of the process of displacements of rail sectlons

X,)

For a track with worn spike fastenings, the expected vaiue
of the resistance per unit length, Mp, is 2 to 2.5 kg/cm, and
the corresponding variance Dy varies from 40 to 60 kgz/cm.

Figure II.15 shows the processes P(x)+otEF and A (x)
computed for the values Mp = 2 kg/cnm, Do = 50 kgz/cm. The solid
lines represent the mathematical expectation, the dotted ones -
the mean square deviation.

Pr)ratERT
20

a) 53

L =5

M)

ARG

b)
o //
2 ’,;yféﬁﬁﬁv
. ‘AL,,,zf"‘y"

[ 020 S0 40 S0 60 20 LM

M)

L -3
VZD»I

N
\\

Fig. II.15. Realizations of the random processes P(x)+atEF

= . - 2.2
and A (x). (a) DP-Dox, (b) DA— Dox /2E"F*“,
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Taking into account the Gaussian nature of the random process
P(x) and the formulas (II.31) and (II.34), we obtain for the

one-dimensional probability distribution [9]:

(Pt EE—~M, 1) o (T1.38)
P' = = e— 2Dy x .
Fib x V 2nD, x
Let us recall that the coordinate origin is at Xy the

fixed point of the rail string. The quantity F(Pl,x)dPl
gives the probability that the graph of the function passes

through some "gap" in the P x plane, as shown in Fix. II.1l6.

1 4h

*xtEF-—{

[ I

Fig. II.16. Passage of the random process P(x) through
a "gap' in the P x plane

If 2 represents the length of the "transition" zone of a
rail string, and Pz denotes thelongitudinal force at the end,
[
then, in view of
dp

o e,

xeil
one can write
F(Pz, 2)dP2= F(Pz, L)p(R)ade = F*(z, Pz)dz,
where F*(E,Pl) is the probability density of the random variable 1%.
At the free end of the rail string, the value of the

longitudinal force satisfies P2= —PH , Where PH is the resistance

to rail displacements in the joint bars (rail expansion joints).
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Consequently, in view of (II.38), the probability density of

the random variable & is given by the formula

_ p (D e_(gzrl+(ﬂEF::ﬂA% —("Eggf“’-%
_V2nDol .

It should be added that formula (II.38) holds only when
t > PH/uEF, since the free end of the rail string does not move
: if the temperature rise is smaller, i.e. g = O.
Let us now compute the probability that 2 lies between

O and a:

PO<I<a)= [ F(Pu Do ()dl=py [ F (P,
[

where pcp is the mean value of the random function p(g) , in‘the
domain O<#&<a.

We can now determine the limit

-

cr : (II.40)
lim xLS‘\ K, (x4, X2)dxydx, = lim D",,'\ == 0,
00 :

The general ergodic theorem can be stated in the following way:
if the expected value of a random function is constant, and the
correlation function satisfies (II1.40), then the mean value of
the random function over the domain O<x<» has as its mean
square limit the expected value of the random function [30].

Thus, .
Pw<1<m:m@JFm"nM

and, differentiating this equation, we find

M;)2 sl PP M AEF—P)2
s -t W)

D= oahi
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Consequently, equations (II.39) and (II.41l) are equivalent

the second one is more convenient since it involves

however,
It is easy to verify that the probability

a nonrandom function.
density of the random variable % has the following properties:
in addition, FO(O;t>PH/aEF)

FO(O;PH/aEF) = »; and,

©(w;t)=0;
= 0. Indeed
. ' 7 ——'zl—-ﬁ,l_
°(0s Pu_ Alim$ : =
F (0' t>°‘EF) 10 Vi
1 .
Al T A
= — = Alim —,,
zlf(l) Vi ,ﬁweﬁv |
' A EF—P .
M, . oM i ’ L
A= P e D, fo CO”St; 1 = ‘/___;
rie onD. ;
— A(Mp)z . (at[T Pu) 0
«= 2D, >0’ ﬁ— 2[ >
or, making use of L'Hospital's rule,
= Alim = = A,l'fll nt’"‘ = 0. .E

Fé(o-, t>a’2") ,,-we
L

one can show that

Furthermore,
[s o]
_;§F°U;0dl:1.

1 é«h<l<:aﬂ=
i ti " zone

which shows that the length of the "transition
Integrating (II.41),

gatisfies

we obtain

with probability one.

O << =
(=]
[P tyar -
AM 2
e (1)
o LF-DPYM ST,
= e( D “)-_ _.._I}.Ih Z;” r u)? “
JV ETIN
or, making use of the notation
M, I

gxawaP“

D,
q“(mﬁr—lmﬁﬂ:>a
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i we obtain

alEF — P,

- S ° t)dz-evM,,V_l/ D Se e

In view of the formula
AN A

)
e 2qe____--.;/2nqe “ .
VE

which can be found in the table of integrals ([33), we finally

oo} ’ 1 —_——
o /sf. N\ s d 1 a’EF-—PH .
JF(I. l}dl'~eqMPWVWA

21D, 1 L
X l/atEF—P..' yap ¢ = b

? which is what had to be shown.

arrive at

The general form of the distribution function of Fo(z;tg is
shown in Fig. (II.1l7).

From an analysis of (II.41) it follows that as the temperature
rises after the rail has been installed in the track, the graph !
of the distribution function F°(%;t) appears to shift in the
direction of increasing lengths of the "transition" zone , simultane-
ously becoming less steep; in other words, as the temperature !
of the rail string rises (falls), the expected value of the
length of the "transition" zone and the variance both increase,

which is quite evident from a physical point of view.

Finally, the determination of the displacement of the rail
end Ao is of great importance in designing CWR track. Let.us
determine the conditional probability of the end of a rail string
with a fixed value of “transition" zone length, taking into

account the fact that the process 1 (x) nas a normal distribution.
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Making use of (II.30) and (II.35), we obtain

M Y] .
1°_;'_1: (II.42)
( 2EF ) (EF)!

|

b (ho/l) = — ==
0

ety | ‘

2222 ﬁ

Fig. II.17. Distribution function of the length of
the "transition" zone for different temperature rises
of the rail string

However, the length of the "transition" zone & is itself a f*

random variable, with a probability distribution function FO(r;t) .

At the same time, it is known from the theory of probability

that a two dimensional probability distribution of the random
variables E,Ao is equal to the product of the probability density

of one of them and the conditional probability of the other one

»

with respect to the first one.

Thus,
@* (hos I; 1) = F° (I; ) D (ho/l) ==
($EF-—P —My 1) (1,_ -Q‘EF_F_. ,-)2
I e T . (I1.43)
EFaD, I’V 2

FPormula (II.43), as well as formula (II.41l) is valid if the
condition Ao<6 is satisfied; here 6§ is the length of the joint
gap (magnitude of the movement in the rail expansion joint),
since we assume P () = PH'
If after the gap is closed there is a further rise in

temperature, the displacements remain the same as they were at

90




the time the gap closed.

The longitudinal force in cross-section x will then be
P(x) = P°(x) + a(t-t_)EF. (II.44)

Here the following designations are used:

P(x) ¢ty = P°(x); t],ms = 1.

It has been tacitly assumed that the averagedlongitudinal
force-displacement relation remains the same, since, in fact, the
track charactqristicé vary with changes in temperature and time.

Now, let us examine the case when the force transmitted from
the rail to the tie grows according to

M¥(x,0) = c + KMA. ¢

Taking the fixed point X, as the origin of the coord;nates,

as we have done in the previous case, we obtain

j‘l/EFAXX(C + KM) dM,

'=]/2ﬁ£‘3" arc (-c’S M, -+ 1).

which yields

P K (II1.45)
M, = W(C“ SEFAT® ‘)~

Differentiating (II.45) and substituting in (II.2) determines

the magnitude of the pngitudinal force in the track:

EF ®.
MP—CI/QKAxSh mx—atEF. (11.46)

51



Relations (II.45) and (II.46) we obtained by the author in
1956 by a somewhat different method.
Equation (II.29) , which relates the displacement of the

end of the rail to the temperature, assumes the form

t=%l/-2751FE[KMﬁ+cMA] —%-&%. (I1.47)

in our case. :

If the experimentally determined function MY ()) is approximated ah
by a third degree polynomial without constant term,

M () = aM? -|- BM} - yM,,
or by the function
My(2) = m_MA", i

the right hand side of (II.28) can be reduced to a tabulated
integral and can be expressed in terms of elementary functions. i
Finally, if My ()) is approximated by a third degree polynomial i
with a nonvanishing constant term, the right hand side of (II.28) |
will be an elliptic integral of the first kind. If the integral 1

thus obtained is transformed to the Legendre form by means of an

uncomplicated substitution [23] and then inverted, the expected

value of the displacement of a track cross-section A(xX) can be
expressed by means of the elliptic sine function (of Jacobi), a
function which has been studied in sufficient detail.
Convenient graphs and tables for elliptic integrals and Jacobian
elliptic functions are available in [33].

We will not explore these solutions further, except to note
that for the case MY(A) = yX, the equation forlongitudinal forces

and displacements was studied by the author in 1956.
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In the most general case, the integration of (II.28) can be
accomplished by a graphical-analytical procedure, based on the
experimentally determined graph of the function My()A) for the
particular track under investigation. 1In performing the graphical
integration it is not necessary to worry about the case when the
function ¥(A) vanishes for A = 0. 1In this case it is sufficient
to assume Y¥(0O) = ¥(A), where A is the required accuracy in
determining the displacements. With this assumption, the
longitudinal force-displacement diagram does not change for all
practical purposes; it is only the theoretically determined
length of the zone in which the Jongitudinal forces decay which
changes, and thch become infinite for the case ¥(0) = O. ‘

But here anyway, we must for practical purposes take the length
of the decay zone to be the distancé to a point for which the
displacement 2° is zero to withiﬁ the required accuracy.

After the equation (II.28) has been integrated, one can

associate with each value A(x) a value of Dp x(x) = 3v[Ar(x),0].

A
Thus, one can consider the variance of the linear resistance to

be known graphically. 1In view of (II.17) and the boundary condi-
tion DP(O) = 0 (for the coordinate origin we take the fixed point

X, closest to the free end of the rail string), the correlation

function of the process P(x) takes the form

min{xy, x,3)

Kp(ty x)= | Dy(dx. (I1.48)
0

Since the graph of Dp(x) is known, the surface described by

(II1.48) can also be constructed by using one of the approximating
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schemes. Finally, taking into account the boundary conditions

DP(O) = 0; = 0; DA (0) = O the correlation

P (O P

function of A (x) for the general case being considered can be

Kp (o),  /EF

written, according to (II.21), in the form
Xy X

Xq
zE—F? S 5 D, (x)dx dx npu x3 > x;

0
x

: (I1.49)
K)‘P (x.h xz) =

D, (x)dx dx npu x, < x;.

O x @

(EFP§

If the graph of Dp(x) is given, one can also construct the
surface described by (II.49), If the function D (x) is determined
at a sequence of points, x = nAx, x = 2nAx, ...,x = gnax, it
suffices to compute the elements of the covariance matrices
instead of constrﬁcting the correlation surfaces; here g is the
number of points of division of the graphs P(x) and X.(%).

Let us now compute the one dimensional probability density
of the process P(x). Taking into account the Gaussian nature of
the process and (II.48), we obtain
. NS
V 22D, (x)

v ) , .
where DP(x) =(KPx,X) = I;Dp(y)dy and MP(x) is given graphically

F(P, x) =

or in tabular form

In view of the relation

dpP

d‘v = p (l)v

one can write

*
F(P,, 2)dP,= F(P,, 2)p(s)di = F (2, P,)ds,

2’




*
where F (z,Pz) is the probability density of the random gquantity 2.

Taking note of the condition at the end of the rail, P, = -PH
14

the probability density of 2 is found to be
. [M‘p(l)-—P"]‘al

. F* — _p(l)_ S 20p(D
F*(, Py) VarDel e

Here, as in the case of constant linear resistance, the relation
t > PH/atEF must hold.

Let us now compute the probability

PO<I<a)= [ F(P, Dp(Ddl= (II.51)

= [Few nM L [F @ o0l

where p°(2) is centered random function. v
Since Dp(x) is bounded above, one can find an N such that

Dp(x) < N; then

X x
lim —;?SSKP (x5, x)dxydx, <lim ﬁl;» 0,
00

X 0O

i.e. the random function po(z) has the ergodic property.
The second integral in the right hand side of (II.51) can
be reduced to zero in probability,
a l []

§ F(Pu Dp°(dl =My § F(Pw bydl 0.

Finally, the probability density of % takes the form

[Mp(1)-Py 2
FO(I; t) —. Mg_({)~_ e_ 2050 (1) . (II . 52)

"V 2aDp ()

Let us prove that the function Fo(z;t) satisfies the condition

00

P(0<i<o0) zS Fo L by dt = 1.
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Indeed, on the one hand we have

-

[Feu ndi= [ F. Dowdl = | F(P, haP=1;

on the other hand, for all negative x we have
P(-x) =-atEF; o (-x):=0.
Consequently,

0 0

(P ndl = { F(P., ol =0,

—0 —Qu

301”(1; fydl == }om(; 6 dl — fmt-. 0ydl = 1,

which is what had to be proved.

Since the process A(x} has a normal distribution, the
conditional probability of the displacement of the end of a rail
for a given value of the random variable & is determined by

[2e—AL, (1}]?

! T
q) )\, /I —_—— P 7. ;
Ot} vV 2aDb, ()

where

1!
Dy.(l) = [—’FS \ D, () dx dix..
).

0

The gquantity Mx(z) , in view of (II.28) is dctermined by the integral

oM
2 dM, L

l == '—"'—'M‘A Atk ~ L
1 _
‘/ mj My (., 0)dM,
. 0 0

in which the expected value of the length of the "transition"

zone is given implicitly.
Now let us determine the two dimensional probability density

of the random gquantities % and Ao.
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D" (Ao, I 1) == Fo (I YD Ao/l -

[Mpt=P 13 [Fe- ML (O]R II.S53
Mp(l) e 20,,(1)" TN, W ( )

T oV Dr ) D)

*

where, in accordance with (II.27), Mp(l)is determined by

a My ()

'Mpm==l/ Eéﬁrgnwuhmdmp-wEﬁ

e S

Finally, knowing the joint probability density of Ao and &,
let us determine the probability density of Aoe It is known from
probability theory [30] that to obtain the probability density
of one of the variables in a system, one must integrate the
probability density of the system from -« to +« with respecteto
the other random variable.

Thus,

= )
Dy t) = | Do, L0y dl = § @70, 1)l =
0 - [Mp(l)——l(’)"]?- [re-- M (D)2 | (I1.54)

S Ml m e T TR gy,
2n VD[» ) D, )

0

Let us look at a practical case of computinglongitudinal track

; forces and displacements.
yral |

; Computation of longitudinal forces and displacements

E in continuous track

6 2
Rail characteristics: rails of type P50; E = 2.1 x 10~ kg/cm™;

F = 64 cmz, wocden ties of type 1A, 1840 per km; fastenings of
type K; crushed stone ballast. The graph of M¥(}) is given in

Fig., II1.18; the graph of the variance 3¥(X) - in Fig. II.19.
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Fig II.18. Graph of the expected value of the force
transmitted from the rail to the tie vs displacement of
the cross-section
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Fig. II.19. Graph of the wvariance of the force trans-
mitted from the rail to the tie vs displacement of the
cross-section

Suppose the temperature rise after the rails are installed in

the track is t =15°. Resistance in the joint bars, Py =

3060 kg.
First, let us determine the mathematical expectation of the

random functions p(x), P(x%), and A(x), making use of (II.27)

an§ (IT.28) ., Let us take the fixed point X for the ccordinate

origin. Fig. II.20 shows the graphical integration of V(i)

by the method of tangents. In performing the integration, the

polar distance is taken to be EFax, so that the integral curve

defines, according to (II.28), the square of the derivative of

the displacement.
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Fig. (II.21) shows the graph of the function MA,(A),
constructed from the graph of (MA’)Z with the aid of a table of
square roots. It follows from (II.29) that, except for the scale
factor 1/a, the graph represents the expected value of the displace-

ment of the free end of the rail and of the temperature rise

causing the displacement, translated by ty = PH/atEF.
218 ot
2010 ,r’1
16107 ,/’
2 'd
18 . , T fl?@
.y , ; !
g A0
0 I B
Sed ;ﬁ]l AERRARERAR
U<dn S0 W O T I O I O I O
P 0 1 4 &8 N8 Amm i

Fig. 1IX.20. Graphical integration MY (i)

t-ty MaA'

' 4 107 /ﬂ)
3 oo /
510" e
20° < d
.94
0° ///
10 [
1 ¥ 8 12 % A,

Fig. II.21. Graph of MA,(A)
Fig. II.22 show the graphical integration of the function
l/MA,(A), constructed from the graph of MA'(A) and a table of

reciprocals.
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Fig. II.22. Graphical integration of l/MA,(A)

Let us now construct the graph of EFMA,(X). As a starting

point we will use the graph of MA(x), which is represented by a solid

curve on Fig. 1I.23, and which constitutes the graph of x(MA)
turned by 180° with respect to the diagonal of the guadrant. The

differentiation is also performed by the method of tangents, taking

EF for the polar distance.

EFMUT, | HA,m

* 20
8 '
,ﬁJ .
14 .
504 10 7 +or 7]
1 xRN
404 8 73 i
) & SEAREN
20y 4 b———— AN EERER
o
1T FL N
= o R
? 0 m 20 30 40 S50 60 70 80 90xM

Fig. II.23. Graphical differentiation of the function EFMA,(x)
By making use of (II.2) solved for P, we construct the diagram

of the expected value of the longitudinal force along the track

(Fig. II1.24). Taking the mathematical expectation of (II.2), we
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b obtain i
Dp(x)=Kp(x,x)= [ D, (x)dx.
0
Figure II.24 also shows the graph oflongitudinal displacements
of the track. At the point A the longitudinal force is P = Py

i.e. this point is a free end of the rail string. The displace-

ment is maximum at this point.
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Fig. II.24. pongitudinal force and displacement diagrams
in a string of welded rails: (a) longitudinal force;
(b) longitudinal displacement

Finally, differentiating the graph of the expected value of
the longitudinal force, we obtain the graph of the expected value
of the linear resistance Mp(x). Figure II.25 shows the graphical

differentiation of the function EFMA,.

FEHA' ,
kg/c erma,r
60

(x)

50

40

am
J0

Qs
10

QN Pow oy
L

i' Fig. II.25. Graphical differentiation of EFM,,
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Let us note that in constructing the diagrams of the expected
value of the longitudinal force and of the longitudinal displace-
ment according to the simplified formulas, the values of the
parameters entering these formulas should be determined from the
condition of minimal deviation of the approximating function
My(x) from the real one on the interval O ixiko, where Aois the
displacement of the end of the rail string.

In general, the values of the optimal parameters of the
approximate curve My (A) change with the variation of the displace-
ment of the free end of the rail connected with changes in the
domain of values of XA. However, the displacement of the free end
depends on the rail temperature.  Thus, the values of the optimal
parameters depend continuously on the temperature. This is
confirmed in practice: It is known, for example, that the mean
value of the linear resistance along the length of the "transition"
zone of the rail varies with the increase and decrease in the
teméerature.

Now that the diagrams of the expected values 6f the functions
p(x), P(x), and A (x) have been constructed, let us begin to compute
the variances of the processes. Assigning to each value of Mk(x)
the guantity aw(MA)/ZAx = a¢(MA)*, we can construct the graph of
the wvariance Dp(x) of the random function p(x). Figure II.26 shows
this graph, computed with the use of the graphs of 3¢(MA) and MA(X)

shown in Figures II.19 and II.Z24.

* The factor 1/2 is introduced since only one rail line is considered
in the computation.
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Fig. II.26. Graphs of M, (x) and Dp(x)
Making use of (II.48), let us determine the variance DP(x)

of the process P(X):

am,
MP =EFW'—'H‘EF-

Figure II.27 shows the graphical integration of the function

D (x).

p( )
DH/I),k% 2p,12), k92 /cm
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Fig. II.27. Graphical integration of Dp(x)

The graph of DP(x) determines completely the correlation

function of the process, as is evident in Figure II.28.
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Since the process P(x) is Gaussian, the mathematical expec-
tation and the correlation function characterize this process

completely.

Q_ P(1)

T N X
X, o z

bj| Dplx) :

]
1 Ko (X, 17)

Fig. 1I.28. (a) The random process P(x) and (b) its
correlation function KP(Xl’XZ)

Let us compute the joint probability density of the gquantities

P(10) = Pl; P(15) = P2; and P(20) = P3. By analogy with (II.23),

we will have

Fl, 2, 3(Pl xg; Pyxgy Pyxj) ==
3

3
!..__.,_. o _l_ \‘ Vot pop
_quqmﬂ°w(ﬂu%%“w“”‘

The quantity |KP | is the determinant of the covariance matrix -

ij

30000 30000 30000
|Kp,|=| 30000 50000 50000 |
30000 50000 73000

The quantities Kj are the elements of the matrix | KP-ll '
ij iJ
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the inverse matrix of IWP |

ij
[
1

]

30000 30000 30000
|Kp, | ={30000 50000 50000 |=10000°3-5:7,34-3:3:5-2—
/1 130000 50000 73000

-&54-34#&-55&:4&&m"xm.
To find the matrix ||k, ~! ||,
ij
by means of the transformation

where A=effeyio
1 0 0
VR Pn
i
— 0 — - 0
° VKe,

l

0 0 —

: VK [,l )

It is well known [35] that D; = A;B,C, implies pt = ¢7lpTla7l

[

171
consequently, Ail = c_llkp_lu o1, which yields
i

]

| = oa™ %,

Let us note that the matrix ||A|| has the elements

Kp
(A} — _..._,__.I/_.__

=R
VK enke,

~i.e. it represents the normalized covariance matrix

AL
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. Let us compute the determinant of

we first go to a new matrix [A]

1




es

rix

A=[Rp [=| 0.28

0,214

0,258 0,214
! 0,166
0,166 l |

After some simple calculations, we obtain

Let us denote the elements of the given matrix A by ajy and

those of the inverse matrix B by b, ..

1)

Let us compute the inverse matrix by using Guassian elimination

(the entries in Table 2 are successively obtained following the

66

& scheme given in Table 1 of Smirnov's monograph [36] ).
TABLE 2
iﬁ Equations | " .z x x| "™ vy Vs Z s
- DA, .o 1| 0,258 | 0,214 |08 |02 I 0 0 Sy(x) = 1,472
§z e - 1 0,166 | — | — 0 1 0 Sa(x) = 1,424
Xl ... — |—o0,0666(—0,0552( — | — | —0.288| — - a;3 X S1(x)=—0,379
S | — | 0.,9334| o0,1108{ — |-o,19) —0,258 ! 0 Spylx) = 1,045
S O - | = b= =] o 0 ! Sa(x) = 1,380
E Xl L L. L R — |—~o0,0458| — | — | —0,214 0 0 13X Sy(x)=—0,315
| — | — |-oo0188 — | — | 0307|019 0 agyX Syy(x)=—0,124
S Sq(x)=0,941
F m R IR — - 0,9344| — - —0,183 | —0,119 I sl”(y)=0'677
g;x,..' ........... - - - — | — | —o0,196 | —o0,127 | 1,072 Sa(y)-=0,749
| - - - | = - |-02:8| 1 0 Siiy)=0,742
L XAy . e . — — - — | — | 40,0218 0,014t |—o0,119 —a34Sa(y) =0,083
é‘ 1 — - - — | — | —o0,23| 1,0141 |—0,119 S11(y)=0,659
S - - - — | — | —0,251} 1,000 |—0,127 Sa(y)=0,712
; ' .............. —_ - - - - 1 0 0 !
aXxy .. — - - — | = [ 40,041940,0272 {—0,2290 | —ay:5s(y)=—0,160
Xy L — - — | — | = |-+0,0776/—0,2810 [+0,0327 | —a;1S:(y)=—0,270
St — — - — | = | 1,195 |—o0,251 [—0,19 S7(y)=0,673
A N — | = | = | russ|—0,251 |—0,196 Si(y)=0,673
£
The matrix B has the form
Liz 0,251 —0,196
A== =Ry o= | —0.251 1,030 —0,127 |.
—0,196 —o0,127 1.072\




Now let us compute the matrix o:

{ 5,77.107° 0 0

9= 0 4,47.1073 0 .

; : o 0 3,70-107% |

; Let us form the product C = N

§ 5,77.1073 0 0 1,12 —2,51 0,19

; C= 0 4,47.100° 0 | —0.25t 1,000 —0,127 |-

: | 0 0 3,70.10-% | | —0.196 - 0,127 1,072

! 6,45.10°%  —1,45.10°% . 113.10°3

: =| —1,12.1073 4,87.07% —5,67-10~*
—7,24-100"  -.4,70-10 4 3,96.1073

. -1 -1

1 Finally, let us compute Co = cA “qg = MP

; i

i 6,45-10-3  —1,45.100%  —1,13.107°

é IKPuh= —1,12.1073 4,87.107° 5,67-10~% || X ;

—7,24.100% —4,70.10™* 3,96-10‘_3

§ 5,77.10~3 0 0

! X 0 4,47.1073 0 =

i 0 0 3,70-1073

: '3,72.107%  —6,47.107% —4,17.107°

| 5 _

: = —6,47-10"° 2,18:107%  —2,10-10~°

i ‘ —4,17.107%  —2,10-107¢ {,46-107°

Thus, the expression for the joint probability density of
the random variables Pl' P2, P3 will have the form

Fl,?,S(Plxl; ng-:; ng:l):—':

3 3
| l X -l ~1
M = () Ty PP =
: @YKy, | ”p( 7 22 K5y ’)

1
- 2 2 , , -6
(18,671 = 10,995~ 7,305 -1 6,470, Py 4,170 Py 4-2,10P, P,) 10- 6

=5,4-10"%¢
; Assuming given values of the longitudinal forces at Xy = 10,
g X, = 15, and Xy = 20 m, we can easily compute by means of the

% above formula the probability that the process passes through

three fixed points in the P, x plane.
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In a similar way one can compute the joint probability
density of the n random variables Pir Pyreney P . In the process,
the computation of the inverse matrix | KPT% || is most conveniently
done on an electronic computer. *

Let us now construct the graph of the function ul(x) = szP(s).

The graphical integration of DP(x) is shown in Figure II.29.

. ,
(1), kg“c¢m
w'o’-' g

3 105

Fig. II.29. Graphical integration of DP(x)

The function ul(x) together with uz(x) = x/(EF)2 determine
completely the correlation function of the process i(x);
this is made evident in Figure II.30.

[y

a | 4,

/ {1}
[]
o

—uprry)

e 1,

27—

Fig. IIX.30. Graphs of Uy and Uy, and of the correlation
function of i (x)
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In accordance with (II.49), we have

K ._{ uy (xg) 4 (x,) npl>l X3 > X1
S A (x1)up (xz) npit x; < x; )

Thus, in order to obtain the covariance of x(x,) and

!
x(xz), it is sufficient to multiply ul[min(xl,xz)] and
uz[max(xl,xz)].

The process A(x) has a normal distribution and is, therefore,
completely determined if the mathemafical expectation and the
correlation function are prescfibed.

| For practical purposes, it is the expected value and the
dispersion of the random processes P and Ay which are of interest.

In the example being investigated here, the graph of Dp(x)
obtained is close to being a straight line, hence we will replace
it by one, Let us use the method of least squares to approximate
Dp(x) in the form

Dp(x) = agx + ay.
The coefficients a, and a; can be determined from two

equations [13]:

0 Z[ao x;--a1— D‘,(Xl)]z
]

()Uo = O,
0 X (a0 xi-1-a1 — Dy (<))
gay = 0.

Differentiation yields
122WHH4r~%WMm:m
i

23 (a0, | @ =D, ()1=0.

These equations can be put in the form
a 2 x5 -1y };. xp-= .\.‘:. D, (x) x; == 0;
i
ay 51kt — ZD, (x) =0,
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Table 3 shows the values of the quantities xi,Dp(xi), xi

and Dp(xi)xi and the corresponding summations.

TABLE 3
F x; DP (xg) x? DP (x; ) xg
1 0 27 0 0
2 10 40 100 400
3 20 48 400 960
4 30 57 900 1710
5 40 72 1 600 2 880
6 50 87 2500 4350
7 60 102 3600 6 120
8 70 116 4900 8 120
9 80 129 6 400 10320
10 90 138 8 100 12510
s | 40 816 | 28500 | 47370

Substituting the values obtained in Table 3 into the
equation, we obtain

28 500 a_ + 450 a, - 47 370
o 1

450 a, + 10 a; - 8le = 0

Solving this system of equations, we obtain

0

a_ = 1.29 kg2/cm.m = 0.0129 kg2/cm?; = 23.5 kg°/cm.

o
Thus,

a

Dp(x) = 23.5 + 0.0129 x

The variance of the longitudinal force, according to (II.48),
is given by

Dp(x) = /¥ D(s)ds = 23.5 + 0.00645 x°.

Finally, the variance of the function A(x) , according to
(IT.49), will have the form

D,(x) = (x/EF) /% D (s)ds = x°(EF) 2(11.75 + 0.0043 x).

Let us now use (II.52) to compute the probability density of

the random variable &. The computations are shown in Table 4.




The quantities Mp(z) ' DP(Q), and MP(E) = Py, shown in columns

2, 3, and 5 were taken from graphs in Figures II.25, 27, and 24

respectively. Figure II.31 shows the graph of the probability
density of the random variable % , constructed from the values

given in Table 4.

e L LAY el T AN i il

- —LABLE 4 - - -
‘B o~ - n &l ~ %
! o & = Tz =% .
i Low| S| ! Tlelsle] S 5
3 S g g sl sl | |-
: ~ 2 o 3 o] ZN[E s <
3 | q MEEIAEEE; >3 &
{ 1 2 3 4 5 6 7 8 9
o Vd
; 40 | 4,60 197.1031,11.10° | 4,0-10% 40,60 0O - -
i 4] 4,67 [205,1-10%1,13.100 | 3,3-10% 26,60 © — —
i 42 | 4,74 [213,2.1091,16-10° | 2,6-10% 15,90 0O - _
~43 | 4,81 |221,3.10° 1,18-10% | 1,9-10% 7,20 0,001/4,08-10~3|4,08.10—¢
! 44 | 4,88 229,4.10% 1,20-10° | {,2-10% 3,14| 0,043|4,07-10—3(1,75.10—*
: 45 | 4,95 (237,5-10% 1,22.10% | 0,5-10%] 0,53| 0,589.4,07-10~3(2.40.10—3
45,7 1 5,00 |243,2.10% 1,23.10 0 -0 1 [4,06-10—3/4,06-10~7 .
i 46 | 5,02 [245,6-10% 1,24-10% |—0,2-10% 0,81( 0,923!4,05-10—3[3.74-10~
47 5,09 |253,7-10% 1,26-10* |—0,9-10°| 1,60 0,202/4,04-10~3/8,15.10—*
48 | 5,16 (261,810 1,28.10° |—1,6-10°] 4,90! 0,007|4,03-10—2[2.53. 10~
49 [ 5,23 [268,9.107 1,30-10° |—2,3.10% 8,60{ 0,001|4,02-10~3{4.02.10~¢
50 | 5,30 278.1071,32-10% |—3,0-10% 16,20, 0 - —

Vi G W e

Remark. In the interval 40 < g < 50, the values of Mp(ﬂ), DP(R),

and MP(z) - Py were obtained by linear interpolation.
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! Fig. II.31. Probability distribution of the length of the
"transition" zone with t = 15° C

i For our problem we can write with sufficient accuracy

‘
i
h
.
{

Dy, () Dy (L) ]
M, mr= (A1, iy = Pillo) - - const,
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in the interval 43<2< 49; here lois the abcissa of the point of

intersection of the graphs P = MP(x) and P = P In general,

H*
20 is not the expected value of the random variable & .

In this interval, therefore, we can take

Mp(l)—P,

Consequently, one can write

Y 2D, (I

Fo(l; t)=

which represents the normal distribution of 2 . The relation
obtained holds for a sufficiently narrow interval of values of

2 , which are of practical significance. Furthermore, it permits,
albeit with a very small probability, the existence of negative
values of 2. However, because of its simplicity, this equation
is convenient to use to obtain rough estimates.

Let us note that for the case Mp = const, Dp = const, the
characteristics of the expression just obtained for the approximate
calculation of the probability density will be:

o= atEl;‘-: Py :

D, (xtEF—P))

SR G

To put it another way, although D2 is not the variance of
the random variable &, the variance is close to DZ for a
sufficiently narrow range of f-values which are of practical
significance.

Let us compute the conditional distribution function for
the displacement Ao of the end of the rail with respect to the

length of the "transition" zone:
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ittt e St

(Fe—AMy (D]
20, (D)

[ @ (oll) = -

]
V=D, ()

All the calculations are shown in Table 5. Columns 2 and

oy 7

3 of the table show values of Dk(l) and MA(z) taken from graphs

U

in Figure II.30 and I1.23.

! TABLE 5

: @ (ko/1)

X Ayl how My (1) 1 2o My (Dt Po— My &
{ 5L oa | Dat)cat LDy Y, an =My (1), o T
! 0 L T : ) LV O, |2V T, =3V D),
H o™’

en ! cn! en !

1 2 3 1 5 6 7 8

H 43,0 1,32-10:: 0,300 l.l5-10_‘_‘§ 31,8 21,1 4,7 0,3

i 43,5| 1,38:10-4 | 0,306/ 1,17-10.-% 34,2 20,8 4,6 0,3
44,0| 1,42.10—4 | 0,312| 1,19-10-2 33,6 20,4 4,5 0,3

: 44,5 1,49-10:2 0,318 1.22-10:'5’ 32,8 19,9 4,4 0.3

{ 45,0 1,55.10—4 { 0,324| 1,25-10-2 32,0 19,4 4,3 0,3
45,5| 1,63-10~4 [ 0,330 1,28-10-2 31,3 19,0 4,2 0,3
46,0| 1,69-10-% | 0,336 1.30-10:§ 30,7 18,6 4,1 0,3

: 46,5| 1,76-10—4 | 0,342] 1,32-10-2 30,3 18,3 4,1 0,3 ,
; 47,0 1,85.10—4 | 0,348] 1,36-10—2 29,4 17,8 4,0 0,3

: 47,5| 1,90-10-4 | 0,354 1,38-10-2 | 29,0 17,6 3,9 0,3

: 48,0 1;97.10—4 | 0,360 1,40-10..2 28,6 ‘17,3 3,9 0,3
48,5 2,06-10—4 | 0,366 1,43-10-2 28,0 17,0 3,8 0,3

; 49,0 2,13.10—*% | 0,370| 1,46-10—2 27,4 26,6 3,7 0,3

I Remark. In the interval 43 <i< 49, the values of Dk(z) and
' MA(Z) were obtained by linear interpolation.

Using the calculated results we construct graphs of ¢(Ao/£)
for different values of &, as shown in Figure II.32,a - m. An
examination of the graphs:shows that the probability density of
the random variable Ao varies smoothly with changes in the length
of the "transition" zone 2. This indicates that the random
; variables Ao and 2 are correlated. Tables 4 and 5 and Figures

IT.31 and 32 determine the two dimensional probability density
of these quantities.
Results of the calculations of the joint probability density
% of A, and i are shown in Table 6. Column 2 of this table is

obtained from the graph of Fo(z;lS), given in Figure II.3l. The

i entries in the remaining columns are ccmputed according to the
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J
given at the end of Table 6. It is not difficult to see that,

*
rule ¢ (Aoi;z.;IS) = Fo(zj;IS)Q(Ai/zj). The sum of each column is

except for the multiplying constant 20, the guantity
3

a

*
107 ¢ ¢ (Aoi;zj;IS) is equal to the probability density of the

random variable Aoi‘

Teoesracert+ Iy

Indeed, according to (II.54), we have
@o(xoi;IS) = fo ) (Aoi;z;IS)dz 2 Azg ) (Ao
however, A% = 50 cm, which proves the assertion. Figure II.33

P Xalalad

.32.:;15);
i 3

shows the probability density of the random variable Ay

rerey i i oem

displacement of a free end of

s TABLE 6

@° (hey 13 15) = FO UL 15) O/ 100, ca—? far »e. ux

£

I' Foo(0: 18y, -1 - - . - © °

e clalalslslalelalalals] ]3]z

: 9 ' ' ' " ' " ! B 1 1 ] ' 1
ot N e B e O N I R I e R
ﬁ 1 2 3 4 5 6. | 7 8 9 10 n 12 13 14 15 16
Wi 43,0 0 ol ol of ol of ofo ol ol of of of of o
0% 43,5 0,03-10—3 o |0,00]043| 0,80 0,9 0,48 0,12} 0,01} 0O 0 0 0 0 0
.35? 4,0 0,2-10—3 o |o,08]1,44| 4,08 6,56 5,13 2,08 0,32] 0,02 0 0 0 0 0
AV 44,5 0,7.10—3 o |o,14|1,9 | 8,40/ 17,9]| 22,10/ 13,90} 5,03 1,000 0,01} O 0 0 0
b3§ " 45,0 2.4-10—3 0 o | 0,77 | 11,50] 42,20} 70,90 65,20| 34,50{ 9,60/ 0,57 0 0 0 0
5 45,5 3,9.10—3 0 o | 0,75 | 7,50 39,00| 93,50|122,00| 77,20| 32,00{ 7,80} 0,75 0 0 0
wf 46,0 3,7.10~3 0 0 o | 3,00 14,80 51,80 98,00{105,00| 61,20| 19,60| 4,45 | 0,30 0 0
ﬁ?ﬁ 16,5 2,3.1073 0 0 0 0,30 4,60 20,70| 48,30| 69, 10| 56,40} 27,70 6,90 | 0,92 0 0
A 47,0 0,8-10~3 0 0 0 0 0,03| 3,00 10,40 19,70| 22,80} 16,00 6,40 | 1,60 | 0,20 0
3{ 47,5 0.92.10~3 0 0 0 0 o | o,15 1,20 3,60 5,60 5,20 2,80 0,90 | 0,08 0
g?? 48,0 0,02.10=3 0 0 0 0 0 o | o,060 0,20 0;44] 0,57) 0,451 0,20 0,06 0
ST w5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
et
o . .
o In conclusion, let us note that the formulas derived here
o .
M can be applied not only to the case of the first loading. For
i this it is sufficient to make use of the function ¥(X ), averaged
f
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*
with respect to A , which will certainly lead to a change in the
statistical parameters and, in particular, to the increase in the

variance of the random functions p(x), P(x), x(x).

@o (2, 15)cm”!
20
% A\
) /AR
i / N
8 l— / \
A
4 N
I

o]
87 83 3 33 35 37 Apm,

Fig. II.33. Probability density of the displacement of
a free end of a rail string
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3. Solution of the equation for longitudinal track
displacements for the case of the second and subsequent
loadings. Hysteresis phenomenon in CWR track.

In the following presentation we will examine problems
and their solutions in the classical (not statistical) setting;
therefore, it will not be necessary to take the mean value in
equation (II.6). The general solution of (II.5) in a statistical
formulation was given in the first section of the present chapter,
and there is no further need for refinements relating to boundary
conditions on the correlation functions of p(x), P(x), and x(x),
similar to the ones presented in the second section of this
chapter, since this would amount to a repetition with changes
which have no practical interest in view of the paucity of
statistical data. The general form of the function ¢(A,A*)(more

precisely, the expected value) is shown in Figure II. 34.

|
S
\
) N
- ~
|8
717 2
N

Fig. II.34. Graphs of the force transmitted from rail
to tie when the tie is loaded for the second time

If a tie fnore precisely, rail cross-section) is displaced by
*
A while the temperature varies in one direction, it does not return

to its original position when the direction of the temperature change

is reversed and the temperature returns to its initial value, i.e.
a residual deformation is created. For the second loading, it is

*
evident that the function ¢(ix,) ) can be put in the form
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® (s 1) = (%, 0 — [[(F — 1), A%]. (11.55)

Here f[(x*-x),x*] = f(e,x*) is an increasing function, which
can be considered given on the basis of processed experimental data.
For the experimental determination of the function £(o,2"y

it is sufficie;t to first displace the tie by the amount A*

along the track and then to construct the graph of the decrease

in the force transmitted to the tie, against the magnitude of the
displacement of the tie (rail cross-section) from the initially
displaced state in the direction of the initial position of the

tie. Except for the multiplying factor 24x, this graph determines
the required function f(e,A*). The relations between the quantities

*
X ,2, and 6 are shown in Figure ITI.35.

Displgcement direction

[

r—-—=

Fig. II.35. Tie displacement under repeated loading:

1 - tie position at the initial moment of the first loading;
2 - tie position at the initial moment of the second loading.
Substituting (II.6) into formula (II.55) yields

EF Z*" (07, 0) - 10,27, (II.56)

However, since the preliminary displacement takes place during

the first loading, it must satisfy

L dEA .
: —_———— T (.) .
EF dx® P (A% 0) (II.56a)
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Subtracting (II.56) from (II.56a), we obtain
) d!x* dgx— J_ . .
& —ae = EF O

*
or, making use of A -2 =8, we finally arrive at

2

de = _1 *
— — f(6,1 ). (I1.57)
dx EF '

It is easier to solve (II.57) than (II.6) because the

boundary conditions are simpler, as will be shown below. In
accordance with (II.2) we can write:

.odh _E_
_ a;._at+—EF.
av* Pf
Tr = g

where t* is thé temperature rise from the time the rail is
installed in the track to the time when the direction of the}
temperature change reverses, and P* is the longitudinal force in
the rail length at the moment the temperature change reverses
direction.

Subtracting the second equation from the fifst one, we
obtain

do C

where 1 = t* - t is the decrease in the temperature from the
time of the reversal of the direction of the change, and G =
P* - P is the decrease in the longitudinal force in the track
produced by the decrease in temperature by T. |
It is gquite obvious that if in the first stage (during
first loading) the temperature of the rail string is lowered,
it will rise during the second stage, during which, of course,

it can cross the temperature at which the rail string was

installed in the track, so that the quantities t and G can be
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either positive or negative.
At the cross-section x = s, where the first loading zone
borders on the second loading zone, the conditions
A*(s) = A (s);
'G@=—mﬁ,
must be satisfied, from which it follows that

Oees == 0 0']gmsy - 0.

Let us examine the solutions of (II.56) for several special
cases. When the interaction between the rail and the foundation
*
under the rail is due solely to friction, the graph of ¢(1,x ) has

the form shown in Figure II.36.

P(A,A%)

-.-A’——-

A7 —

Fig. II.36. Graph of the distributed force transmitted by
the rail as a function of displacement for the case of
repeated loading, assuming frictional interaction between
rail and the foundation under the rail.

For the case the following conditions hold:

* ’ *
$(x ,0) = c; £f(8,x ) = 2c,

where c is the linear resistance to rail displacement.

Let the origin of the coordinate system be located at the
left hand end-point of the rail string. The Loundary conditions
on the function P*(x) will be:

* * *
P (0) =P P (xo) = —at EF,

H
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*
from which, taking into account (P ) = ¢, we obtain
~ . = P'
* L
. 0 npu ¢ <aEF ,
L at*EF—P" " PH
———77——-npntj>&fr.

*
and the expressions for P take the form

__al*EF — P,
pr — Py—cx npu _x<x0-——~—c——.

—al*EF npH x> Xq.

The boundary conditions on G(x) will be:

6= PHO)— P(0) = — 2Py G (s) = — uiEF,

* . .
which, since G. = 2¢, implies
Py
' 0 npit 1< jlli . ‘
:
T | exEF 20, 2P,
7 Ea D LU > LF "

Solving (II.57), we obtain

G - — 2P, — 2cx  npi x<.s.
N {———atEF npi x>s.

*
Figure II.37 shows the graphs of P and G, and their

difference, which represents the longitudinal force P(x) in

the track.

*
he,

=T

——s—-

G

X,

Fig. II.37. Longitudinal forces in the rail for repeated
loading and purely frictional interaction Lbetween the
rail and the foundation

The case examined above was treated quite extensively by

Wattmann [8] using a method which cannot be generalized to apply
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to cases more complicated than the one for which the interaction
between the rail and the supporting foundation is purely frictional,
When the rail-foundation interaction is elastic and frictional,

*
the function 4¢{A,) ) has a form shown in Figure II.38.

=0
1

Fig. II.38. Graph of the distributed force transmitted by
the rail as a function of displacement, for the case of
repeated loading and frictional-elastic interaction between
the rail and the supporting foundation

*
If the interaction law is linear, ¢{(Xx ,0) and f£(8,A) have
the form

%* %* *
o(x ,0) = c + Rx ; £(8,2 ) = 2c + Ko@.

The case of frictional-elastic interaction differs from the
purely frictional one in the existence of constraints which oppose
elaséically the sliding of the rail on the supporting foundation.
Consequently, in addition to the frictional forces; there arise
between the rail and the foundation tangential interaction
forces of an elastic nature, which we assume to be distributed
along the whole length of the rail. As in the case previously
considered, we will take the coordinate origin to coincide with
the left hand end-point of the rail string. The boundary conditions

*
on P (z) will now be

* * *
P (0) = —PH; P () = --at EF.

Here % is the "transition" zone of the rail string, which, in
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view of (II.46), has the form

bF * "
K_ ﬂg—F P I/EF npu (* >
0
: P <_aEF
where we have taken into account
*
P |x=2 = —P,.
The arguments 2z and x are related through x = 2 - z. 1In the

new coordinates, the longitudinal force equation has the form

~—sh l—2)—al*EF npu z< /I
P*z) = [ I/EF( ) o z<t, (II.60)
—al*EF npu z>1

The boundary values for G(z) will be
G (0) = = ZPH; G(s) = — a1EF,
where, by analogy with (II.69), s is determined by

VEF ' arEF—ZP.,l/K > 2 EF
|

npu 1<: EF

S =

Similarly, by analogy with (II.60), we can write

—2)—atEF npun z<s
G6) = 2cl/ Ksh]/ (s—2)—a P )
—-arEF npH z>s

Figure II.39 shows the graphs of P*(z), G(z), P(z) and xr(z2)
for the particuiar case 1 =-t*, i.e. for the case when the rail
temperature goes down to the level at which it was installed in
the track. It is evident that when this happens, residual stresses
and accompanying longitudinal displacements will be produced.

All the results obtained above are valid only if s < ¢, for, if

S > 2 , the ties which were in the neutral position before
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0 3 * I3
(i.e. those, for which » = 0), begin to move. The force trans-

mitted to these ties, as a function of displacement, has the form
*
¢(x,x ) = ¢(1,0), along the length of the rail the function ¢(A,A*)

becomes piecewise continous:

gy [ @OF O —FO,A%) v,
P ) | 91, 0) Cupn x>
RPG a
LW T
r > ™
S % '
MF—S—~L . x
1A
A
0ll { =

Fig. II.39. Diagram for the longitudinal forces in

rails loaded for the second time, with combined frictional-

elastic interaction between the rails and the rail supporting

foundation

To construct longitudinal rail force diagrams for the case

' *

s > & , and also for the case s < & , with f(8,x ) = fl(e)
specified graphically, it is convenient first to construct
special templates. (This case is clearly a generalization of the
previously investigated cases of purely frictional and elastic’
interaction between the rail and the foundation.) These temp-

lates are formed from the curves which correspond to solutions

of (II.56a) and (II.57) with boundary conditions:

* * 1 '
A (0) =0; 2 (0) =0; 6(0)y =0; o (0) = 0;

the general shape of these templates is shown in Figure II.40.
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- L 4
Fig. I1.40. Templates for constructing longitudinal force-

rail displacement diagrams when the rails are loaded
for the second time

The construction of longitudinal force diagrams for the case
*
of second loading when s < 2 is very simple if the P and Go

templates are available, as is evident from Figure II.4l.

Pz) A P Diagram

o
g

Fig. II.41. Longitudinal rail force diagram for the case

of second loading, with arbitrary resistance-rail displacement

relation, assuming the second loading induces displacements

in the zone displaced during the first loading

*
For example, to construct the P (x) diagram it is sufficient
*
to place the Po template on the graph of the straight line
* *
P = at EF in such a way that the curve passes through the point
(O’PH) and, drawing the curve along the template from the origin
* *

to the point x = ¢ , where P = ot EF, to continue it as a
horizontal line. 1In the same way, letting the curve Go of
the template applied to the straight line G = oa1EF pass through
the point (O,ZPH), one constructs the G(x) diagram. The difference

*
between the P (x) and G(x) curves then yields the longitudinal

force diagram for the second loading, as shown earlier.
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If in the process of constructing the G(x) diagram by the
above method it turns out that s > & , the diagram must be
constructed in a somewhat different way, as shown in Figure II.42,

»

x P,G

s, ’ P Diagram
4 <bo A T
E XYL Q‘r I il « |
N I
M ﬂm 13
LS 7 .
/ lso""i 'E o4
»
g : ¥
[

Fig. II.42. Longitudinal rail force diagram for the case

of second loading, with arbitrary linear resistance-rail

displacement relation, assuming the second loading induces

displacements in the zone displaced during the first

loading and outside of it

Assuming a value for the length of the "transition" zone
under second loading with s > & , we construct the displacement

*
diagram on the interval % <x<s by applying the Ao template to
the abcissa in such a way that the template origin coincides with
the point x = s. At the point x = % we must have 6(¢ - 0) =
8(2 + 0). Consequently, applying the eo template to the abscissa
in such a way that the curve passes through the point 6(%) of the
*

curve constructed with the AO template, and, fixing the position
of the curve on 0<x< &, one can construct the complete longitudinal
displacement diagram. (Let us recall that the origin of the coordi-
nates is at the end of the rail string.) Now, positioning the end-

point of the Go template at a point with abscissa Sor corresponding

to the end-point of the 85 template, let us draw the longitudinal
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force curve G on 0<x<& in such a way that it passes through the
point (0,2P,).

Finally, taking into account the condition G(& - 0)= G(2 + 0),
let us construct the force diagram G on &<x<s. To do this, it
is sufficient to locate the end-point of the template Po at a point
with alscissa x = s and, move the template vertically until the
curve passes through a point on the curve constructed with the
Go template. Taking into account the fact that at the point
x = s the longitudinal force is equal to atEF, one can find for
every value of s a corresponding value of the temperature decrease
1 after the direction of the temperature change is reversed. The

general form of s = s(1) is shown in Figure II.43.

“]I‘“

Vs

Fig. II.43. Graph of transition zone length vs temperature
rise t in the second loading process

If the temperature is lowered by an amount Ty after the
direction of its change has been reversed, the length of the
"transition" zone is the same during the second loading as
during the first one; as the temperature 1 is decreased further,
the ties, which had been in a neutral position, are displaced.
Since the linear resistance has a jump discontinuity at the point
X = % , the curve s = s(1) will have a corner at that point.

From the graph of s = s(1) one can quickly find the length of

the "transition" zone as well as the discontinuity conditions
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at s = 2.

Having the graph s =s(tv), one can construct the longitudinal
force diagram for the rail string without first constructing the
displacement diagram. The displacement diagram for the second
loading can be constructed very simply with the aid of the A*, and

o, templates. Figure II.44 shows the construction of the diagram

for the cases & >s and &< s.

Fig. II.44. Longitudinal displacement diagrams in rails during
the second loading of the rail string, with linear resistance
being an arbitrary function of rail displacements.

If the functions P(x) and X (x) are represented in the form

P(x) = P (x)-G(x), A(x) = A (x) - ¢(x), as had been done for all

the solutions previously presented, then in solving the corresponding

statistical problems it should be recalled that in adding random
functions their expected values and correlation functions must be
added. In this case, the distribution of the random variable A (0)
is determined by the composition of the distributions of the random
variables A" (0) and 6(0).

Equation (IX.6) can be solved by some approximate method (for
example, the method of finite differences) for the most general

*
form of ¢(r,x ). It is evident that this solution applies not
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only to the case of the second loading, but also the cases which
pertain to all subsequent loadings.

In general, equation (II.57) can be integrated graphically
in the following manner. The displacement diagram for the case of
the first loading will have a form shown in Figure II.45a. The
free end of the length of rail is denoted by a. Let us pick a
value for the "transition" zone length for the second loading,
and let us take for the coordinate origin the point whose distance
to the end is s. The initial conditions will be

8| =0; o' = 0.

X=0 X=0
The second of these is equivalent to

P(0) = P (0) — atEF.

= Let us mark off interval 0;P of unit length to the left

;ng l of the origin on the horizontal axis (Fig. II. 45, b and c).
:
4
ling
b Fig. II.45. Graphical construction of the 6(x) and 6'(x)
diagrams.

o
Let us rewrite (II.57) as a system of two first order

differential equations for y and 0

Ao e i i e

do . d}'_- '1<_ 0 At
a-i-_v y' a'x == EFfI i;“ (X)l
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The length of the segment Uzﬁ'will serve as the scale unit
for y and (EF) T£(8,1 (x)).

Let us construct the straight lines x = Xyr X = Xoy X = Xg,..,
parallel to the A-axis.

Let us mark off the points Mg and N with coordinates (0,6(0))
and (0,6'(0)), which, evidently, coincide with the origins of the
coordinate systems 6ox and 6'ox. Let us lay off along x = 0l the

segments 0,A_ and 0,B_ , equal to 8(0) and (EF)-lf(e(O), AN 0.

1
The second of these quantities can always be assumed to be different
from zero, for even if there were no dry friction during the dis-

placement of the rail, one can always take 6(0) = ¢, where ¢ is

any value smaller than the accuracy of the measurements (Figure II.46L

£

F(1,4%) F}
T
,<0\
N
g m
— )

Fig. I1.46. Graph of the force per unit length transmitted

by the rail to the foundation, as the direction of the

displacement of the rail cross-section is reversed

Friction forces are present in any real system, and conseguently
the power series, for the function f(e,x*) contains a constant term.
The directions of the segments PA and PB yield the tangent direc-
tions 0'(0) and (EF)—lf(e(O),A*(O)) and, conseguently, the directionsf
of the integral curves at the initial points My and No' From these
points, let us construct segments E;ﬁI and N;ﬁ; parallel to PA

and PB_, until they intersect the line x = x;. Let (xl,yl) be the

coordinates of the points M, and N,. On the 01 axis, we lay off
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ae

O

segments OlAlland 0,B;, equal to y, and (EF)_lf(el,A*(xl)).

Starting at M, and N;, let us draw segments EIE; and ﬁzﬁ;,
parallel to FKI and ?ﬁ;, until they intersect the straight line
X = X,, etc. In this way we obtain two polygonal curves, MoMlMZ"'
and N1N2N3..., which provide an approximate representation for the
desired integral curves.

According to (II.58) the quantity G(x) is determined from
the expression

G(x) = 9'EF — atEF,

from which, taking into account the end condition G(s) = -ZPH,

we obtain

P
H
L]
8'(s) + ZE—F.

~
i
e |+

Assuming different values s for the length of the "transition"
zone and, for each of these, a value for the temperature decrease,
we can construct the graph s = s(1) which, in general, will
resemble the graph in Figure II.43.

For the case of the n~th loading, the function ¢n(x,x*)

can be represented in the form

oA"Y = s _1(xA ) (— 1 _(o,27)
n’ n-17 ntorn e (II.61)
(n =2, 3, 4, ...).

*
Here o = |A-2

For n = 2 this formula coincides with (II.55). If the
longitudinal force and logitudinal displacement diagrams are
available, this representation allows one to construct such
diagrams for the next loading, the problem bring reduced to that

of finding functions which satisfy (II.57). Thus, starting
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with the first loading and making use of the recursion formula
(I1.61), one can construct the P(x) and A(x) diagrams for a

system successively loaded and unloaded n times. it should be
noted that the influence of previous loadings is erased to such
and extent that after the fourth loading one can assume ¢n(A,x*)

= ¢O(A) for n >4, where ¢O(A) is the function obtained by averaging
with respect to A*

Thus, all the developments of this section are applicable
only to the investigation of the effects of diurnal temperature
oscillations on the longitudinal rail forces and displacements;
to study processes which affect the track over more extended periods
of time, one should assume the relations derived for the first
loading, replacing the function ¢(A,0) with ¢O(A). This is also
justified by the fact that in the course of time atmospheric
influences, the movement of rolling stock, and improvements due
to track maintenance all affect the nature of the contact between
the ties and the ballast, and between the ties and rail.

In studying hysteresis phenomena in CWR track, we will confine
ourselves to examining the case of a special assignment of the
function ¢(A,A*), which, however, is general enough to include the
cases of purely frictional and frictional-elastic interaction
between the rail and the supporting foundation.

Let us assume that

* _ * _ _ n - . 2
oA ) =4 5 (A2 (—1) " _(0), (n=2,3,4, ...). (11.62

For a purely frictional interaction this formula has the

form +

o, (ha") = ¢ — (—1)"2c.
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1 For elastic-frictional interaction,

C a n
¢n(A,A ) = e+ Kx — (— 1) ' [2c + Ko].

Here 6 is the tie displacement from a previously displaced

ot s g -

position (due to previous loads).

For practical purposes fo(e) can be obtained by averaging
f(e,x*) with respect to positive values of A*. It should be
recalled that the function ¢°(A) is obtained by averaging
¢(A,A*) with respect to both positive and negative values of A*.

It is quite obvious that the variance of fo(e) is smaller

; . than the variance of ¢OLA); however, after several successive
' S

loadings the variance of ¢n(A,A*) will become greater than the
variance of ¢O(A) (for some n).
Let us examine successively three stages of temperature
{’- change (loading): 1) increase in temperature t from zero to
its maximum value t*; 2) decrease from the maximum value t¥*
to its minimum value toin’ 3) increase from the minimum value
. tmin to the maximum value t*.

With repeated cyclical changes in temperature in the interval

»*
[ [tmin't ], the last two stages will be alternately repeated.

It follows from (II.29) that during the first loading the

Y A L s e e

displacement of the end of a length of rail and the temperature

rise are related by the following formula:
- 11.62)¢ P 2§ (A 0)dx+fi'—
: 1=z )/ ') POt

Solving (II.57) and substituting the boundary conditions, we

e

PPt b i

obtain
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e —
_ 1 2 2P,
T—E‘l/ﬁé‘f(o)do —l-o_tE—F'

during the second loading, which yields

ta—:t‘—‘r:—-‘—é]/l-s%.-jq)(k.O)dk———
1}
’ l:-—-).
l 2 PH
) E’Fj TO0 =
0

*
where Ao is the maximal displacement of the rail end at the end

of the first stage of temperature change, and Ao is the displacement

of the end during the second stage.

Making use of (II1.62), one can obtain the relation between the
temperature t and the rail end displacement Ao during the third

stage. Obviously,

! A: ) ):_X.mln
1 2 1 ) ,
13_31/? g 90 0)dh— !/Ef S FO)dO -
]
de—2am(n
1 2 P,
+ '&'VEF' S f(0)d0 -- GEF "’

min is the minimal displacement of the rail end at the end

o

[=]

where A
o

of the second stage.

The graphs of t(AOl), t(AoZ), and t(A03) are plotted in

Figure II1.47, which clearly shows the hysteresis loop.
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Fig. II.47. Displacement of a free rail end due to
cyclical temperature variations

Except for the multiplying constant (l/qaEF), the area of the
loop represents the irreversible part of the work done by the sun
in destroying the ballast, ties, and fastenings in the "transition"
zone region. To prove this it is sufficient tb note that the
work done by the sun in the "transition" zone region is equal to
the work done by the external force P = atEF applied to the end
of the rail.

To compute the work done by the sun, we can use the formula

A : '
A=aEF | 09— 101 dh =~ VEEF | (\/r F(0)d0 -

)‘.mln .mln

M omim X = min
-ﬂ/ §f@m—l/.f fmm+;“)ﬂo
0

To construct the hysteresis loop it is convenient to use

(II.63)

templates bounded by the curves

__ S
1./ 2 L/ .2
= ‘/EF e 0)dr n - - VEﬁgf(O)dO'

For the case of frictional interaction these curves become

«e

pParabolas:
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For this case the area of the hysteresis loop can be computed

quite simply (Fig. II.48).

8
* br C_l
: t "'i [OTIOT S\%
o / ) 7.—{
(4
emin = a d
0 A
(.t “tmin~ 7

Fig. II.48. Construction of the hysteresis loop in the
motion of a free end of a rail

It is clear that the area s of the figure aecf is given by

Saect = Sabca ~ 28

14

ebc

where

«*EF (,, 2P,
Sabcd= 1c (t*'—tmln EF) (t* tmin);

the second term can be computed from the integral

2P,

"."mln";‘f{ﬁ
' aEF 2P, \?
Sebc = ;,[ f(O) do = 1oz (t tmln'—&—EF‘) .
Thus, the energy dissipated is given by
: A=aEFSg. -
asE3f? ¢ 2P, \? r 4Py (II.64)
= —12—0 - ( - |nln—&“E'-"F') Linfn — <EF "
If P, = 0, the equation (II.64) takes the form
@ F2F
A-—-—‘ l ( "[nlln) (II.GS)
Let *
oEF(t — tmin) = 2P¢'
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where P¢ is the amplitude of the fictitious force applied to the

end of the rail.

Then formula (II.65) takes the form

3
a= 2%y (II.66)
3CcEF

The cubic dependence is consistent with the relation between
the area of a hysteresis loop for steel and the stress amplitude.
For the case of elastic-frictional interaction between the rail
and the supporting structure, the integral in (I1.63) can be
found in integral tables and is expressible in terms of elementary
functions. In.the more general case when the function £(8) is
approximated by a polynomial of third degree, the expression‘
(II1.63) can be reduced to a system of elliptic integrals of the
second kind.
| It was already noted that in examining forces and displacements
in CWR track, produced as a result of temperature changes over a
period of several days, the function ¢(A,A*) should be replaced
by ¢O(A). When even longer periods - a month, or several months -
are examined, even the dependence on the raildisplacement is
erased; this can be explained by the existence of creep at a
! steady temperature, the relaxation of forces transmitted from the
ballast to the ties, and even by atmospheric effects. Important
effects which tend to smooth out thé function ¢O(A) are produced
by the movement of trains, and even by work done to maintain the
track. In general, the smaller the rate of temperature increase,

the more weakly correlated will the function ¢(x,A*) be, and the
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formulas previously derived are most accurate for the ideal

case of a sudden temperature rise, dt/dT = «., Here T is the time,
In what follows, dt/dT will denote the average rate of temperature
change for the period of time being considered.

When dt/dT = 0, when constructing force and displacement
diagrams produced by a temperature rise over an infinite time
period, the dependence of the linear resistance on the displacement
of the rails disappears completely.

Let us examine this phenomenon in somewhat greater detail.
Suppose the temperature of a rail string increases by an amount
t1 during a time interval ATl = T21 - Tll’ so that dt/dT = tl/ATl'
Let us measure the magnitude of the displacement of the rail cross-
section at several points, and let us compute the magnitude of the
linear resistance at these points using, for example, the approximate
formula p = EF(AZA/AXZ). Repeating this experiment under the same
conditions many times, one can construct the p,A correlation net,

and compute the correlation function K (ATl) of the random

p(t),A(t)
variables p(tl) and A(tl).

Now, taking a different time interval AT, = Ty, - Tyye

during which the temperature is raised by the same amount t, as
during the previous series of experiments, one can compute the

correlation coefficient K (ATZ)'

P (t) IA<t)
In exactly the same way, given a time interval ATn, one can

compute K )(ATn) (Figure I1.49). The graph obtained can

p(t) I}‘(t
be regarded as the correlation function between the processes

pt(T) and At(T); furthermore, if the correlation coefficients
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were determined by a regression of p over A , the correlation
function Kp(t),A(t)(AT) characterizes the closeness of the
dependence of the linear resistance pt(TZ) at time T, on the

displacement of the rail cross-section At(Tl) at time Tl'

Kp(t),act) (aT)

at

aT, daYs
4

0 1 2 J
Fig. 1I1.49. Graph of the correlation function of the linear
resistance and rail cross-section displacement as a function
of the time interval during which the displacement takes place

Having the information about the order of the system [ we have

7
1

*
in mind the graph of ¢(A,x )] at time Ty when the temperature

v

begins to rise, we must construct the force and displacement

nate diagrams for time T2 at which the temperature stops rising. If

®

during the period AT =-T2 - Tl no further information is received
concerning changes in the state of the system, its order must
m . decrease according to the second law of thermodynamics simultaneously
with an increase in the entropy - a measure of the system
indeterminancy.

Since p grows together with the growth of the displacement
A, we can assert that the correlation function Kp(t),A(t)(AT)
is positive. It is convenient to approximate this function by

the formula

| AT
—

Koy (AT) =- Age 70, (I1.67)

where Bt is the correlation time, i.e. a period during which the

-

correlation is, for all practical purposes, erased. This

quantity varies between 3 and 7 days. It is easy to see that
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At = Kp(t),A(t)(O)' In the first approximation, the quantities

At and B, can be considered independent of the temperature.
Consequently, in examining yearly temperature changes we
must look for the linear resistance as a function of the temperature
and time, and not of cross-section displacement.
At the present time the following relation between the
linear resistance and the temperature is accepted:
¢es, for t. > 0,

o = ¢ (I1.68)

pw, for tc < 0,
where P is the averaged linear resistance to displacement for
summer temperatures, P is the same quantity for winter temperatures,
and tC is the temperature in degrees Celcius.
It is unnecessary to examine the construction of temperature
diagrams based on the use of equation (II.68), since these can be

found in any textbook devoted to railroad track construction.
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CHAPTER III

INVESTIGATION OF THE OQOPERATION OF CONTINOUS WELDED RAILROAD
TRACK AND EXPERIMENTAL DETERMINATION OF PARAMETERS AND FUNCTIONS
WHICH DETERMINE ITS BEHAVIOUR UNDER TEMPERATURE CHANGES

1. Determination of the statistical parameters of the function
v(1,0). Experimental goals and methods, and results obtained.

The basic statistical characteristics of the dependence of
the rail displacement on the force transmitted by the rail to the
tie were determined in experiments conducted by the author at the
Tsaritsin station on the Moscow line.

Two 550 cm lengths of P50 rails, isolated from the rest of
the track by 50 mm gaps, were laid in the experimental section.

Ten wooden ties, attached to the rail by intermediate fastenings

of type K, were installed along the length of these rails. The
distance between the ties was taken to be Ax = 55 cm, which corres-
ponds to 1840 ties per kilometer. Crushed stone of medium hardness
was used for the ballast. Joint bars were omitted.

The displacement of the rails was fixed by means of dial
gauges installed at both ends of each rail.

Figure III.l shows the arrangement for displacing the 5.50 m
section. The actual displacement was effected by means of a two-
cylinder hydraulic jack equipped with a manometer.

Before each experiment the ballast was packed by an electric
tie tamper. The clamp bolts were tightened once every ten

eXperiments
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To eliminate the influence of displacements of one rail on
displacements of the other rail, the ties were cut in half, and
to prevent misalignment, the rails were fastened to the center of

the half-ties, as shown on Figure III.Z2.

— 3300

Fig. III.l. Arrangement for moving the rails by means
of a hydraulic jack; (1) dial gauge; (2) manometer.

!.._ rJfo—FI /

Tt ;/; -t RN

ORI O AR IR I s ore A
CARIILRY i -

P TN

(s

Fig. III.2. Track-stand cross section; (1) pin for attaching
dial gauge. -

Because of the narrowing of the track gauge in the experimental
section, the gauge was also made smaller in the adjoining sections
of the track to permit the use of the hydraulic jacks. The
longitudinal forces were computed from the manometer readings to
within m, = 160 kg. The arrangement of the dial gauges is shown
in Figure III.3. The forces transmitted to the rail were fixed

after every 2 mm of longitudinal displacement.

Fig. III.31 Arrangement for fixing the displacement of a rail
Cross-section; (1) plate; (2) dial aauge; (3) stand.




11l

The simultaneous displacement of five ties (ten half-ties)
was dictated by the following considerations: (1} In moving a
single tie the ballast in the tie crib (if the tie crib is not too
large) is subjected to a higher pressure because the preceding tie
remains stationary, which does not correspond to actual operating
conditions in a track. (2) When a large number of ties is moved
simultaneously one must take into account the differences in the
displacements of the individual ties, since these differences can
be appreciable. (3) The accuracy of the experiment is improved
when several ties are moved simultaneously by the hydraulic jack,

since the accuracy m of determining the force transmitted to one

“tie is equal tom = 2mo/no, where n, is the number of ties in

the displaced section of the track. 1In particular, when n = 10,
m= 2(160)/10 = 32 kg.

Thus, an optimal number of ties to be moved simultaneously
must be selected, on the one hand, to create conditions which
are similar to actual operating conditions for ties in a track,
and, on the other hand, to achieve conditions of equal displacement
(within certain limits of accuracy) of all the ties (more precisely,
of rail cross-sections opposite the ties). In addition to this,
it is desirable that the force needed to effect the displacement
should be in the range 9 - 10 tons, since larger pressures may
Cause o0il leakage through the cylinder seals, which will result
in erroneous manometer readings (the cylinder pressure drops quite

Precipitously with time).

The experiments were perfomed during dry summer weather.

The results are shown in Table 7. On the basis of these results
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Table 7

o400 (Divisions ).._._

Ao | Ao [ Xee | 2 da Lo b oae Lo [ |2 |0
O aag) me? mar| ecd mem| o G sl o B |-V A 02 a1 srs|c 16 sa| U8 ] 20
s | oae
10 16 21 25 28 20 30 30 30 30 | 4h
11 16 21 25 27 29 30 3 3] 30| 3

1o (16 | 21 | 25 | 28 | 20 | 30 | 31 | 31 | 31 |m
T | 75 | 20 | 23 | 26 | 27 | 28 | 29 | 31 | 333

lo | 17 | 22 | 25 | 27 | 29| 30 | 30| 33 |33 |2
0 | 7 | 28 | 26 | 29 | 31 [ 32 | 33 | 33 | & |
l2 | 16 | 20 | 20 | 97 | 29 ) 31| 39 | 30 | 32|
10 | 17 | 22 | 35 | 27 | 29 | 3 | 30 [ 31 |31 |3y
9 | 14 | 18 |2t 2 | 25 | 26 | 27 | 29 |99 |3
T0 | 16 | 22 | 25 | 27 | 29 | 30 | 31 | 3 [ 31 |31
10| 16 ] 2 | 23| 26 | 28 | 20 | 30 | 30 |29 |29
0 | 77 | 23 192 | 28 ) 3 | 31 | 32 | 32 |3 |33
0 | 16 |20 | 25 | 28 | 30 | 31| 32 | 35 |3y a6
To | B | 21 | 2 | 7 | 8 | 9| 29 | 3 [ 3|42
10 | 15 | 20 22\ 20 | 26 | 26 4 28 3 29 4 29 440
70 | 15 | %0 | 23 | 25 | %6 | 27 | 28 | 29 | 99 |40

26 | 28 | 30 | 31 | 31 |36 |3
29 31 32 33 32 33 | 33

os
=l o
MIM
o —
2N
W

26 27 28 29 30 31 | 31

5 | 26 | 23 [-26 [ 27 | 29 | 31 | 31 |32 |3

=)
(433
N
o
N
[9%)

20 | 23 | 26 27 | 28 29 3l | 32 |3t
20 23 26 28 30 31 3 |13 [ 5

15 20 23 25 26 26 28 30 | 31 |29
p 31 33 34 33 33 | 32

1S ol |
=

©
2
-
N
N
€l

0 | 16 | 21 | 24| 27 | 20| 30 | 31 | 30 | 3|3
To | 1 [ 2t [ 29 | 27 [ 29 | 30 { 31 | 31 | 31 [ 33
10 [ 16 20 |2t f a6 o8 | 29 | 29 | 3L |z |3
] 70 2 | 27 | 30 | 37 | 3 |30 [ 33 |33]3%
10 15 20 23 26 29 30 30 ’ 29 3t | a0
W | 15 | 2 | 2w |3 | 5o | oso | s |51
10 [ 16 [ 21 | 25 [ 28 30 | 31 | 42 4 3l 324 32
o| 16|21 | 25 7 |29 | 30 | 31 29 | 30 | e
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Table 7 (continued).

L S¢0. 0 (Divisiong) o
N PN Ao Y= Aen Yis Yo 2 Ao 2 2 s
a0 M| 522 muf =4 M w:G aar] 28 aar) 10 sen| 12 Anse[s 1A aa]s 216G ara ] ; i i
;7 | Jo | J6 | 20 | 25 | 27 ) 29 | 30 | 31 | 33 | 3333
10 15 | 20 2] 26 23 20 | 29 32|33
ig | 1o | 16| 22| 25 | 27 | 29 | 30| 31 | 3l |32 |3
9 16 22 25 | 27 28 29 | 30 | 37 | 32 | 32
o | Jo | 17 |22 f 25 ) 28 |30 | 3l f a1 | 38 |33 a2
I 17 22 25 27 28 30 32 3l | 33 |31
0 | 9 [ 16| 20| 25 | 20 28 | 29 | 30 | 3l | 30 |3
10 17 22 25 27 28 29 30 33 | 33 | 32
21 | o} 16| 20} 23 | 2 | 28 ) 30 | 3 | 3 |34 |
10 17 22 | 25 | 27 28 | 30 | 30 31 | 32 |31
92 | W [ 181 24 ) 27 ) 30 ) 311 32 ) 32 ¢ 31} 31 )3l
10 6 | 22 | 23 | 26 | 27 | 28 | 29 | 33 | 32 | 32
23 | 9| 35 | 20 | 241 271 29 ) 30 |"30 | 3l |32
9 14 18 2 | 7 38 | 29 | 30 | 33 | 3 { ;@
24 | 10| 17 | 20 |23 ) 2 | 28 | 30 |3 |3 |3 |3l
I 19| 28 | 27 | 29 | B B A 33 13|33
25 | 9|6 | 20| 24| 27 | 30| 3 | 32 | 3 |35|3.
1 1 | 21 21 | 27 29 | 30 | 3 32 | 33|32
\ 26 [ 10 | 16 | 20 | 22 | 24 | 26 | 27 | 28 | 3l |32 |33
10 17 | 23 26 | 29 30 | 31 30 | 32 | 33 |33
27 (10 16 | 20} 22 1 25 | 27 | 29 | 30 | 32 | 37 )32
10 17 22 25 27 28 30 30 3 | 33 |3
8 (10| 16| 20 f 24 27 | 30 | 31| 33 33|33
10 6 | 20 | 24 27 28 | 29 | 30 | 33 | 3 |32
29 | 10| ;7 0 2|2 | 29 | 30 | 32 | 3 |35 |3p|%
10 | 17 | 23 | 26 | 29 | 30 | 37 | 30 | 32 |32 |35
o | 0| v zz[zﬁ 37_'29 30 | at | 35 |3 |as
9 14 9 | 22 | 25 | 27 | 29 | 29 | 32 | 31 | 32
Remarks. 1. The numerator and denominator shows the manometer

readings when moving the east and west rails respectively.

2. The zero of the manometer is displaced by half a division,
SO0 that a manometer reading of n divisions corresponds to an
interval mg(n-1) - m_n of the values of thelongitudinal force

transmitted from the hydraulick jack to the rail, where m, = 160 kg,

Corresponding to one division on the manometer. Consequently,
the interval of values of the longitudinal force transmitted to
One tie (two half-ties) is mo(n—l)/S - mon/5. Here m = mO/S is

the limit of accuracy for computing the longitudinal force, m = 32 kg.
3. N denotes the experiment number.
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the mathematical expectation and the variance were computed for

the longitudinal force transmitted to one rail when it is displaceqd- |

by a fixed amount.

For rail displacements A > 20 mm, the force transmitted
to the rail did not go up as a rule, and instead oscillated as
the rate of o0il movement was varied. This can be explained by the
appearance, for large displacements, of sliding surfaces within
the ballast and the existence of sizable plastic deformations; in
addition, the appearance of creep is very obvious for large
displacements.

Let us turn our attention now to the analysis of the
experimental data. The columns of Table 7 represent the statistical
series of distributions of the random variables 5w(Ai,O).

Let us compute the statistical characteristics of the random
variables Sw(xi,O), and verify the agreement between the empirical
and the theoretical Gaussian distribution by means of the Pearson

2 2
x test". Special tables for the x distribution are available [30].

Making use of the tables, one can determine for every value
2
of x and the number of degrees of freedom r, the probability P

that the value of the random variable distributed according to the

"
L

x law will exceed that value. The number of degrees of freedom

2
r of the x distribution is the difference between the number of

interval ranges k of the statistical series and the number s of
constraints imposed on the empirically determined frequencies

Pji' The sume of the frequencies must be equal to one, i.e.
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cal

k *
I P =1,
j=1 i
and we will choose the theoretical distribution so that the
theoretical and the statistically determined mean values and

variances coincide, i.e.

&
/-21 5 (A, 0) Pl == My (4, 0);

1
3 57 b 0) — M5 (1 O] P = 0591, 0)

where ij(xi,O) is the "representative" of the j-th interval range
of the random yariable ¢(Ai,0); P*ji is the frequency of the j-th
interval. range (for ) = xi); and ki is the number of interval ranges.
The number of constraint;si imposed on the frequencies in this
case is equal to 3.
Let us note that the X2 distribution with.r degrees of
freedom is the distribution of the sum of-squares of r independent
random variables, each one of which obeys the normal law with

the expected value equal to zero, and the variance equal to one.

This distribution is completely characterized by the density

u
e ? npn >0

R, (u) = 23r(§) ,

0 npn u <0

S —— T} ]

©

where T'(a) = f_ g2 1

etdt is the well known gamma function.
Thus, let us compute the statistical parameters of the

distributions of the random variables w(xi,O).

For this casc the forces for which the rails begin to move

were fixed. Using the second column of Table 7, we construct
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the statistical series of the random variable 5y (0,0) (Table 8).

Table 8
. T
njo - manometervreadlng 8 9 10 11 12 .
—
Ijo - interval of force 1120~ 1280- 1440- 1600~ 1760~
values transmitted to 1280 1440 1600 1760 1920
the rail
—_—
Njo - number of occurrences 1l 9 41 8 1
in each interval
Pjo - frequency of :
occurrence in each
interval 0.017 0.150 0.683 0.133 0.0li;l

Let us compute the expected value of 5y(0,0):

. :
M5 (0,0) == 3 5,(0, 0) Pjp = 1200-0,017 -{- 1360-0,150 -
’ =1

--1520-0,683 -|- 1680-0,133 -|- 1 840-0,01 7-=1518kg,

from which

My (0,0) = é M5y (0,0) = % 1518 = 506 kg.
The variance of 5¢(0,0) is given by

"B
3590,0)~ 3, [5%,0,0)— M54 0. 0] 1o -
== (1 200 — 1 518)2 0,017 -- (1 360 — 1 518)2 0,150 |-
+ (1520 — 1 518)2 0,683 -}- (1680 — 1518)2 0,133 -4~
+ (1 840 — 1 518)2 0,017 == 10650 kg2_

From this we can compute the variance of ¢(0,0):

1

39(0, 0) = 4 350, 0) - % 10630 - - 2130 kg2

2. X. = 2 mm
i
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'60~
920

017

From the third column of Table 7 we construct the statistical

series of the random variable 5y (2,0) (Table 9).

Table 9
ny, 14 15 16 17 18 19
Ipg oo oo v 2080— | 2240— | 2400— | 2560— | 2720— | 2880—
2 240 2400 2 560 2720 2880 3040
Ny oo o 3 10 28 15 2 2
P;,- « .7 +. .. 0,050 0,167 0,467 0,250 0,033 0,033

Let us compute the mathematical expectation of ¢(2,0):

. _
M5y (2, 0) == Ig}‘ 5¢,(2, 0) P}, - 2160-0,030 -- 2320-0,167 -

+2480-0,467 - 2640-0,250 - |- 2800-0,033 -- 2 960-0,033--2 492Kg ..

" We find the expected value to be

My(2,0) = & M5¢(2,0) = 3 2492

500 kg.

The variance of 5y(2,0) is given by
' s . -
A5y (2, 0 == 3 [51,(2, 0) - May 2,07 P
i=

= (2160 — 2 492)2 0,050 - |- (2320 — 2 492)° 0,167 -
(2480 —2492)2 0,417 - (2640 — 2492)2 ’
5 0,250 -|- (2 800 — 2 492)0,033-| (2 960 — 2492)0,033 - 31 840 kg .

The variance of y(2,0) is

|

2 !
35y (2,0) = = 31840 = 6368 kg . i

v (2,0) = 5

5

3. Ai = 4 mm
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On the basis of the fourth column of Table 7, let us construct

the statistical series of the random variable 5y (4,0) (Table 10).

Table 10
"/‘ 18 19 20 21 22 23 24
e - . .| 2720—| 28s0— | 3040— | 3200— | 3360— | 3520— | 3680—
2880 3040 3 200 3360 3520 3680 | 38&10
A’j‘ PR 2 I Ig lG 12 7 3
P; .. .| 0,033 | 0,017 0,317 0,267 0,200 0,116 0,03
[] -

The expected value of 5y(4,0) is given by

M5 (4, 0)--2800-0,033 -/ 2960.0,017 - 3120.0,317 - 32504
% 0,267 - 3440-0,200 -i- 3600-0,116 -1-3760-0,05 3302 kg.

We find the mathematical expectation of y(4,0) to be

My(4,0) = £ M5y(4,0) = %- 3 302 = 660 kg.

The variance of 5¢(4,0) is

S, (4 0y — M5y (4, )1 P,

7
95y (4,0)- - X
i
= (2800 — 3 302)20,033 | (2960 — 3302)20,017 -
4 (3120 — 3302)2 0,317 -] (3280 -- 3302)2 0,267
+ (3440 — 3302)2 0,200 -|- (360U — 33022 0,1 11; -
+ (3760 — 3 302)* 0,05 - 45570 kg

Thus, the variance of ¢(4,0) is
45 570 = 9 100 kg

-

2v(4,0) = £ 35¢(4,0) =

4. X, = 6 mm
i

Making use of column 5 of Table 7, we c¢onstruct the statistical

series of the random variable 5¢(6,0) (Table 11).
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Table 11
nj, 21 22 ‘23 24 25 26 27
716__- 3200— 3'360— 3("5204-- 3680— | 3840~ | 4000— | 4160—
3360 35620 3680 3840 4 000 4160 4320
;\k‘ja R M”'| T 5 15 | 10 | 20 5 4
I;;, (.1 ;)‘ITYTVO,OBS | 0,250 0,167 0,333 . 0,083 0,067

The expected value of 5¢(6,0) is given by

A . o
Mo (6, 0) = I)j 5 (6,0) Py = 3280.0,017 }- 3440.0,083 -|-
=1

23600-0,250 1-3760-0,167 1- 3920.0,333 -|- 4080-0,083 -
-f- 4 240-0,067 -~ 3796 kg.

Thus, the expected value of v(6,0) is
M (6,0) == 5 M5} (6, 0) 1379 = 7609 -
The variance of 5y (6,0) is

. .
051 (6, 0) ‘I)) 59, (6, 0) — M5 (6, 0)]* Pjs =
=

(3280 — 3796)20,017 |- (3 440 — 3 796) 0,083 +

|- (3600 —- 3 796)2 0,250 -I- (3 760 — 3796)2 0,167 +

1-(3920 - - 3796)2 0,333 - |- (4 080 --- 3 796)2 0,083 -~
- (4240 — 3796)20,067 = 50030 kg.

The variance of ¢(6,0) is

o - . 2
ap (6, 0) - --:)-().‘)\])(0, 0). . é-.ﬁ()():lf) 10000 kg

5. A. = 8 mm

1
Table 12
s 21 25 26 Y. ‘ 28 i 30
/,'s 3680-- | 3810-- 4 000~ 4160-- | 4320 - 4180 -- 1640—
3810 4 000 4160 4320 4 480 4610 4 800
Vg 3 5 15 22 6 6 . 3
Pis .. 0050 | 0,083 | 0,250 | 0,367 | 0,100 | 0,100 | 0,150
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The expected value of 5y (8,0)

7
M5y (8, 0) = X 59;(8, 0) Pjs == 3760-0,050 -|- 3920.0,083 -|-

/=1

4-4080-02504~4240-&3674-4400-0J00 [-4560-0,100 4-
- 4720.0,150 -.- 4 222kg.

The expected falue of y(8,0) is

o | .
/W‘lp (8, 0) = —15— M5'lb (8, 0) = -5*‘ 4 222 == 844 kg o
The variance of 5y(8,0) is given by

7 |
95 (8, 0) = X [5%,(8, 0) — M5 (8, 0)]* Pis - -
=l
-~ (3760 —- 4 222)20,050 -}- (3 920 — 4 222)2 0,083 -|-
~L(408O—~422®20250~L(4240—~422%203674-
W-(4400-—-4222V(L100~L(4560-—-4222V(%100—F
-L(4720——422m20050::506&)kg

The wvariance of ¢(8,0) is

1

(8, 0) ~ = 95 (8, 0) == é 50 660 - 10300 kg.

6. X, = 10 mm
. 1

From column seven of Table 7 we construct the statistical

of the random variable 5¢(10,0) (Table 13).

Table 13
e 25 26 27 PY I 290 30 31
Livo - - .| 3810— | 4000~ | 4160 - | 4320 | 1150 - | 1610. | 1800 .
4 000 4 160 4420 1 480 1610 4 800 4 960
P 4 7 18 15 9 6
Plig .| 0,07 [ 0,006 [ 0,117 | 0300 | 0.250 | 0,130 | 0,100
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The expected value of 5¢(10,0) is equal to

: LA .
- M5y (10, 0) = 12 5¢, (10, 0) Pjjo = 3920-0,017 -{- 4080-0,066 -
=] . .
+4240-0,117 - 4 400-0,300 +- 4 560-0,250 -|- 4,720-0,150
+4880.0,100 -+ 4489 kg.

We determine the expected value of y(10,0) to be

My (10,0) = + M5y(10,0) =

(S21h

4 489 = 900 kg.

U

Now we can determine the variance of 5y (10,0)

7 ' .
059 (10,0) == 3 [5%,(10, 0) — M5y (10, 0)]* Phio =

— (3920 — 4 489)20,017 -+ (4 080 — 4 489)20,066 -+

- (4240 — 4 489)20,117 - (4400 — 4 489)20,300 -+

+ (4560 — 4489)20,250 - (4720 — 4 489)20,150 -
- (4880 — 4 489)20,100 = 51660 kg~ .

The variance of ¢(10,0) is

2
9y (10,0) = % 959 (10,0) = % 51 660 = 10 600 kg .
7. A. = 12 mm

1

Making use of column 8 of Table 7, we will construct the

statistical series of 5¢(12,0) (Table 14).

Table 14
Ny 26 27 28 29 30 HE g2 8
e o -] 4000|4160 4320 | 1480~ | 1610 | amoo | 1060 | 5120 -
4160 | 4320 | 4480 | g6t dwon | sosal o nyen | 5use
Py, - | 0,050 | 0,034 0,066 | 0,200 | 0,381 | 0,150 | 0,066 | 0,050
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The expected value of 5y (12,0) is equal to

8 .
M5p(12,0) = X 5¢,(12, 0) Pji2 = 4080-0,050 -+ 4240-0,034 -
/=1 ’ '

- 4400°0,066 - 4 560-0,200 -+ 4720-0,384 -i- 4 880.07150 -
+ 5040.0,066 -- 5200-0,050 . 4 681 Kg.

We find the expected value of ¢$(12,0) to be
My(12,0) =4 M54(12,0) = £ 4 684 - 937 kg.

The variance of 59(12,0) is equal to

' 8
a5y (12, 0) = 12 (5%, (12, 0) — M5y (12, 0)]° Pji» =

=1
— (4080 — 4 684)20,050 -|- (4 240 — 4 684)20,034 -
+- (4 400 — 4 684)2 0,066 - (4 560 — 4 684)2 0,200 -+
+ (4720 — 4 684)2 0,384 - (4 880 — 4 684)20,15 -
+ (5040 — 4 684)2 0,066 - (5 200 — 4 684)* 0,050 = 63 640kg“ .

The variance of $(12,0) is
2

2p(12,0) = & 35¢(12,0) = % 63 640 = 12 700 kg2.

8. Ai = 14 mm

Making use of 9th column of Table 7, we obtain the statis-

tical series of the random variable 5y (14,0) (Table 15).

Table 15
i 27 28 29 30 31 32 ' K] 34
L oo 4160 | aseo— daso [ 4610 | 1800 | 19001 5 120 5 os0m
. N . st AT A (s O‘
4320 4180 4610 1 800 1960 5120 ,.") 280 )5 440
Njig .. I 4 8 17 15 8 4 3
Py - .| 0,007 | 0,066 [ 0,133 0,284 | 0,250 | 0,133 ( 0,067 | 0,050
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Let us determine the expected value of 5y(14,0)

M5y (14, 0) = zsw,(m 0) P}14 = 4 240-0,017 -}- 4 400-0,066 -

"~ 44560 0]33 -|- 4720-0,284 - 4 880.0,250 -|- 5040 0,133 +
- 5200-.0,067 -- 5 360-0,050 == 4817 kg,

The expected value of y(14,0) is

1

My (14,0) = 3 MSw(l4,0) = 4 817 = 963 kg.

=

Now let us compute the variance of 5y (14,0)

\ , .
05y (14, 0) = Ig)l [5%, (14, 0) —M5y (14, 0)]* P]1s =

= (4240 — 4817)20,017 -+ (4 400 — 4 817)2 0,066 --

+ (4560 — 4 817)20,133 - (4 720 — 4 817)2 0,284 -

+ (4880 — 4 817)2 0,250 - (5040 — 4 817)2 0,133 -
+(5200—-4817)20 067 - (5360 — 4 817)? 0,050 == 60 580 kg

The variance of ¢(14,0) is

1

2
oy (14,0) = 5 a5y (14,0) = 60 580 = 12 116 kg .

(S0 =

1 9. A, = 16 mm
1

Column 10 of Table 7 yields the statistical series of the

random variable 5¢(14,0) (Table 16).

Table 16
m 29 30 31 42 ' kK] 34
Dne - | 4480 [ 4680 | 4o~ | 910~ | arzo— | a2m0 | 500
4640 | 4800 1910 5120 5 280 5110 5600
;lea H 5 20 ’ 12. ' 11 6 4
Phe - - 0,083 | 0,100 | 0,267 0,200 l 0,183 | 0,100 | 0,067

The expected value of the function 5¢(16,0) is
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, .
M5y (16, 0) = 3 5¢ (16, 0) P, ~= 4 560 0,083~ 4720.0,100 ~-
/=1

1-4880-0,267 - 5040-0,200 -}- 5200-0,183 - 5 360-0,100 —
-+ 5520-0,067 = 5085 K9g.

The expected value of ¢(16,0) is

My(16,0) = & M5y(16,0) = 3 5 085 = 1 017 kg.

Let us compute the variance of 5¢(16,0)
. ;o
059 (16, 0) = /§ (51, (16, 0) — M5y (16, 0)]* Pjy6 =
= (4560 — 5085)2 0,083 -I- (4 720 — 5085)2 0,100 -
+ (4 880 — 5085)2 0,267 -|- (5040 — 5085)2 0,200 -
+45200-—508@20J83-L(5360——508&2%100ﬁ-
. 4 (5520 =~ 5085)20,067 -- 60020kg " .

The variance of ¢(16,0) is equal to

20 (16,0) = = 5y(16,0) = £ 60 020 = 12 000 kg.
10. A, = 18 mm

i
The statistical series of the random variable 5y (18,0),

computed from column 11, Table 7, is shown in Table 17.

Table 17
e 29 30 31 32 33 KE] 35 36
T o - | 4480 <] 4610 - aso0 | a0c0—| 5120 ] 50 -] 51410--| 5600~
4610 4800 4 960 5120 5980 [ S5410) 5600 | 570y
Nos . . 4 4 10 15 15 7 3 2
Pry | 0,067 0,067 0,166 | 0,250 0,250 | 0,116 0,05 | 0,034
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The

The

The

The

The

shown in

mathematical expectation of 5y(18,0) is

B ~ L]
M5¢(18,0) = 3} 5%,(18,0) Pj1s == 4560-0,067 4-4 720-0,067 -

-} 4880.0,166 +- 5040-0,250 + 5200-0,250 - 5360-0,116 -
"~ 4 5520.0,05 - 5680-0,034 == 5084 kg.

mathematical expectation of y(18,0) is

My (18,0) = %M‘p(lB,O) = -_,1; 5 084 = 1 017 kg.

variance of 5¢(18,0) is given by

8 ~ L)
359 (18,0) = ¥} [5¥, (18,0) — M5y (18,0)]°P]ia == (4 560 — 5 084)2

"X 0,067 + (4720 — 5 084)20,067 -} (4 880 — 5 084)2 0,166 -
+ (5040 — 5 084)2 0,250 - (5200 — 5034)2 0,250 + (5360 — 5 084)? |
% 0,116 - (5 520 — 5084)2 0,05 - (5 680 — 5084)2 0,034 = 68 450 kg2 .

variance of ¢(18,0) is
= 1 _ 1 = 2
oy (18,0) = T 35y (18,0) = 5 68 450 = 13 690 kg“.

11. Xx. = 20 mm
i

statistical series of the random variable 5y (20,0)
Table 18,
Table 18
Bl 29 30 3'l 32 33 34 35 36
Jisy - . .| 4480—| 4640—| 4 800— | 4960—| 5 120—| 5 280—| 5 460—| 5600
4640 | 4800 | 4960 | 5120 | 5280 | 5460 | 5600 | 5760
Npoo - | 4 5 | 8 18 15‘ 5 2 3
Pl - | 0,067 0,083 | 0,133} 0,300 o,;;b 0,081 | 0,033 | 0,050
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Let us determine the expected value of 5y (20,0)

M5 (20,0) = ZS\!:(?OO ) P20 == 4560-0,067 -I- 4 720 x

/0,083 - 4830-0,133 4 5040-0,300 - 5200-0.230 -~ 5300.0,081 -
4-5520.0,033 -1 5680- 00>r) -2 5086 kg.

The expected value of ¥(20,0) is

My(20,0) = £M5y(20,0) = £ 5086 = 1017 kg.

The variance of 5¢(20,0) is given by

8 ~ 2 . o - Ry
()5\1) (20,0) =z 2} [51]1, (20,0) — AIS!I/ (20,0)] - Pl‘g() 2 (4 o060 — 5 08())-' 7
J=1 .
% 0,067 -- (4 720 — 5086)* 0,083 -|- (4 880 — 5086)20,133 -

1 (5040 — 5086)2 0,300 -}- (5200 — 5 086)? 0,250 -i- (5 360 — 5 086)?
x 0,084 -+ (5520 — 5086)* 0,033 -~ (5 680 — 5 086)2 0,050 -
= 6759 kg?

The variance of ¢(20,0) is

39 (20,0) = % 35% (20,0) = % 67 595 = 13 500 kg2.

Thus we have obtained the expected values and the variances

Table 19

of the random variables w(xi,O) for different values of the dis-
placement A;- Now let us verify that the distribution of the
random variable Sw(Ai,O) is normal, by using the xz test. For
the random variable 5y(0,0) this test is not applicable, since
there are really only three interval ranges and the number of
degrees of freedom in this case is zero.

Results of the application of the x? test for the other
values of the displacement are shown in Table 19. In constructing
the table several of the interval ranges were combined so that
the number of occurrences in each interval would be at least three.
Column 4 of this table contains the theoretical frequency values

Pj computed according to the formula

5971 (A, 0) -~ MOy (2, 0)
Pr= 2 1<~“ )’ ()o-\r(?‘, )
1 o (-{)_\]-, (2 0) — MBS (21, 0) )
2 ] 05 )1] ( 0y, '
t -s?/2

where ¢ (t) = vV2/q7 /e ds is the well known integral of Laplacﬁ
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Now, having the values of x2 and r for each Ai, we can use
Table 6 in Venttsel's book {9] to find the probability that the
value of the variable which obeys the x? law will exceed this

value. The results obtained are summarized in Table 20.

. .. Taple 20 ]
b a| oo ¢ 4 6 8 10 12 14 ‘ 16 ( tb o
2 [ —(4.41 5,27 | 7,65 (559 1,91 | t4,60 1,85 5,95 | 7,77 | 1 §
r 0 2 3 3 4 3 4 4 4 ) 4 1
P I —10,1})014 0,06 | 0,24 | 0,60 { 0,005| 0,76 6.20 \ 0,10 } 0,3;

Except for the distribution of the random variable 5y (12,0),
all the other distributions coincide with the Gaussian distribution
since the threshold for agreement is usually taken to be
P = 0.05.

In general, distributions are considered not coincident
if P < 0.001, so that the guestion concerning the agreement of
the distribution of the random variable 5¢(12,0) with the normal
distribution is a doubtful one. The poor agreement for the dis-
tribution of 5¢(12,0) is probably caused by experimental errors;
this explanation seems to be reasonable since the point 35y (12,0)
falls off the curve of the variance of the random function Sw(ki,O).

Figure III.4, a and b, shows the graphs of My(1,0) and
3y (x,0), constructed from the experimental data.

In conclusion, let us note that in view of the poor accuracy
of the measurements, the graph of the variance of the random
function y(1,0) cannot be considered to be completely reliable.
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2. Experimental determination of the expected value of the
*
function £(6,) ) for the case of second loading

The goal of this series of experiments was to demonstrate
the character of the variation of the load transmitted from
the rail to the tie, due to a displacement of the rail which had
previously been displaced in the opposite direction by A*mm.
The experiments were carred out in the summer of 1958 at the
track stub of the Tsaritsin station on the Moscow line, on
the same experimental stand which was used for the determination
of the statistical characteristics of the function ¢(A,0). The
stand was preserved intact, so that the track parameters remained
the same: P50 rails; wooden ties, 1840 per km; ballast of
crushed stone of medium hardness; fastenings of type K.

In the course of the experiment five ties were displaced

simultaneously. The following procedure was followed: the track
*

was displaced by an amount Ai by means of a hydraulic jack equipped

with a manometer, with a calibration of 160 kg per division; the
jack was then moved to the other end of the rail, and the force
transmitted to the rail was adjusted after every 2 mm of displace-
ment, the initial force being considered that which initiates a
displacement. (This first reference point cannot be considered
reliable.) A displacement was produced in each rail line in turn,
after which the experimental set up was restored to its original
state and the experiment was repeated. For each of t