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PREFACE

The work described in this report was performed under the Rail Equipment
Safety Program for the Office of Rail Safety Research as part of the Federal
Railroad Administration's program to improve safety in railroad operations.

The report contains results of an operating environment measurement program
undertaken by the Naval Surface Weapons Center (NSWC) to evaluate the reli-
ability of the Department of Transportation System for Train Accident Reducti
(DOT~STAR). DOT-STAR is a railroad safety system whiech is under development
NSWC to stop a train in the event of an overheated bearing or a local derail-
ment. Three aspects of operating environments were measured: operating temp
atures of rhe roller bearings, shock on the car due to coupling impact, and
vertical motion of the car due to travel over the rails. This program was

conducted in conjunction with the Accelerated Life Tests (ALT) for thermal
protection of tank cars. -

Tests were conducted using the instrumented consist for ALT at the DOT Transpi
tation Test Center (ITC) Pueblo, CO. The report discusses the reasons for
making these measurements and how each of the measurements was wade. The re-
sults of these measurements and the conclusions drawn from them are given.
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EXECUTIVE SUMMARY

The work described in this report was performed under the Rail Equipment
Safety Program for the Office of Rail Safety Research as part of the
Federal Railroad Administration's program to improve safety in railroad
operations.

The report contains results of an operating environment measurement

program undertaken by the Naval Surface Weapons Center (NSWC) to eval-

uate the reliability of the Department of Transportation System for

Train Accldent Reduction (DOT~STAR). DOT-STAR is a railroad safety

system developed by NSWC to stop a train in the event of an overheated
bearing or a local derailment, Three aspects of the operating environments
were measured: temperatures of the tank car roller bearings, the shock on
the car due to coupling impact, and vertical motion of the car due to travel
over the rails. This program was conducted in conjunction with the Acceler-
ated Life Tests (ALT) of the thermal protection of the railroad tamk cars.

Tests were conducted using the instrumented consist for ALT at the Trans-
portation Test Center (TTC) in Pueblo, CO. The report discusses the reasons
for making these measurements and the conclusions drawn from them. The
roller bearing operating temperature measurements were made:

a) To determine the normal operating temperature of railrcoad roller

b) To determine if the normal operating temperatures of the roller
bearing at high ambient temperatures are sufficient to cause a
false alaxrm of the DOT-STAR hot bearing sensor.

The coupling impact shock environment of the tank car was determined:

To measure the vertical shock (direction of DOT-STAR derailment
sensor sensitivity) induced by coupling impact to find if
coupling impact represents a false alarm threat to the DOT-STAR
derailment seansor.



Vertical motion of the car was measured:

1) To compare the condition of the test track at TIC with reveuue-service
railroad mainlines.

2) To determine if rravel over the normal test loop causes
DOT-~STAR derailment sensor false alarms.

3) To determine 1f the shims or track perturbations causes
DOT-STAR derailment sensor false alarms.

4) To determine what shim height is necessary to cause sideframe
stresses equivalent to those experienced on railrocads.

Detailed data can be found in the four appendices. The following is a
summary of the test results and conclusions:

A. Thermal

*
Roller bearing adapters operate approximately 70°F (38¢C%) A above
ambient conditions.

There is a large convective heat loss as heat isg transferred from
the bearing adapter to the DOT-STAR thermal sensor.

Even under extreme ambient conditions, a normally operating roller
bearing dges not cause DOT~STAR thermal sensor false alarms.

B. Coupling Impact (Horizontal Shock)

Maximum coupling impact shocks were measured as 100 g, 12 fps
(3.65 m/s) at the coupler and 70 g, 8 fps (2.43 m/s) on the
sideframe.

Coupling impact did not cause a false actuation of the DOT-
STAR derailment sensor.

€. GCar Vertical Motion

At no time did the vertical acceleration of either the sideframe
or the end sill exceed 20 g.

In no instance did the vertical velocity of the sideframe or end
sill exceed 1.5 £fps (0.46 m/s).

In no instance did the vertical displacement of the sideframe or
end sill exceed 1.0 in. (2.54 cm).

3 .. . .
A%In this report, absolute temperature is given in °F(°C), relative
temperature in F°(C°).



Nothing was measured which would cause a false alarm of the DOT-
STAR derailment sensor.

These ccaclusions are based on test results conducted on the TTC track,
which is 4in much better condition than mainline rail.

ardes



1. TINTRODUCTION AND BACKGROUND

This report contains results of an operating environment measurement program '
undertaken by the Naval Surface Weapons Center (NSWC) to evaluate the relia-
bility of the Department of Transportation System for Train Accident Reduc-
tion (DOT-STAR). DOT-STAR is a railroad safety system developed by NSWC to
stop a train in the event of an overheated bearing or a local derailment.
Three aspects of operating environments were measured: operating temperatures
of the tank car roller bearings, shock on the car due to coupling impact, and
vertical motion of the car due to travel over the rails. The program was con-
ducted in conjunction with the Accelerated Life Tests (ALT) of the thermal
protection of railroad tank cars.

The report will discuss the reasons for making these measurements and how each
of the measurements was made. The results of these measurements and the con-
clusions which can be drawn from them will be given. For the convenience of
the reader, only the most significant results will be discussed in the text

of this report. ‘Detailed data can be found in the four appendixes.

The ALT program attempts to compress the ten year operating service 1life of
a railroad tank car into oune year to evaluate the several different types of
fire-retardant coatings applied to the tankage sections of the car. By
agreement between the Transportation Systems Center {TSC) and NSWC, a sub-
ordinate objective of the ALT program is to evaluate the reliability of the
Department of Transportation System for Train Accident Reduction (DOT-STAR).
DOT-STAR is a railroad safety system developed by NSWC to stop a train in
the event of an over-heated bearing or a local derailment. Some of the data
taken during this environmental measurement program was used to support the
DOT-STAR tests.

The tank car instrumented for this measurement program was car DUPX 20457
shown in Figure 1. This car is a type 112A tank car. The car has a light
weight (unloaded) of 91,200 1lbs. (41,450 kg)} and a capacity of 33,622 gal-
lons (127,620 liters). This car was equipped with a Dupont design HM 1091
head shield. The car had a spray coated fire retardent coating 150 mils
(3.81 mm) thick. For all of the measurements made during this program,
gxcept the empty coupling impact shocks, the test car was loaded with
gpproximately 20,000 gallons (75,600 liters) of water for a gross track .
weight of 260,000 1bs. (118,200 kg).

1Head shield is part of a tank car designed to protect the tank from

vt bsimmen Awin bn hadans absmanlr her Fha nmsanTar Af fnathar s



TYPICAL CONSIST USED FOR ALT PROGRAM ENVIRONMENTAL MEASUREMENTS

FIGURE1 TEST CAR AND TEST CONSIST



The test consist used for most of the measurements made during this
program is shown in Figure 1. The test tank car, instrumented with measure-
ment transducers, was sandwiched between the powering locomotive and a
dynomometer car (dyno car). The dyno car housed the transducer signal
conditioning and recording electronics.



2. ROLLER BEARING OPERATING TEMPERATURE MEASUREMENTS

The roller bearing operating temperature measurements wefe
made for the following reasons:

a. To detesmine the normal operating temperature of railroad
roller bearings at a teprese§:ative train’speed. .

b. To determine if the normal operating temperature of the roller
bearings at high ambient temperatures was sufficient to cause a
false alarm of the DOT-STAR hot bearing sensor.

The roller bearing operating temperature neasurements were
made by instrumenting two roller bearing asdapters with 10 thermocouples each.
The thermocouples were special type k thermocouples with high
temperature insulation and- sheathed in a potted steel Jacket. These two
instrumented edapters were instelled over the L4 wheel and the R3 wheel besrings
of car DUPX 20457. The thermocouple lcocations and instrumentation set-up
for these measurements is shown in Figure 2. Figure 2 alsc shows an
instrumented mdapter instelled on the car. .

The instrumented tank car was %ulled around the 1b mile (22.5 ¥m) loep
of the Railroed Test Track (RTT) shown in Figure 3, After one loop, the test
was interrupted to allow TTC perscnnel t2 teke films of the consist. This
photographic coverage required forty minutes and frequent stops and starts.
After the photographic session, the test car was pulled around the RIT
et 45 pph (72 km/hr) until the temperatures of the bearings stebilized.

The results of the roller bearing operating temperature
meesurements will be reported in terms of the three thermocouples
on each adapter which reflect the heat transfer path from the benring
to the DOT-STAR thermel sensor. These three thermocouple locations are
shown in Figure 4.

Figure 5 is a plot of temperature versus time for these three
thermocouple locations on the R3 wheel bearing edapter, Figure 6
is a piot of temperature versus time for these three thermocouple
locations on the Lbi wheel bearing adapter (LI and R3 wheels are defined
in Figure 8). Figure 6 also has a plot of temperature versus time
for a thermocouple installed on the mluminum thermel probe of the
DOT=-STAR thermal sensor. The remson for the higher starting or ambient
temperature of the L4 wheel adapter is that the L or left side of
the car was expesed to bright sun all morning before the test.

4
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*

Heet is transferred from the operating roller bearing to the
wnderside of the adapter. The center of the underside of the adapters
(points 6, 16) were expected to be the hottest points on the adepters.
Thesge points reached a maximm of 159°F (T1°C) and 156°F (69°C),
respectively. The temperature drops about 6F°(3C°) ac heat is
transferred to the point (points 5, 15} on the underside of each
adapter directly under the DOT-STAR sensor contact point. At these-
points, the maximum temperatures were respectively 152°F (67°C) and
151°F (66°C). An epproximate 2F°(1C°) temperature drop tekes place
in each adspter as the heat is transferred from the underside of
the sdapters tc the point of DOT-STAR senscr contact on each adapter
(points 8, 18). EHere the respective mavimum temperstures were 150°F
{66°C) anad 149°F {65°C). Thermocouple #19, measuring the temperature
m the aluminum probe of the DOT-STAR sensor in contect with the
4 vheel adapter, memsured a maximum temperature of 117°F (L7°C),

The reason for the large temperature drop 32F°(18C°%)from
she sensoy contact point on the adeapter to the thermel sensor probe
.5 largely due to convection. The thermel sensor probe is exposed
0 & strong air stream (forced convection) as the train moves.

There was concern that, under very hot ambient temperatures
>r hot initial temperatures, a normally opevating bearing could
rause a DOT-STAR hot bearing false alarm. For the measurements
:aken at TTC, the ambient temperature of the roller bearing
idapter was approximately 90°F (32°C). The normal operation of the
:oller bearing caused a 70F°(21C°) rise in temperature above
mbient. One hundred-sixty degrees Fahrenheit (71°C) is widely
iccepted as the maximum temperature a dark bodv exposed to intense
olar radiation will reach onm a hot day. Assuming this, 160°F (71°C)
o be a worst case ambient temperature, if the same temperature rise
f 70F°(21C°)1s experienced, the worst case normal operating
enperature will be 230°F (110°C). This temperature would drop to
20°F(105°C)at the DOT-STAR sensor contact point. Due to the
trong convective losses, the temperature would further drop to below
DO°F (94°C) on the thermal sensor itself., Since the DOT-STAR thermal
ensor is set to stop the train when the sensor reaches 250°F (121°C)
normally operating roller bearing should not cause a false alarm
f the thermal sensor even under extreme ambient conditions. However,
: should be noted that it is not known at this time whether it is
:curate to assume that the bearing temperature rise at 45 mph and 90°F
2°C) ambient temperature is applicable at other cenditions.

10



3. COUPLING IMPACT SHOCK MEASUREMENTS'

The eoupling impact shock environment of the tank car was
measured for the follcowing two reesons:

&, To quantitetively define the coupling impact shock
for possible future laboratory evaluation of tank car
fire retardant coatings.

b. To measure the vertical shock (direction of DOT-STAR
derailment sensor sensitivity) induced by coupling impsct
to determine if coupling impact represents a false alarm
threat to the DOT-STAR derailment sensor.

To make the coupling impact shock measurements, the tank car
DUPX 20LST was instrumented with six piezoresistive accelerometers. One
accelerometer was mounted on each end sill of the car near the coupler.
These two accelerometers were mounted in the direction of impact
(horizontel). An mecelercmeter mounted on the car end sill is shown
in Figure 7. The other four accelerometers were mounted on
the B truck of the tank car. Two accelerometers were mounted on
each sideframe of the truck, one accelerometer next to each
wheel-bearing assembly, Accelerometers mounted on a sideframe are
alsc shown in Figure 7. Two of the four accelerometers mounted on
the sidefreame were mounted in the direction of impact, one was mounted
vertically and one was mounted horizontally in the direction
perpendicular to the direction of impact., A sketch showing all six
accelerometer locations is given in Figure 8.

The measurements were taken by amplifying the cutput of the
accelerometers and recording the emplified signal with & magnetic
tape recorder operating at 15 inches per second with extended
range FM electronics. The amplified sccelerometer outputs were.
also monitored on the spot with a direct writing oscillograph.
Voice identification and IRIG-B iime code were mlsc recorded on
magnetic tape for all the accelerometer measurements. The coupling
impect instrumentation set-up inside the dyno car is shown in
Figure 8.

The coupling impacts were done by pushing the DUPX 20457 car
(hammer) into a backstop of two empty tank cars coupled to two
stetionary locomotives with their brakes locked (anvil)., The dymo
car, containing the instr:mentation, was coupled to the pushing

11



ACCELEROMETER INSTALLED ON END SILL

FIGURE 7 ACCELEROMETER LOCATIONS
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locomotive. DUPX 20457 was coupled to the dyno car. When the

pushing locomotive got up to the desired speed, DUPX 20457 was
uncoupled from the dyno car, As DUPX 20457 continued toward the
anvil, the locomotive and dyno car stopped and DUPX 20457 pulled the
instrumentation cable from the payout arm on the dyno car (see Figure
9), Coupling impact occurred when DUPX 20L57 coupled with the backstop
consist.

A total of twenty-six coupling impact shocks were measured.
Three of these impacts were with DUPX 20L57 loaded and the A-end
of DUPX 20457 striking the impact barrier. Eleven impacts were
made with the car loaded and the B-end of the car coupling with the
barrier, Twelve impacts were made with the car empty and the B-end
of the car coupling with the barrier, The impact velocities or
striking speeds ranged from 4.5 - 9.5 mph (7.24 - 15,3 km/hr) + .1 mph
es measured by a state police radar gun.

The data taken during the coupling impact shock tests are
summarized in Appendix A. Appendix A is a series of plots of maximum
acceleration versus impact speed. Plots were made for both sideframe
and end sill accelerometer locations for both full and empty impacts.
The plots for loaded impacts are more scattered because the car was
fully loaded by weight, but only partially loaded by volume. This created
a sloshing effect during the loaded coupling impacts. This slosh
caused the coupling impact to be more severe if the slosh was in phase

with the impact and less severe if the slosh was out of phase with the
impact.

The coupling impact shock as measured showed a maximum acceler-

-ation of 100 g and a velocity change of 12 fps (3.65 meters/sec)

on the car sill of the end impacting. The maximum levels measured
on the sideframe were 70 g with a maximum velocity change of 8 fps
(2.43 meters/sec). The shock in the wvertical direction (the direc-
tion of importance to the DOT-STAR derailment semsor) showed maximum
of 25 g and .5 fps (.15 meters/sec). Short duration shocks of this
level will not cause false alarms of the derailment sensor.

A sample of impact raw data in its eatirety is given in
Appendix B. For four typical (low and high speed, loaded and
empty) the following is presented for each of the six accelerometer
channels:

a. Arcceleration versus time (unfiltered)

b. Acceleration versus time (filtered at 30 Hz)

¢. Velocity Change

14



INSTRUMENTED CAR STRIKING IMPACT BARRIER CAR
FIGUREY9 COUPLING IMPACT TEST SEQUENCE
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4. CAR VERTICAL MOTION DUE TO RAIL TRAVEL

Car vertical motion results from the passage of the car over the rail.

It is directly influenced by the traék geometry énd the quality of the track,
and is éherefore defined in this report as a meésure of track cﬁaracterization
or track profile.

The tests were divided into two pafts; A characterization or profile of
the entire 14 mile (22.5 km) RTT test léop shown in Figure 3, and a'character-
ization-of a small section of the RTT purpoﬁely roughened by fércing metal
shims under the tie plates to raise the rails from the tieg. _

The track éharacterization tests were done for the.following reasons:

a. To compare the condition of the test track at TTC to commercial

railroad mainline.

b. To determine if the travel over the normal test loop would cause

DOT-STAR derailment sensor false alarms.
c. To determine if the shims or track perturbations would cause
DOT-STAR derailment sensor false alarms.

d. To determine what shim height was necessary to cause sideframe

stresses equivalent to those experienced on commercial railroads.

The instrumentation for the track characterization tests was ths same as
for the coupling impact shock tests except the orientations of the accéler—

ometers were changed. The end sill accelerometers in this instance

-16-



were oriented verticaily. Two sideframe accelerometers were oriented
vertically. One sideframe accelerometer was mounted horizontally
along the track, and one sidefresme accelerometer was mounted
horizontally, perpendicular to the track,

The tests were conducted by meking two loops eround the entire
test oval at 45 mph (72 km/hr) with the recording equipment running
constantly. Several passes were then made over the shimmed portion
of the test loop. The details of the shimming arrangement are shown
in Figure 10. The shims were placed at 39 ft (11.9 m) rail lengths.
The shims were intended to create a rough spot on the track equivalent

to an old worn rail joint. The rough spots created were not abrupt
discontinuities, they were like half sine pulses on the track.

The entire track characterization data is contained on six
reels of magnetic tape of one-half hour playing time each. Some
of the more significant acceleration records from these tapes
are presented in Appendix C. Figure 11 is a sample of the type
of record contained in Appendix C. Figure 11 gives an acceleration
record for the most severe track irregularity encountered (other
than the shims) on the RIT test loop. Appendix € contains
acceleration records for the following cases:

&8s, Typical smooth track near merker 1l
b. Typieal smooth track nesr marker 19
c. BRough track near marker 'T0

d. Rough track nesr marker 58

e. Switch near marker 5 -

£, One inch shims et %5 mph

g. One inch shims at 55 mph

Appendix D contains several records of car vertical motion
(acceleration, velocity, and displacement) caused by travel over
the rails. Figure 12 is an example of the type of vertical velocity
data contained in Appendix D. Figure 13 is an example of the
vertical displacement datz contained in Appendix D. Refer to the
cover page of Appendix D for specific cases covered by the appendix.

The datae taken during the track characterization tests can be
sumarized as follows:

8, At ro time did the vertical acceleration of either the
sideframe or the end sill exceed 20 g.

B. In no instance did the wertical veloceity of either the
sideframe or the end sill exceed 1.5 fps (.45 meter/sec).

17
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c« In no instance did the vertical displecement of the sideframe
or the end sill exceed one inch (2.5L4 em).

d. Displacement approaching one inch (2.5 em) occurred only
during passes over .75 inch (1.91 em) or one inch
(2.54 cm) shims.

Car vertical motion limited to these values should not cause false
alerms of the DOT-STAR derailment sensor.

The track characterization data taken over the test track at TIC
can be compared to similar data taken over the mainline of the Duluth
Mesabi and Iron Range Railway (DM&TR) in northern Minnesota. THE DM&IR
is a commerecial railroad active in the DOT-STAR program., Much of the DMEIR
track has been characterized as part of the DOT~STAR program. The comparison
between TIC track and DM&IR track is as follows:

DME&IR DM&IR
TTC MAINLINE MATNLINE
TEST TRACK SUMMER WINTER
Maximum . 20 35 130
Acceleration (z)
Maximum
Velocity Change (fps) 1.2 L 9.7
Train Speed (wph) 45 mph 35 mph 35 mph

The DM&EIR is considered to he a well maintained commercial
railroed. The track at TTC gave a much smoother ride than the
DM&IR track. This smoothness 1s emphasized by the fact that the
measurements made over the TTC track were made at L5 mph (72.5 km/hr),
while the measurements over the DM&IR rails were made at 35 mph
(56.4 km/hr). The reason for the big seasonal difference in the
levels measured over the DM&IR track is that the roadbed freezes to
& depth of several feet and, thus, becomes much harder in the winter
in northern Minnesota.

As previously mentioned, characterization tests were to determine
the shim height necessary to produce sideframe lomding equivalent to
thet experienced on commercial track. Strain gage data which had been
taken previously on commercisl rail indicated that a total inerease
of 260,000 1b. (180,000 kg)(sum of the four sideframe load increases)
Was nol uncommon on commercial track. TTC personnel instrumented
the four sideframes to the DUPX 20457 with strain gages to measure the
increase in load carried by each sideframe as the DUPX 20457 passed
over the shimmed sectf.on of track.

Various shim sizes were tried to achieve the desired loading,
Shimming arrangements of h = 1/4 inch (.63 em) and h = 1/2 inceh (1.27 cm)
proved inadequate (see Figure 10 for a definition of h). Shimming
errangemeuts of h = 3/4 inch (1.90 em) and h = 1 inch (2.54 ocm) were

22



found to produce the desired sideframe load when the shimmed sections
were traversed at 40 — 55 mph (64 - BB km/hr).

Figure 14 gives mn acceleration record of = pass over one
inch {2.54 em) shims filtered to eliminste all frequencies above
20 Hz, The loaded weight of the tenk car is 260 000 1bs {118 000 kz).
A low frequency acceleration of one g would cause en additional load
of 260 000 1bs (118 000 kg) to be carried by the four sideframes
of the tank car. The low frequency acceleration levels of approximateliy
one g shown in Figure 14 provide a rough verification of the strain pgage
measurements made by TTC personnel.



0¢2*

ZH 0Z LV G343LT14 SNOLLYHITIOOV WIHS HONI-INO  ¢1 3HNODI4

{aNOD3S) JWIL

0!z 08l ast1* 821 060° 090° oga* 060"
L 1 | ] | | 1 1
L g -
H 0Z 49
A ¥3A 11¢ 8
L s
ks
H 02 L8 9
D<>{i}\i1\\(((<()){<5\<{<{((§s<($ 1834 2%
L s
— S -
H 02 tH 2
= = = , ZY0H Ty
— g
— w -
~ r huu - N nnaubommmmmmm, H 02 1Y Q
. 1434 27
— g
— 3-
H 02 L8 9
uﬂﬂgdigéwﬂ_ﬂ%g#) 2Y0HX 1)
— S
t - m -
L L H 02 18 9
T T ~1 434 S ¢
|
. A g
9L-¥-8 = 3140 Ls3aL HAH §8 WIHS 1 - *ON 183¢
TITI 0¥d MOBYL - 18351

Wy¥podd ITV QUOMTIHY = 133royd

24



5. RESULTS AND CONCLUSIONS

The feollowing results and conclusions can be stated from the
measurements made by NSWC personnel st TTC in support of the ALT
and DOT=STAR programs: '

a. Roller bearing adapters operste approximately 70F° (38C°)
ebove ambient conditicnms.

b. There is & large convective heat loss as heat is transferred
from the bearing sdepter to the DOT-STAR thermsl sensor.

¢, Even under extreme amhient conditions, a normally operating
reller bearing should not cause DOT-STAR thermal sensor
false alarms.

d. Meximum coupling impact shocks were measured as 100 g,
12 fps (3.65 mw/s) at the coupler and TC g, 8 fps (2.43 m/s)
on the sidefranme,

e. Coupling impact should not cause a false alarm of the
DOT=-STAR dersilment sensor.

f. At no time during track characterization did the vertical
acceleration of either the sideframe or the end sill
exceed 20 g. )

g. In nc instance during track cheracterization did the vertical
velocity of the sideframe or end sill exceed 1,5 fps (0.46 m/s).

h. In no instance during tzack cha.re.cte:rizat‘ion did the
vertical displecement of the sideframe or end sill exceed
one inch {2.54 cm).

i. Nothing was measured during track charscterization which
would cause a false alarm of the DOT=STAR derailment sensor,

Je« The test track at TTC is in much better condition than
mainline commercial rail.

k. NSWC accelercmeter measurements provided a rough verification
of TTC strain gage measurements.
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APPENDIX A

-COUPLING - IMPACT SUMMARY PLOTS

This appendix contains plots which summarize the data taken during the
coupling impact shock tests. These plots were made by plotting maximum
acceleration versus impact speed and velocity change (maximum velocity
change by integration of the measured acceleration) versus impact speed for
both car loaded and car empty impacts. The maximum accelerations and the
velocity changes were obtained from the records in Appendix B.

This sppendix compares loeded impacts toc empty impacts on the
same page for the following cases:

a)
b)
c)
d)
e)

£)

End Sill Acceleraticns - Doth A end end B end

End S5ill Velocity Change - Both A end and B end
Sideframe Aceelérations ~ Both left and right sideframe
Sideframe Velocity Change - Both left and righ't_, sideframe
Sideframe Vertical Acceleration

Sideframe Vertical Velocity Change,

A-1



LOADED IMPACTS-~END SILL ACCELERATION ",

100 4
Accel. g 1
T5 Jl- o o o
0 [+}
oo o
504 x X
] <] X
X X
) In The Direction of Impact
4} : X« A End Si11
254 O=B End Si11
S[' X X % X
%
X
e — + 4 +
5 6 T 9 IMPACT SPEED MPH
EMPTY IMPACTS-END SILL ACCELERATION
1001- -
Acecel. g
T
Q
(o] o]
50+
o °
[2]
o o In The Direction of Impact
0 x X~ A End Sill
254 X ©o- B End 8i11
X
x Lk X
Kx X
—+ - — 2 —t
I 5 6 7 8 9 IMPACT SPEED MPH

FIGURE A-1 COUPLING IMPACT SUMMARY PLOTS
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LOADED IMPACTS-END SILL VELOCITY CHANGE

16
Velocity
Change
FPS 1
X
la4.
«
£ X
- LU S Y o
8 X © D o
- X o0
o =]

In Direction of Impact
1 ° X-A End 5111
O-B End Si11

'y -
Ll L] ¥ % T

i 5 3 T 8 9  TMPACT SPEED MPH

EMPTY IMPACTS-END SILL VELOCITY CHANGE

161-
Veloeity
Change
FPE
124 o [~4
P X
[s]
81?
o X x X
-5 -]
o , © XOX
7 . X X In Direction of Impact
X X =4 End Sil1
O -B End Sili
+ ¥ 4 - 4 1
5 [ 7 8 9  IMPACT SPEED MPH

FIGURE A2 COUPLING IMPACT SUMMARY PLOTS



LOADLD IMPACTS-SIDEFRAME ACCELERATION

100 4
Accel. g
154 X
X
In The Direction of Impact
so4 X= L2 Wheel
o] Q= R2 Wheel
3 o °
o)
X 0
25¢ X X
R ()
g® X
&
+ $ : } +
5 - 5 6 T 8 9 IMPACT SPEED MPH
EMPTY IMPACTS~SIDEFRAME ACCELERATION
100 ¢
Accel. g
754
0+ In The Direction of Impact
= L2 Wheel
O~R2 VYheel
254
Q
X % o
® 2R R . ) .
b 5 6 T 8 9  IMPACT SPEED MPH

FIGURE A-3 COUPLING IMPACT SUMMARY PLOTS
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W LOADED IMPACTS-SIDEFRAME VELOCITY CHANGE
Veloeity .
Change
FPS
124
84 X
% % § 3
Qg ° In The Direction of Impact
) X =12 Wheel
g ©=R2 Wheel
t + + L
[ B T 8§ - 3 IMrACT SPEED MFH
EMPTY IMPACTS-SIDEFR4ME VELOCITY CHANGE
161.
Velocity
Change
FPS
124
84 R Q
[=4 *
X
5 Q In The Direction of Impact
5 X - L2 Wheel
o © —R2 Wheel
14+ % )‘() % >é ee
-1
Y 6 T 8 8  IMPACT SPEED MPH

FIGURE A-4 COUPLING IMPACT SUMMARY PLOTS
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LOADED IMPACTS=-SIDEFRAME VERTICAL ACCELERATION

100+
Accel. g
754
504
X A= F1 Wheel Vertical
X
'25‘# x 4
®
® X
X x X X
L 5 3 7 8 9  TMPACT SPEED MPH
FMPTY IMPACTS - Sideframe Verticel Acceleration
100 r
Accel. g

75‘(
5041

X X== Rl Wheel Vertical

25 4+ X
x X
x x X X X
x XX X . )
4 5 6 7 3 9  IMPACT SPEED MPH

FIGURE A5 COUPLING IMPACT SUMMARY PLOTS
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GADED IMPACT-OIDUFRAME VIR ICAL VELOCLCTD CHARGE

164
Velocisy
Change
FP§
12¢
a4
K= P1 Wheel Vertical
[ S
x X
X X xx . xx R .
¥ L] ¥ L] ]
L 5 6 T B 9 IMPACT SPEED MPH
EMPTY IMPACTS - Sideframe Vertical Velocity Change
16«
Velocity
Change
FPS
124
ad
. X - Rl Wheel Vertical
xX X A X% % X X % X .
+ + + J +
I ] 6 T 8 9 IMPACT SPEED MPH

FIGURE A-6 COUPLING IMPACT SUMMARY PLOTS
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APPENDIX B
COUPLING TMPACT SHOCK DATA

This appendix contains a selection of data taken during the
coupling impact shock tests. Accelerations were measured at the
following six locations on the instrumented tank car for each of
the 26 coupling impacts measured:

a. A end sill horizontal acceleration

b. L1 wheel horizontal acceleration perpendicular to impact

¢. L2 wheel horizontal acceleration

d. Rl vwheel vertical acceleration

e. R? wheel horizontal acceleration

f. B end siil horizontel acceleration

For four typical impacts, the following three graphs are pre-
sented, each showing rhe six variables listed above.

a. acceleraticn versus time {(unfiltered)

b. acceleration versus time (filtered at 30 Hz)

¢. velocity chenge

The first three impacts in the series were with the A truck end
of the car impacting; the remaining 23 impacts were done with the B
truck or the instrumented truck end Impacting. More impacts were
done with the instrumented truck forward because the forward or im-
pacting truck was thought to be shocked more severely than the trail-
ing truck. This appendix shows results for four B truck end impacts:

a. car loaded, 4.5 mph (6' km/h) impact speed,

b. car loaded, 8.7 mph (14.0 km/h) impact speed,

c. Car empty, 4.5 mph (6.8 km/h} impact speed,

(="

car empty, 8.0 mph (12.9 km/h) impact speed.
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c-1
C.o2
c-3

APPENDIX €
TRACK CHARACTERIZATION ACCELERATION DATA

This appendix contains & sampling of the most significant
track characterization data. The entire track characterization
data are contained on seven reels of magnetic tepe each of
1/2 hour playing time at a playback speed of 15 inches per second.

Accelerations were measured at the following six locations
during the track charscterization tests:

a. A end sill vertical accelerétion

b. L1 wheel horizontal cross axial acceleration

c. L2 wvheel vertical acceleration

d. Rl wheel horizontal axial {along track) acceleration
e. R2 wheel vertica; acceleration

f. B end sill vertical accelerstion

This appendix contains acceleration versus time records
for each of these six locations for the following events:

a. Typical smooth track near marker 11
b. 'Typiesl smooth track near marker 19
c. Rough track near marker TO

d. TRough track near marker 58

e. Switcﬁ near marker 5

f. One Inch Shims at 45 mph

g. One Inch Shims at 55 mph

C-1
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APPENDIX B
TRACK CHARACTERIZATION MOTION DATA

D-1 This appendix contsins records of motion (acceleration,
velocity and displacement) in the vertical direction of the end
sill or the sideframe of the tank car itaken during the. track
characterization tests. Records are given for motion due to
the following:

a. Sideframe motion riding over smooth track
b. Bideframe motion due to track irreguwlarity

c. Bideframe motion passing over track irregularity

d. Leading end sill motion due to passing over a switch at
55 mph

e. Sideframe motion dus to passing over a switch at 45 mph
f. 8Sideframe motion passing over switch near station 5
g. Sideframe motion due to passing over a switch at 55 mph
k. Leading end sill motion due to 3/4" shims at L5 mph

i. Lemding end sill motion due to passing over 3/L" shims
at 55 mph

J. BSideframe motion due to pessing over 3/4" shims at 45 mph
k. Sideframe motion passing over 3/4" shims at 45 mph

1. Treiling end sill motion passing over 3/4" shims at 45 mph
m. Trailing end sill motion passing over 3/4" shims at 55 mph

n. Trailing end sill motion due to passing over 3/4" shims
at 55 mph

0. Leeding end sill motion passing through 1" shim section
at 55 mph



p. Leeding end sill motion due to passing over 1" shims at
55 mph

q. Sideframe motion due to passing over 1" shims at 55 mph

r. Trailing end sill motion due to passing over 1" shims
at 55 mph

D-2 The velocity and displacement were obtained by integration
and double integration of the acceleration records.
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