TRACK COMPONENT PROPERTY TESTS VOLUME II-RAIL, TIES, JOINT-BARS and FASTENERS

JUNE 1980 INTERIM REPORT

Document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL RAILROAD ADMINISTRATION Office of Research and Development Washington, D.C. 20590

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

Iff

PREFACE

These tests were conducted under Task 3, Laboratory Testing, of Contract DOT-FR-30038, sponsored by the Federal Railroad Administration, Office of Research and Development, Improved Track Structures Research Division.

The principal objective of this laboratory test program is to investigate the load capacity of track in the vertical and lateral planes to support assessments of track strength.

The valuable suggestions of Mr. Howard Moody, Contracting Officer's Technical Representative of the Federal Railroad Administration, and Mr. Donald P. McConnell, Transportation Systems Center are gratefully acknowledged.

TABLE OF CONTENTS

1.	Introduction							
2.	Required Component Properties	2						
3.	Bending Stiffness of Concrete Ties	3						
	l. Objectives	3						
	2. Test Procedures	3						
	3. Results	6						
4.	Torsional Rigidity of Rail	11						
	1. Objectives	11						
	2. Test Procedures	11						
	3. Results	14						
5.	Joint-Bar Bending Stiffness	18						
	l. Objectives	18						
	2. Test Procedures	18						
	3. Results	20						
6.	Fastener Resistance to Rotation	23						
	l. Objectives	23						
	2. Test Procedures	23						
	l. Z-Axes	24						
	2. Y-Axes	24						
	3. X-Axes	29						
	3. Results	35						
7.	References	45						

LIST OF FIGURES

FIGURE

1.	Test Set-Up for the Bending Stiffness Test of Concrete Ties, Showing Loading Jack and Tie Supports.	4
2.	General Arrangement for Establishing Bending Stiffness of Concrete Ties.	5
3.	Tie Deflection vs Load for Two Tests From the Concrete Tie Bending Stiffness Test Series.	9
4.	Test Set-Up for Rail Torsional Resistance Tests, Showing the Fixed Support, Loading Jacks and Instrumentation.	12
5.	Arrangement for Determining Torsional Stiffness of 136 RE Rail Section.	13
6.	Test Set-Up for Joint-Bar Rotational Stiffness Tests, Showing the Loading Jack and Instrumentation.	19
7.	Test Set-Up for Fastener Resistance Test on Wood Ties About the Vertical Axis, Showing Load Application Arrangement and Instrumentation.	25
8.	Fastener Stiffness Test About the Vertical Axis.	26
9.	Fastener Stiffness Test About the Lateral Axis.	27
10.	Test Set-Up for Fastener Resistance Test on Wood Ties About the Lateral Axis, Showing Load Application Arrangement and Instrumentation.	28
11.	Test Set-Up for Fastener Resistance Test on Wood Ties About the Longitudinal Axis, Showing Load Application Arrangement and Instrumentation.	30
12.	Fastener Stiffness Test About the Longitudinal Axis.	31
13.	Test Set-Up for Fastener Resistance Test on Concrete Ties About the Vertical Axis, Showing Load Application Arrangement and Instrumentation.	32

 15. Test Set-Up for Fastener Resistance Test on Concrete Ties About the Longitudinal Axis, Showing Load Application Arrangement and Instrumentation. 16. Rotational Angle vs Applied Moment for Three Fastener Stiffness Tests About the Vertical axis. 17. Rotational Angle vs Applied Moment for Three Fastener Stiffness Tests About the Lateral axis. 18. Rotational Angle vs Applied Moment for Three Fastener Stiffness Tests About the 	14.	Test Set-Up for Fastener Resistance Test on Concrete Ties About the Lateral Axis, Showing Load Application Arrangement and Instrumentation.	33
 16. Rotational Angle vs Applied Moment for Three Fastener Stiffness Tests About the Vertical axis. 17. Rotational Angle vs Applied Moment for Three Fastener Stiffness Tests About the Lateral axis. 18. Rotational Angle vs Applied Moment for Three Fastener Stiffness Tests About the 	15.	Test Set-Up for Fastener Resistance Test on Concrete Ties About the Longitudinal Axis, Showing Load Application Arrangement and Instrumentation.	34
 17. Rotational Angle vs Applied Moment for Three Fastener Stiffness Tests About the Lateral axis. 18. Rotational Angle vs Applied Moment for Three Fastener Stiffness Tests About the 	16.	Rotational Angle <u>vs</u> Applied Moment for Three Fastener Stiffness Tests About the Vertical axis.	40
18. Rotational Angle vs Applied Moment for Three Fastener Stiffness Tests About the	17.	Rotational Angle <u>vs</u> Applied Moment for Three Fastener Stiffness Tests About the Lateral axis.	41
Longitudinal axis. 4	18.	Rotational Angle vs Applied Moment for Three Fastener Stiffness Tests About the Longitudinal axis.	42

LIST OF TABLES

TABLE		Page
1.	Bending Stiffness of Concrete Ties.	7
2.	Average Bending Stiffness of Concrete Ties Along With the Calculated Moment of Inertia and Modulus of Elasticity.	10
3.	Torsional Rigidity of 115 RE Rail section.	15
4.	Torsional Rigidity of 136 RE Rail section.	16
5.	Joint-Bar Rotational Stiffness for 136 RE Rail Joint.	22
6.	Fastener Stiffness Test About the Vertical Axis.	. 37
7.	Fastener Stiffness Test About the Lateral Axis.	38
8.	Fastener Stiffness Test About the Longitudinal Axis.	39
9.	Fastener Rotation Resistance Test Results for 115 RE Rail Section on Wood Ties.	43
10.	Fastener Rotation Resistance Test Results for 136 RE Rail Section on Wood and Concrete Ties.	44

Page

1.0 INTRODUCTION

The objective of this phase of the laboratory test program was to determine physical and structural properties of typical track components used in railroad track systems.

The need for these track component properties became apparent during the development of analytical models for the description of the track system behavior, which was done under task 1 of the contract, and for the design and maintenance of track. It was found that required component property data was either unavailable or available but of questionable reliability.

In order to fill the voids in certain areas of basic component properties, and to clarify the existing results, a set of tests was conducted at the Association of American Railroad Track Laboratory at Chicago, Illinois. The majority of the tests were unique. However, in a few cases, tests which had been done previously were repeated to correct questionable data.

The results from these component property tests together with a description of the individual test set-up and procedures are described in this report. Along with Volume I (1), this report forms a data base of physical properties of track components used on the North American Railroads.

2.0 REQUIRED COMPONENT PROPERTIES

In identifying the track and components property test requirements, seven characteristics are considered necessary for an accurate description of the track structure. These characteristics are defined in Volume I (1). Of these seven characteristics, four are covered in this report, two were covered in Volume I (1), and the last one, soil properties, i.e. ballast, subballast and subgrade properties, will be covered in a separate report (2).

The component characteristics that are described in this report are:

- 1. Vertical bending stiffness of concrete ties;
- Torsional rigidity of 115 RE and 136 RE rail sections
- Vertical and lateral bending stiffness of 136 RE Joint-Bar.
- Fastener resistance to rotation (with two rail sections, 115 RE and 136 RE)
 - 1. About the vertical axis
 - 2. About the lateral axis
 - 3. About the longitudinal axis

3.0 BENDING STIFFNESS OF CONCRETE TIES

3.1 Objectives

The objective of this test was to determine the bending stiffness (EI) of concrete ties. Additionally, the modulus of elasticity (E) of the reinforced concrete ties was determined and compared with known material values.

3.2 Test Procedure

Five different manufacturers' concrete ties were tested. Each tie was tested by simply supporting it in the supplemental test fixture (1), over an 8 foot span, and applying a vertical load at mid-span. The test set-up is shown in Figure 1.

Deflections of each tie were measured at 4 locations along the tie; mid-span, quarter-span, and two eighth-span points, Figure 2. Deflections were measured with cantilever beam type displacement transducers. Applied force was measured with a 3,000 psi pressure transducer installed in the hydraulic pressure line.

Vertical load was applied in 1,000 lb. increments to a maximum of 5,000 lbs. This loading cycle was repeated three times for each tie.

Measurements were taken to establish the tie cross-sectional area at each of the instrumented points so that the local moment of inertia could be subsequently

Figure 1.Test Set-Up for Bending Stiffness Test of Concrete Ties, Showing Loading Jack and Tie Supports.

L = 96 in. tie length = 102 in.

- A Bourns Model 80294 2" displacement transducers on tie centerline.
- P Force applied at center line of tie.

FIGURE 2. GENERAL ARRANGEMENT FOR ESTABLISHING BENDING STIFFNESS OF CONCRETE TIE.

calculated.

3.3 Results

The results of a typical tie vertical bending test are given in Table 1. The load and deflection at each measuring point and the calculated stiffness and stiffness modulus are given in the table.

The bending stiffness of the tie was determined from beam theory, for a simply supported beam, assuming uniform cross section area and using the relations:

> 3 PL EI = --- at mid-span(1) 48d

 $\begin{array}{r}
3 \\
47PL \\
EI = ----- at 1/8 \dots (3) \\
6144d
\end{array}$

Where:

EI = Bending stiffness of tie (lb-in)

d = Deflection of the tie (inches)
L = Span length between simple supports (inches)
P = Applied load at mid-span (lbs)
Note, from Figure 3, the linearity of the load - deflection

TABLE 1. BENDING STIFFNESS OF CONCRETE TIES

		ą L,	12		6	L/4		9 L/	'B		@ L/B		
LOAD	DEFLC	. E1	2	E	DEFLC.	EŢ 2	e	DEFLC.	EI 2	E	DEFLC.	ET 2	Ę
(69)	([N)	(LB-I)	1) 24	(PST)	(TN)	(L9-[N])	(PSI)	(IN)	(LB-IN [°])	(PSI)	(IN)	(LB-IN ²)	(PS t.)
555.4	.0051	0.20154	FIQ.	0.5698+07	. 0071	0.9936+09	0 1578+07	0042	0 8976+09	0 1255+07	0032	0 1196-10	0 1648107
1139.6	.0094	0.2236	+10	0.6336+07	.0143	0.1018+10	0 1596+07	0072	0.0976409	0.1200+07	.0032	0.1105410	0,1045+07
1572.5	.0131	0.2355+	-10	0.665E+07	.0198	0.107E+10	0.1598+07	.0104	0.107070710	0.1528+07	.0000	0.1295+10	0.1796707
2243.6	.0173	0.2405	10	0.679E+07	. 0265	0.108E+10	0.1706+07	.0133	0.1000+10	0.1520107	0106	0 1440110	0.1936707
2738.1	.0214	0.2405	10	0.6806+07	.0324	0.1095+10	0.1726+07	.0150	0.118E+10	0.1648+07	.0130	0.1496+10	0.2005+07
3341,9	.0258	0.23984	10	0.6766+07	.0392	0.111E+10	0.175E+07	.0186	0.1228+10	0 1708+07	0153	0 1486+10	0.2055+07
3917.2	.0305	0.23784	+10	0.670E+07	.0450	0.1105+10	0.174E+07	.0212	0.125E+10	0.1746+07	.0179	0 1485+10	0.2010107
		rest	24	3					01130.10	0.17.10.07	.01.5	0.1400.00	012030197
587.7	.0054	0.1696-	F10	0.4796+07	.0091	0.8185+09	0.129E+07	.0043	0.925E+09	0.1296+07	.0038	0.1056+10	0.1466+07
1125.6	.0113	0.184E-	+10	0.5200+07	.0153	0.933E+09	0.1476+07	.0090	0.847E+09	0.1196+07	.0075	0.100E+10	$0.140 \pm +97$
1591.7	.0157	0.197E-	F10	0.5592+07	.0220	0.969E+09	0.1538+07	.0112	0.102E+10	0,1426+07	.0097	0.117E+10	0.1542+07
2244.0	.0197	0.2106	F10	0.5948+07	.0233	0.1006+10	0.159E+07	.0154	0.996E+09	0.1376+07	.0130	0.117E+10	0.1536+07
2805.7	.0238	0.2178-	FI 0	0.615€+07	.0344	0.103E+10	0.153E+07	.0173	0.110E+10	0.153E+07	.0152	0.1256+10	0.174E+07
3345.2	.0233	0.218E-	+10	0.617E+07	.0405	0.104E+10	0.1556+07	.0211	0.107E+10	0.1500+07	.0175	0.129E+10	0.1306+07
3903.6	.0326	0.22164	+10	0.625E+07	.0463	0.1076+10	0.169E+07	.0226	0.117E+10.	0.163E+07	.0198	0.1335+10	0,186E+07
		rest	24	3									
598.1	.0054	0.1726	+10	0.4885+07	.0093	0.815E+09	0.129E+07	.0043	0.941E+09	0.1316+07	.0038	0.1076+10	0.1496+07
1139.6	.0113	0.18664	10	0.5256+07	.0154	0.938E+09	0.148E+07	.0090	0.857E+09	0.119E+07	.0077	0.1006+10	0.140E+07
1592.8	.0155	0.20154	10	0.5706+07	.0215	0.998E+09	0.1576+07	.0109	0.105E+10	0.147E+07	.0095	0.1212+10	0.153E+07
2245.3	.0195	0.21264	-10	0.6016+07	.0280	0.102E+10	0.160E+07	.0149	0.1025+10	0.1426+07	.0132	0.115E+10	0.1518+07
2791.3	.0235	0.21984	10	0.6206+07	.0339	0.104E+10	0.1652+07	.0154	0.115E+10	0.151E+07	.0154	0.1232+10	0.1713+97
3339.7	.0273	0.22154	10	0.625E+07	.0400	0.106E+10	0.167E+07	.0202	0.112E+10	0.1532+07	.0180	0.1256+10	0.175E+07
3910.7	.0325	0.22284	10	0.6236+07	.0455	0.109E+L0	0.172E+07	.0219	0.121E+10	0.1690+07	.0204	0.1305 + 10	0.1318+07
	0000	TEST	24.	5									
	.0063	0.1/164	10	0.4856+07	.0091	0.8158+09	0.129E+07	.0044	0.900E+09	0.125E+07	.0036	0.1105+10	0.1536+07
1144.8	.0112	0.13864	-10	0.5336+07	.0155	0.9306+09	0.147E+07	.0090	0.861E+09	0.1206+07	.0075	0.1032+10	0.144E+07
1090.0	.0153	0.20564	10	0.5796+07	.0221	0.9/48+09	0.1548+07	.0133	0,854E+09	0.1205+97	.0097	0.118E+10	0.1656+07
2739.2	.0191	0.21551		0.6116+07	.0281	0.1015+10	0.1598+07	.0144	0.1058+10	0.1476+07	.0128	0.1186+10	0.1658+97
2732.2	.0233	0.22064	10	0.5246+07	.0347	0.1026+10	0.1516+97	.0185	0.1016+10	0.1418+07	.0153	0.1238+10	0.1726+07
2000 0	.0250	0.22061		0.0236407	.0412	0.1036+10	0.1026+07	.0204		0.1006407	.01/4	0.1306+10	0.1818+07
2200.0	.0323	U. 22361	5.U - 5.A.	0.9316+07	.0470	0.1055+10	0.1555+07	.0240	0.1106+10	0,1548+07	.0199	0.1336+10	0.1852+07
5020	0062	0 17381	29. 10	0 4018107	0090	0 9442100	0 1225-07	0047	0.0330100	0 1200-07	00.26	0 1110.10	0 1150.00
1141.6	.00.53	0.12554	-10	0.4315707	0155	0.0335100	0.1335707	.0043	0.93355799	0.1305407	.0035		0.1356407
1599.9	0151	0.20854	-10	0.5876+07	0218	0.9886+09	0 1568+07	0116	0.00022400	0 1386+07	0.007	0 110g+10	0 1650107
2245.3	.0191	0.21764	-10	0.613E+07	0282	0.1013+10	0 1596+07	0157	0 9585+09	0 1356+07		0 1170110	0.1539497
2788.7	.0233	0.22164	-10	0.624E+07	0344	0 1038+10	0 1520+07	0172	0 1108+10	0 1530+07	0152	0 122010	0.1700107
3356.2	.0281	0.22054	-10	0.623E+07	0409	0.1045+10	0.1548+07	.0211	0 1088+10	0,100,407	.0133	0.1270+10	0.1778107
3914.0	.0326	0.22164	-10	0.6256+07	. 0456	0.105%+10	0.168E+07	.0224	0.1186+10	0.1558+07	.01/9	0.1306410	0 195710707
					• • • • • •	V - LV / J - LV	0 4 X 700 197	• • • • • • •	Gerraderra		. 0 & 0 0	- ウェエコスウエトリー	

AVERAGE STIFFNESS = 0.21012E+10STANDARD DEVIATION OF THE SAMPLE = 0.20072E+09STANDARD DEVIATION = 0.19733E+09

relationship for the bending indicates that the use of linear elastic beam theory is valid.

Using the moment of inertia determined for each cross-section to determine modulus of elasticity from the tie stiffness, and averaging these values, the average modulus of elasticity was calculated for each tie and it is given in Table 2 along with the stiffness for all the ties tested.

The experimental values of the modulus of elasticity fall above the range of the modulus for concrete, 5.38 x 10E+6 lb/in- (3). This was expected since all the ties tested were reinforced with steel, thus the effective modulus of the composite had to be higher than for plain concrete.

Figure 3. Tie Deflections vs Load for Two Tests From the Concrete Tie Bending Stiffness Test Series.

Q

TABLE 2: AVERAGE BENDING STIFFNESS OF CONCRETE TIES, ALONG WITH THE CALCULATED MOMENT OF INERTIA AND MODULUS OF ELASTICITY.

TIE	BENDING STIFFNESS 2	MOMENT OF INERTIA @ MID-POINT 4	MODULUS ELASTICITY 2
	X 10E8 (LB-IN)	(IN ['])	X 10E6 (LB/IN)
A	20.30	353.0	5.75
В	15.97	289.4	5.51
с	15.97	289.4	5.57
D	14.29	277.1	5.39
Е	15.12	283.7	5.32
F	11.61	155.9	7.41

A = Dow-Mac B = Grinaker G-23 C = Westinghouse BW-2 D = Con Force Costain CC244C E = Santa Fe Pomreoy RT-7SS F = Santa Fe Pomreoy RT-7

Note that the stiffness given in this table is the average stiffness taken from the five tests.

4.0 TORSIONAL RIGIDITY OF RAIL

4.1 Objectives

The objective of this test was to determine experimentally the torsional rigidity of 115 RE and 136 RE rail sections.

4.2 Test Procedure

A 32 inch length of rail was used for this test. Two 30 X 12 inch steel plates, one inch thick, were welded to both ends of the rail in such a way that the center of the plates were coincident with the calculated shear center of the rail section. The length of rail was then placed in the test fixture by bolting one end to the fixture column and keeping the other end free, as show in Figure 4.

Two deflection measurments were taken at the free end of the steel plate. The instruments were placed 10 inches apart and one inch from the end of the plate. Two 2 inch deflection transducers were used to measure deflections and a 3,000 psi pressure transducer in the hydraulic line was used to measure the applied jack forces. The deflection transducers and load application arrangement points are illustrated in Figure 5.

A force couple was applied to the free end of the rail by means of two loading jacks (Figure 5). The magnitude of the couple was controlled and was applied incrementaly at one Kip increments from one to five kips of force. The

Figure 4. Test Set-Up for Rail Torsional Resistance Tests, Showing the Fixed Support, Loading Jacks and Instrumentation.

Figure 5. Arrangement for Determining Torsional Stiffness 136 <u>RE</u> Rail Section.

loading cycle was repeated five times for each rail section*.

The above described procedure was then repeated for the 136 RE rail section. Data was recorded on both magnetic and paper tape and reduced in accordance with the procedure given in Appendix A of Reference (1)

4.3 Results

The results from the torsional rigidity tests are given in Table 3 for the 115 RE rail section and Table 4 for the 136 RE rail section.

The torsional rigidity of the rail was determined using Coulomb's theory of torsion for non-circular members (4)

 $\begin{array}{c} TL \\ GJ = ---- \\ F \end{array}$

Where GJ is the torsional rigidity (lb.-in.²/radian) G is the shear modulus (lb./in.²) J is the polar moment of inertia (in.⁴) T is the applied torque (in.-lb.) L is the length of the section (in.) F is the angle of twist (radian)

* Note that the couple was applied through the calculated shear center of the rail and it was checked with Moire Patterns (5). In both rail sections it was confirmed in this manner that the couple was applied through the shear center of the rail section.

TABLE 3. TORSIONAL RIGIDITY OF 115 RE RAIL SECTION.

TORQUE	DEFLE	CTIONS	TWIST	STIFFNESS X 10E+6
(LB-IN)	(IN)	(RADIAN)	(LB-IN/RADIAN)
6556.43 8817.04 11143.94 13265.33 15519.31 17786.55 20073.67	LOC 1 0.0160 0.0231 0.0291 0.0346 0.0403 0.0467 0.0550	LOC 2 0.0902 0.1242 0.1579 0.1896 0.2221 0.2564 0.2896	0.7420 1.0110 1.2879 1.5499 1.8178 2.0967 2.3456	31.64550 31.23395 30.98757 30.65221 30.57504 30.38068 30.64920
6622.72 8777.26 11004.72 13404.55 15764.59 17985.43 19980.86	0.0220 0.0287 0.0343 0.0403 0.0472 0.0538 0.0605	TEST 0.0919 0.1240 0.1563 0.1920 0.2285 0.2615 0.2915	2 0.6990 0.9530 1.2199 1.5169 1.8128 2.0767 2.3096	33.93181 32.98526 32.30587 31.64758 31.14392 31.01611 30.98276
6622.72 8929.73 11037.87 13232.18 15459.64 17713.62 19934.46	0.0215 0.0281 0.0326 0.0378 0.0453 0.0516 0.0584	TEST 0.0908 0.1250 0.1545 0.1868 0.2215 0.2562 0.2901	3 0.6930 0.9690 1.2189 1.4899 1.7618 2.0457 2.3166	34.22558 33.00419 32.42976 31.80666 31.42529 31.01009 30.81745
6549.80 8836.92 11071.01 13238.81 15479.53 17786.55 20106.82	0.0217 0.0283 0.0349 0.0399 0.0465 0.0536 0.0611	TEST 0.0904 0.1245 0.1575 0.1900 0.2248 0.2619 0.2969	4 0.6870 0.9620 1.2259 1.5009 1.7828 2.0827 2.3576	34.14434 32.89881 32.34144 31.58942 31.09519 30.58482 30.54364
6715.53 8909.85 11037.87 13530.50 15585.60 17779.92 20020.64	0.0225 0.0281 0.0326 0.0396 0.0448 0.0518 0.0573	TEST 0.0917 0.1235 0.1539 0.1908 0.2231 0.2579 0.2897	5 0.6920 0.9540 1.2129 1.5119 1.7828 2.0607 2.3236	34.75537 33.44843 32.59015 32.05058 31.30826 30.89968 30.85749
TORSIONAL RI	GIDITY = IATION =	0.31828 0.1203	E+08 0E+07	

TORQUE	DEFLECTION	NS	TWIST	STIFFNESS
(LB-IN)	(IN)	-	(RADIAN)	(LB-IN/RADIAN)
6695.64 8929.73 11130.68 13344.88 15472.90 18031.83 20279.18	LOC 1 0.0106 0.0142 0.0186 0.0237 0.0315 0.0394 0.0458	LOC 2 0.0618 0.0836 0.1059 0.1273 0.1537 0.1837 0.2084	0.5120 0.6940 0.8730 1.0360 1.2219 1.4429 1.6259	46.83461 46.08152 45.66244 46.13295 45.34850 44.75529 44.66927
6695.64 8929.73 11137.31 13510.62 15545.83 17952.28 20226.15	0.0098 0.0136 0.0188 0.0251 0.0329 0.0398 0.0460	0.0577 0.0795 0.1037 0.1288 0.1523 0.1799 0.2033	0.4790 0.6590 0.8490 1.0370 1.1939 1.4009 1.5729	50.06115 48.52886 46.98115 46.66085 46.63058 45.89344 46.05332
6682.38 8982.77 11203.60 13470.84 15658.52 18045.09 20239.41	0.0095 0.0141 0.0193 0.0253 0.0330 0.0400 0.0464	TEST 0.0572 0.0814 0.1050 0.1287 0.1534 0.1801 0.2031	3 0.4770 0.6730 0.8570 1.0340 1.2039 1.4009 1.5669	50.17150 47.80160 46.81965 46.65845 46.57856 46.13070 46.25993
6715.53 9049.06 11236.75 13437.69 15671.78 18038.46 20285.81	0.0094 0.0140 0.0195 0.0251 0.0326 0.0402 0.0473	TEST 0.0575 0.0825 0.1057 0.1289 0.1533 0.1813 0.2040	4 0.4810 0.6850 0.8620 1.0380 1.2069 1.4109 1.5669	50.00108 47.31083 46.68580 46.36429 46.50214 45.78698 46.36600
6781.83 9022.55 11243.38 13583.54 15618.75 17978.80 20246.03	0.0093 0.0138 0.0195 0.0255 0.0335 0.0400 0.0466	TEST 0.0576 0.0820 0.1052 0.1300 0.1539 0.1805 0.2034	5 0.4830 0.6820 0.8570 1.0450 1.2039 1.4049 1.5679	50.28559 47.37968 46.98587 46.55358 46.46024 45.83039 46.24558

TABLE 4. TORSIONAL RIGIDITY OF 136 RE RAIL SECTION

TORSIONAL RIGIDITY =0.46842E+08STANDARD DEVIATION =0.14063E+07

The average torsional rigidity of the rail section was found to be 31.82 x 10E+6 1b.-in /radian for 115 RE rail section and 46.84 x 10E+6 1b.-in./radian for the 136 RE rail section. These values are 48% lower than the theoretical values given by Perlman (6), 47.21 1b.-in. /radian for 115 RE rail and 69.54 1b.-in./radian for 136 RE rail.

5.0 JOINT-BAR BENDING STIFFNESS

5.1 Objectives

The objective of this test series was to determine the rotational stiffness of a joint under various bolt tensioning loads in the vertical and lateral planes. Specific items to be determined are: rotational joint stiffness (k) in the vertical and lateral planes with bolt tensions of 20,000 lb., 12,000 lb. and 4,000 lb.

5.2 Test Procedures

Two lengths of standard carbon 136 RE rail were joined together with joint bars as described in the AREA Manual for Railway Engineering (7). The joined rails were supported in the test fixture as a simply supported beam with the supports directly under the end bolts of the joint-bar. This arrangement provided a 30 inch span.

Three load increments in each plane were applied at midspan of the rail joint with a hydraulic jack, for each bolt tension. The loads were measured with a pressure transducer installed in the hydraulic line.

Rail deflections were measured at five locations. One was taken at midspan and the other four were taken at the location of the four bolts, Figure 6. The deflections were measured with strain gaged cantilever beam type displacement transducers.

Figure 6. Test Set-Up for Joint-Bar Rotational Stiffness Tests, Showing the Loading Jack and Instrumentation.

Once the instrumentation was checked out, the load was applied and a data reading taken. Then the load was increased to the next increment and another reading taken. This procedure was followed until all the tests were completed.

5.3 Results

The joint-bar stiffness was calculated by modeling the system as two rails joined by a spring and simply supported as a beam. The stiffness of the joint-bar was taken to be the same stiffness as the spring. With this model and using simple beam theory, the stiffness of the joint-bar is equal to:

 $k = \frac{M}{|y'(1) - y'(1)|}$ (5)

Where k is the joint bar rotational stiffness

((in.-1b.)/rad)

y'(1) is the slope of the deflection curve

M is the applied moment (in.-1b.)

Using Bernoulli's beam equation and equation (5) the stiffness of the joint is equal to:

 $k = -----\frac{M}{f}$ Were $f = \frac{P1^2}{3EI} \frac{2d}{1}$ M = 0.50P1and (6)

f is rotational angle (radians)
d is the rail deflection at mid-span (in.)
l is the length of the span (in.)
EI is the stiffness of the joint bar and
 rail (lb.-in.²)
P is the applied load (lb.)

M is the moment at mid-span (lb.-in.)

In a similar manner, the stiffness in the lateral plane was determined for both rail sections and are given in Table 5 for the three bolt tensioning loads tested. The results indicate the bolt tension does not affect the that rotational stiffness of the joint in the vertical plane. There is approximately 2% change in the rotational stiffness for bolt tensioning loads of 4,000 lb. to 20,000 lb.. However in the lateral plane the difference is substantial, approximately 34% increase in the rotational stiffness with a change of 16,000 lbs. in tensioning load on the bolts.

TABLE 5 JOINT-BAR ROTATIONAL STIFFNESS FOR 136 RE RAIL JOINT.

BOLT	ROTATIONAL
TENSION	STIFFNESS
(LB)	(LB-IN/RADIAN)
	X 10E+6

VERTICAL PLANE

4000	29.43
12000	29.94
20000	30.04

LATERAL PLANE

4000	16.83
12000	18.19
20000	22.52

.

6.0 FASTENER RESISTANCE TO ROTATION ABOUT THE PRINCIPAL AXES

6.1 Objectives

The objectives of this test series were to determine the resistance of several different fastener configurations to rotation of the rail about the three principal axes. These values were to be obtained for two rail sizes, 115 RE and 136 RE, for the following tie-fastener configurations:

1. Wood Tie - 2 cut spikes per plate

2. Wood Tie - 4 cut spikes per plate

- 3. Wood Tie Pandrol fastener with 2 lock spikes
- 4. Wood Tie Screw spikes
- 5. Wood Tie Compression clip

Values for one rail section, 136 RE, were to be obtained for the following tie-fastener configurations:

- 1. Concrete Tie Pandrol fastener
- 2. Concrete Tie Compression clip

6.2 Test Procedure

For the fastener configuration on wood ties, a 30 inch length of rail was mounted on a 51 inch length of hard wood tie, with the fastener configuration under investigation and

with the appropriate tie plate.

6.2.1 Z-Axis

The rail-tie segment was mounted in the test fixture, as shown in Figure 7. A torsional load about the vertical (Z) axis, i.e., in the plane of the tie, was applied. Deflections were measured using deflection transducers at the base of the rail, in two locations. The applied load was measured with a pressure transducer in the hydraulic line. A typical arrangement of loading jacks and deflection transducers is shown in Figure 8.

The torsional load was applied as a couple by two opposing lateral jacks located 11-3/8 inches from the center of the fastening system on opposite sides of the rail. The load was applied in 2000 in.-1bs increments until a rail base displacement of 0.25 inch was recorded. At the conclusion of the loading cycle, the tie and fastener were replaced and the test repeated. For each fastener configuration and rail section, this test series was repeated three times. Each test utilized a new tie segment and new fasteners.

6.2.2 <u>Y-Axis</u>

For the torsional resistance about the lateral (Y) axis, i.e. in the plane of the rail, the same type of instruments and procedures were followed as described above. The exception to this was that the torsional load was

Figure 7. Test Set-Up for Fastener Resistance Test on Wood Ties About the Vertical Axis, Showing Load Application Arrangement and Instrumentation.

Figure 8. Fastener Stiffness Test About Vertical Axis

Figure 9. Fastener Stiffness Test About Lateral Axis

••

Figure 10. Test Set-Up for Fastener Resistance Test on Wood Ties About the Lateral Axis, Showing Load Application Arrangement and Instrumentation. applied in the vertical plane and deflections were measured in the same plane, as shown in Figure 9. Typical arrangement of a test from this series is shown in Figure 10.

6.2.3 X-Axis

Torsional resistance about the longitudinal (x) axis, in the plane of the track, was tested in the same i.e. fixture used for the other two axis. Once the rail-tie segment was mounted the instrumentation and loading jack was placed as shown in Figure 11. Three channels of deflection data were taken, two were measured at the rail base each located 6 inches from the center of the fastening system and one was taken at the rail head opposite the applied lateral load. The lateral load was applied to the system using a loading jack at the gage point of the rail head and located at the center of the fastening system. The loads were applied in increments (depending on the type of fastener configuration used) until 0.25 inches of rail head displacement was noted. The location of the instruments and loading jacks is shown in Figure 12.

The concrete tie fastener configurations for each of the three principal planes were tested in the same test fixture, except for the longitudinal axis which was tested outside the test fixture. Loadings and deflection measurements were the same as those used for the wood ties. Figures 13, 14 and 15 show typical tests on concrete ties

Figure 11, Test Set-Up for Fastener Resistance Test on Wood Ties About the Longitudinal Axis, Showing Load Application Arrangement and Instrumentation.

Figure 12. Fastener Stiffness Test About Longitudinal Axis

· .

Figure 13. Test Set-Up for Fastener Resistance Test on Concrete Ties About the Vertical Axis, Showing Load Application Arrangement and Instrumentation.

Figure 14.Test Set-Up for Fastener Resistance Test on Concrete Ties About the Lateral Axis, Showing Load Application Arrangement and Instrumentation.

Figure 15. Test Set-Up for Fastener Resistance Test on Concrete Ties About the Longitudinal Axis, Showing Load Application Arrangement and Instrumentation. with 136 RE rail section for the vertical, lateral and longitudinal axis respectively.

At the conclusion of each test, the fasteners and ties were inspected for damage. In all cases, the damage to both ties and fasteners was negligible.

Data was recorded during the test on both magnetic and paper tape and reduced in the manner described in Appendix A of Reference (1).

6.3 Results

The results of the fastener resistance tests are shown in tabular and graphical form. Tables 6, 7, and 8 give deflections, rotation and moments from a representative test for each of the axes, vertical, lateral and longitudinal, respectively. Figure 16, 17, and 18 are the plotted results of applied moment <u>vs</u> rail section rotation for the vertical, lateral and longitudinal axis, respectively. Each figure contains all three load cycles for the test of a given rail size.

In order to obtain a single value for the fastener torsional resistance, the torsional resistance for each of the three tests (each test was independently performed on a new tie with new fasteners) performed on the defined configurations was computed for rotations of 0.005 and 0.010 radians. The resulting six values were then averaged for each fastener configuration and are presented in Table 9 for

the 115 RE rail section and Table 10 for the 136 RE rail section.

.

•

,

· ·

TABLE 6- FASTENER STIFFNESS TEST ABOUT VERTICAL AXIS PANDROL CONCRETE TIE TEST NUMBER 3

.

LOAD	MOMENT	DEFLECTION		ROFATION
(LB)	(IN-LB)	(TN)	105-2 (RAD)
		D1	52	
0.00	0.0	0.0000	0.0001	0.0010
39.09	933.3	0.0001	0.0001	0.0019
71.02	1704.5	0.0001	0.0001	0.0019
131.62	3158.8	0.0003	0.0004	0.0057
131.62	3158.8	0.0003	0.0004	0.0057
167.45	4018.9	0.0005	0.0005	0.0095
194.82	4675.7	0.0009	0.0008	0.0152
229.35	5504.5	0.0059	0.0040	0.0943
268.45	6442.7	0.0144	0.0093	0.2257
274.95	6599.1	0.1603	0.1170	2.6403
329.04	7897.0	0.2236	0.1519	3.6698
359.57	8532.0	0.2437	0.1750	3.9355
386.38	9273.1	0.2540	0.1825	4.1548
470.43	11290.4	0.2713	0.1961	4.4485
493.89	11853.4	0.2794	0.2017	4.5787
0.65	15.6	0.2593	0.1934	4.4038

.

TABLE 7. FASTENER STIFFNESS TEST ABOUT LATERAL AXIS

TRUE TEMPER CLIPLOCK CONCRETE TIE TEST NUMBER 2

LOAD	MOMENT	DEFL	ECTION	ROTATION
(LB)	(IN-LB)	(IN)		102-2 (RAD)
		וס	D2	
121.19	2908.6	0.0030	0.0036	0.0629
227.40	5457.6	0.0051	0.0099	0.1524
335.86	8084.7	0.0137	0.0191	0.3124
452.19	10852.5	0.0224	0.0305	0.5038
655.78	15752.8	0.0433	0.0504	0.9876
899.17	21530.0	0.0557	0.1025	1.6113
1114.19	25740.4	0.0855	0.1355	2.1054
1328.55	31885.2	0.1043	0.1694	2.6051
1557.90	37389.7	0.1235	0.2040	3.1190
1770.32	42487.6	0.1443	0.2432	3.6898
2000.97	48023.3	0.1537	0.2753	4.1880
0.55	15.5	0.0203	0.0193	0.3357

.

TABLE 8. FASTENER STIFFNESS TEST ABOUT LONGITUDINAL AXIS PANDROL CONCRETE TIE TEST NUMBER 1

LOAD	MOMENT	Df	DEFLECTION			
(LB)	(IN-L3)		(IN)		10E-2 (RAD)	
		Dl	D2	D3		
917.08	5845.4	0.0005	0.0195	0.0015	0.2902	
1122.95	7158.9	0.0022	0.0389	0.0011	0.5843	
1302.53	8304.3	0.0032	0.0595	0.0005	0.3373	
1564.66	9974.7	0.0032	0.0788	0.0010	1.2031	
1699.41	10833.8	0.0034	0.0974	0.0021	1,4946	
1819.20	11597.4	0.0037	0,1170	0.0038	1.7763	
1920.25	12241.7	0.0038	0.1365	0.0043	2.0734	
2010.10	12814.4	0.0036	0.1558	0.0057	2.3705	
2099.94	13387.1	0.0035	0.1752	0.0069	2.6660	
2178.54	13888.2	0.0034	0.1946	0.0076	2,9554	
2275.87	14508.6	0.0032	0.2141	0.0084	3.2553	
2354.47	15009.3	0.0023	0.2335	0.0090	3.5587	
2425.59	15463.2	0.0027	0.2529	0.0096	3.8687	

FIGURE 16. ROTATION ANGLE VS APPLIED MOMENT FOR THREE FASTENER RESISTANCE TESTS ABOUT THE VERTICAL AXIS.

FIGURE 17. ROTATION ANGLE VS APPLIED MOMENT FOR THREE FASTENER RESISTANCE TESTS ABOUT THE LATERAL AXIS.

TABLE 9. FASTENER ROTATIONAL RESISTANCE TEST RESULTS FOR 115 RE RAIL SECTION ON WOOD TIES

ROTATIONAL STIFFNESS

10**6(LB.-IN/RADIAN)

TYPE OF	VERTICAL	LATERAL	LONGITUDINAL
FASTENER	AXIS	AXIS	AXIS
2 CUT SPIKES	0.92*	1.68	1.49
4 CUT SPIKES	3.32*	1.64	3.09
PANDROL	3.52*	0.73	1.66
SCREW SPIKE	1.27	1.89	2.60
COMPRESSION CLIP	2.79	0.94	1.99

* Note results are taken from Volume I (1) of this report.

TABLE 10. FASTENER ROTATIONAL RESISTANCE TEST RESULTS FOR 136 RE RAIL SECTION ON WOOD TIES AND CONCRETE TIES.

ROTATIONAL STIFFNESS

10**6(LB.-IN/RADIAN)

TYPE OF	VERTICAL	LATERAL	LONGITUDINAL
FASTENER	AXIS	AXIS	AXIS
2 CUT SPIKES	1.47*	1.41	1.62
4 CUT SPIKES	3.26*	1.27	1.96
PANDROL	4.95*	1.29	2.16
SCREW SPIKE	1.34	2.47	1.65
COMPRESSION CLIP	1.84	1.42	1.54

CONCRETE TIE

PANDROL	1.10	**	1.11
RAIL CLIP(RT-7)	2.26	1.49	1.83

* Note results are taken from Volume I (1) of this report.
** Questionable data.

.

.

- 1. Zarembski, A. M., Choros, J., and Gitlin, I, "Track Components Property Tests, Volume I - Rail Tie and Fasteners," Report to Federal Railroad Administration, Under Contract DOT-FR-30038.
- Properties of Subgrade, Subballast and Ballast for AAR Track Laboratory", Report to Federal Railroad Administration, Under Contract DOT-FR-30038.
- E. F. Byars and R. D. Snyder, <u>Engineering</u> <u>Mechanics of Deformable Bodies</u>, Second Edition, International Textbook Co., PA, 1969.
- 4. Enrico Volterra and J. H. Gains, <u>Advance Strength</u> of Materials, Prentice-Hall, Inc., N.J., 1971.
- Gerald Oster, <u>The Science of Moire' Patterns</u>, Edmund Scientific Co.
- Perlman, A. B. and Lewin, B. R., "Rail Section Properties" preliminary report to Transportation System Center, Cambridge, MA, July 1977.
- 7. <u>Manual for Railway Engineering</u>, Volume 1, American Railway Engineering Association, Chicago IL., 1976.

·

Technical Report Documentation Page

1. Report No.	2. Government Acce	ssion No.	3. Recipient's Catalog	No.		
[°] FRA/ORD-80/25	1		PB 80 :	218977		
4. Title and Subtitle			5. Report Date			
Track Component - Property	Tests		June 1980			
Volume II - Rail, Ties, Jo	intbars and Fa	steners	6. Performing Organiza	tion Code		
7. Author's)			8. Performing Organizat	ion Report No.		
J. Choros, I. Gitlin						
9. Performing Organization Name and Addre Association of American Ra	ilroads		10. Work Unit No. (TRA	15)		
Research and Test Departmen 3140 S. Federal St., Chica	nt po. IL 60616		11. Contract or Grant N DOT-FR-30038	0.		
	50, 12, 00010		13. Type of Report and	Period Covered		
12. Sponsoring Agency Name and Address						
Federal Railroad Administra Office of Research and Deve	ation elopment		Interim Repor	t		
Improved Track Structures D.O.T., Washington, D.C.	Research Div., 20590		14. Sponsoring Agency (RRD-32	Code		
15. Supplementary Notes		<u></u>				
				1.		
16. Abstract	,,					
This report describes the	test procedure	s and the resu	ilts of the tests	on the		
physical properties of rai	l. concrete ti	es, iointbars	and fasteners.	The		
properties obtained are the	e torsional ri	gidity of rail	, bending rigidi	ty of		
concrete ties, bending sti:	ffness of join	tbars and fast	ener resistance	to rota-		
tion about the vertical, 1	ateral and lon	gitudinal axis	. The component	s tests		
were run on two rail section	ons, 115 RE an	d 136 RE, on f	ive different co	ncrete		
two different rails on woo	Dars, and on	configuration	s on the 115 PF	on the		
concrete ties.						
The tests were conducted at Laboratory in Chicago 111	t the Associat	ion of America	n Railroads (AAR) Track		
Laboracory in chicago, iii.	mors.					
17. Key Wards		18. Distribution Stat	ement			
Fastener Resistance, Track	Components,	Document is	available to the	public		
Railroad Track	digiaity,	Through the National lechnical infor-				
		22151	ce, opringrieiu,	vilginia		
19. Security Classif. (of this report)	20. Security Clas	sif. (of this page)	21. No. of Pages	22. Price		
None				1 1		

.

.

.

METRIC CONVERSION FACTORS

Approximate Conversions to Metric Measures			33			Approximate Conversions from Metric Measures					
Symbol	When You Know	Multiply by	To Find	Symbol		1	Symbol	When You Know	Multiply by	To Find	Symbol
					•	*			LENGTH		
		LENCTH				3					
		LENGTH				<u> </u>	(TERNET)	millimeters	0.04	inches	in
						E 61	cm	contimaters	0.4	inches	in
in	inches	*2.5	centimeters	cm	-	<u> </u>	, m	meters	3.3	ieet	11
ħ	feet	30	centimaters	cm		1	m	meters	1.1	yards	γđ
γđ	yards	0.9	meters	m		≡	km	kilometers	0.6	miles	mi
mi	miles	1.6	kilometers	km							
		AREA							AREA	-	
							2				, ,
in ²	any and inchas	65	smith centimeters	·······2	• -	=	2	square centimeters	0,16	square inches	i#2
tn ²	square feet	0.09	square contributions			<u> </u>	, 2	square meters	1.2	square yands	Yd"
vd ²	aquare vards	0.8	square maters	 2			k/m *	square kilometers	0.4	square miles	mi [*]
mi ²	navare mites	2.6	square kilometers	 km²		<u> </u>	10	nectares (10,000 m)	2.5	#Cr#5	
	acres	0.4	hectares	ha		_				•	
						<u> </u>			ACC (mainha)		
		AASS (weight)							Was Weight		
						<u> </u>		activity	0.035	(110C2-1	67
02	ounces	28	grams	9	-		y ka	kilotrams.	2.7	oounda	16
ID	pound s	0.45	kilograms	kg		<u> </u>	~9 t	tonnes (1000 kd)	1.1	short tons	
	Short tons	0.9	tonnes	t			•				
	(2000 18)					<u> </u>					
		VOLUME		۰.		<u> </u>			VOLUME		
tsp	teascoons	5	milliliters	mi			ml	milliters	0.03	fluid ounces	fi oz
Thep	tablespoons	15	milliliters	mi			ŧ	liters	2.1	pints	pt
floz	fluid ounces	30	milliliters	ml	ల —		1	liters	1,06	quarts	tp.
c	cups	0.24	liters	1	`		1_	liters	0.26	galions	gel
pt	pints	0,47	liters	i		<u>-</u>	ć m	cubic meters	35	cubic feet	ft ³
qt	quarts	0,95	liters	1		<u> </u>	m	cubic meters	1.3	cubic yards	¥Q ,
gal	gations	3.8	liters	1							
#- 3	cubic test	0.03	cubic meters	m"				TEM	FRATURE Inve	••1	
Ya	Cubic yards	0.76	cubic meters	m,					FURIARE (648		
	TEMP	PERATURE (#xact)					°c	Celsius	9/5 (then	Falwenheit	°F
9-	Colored and	-	a 1			<u> </u>		temperatura	add 32)	temperature	
F	r anrenne i (temperature	5/9 (after subtraction	Celsius temperature	2~		- °	ىنى <u>تە بەرىپەكە</u> تلىنىم			ىچەرىيىتە ، بىرامىيەن بىلىمىيەر ىكە. مەم	
	1011-por a (010	32)	veniherarnie					9c 13	98.6	21	2
						· ·		-40 0 140	80 1 120	160 200	-
·					<u> </u>			Jeres and the second se		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
*1 in = 2,54 Units of Weig	lexactly). For other exact con- hts and Measures, Price \$2.25,	versions and more detailed SD Catalog No. C13,10:28	d tables, see NBS Misc. Pul 36,	51. 796.				-40 -20 D	20 40	60 00 10 C	Ð
					<u> </u>	<u> </u>	_				_