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INTRODUCTION
Lateral loads - and, therefore, L/V ratios - are not directly variable with

vertical loads. In theory, one might suspect that the magnitude of the L/V
ratio would decrease as the vertical load increases. In May, 1985, a test was
performed with loaded and unloaded cars on the FAST oval at the Transportation
Test Center, near Pueblo, Colorado, to establish whether lateral/vertical
(L/V) force ratios decrease with increasing axle load.

This report presents results of that test, along with theoretical results and
historical data from FAST, followed by a brief summary and discussion of the
implications of the results.

TEST DESCRIPTION

The test was conducted on dry rail, with L/V ratios being measured contin-
uously over the track portion shown in Figure 1. The test consist is shown in
Figure 2. Test variables included train attitude (buff/draft operation),
train speed, an incremental wheel loading. The following table gives test run
details.

Run No. Train Attitude Speed
1 Draft 25 mph (~3"
underbalanced)
2 Buff (Reverse consist move) 25 mph (~3"
underbalanced)
3 Draft 35 mph (balance
speed)

Wheelset data were continuously reduced to L/V values by onboard micropro-
cessors and fed to a strip chart recorder. A sample of the strip chart is
shown in Figure 3.

Peak and average L/V values for each curve in the test are taken from these
strip charts and the lead axle, outer wheel is plotted in Figures & (peak 25
mph, draft), and 5 (peak 35 mph, draft). Figures 6 (peak 25 mph) and 7 (peak
25 mph) show the results for the "buff" operating conditions.
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TEST RESULTS

It was observed in these tests that increased axle loads generally do decrease

LéV ratios, although anomalies exist in the data taken (see Figures 1 through
7).

COMPARISONS WITH THEORETICAL MODEL OF L/V VARIATION WITH VERTICAL LOADS

Theoretical models (particularly the Steady State Curving Model by J. A.
Elkins) have been employed to construct Figures 8 and 9, which also show that
L/V values decrease with increasing axle load. The test data indicate that
the empty L/V ratios are significantly larger than thait predicted by the
models. This, however, is to be expected in view of the quasi-static nature
of the model mathematics as opposed to the dvnamic nature of the testing.

MEASURED L/V VALUES FROM FAST AND FROM REVENUE SERVICE

Figures 10 through 12 are average wheel leads from 3 vears of measurement cn
the FAST loop. These are the measured wheei/rail loads from revenue service
vehicles operating on FAST. These plots show that the inversely proportional
L/V vs vertical load relationship is generally true, but not universally.

Figure 13, a typical example,'* shows that the L/V ratios are higher in reve-
nue service than at FAST. Based on the foregoing data, we conclude that reve-
nue service L/V ratios are higher, on average, because revenue service entails
more empty cars (FAST is ~95% loads, whereas industry cars are loaded only
56.5% of the time.)

SUMMARY OF DATA

We observe that the L/V loading generally decreases with increasing axle load.

Other observations were:

0 L/V ratio increases with speed (expected)
0 L/V ratio increases with degree of curvature (expected)
0 Maximum L/V in this test was observed during the "puff" train condition,

under the unloaded car on the trailing axle (see comsist, Figure 2).

DISCUSSION OF THE IMPLICATIONS OF THESE RESULTS

The test results implv an improved lateral track performance with higher axle
loads (for those items related to L/V ratios) which could result in both
economic and safety benefits. These tests have shown that:

1. Increased axle loads tend to reduce L/V ratios.

2.  Empty cars probably produce more track damage than full or partial loads.
This is implied in Figure 14.

“References are listed at end of text.
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MEASURED L/V RATIO

L/V RATIO VARIATION WITH VERTICAL LOAD
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FIGURE 4. PEAK L/V VALUES AT 25 MPH (DRAFT CONDITION)
FOR 3-, 4-, AND 5-DEGREE CURVES.



MEASURED L/V RATO

L/V RATIO VARIATION WITH VERTICAL LOAD
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FIGURE 5. PEAK L/V VALUES AT 35 MPH (DRAFT CONDITION)
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MEASURED L/V RATIO

L/V RATIO VARIATION WITH VERTICAL LOAD
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THEORETICAL L/V RATIO vs. WHEEL LOAD
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CALCULATED L/V RATIO ve. VERTICAL WHEEL LOAD
(from Steady State Curving Model)
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MEASURED L/V RATIO
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FIGURE 10. LATERAL/VERTICAL FORCE RELATIONSHIP, SECTION 17, INSIDE RAIL.
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MEASURED L/V RATIO
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MEASURED L/V RATIO

1A
0.9
0.8 5
0.7 1
0.6
0.5 -
0.4 -
0.3

0.2

0.1 — —

LATERAL/VERTICAL FORCE RELATIONSHIP
FAST — counter clockwise train direction only

AZLE LOCATION LM CAR
'! MA0 AW, MRAD TRUGE
siA8 ARAK. TRMIA TROGD

FIGURE 12.

T

20

AS 5r0 BIO
NOMINAL CAR WEIGHT — TONS

T
100

120

LATERAL/VERTICAL FORCE RELATIONSHIP, SECTION 7, OUTSIDE RAIL.

15



L/V RATIO COMPARISON:
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LATERAL FASTENER STIFFNESS:
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