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PREFACE 

This report is the seventh of a series on the effects of service loads on railroad vehicle 
wheels. The study began in 1991, in response to a request from the Federal Railroad 
Administration (FRA) Office of Safety for technical support from the FRA Office of Re
search and Development. The wheels on three similar fleets of multiple unit (MU) power 
cars used in commuter service had been found to have unusually high rates of cracking. 
The purpose of the requested technical support was to assist the FRA Office of Safety in 
monitoring the affected fleets. At the same time, the FRA Office of Research and Devel
opment undertook a wheel performance research project to identify and evaluate options 
for long-term solutions. 

The first five reports in the series cover the work done to evaluate the immediate actions 
which were taken to assure operational safety. Additionally, one fleet which had been 
equipped with straight tread brakes was to be upgraded to a blended brake system as a 
part of a scheduled program to replace the existing DC motors with AC motors. The effects 
of alternative blended brake options on wheel rim temperature were studied and summa
rized in the sixth report. Completion of this work coincided with closeout of the special 

. monitoring program by the FRA Office of Safety. In the second phase, now underway, the 
effort is focused on wheel performance research. 

Rim temperature attained during braking is widely recognized as a significant factor af
fecting wheel performance, i.e., the potential for thermal cracking. The crack formation 
mechanism is generally understood, in qualitative terms, to be the result of residual stress 
reversal in the rim. Modern railroad vehicle wheels are manufactured so as to enter service 
with compressive residual hoop stress in the outer part of the rim, and this compression 
acts as a barrier to crack progression. In service, the temperature gradient periodically set 
up in the rim during tread braking imposes thermal stresses, and if excessive demands are 
made upon the wheel, the thermal stresses can be large enough to cause plastic deforma
tion and permanent change of the outer rim hoop stress from compression to a neutral or 
tensile state. Under such circumstances, surface cracks that would normally be prevented 
from growing until removed by natural wear can progress into the rim, becoming thermal 
cracks which pose the risk of wheel fracture. 

The goal of the wheel performance research project is to develop a method of analysis 
which can be pro-actively applied to estimate the point at which the demand upon a wheel 
could lead to adverse residual stress in the outer rim. Conventional numerical analyses 
suffice for the prediction of initial manufacturing stresses, but it has been necessary to 
develop a special method for estimation of service effects, based on the hypothesis that 
the residual stresses reach a stable state after sufficient repetition of the mechanical and 
thermal loads in service. 

This report summarizes the development and partial validation of the special method. It 
originated as a concept for prediction of rail residual stress, a development which was car
ried out under the FRA Track Safety Research Program. The foundations of the method 
are well documented in the track research literature and, therefore, are only briefly men
tioned here. Most of this report focuses on the development of essential modifications to 
the rail analysis method to provide for the analysis of wheels which undergo changes in 
mechanical properties at the elevated temperatures associated with tread braking. The 
modifications involve significant extensions, which have been individually validated by 
comparison of calculated results with available independent solutions to simplified test 
problems. These comparisons are presented and discussed to document the validation, 
and also, to convey an idea of the level of modeling detail required to obtain results of 
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acceptable quality. This part of the report (sections 2 and 3) will be of interest mainly to 
researchers and applications engineers specializing in numerical stress analysis methods. 

Section 3 of the report documents several example analyses of the MU wheel and, therefore, 
will also be of some interest to engineers and officers of railroad mechanical departments. 
The examples have been intentionally simplified in order to highlight effects of individual 
service factors. The results are encouraging because they produce expected trends and 
magnitudes. 

One essential validation step still remains to be taken, namely: comparison of model 
predictions with field experience for actual cases. The experience gained in the first phase 
is to be used for this step. Differences in vehicle characteristics and operations were 
associated with different types of cracking that were observed in each of the three MU 
fleets. These characteristics are to be used as input to the wheel residual stress model, and 
the model predictions are to be compared with the actual fleet experience in each case. A 
report on this validation step is expected in the summer of 1996. 
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EXECUTIVE SUMMARY 

This report summarizes the development of specialized finite element software for esti
mation of residual stresses in rail vehicle wheels subjected to combinations of mechani
cal stresses from wheel/rail contact and thermal stresses from frictional heating by tread 
brakes. The work reported here is part of an ongoing research project on wheel perfor
mance sponsored by the Federal Railroad Administration (FRA) Office of Research and 
Development and carried out by the Volpe National Transportation Systems Center. This 
project grew out of a quick reaction task, in which the FRA Office of Research and Devel
opment and the Volpe Center provided technical support to the FRA Office of Safety to 
evaluate immediate actions taken to deal with episodes of thermal cracking in the wheels of 
three similar fleets of multiple unit (MU) power cars, operated in commuter service in the 
Greater New York Area, and to assess options for reconfiguration of the braking system 
on one of the fleets. The technical support effort is documented in six earlier reports. 

The development of a residual stress estimation model is a key element of long-term FRA 
research. The goals are a means of predicting wheel performance in service and, via 
application of the model, guidelines for improving product quality. 

Prior research by the Association of American Railroads (AAR) has shown that residual 
hoop tension in a freight car wheel rim promotes the formation and progression of thermal 
cracks. Modern freight car wheels enter service with residual compression, which acts as 
a barrier to thermal cracking, due to a rim quenching heat treatment during fabrication. 
The rim normally retains the compression for its entire service life, but excessive heating 
from abnormal grade braking conditions can reverse the stress to tension. 

In those MU car wheels that experienced thermal cracking, the cause was found to be ex
cessive concentration of heat during stop braking. Experimental work showed that the MU 
car wheels also entered service with hoop compression, but that the effect of stop braking 
was to relieve or reverse the stress in a shallow layer of the outer rim, and in most cases 
the thermal cracks tended not to progress into the underlying region. Nevertheless, the 
circumstances are not desirable because safety considerations lead to frequent inspection, 
removal of the thermally cracked layer, and consequent shortening of wheel service life. 

Taken together the above cases highlight rim residual stress as the key factor affecting 
wheel performance in service, as regards resistance to thermal cracking. It is thus useful to 
have a model capable of estimating rim residual stress ba.Sed on practical specification of 
the service environment in terms of vehicle weight, maximum operating speed, and profile 
of tread braking effort as a function of speed. The finite element model described in this 
report was developed for this purpose. 

The wheel rim stress model is an extension of a model originally developed to estimate 
residual stress in rails. The approach is based on a hypothesis that, in either case, the 
residual stress attains a stable state as long as the service conditions remain generally 
the same. The stable state is then sought directly, as a so-called shakedown state, under 
a simplifying assumption that the material strain hardening during plastic deformation 
can be neglected. In fact both rail and wheel steels do exhibit strain hardening, but 
the assumption can be justified on the grounds that any plastic deformation is confined 
by surrounding material and, therefore, that the magnitude of the plastic strain is low. 
The shakedown state is estimated by means of a mathematical optimization technique 
that searches among all the possible states (those satisfying the appropriate equilibrium 
conditions) to find the one state that also keeps the sum of residual and live stresses 
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within the material elastic limit. This approach leads to several important advantages in 
the m.unerical computations: 

• Only elastic representations of the live stresses are needed. This considerably 
simplifies the task of calculating live mechanical stresses from wheel/rail con
tact and live thermal stresses due to temperature gradients during braking. 

• The hypothesized shakedown state can be assumed to possess certain symme
try that allows reduction of the finite element model from three to two dimen
sions. The hypothesized state is axially symmetric for a wheel, and the finite 
element mesh is defined for the typical radial plane. The two-dimensional 
character of the model dramatically reduces the number of unknowns, com
puter memory required, and time needed for the numerical solution. 

• If the search criterion is satisfied for the live stresses corresponding to the 
greatest magnitude of any given service load type (e.g., wheel/rail contact 
centered at a particular lateral position on the tread), then it follows that 
the criterion is also satisfied for any smaller load of the same type. Thus, 
the live stresses need to be calculated only for the envelope of greatest load 
magnitudes (one for each type) expected in service. 

• A shakedown state is by definition independent of the details of the sequence 
of loads by which the state is reached. Thus, there is no need to attempt to 
specify a detailed history of service loading, such as would be required for 
the estimation of a residual stress state by conventional means. 

• In practice, the service loading consists of different load types that occur at 
different times. For example, the position of the wheel/rail contact load is 
expected to shift laterally across the tread as a wheel encounters tangent and 
curve track. Such conditions are easily treated with the shakedown model 
simply by finding a solution for the first load type, using the solution as an 
initial stress condition for the second load type, and so on. The solution thus 
obtained after the last load type is considered as a candidate shakedown state. 
The candidate state is then used as an initial stress state for a second series 
of analyses in reverse order. If the solution finally obtained after returning 
to the first load type is the same, then the candidate solution is accepted as 
a good estimate of the actual residual stress state. Although the foregoing 
procedure appears to be cumbersome, it is easy to execute, and the required 
computational effort is still one or two orders of magnitude less than would 
be needed to obtain a comparable solution by conventional means. 

In the original rail shakedown stress model, calculations of elastic wheel/rail contact 
stresses were limited to representation of contact pressure based on an approximation 
of the Hertz theory used by track design engineers. This approach was justified by argu
ments that the model was intended to represent lubricated contact at some distance from 
the rail gage corner. Under such conditions, forces tangent to the rail surface can be ne
glected in comparison with the contact pressure, and theoretical expressions representing 
internal stresses due to pressure can be directly programmed, provided one is willing to 
neglect effects due to the slight curvature of the surface near the rail crown. 

Conversely, neither of the foregoing assumptions is justified for calculation of internal 
contact stresses in wheels. It is essential to be able to account for longitudinal tangent 
forces due to braking and inclined tangent forces due to flange contact, as well as lateral 
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tangent forces due to creep. Also, it is important to be able to represent contact near the 
flange throat, where the smface is so highly curved that the theoretical expressions are 
not valid. Consequently, a numerical approach (see section 2) was adopted in place of the 
simplified approach from the original model. 

Unlike the hypothesized residual stress state, the contact stresses are not axisymmetric 
because the wheel/rail contact pressure is concentrated on a small area and any tangent 
loads are generally asymmetric. In principle, a model with three-dimensional finite el
ements could have been used to compute the contact stresses, but in practice such an 
approach would require either too much computational effort to attain sufficient mesh de
tail or too much bookkeeping (with chances for error) to grade the mesh from refined near 
the contact zone to coarse elsewhere. 

Therefore, a Fourier harmonic finite element formulation and the corresponding software 
were developed for the contact stress computations. Any arbitrary load distribution around 
the circumference of an axisymmetric body can be represented as a Fourier series consisting 
of a zeroth ( axisymmetric) harmonic and additional harmonics expressed in terms of sine 
and cosine functions. The series coefficients, which are determined by a given load distri
bution, play the role of driving forces in the finite element analysis. Corresponding to the 
set of zeroth harmonic force coefficients is the conventional axisymmetric finite element. 
Stiffnesses corresponding to the higher harmonics are derived from the same sine and cosine 
functions. For computation of elastic stresses, linear superposition can be used to decouple 
the formulation, i.e., the force coefficients and element stiffnesses can be used to determine 
stress coefficients for each harmonic. The full stress solution is then expressed as Fourier 
series in the solution coefficients and corresponding harmonic distribution functions. 

The Fourier harmonic software was validated by comparison with results obtained from 
conventional 2D finite element software. The validation examples were limited to problems 
with simple geometry: a circular disc in plane stress loaded by smface forces concentrated 
on 1/24 of the circumference, and a thick-walled cylinder axisymmetrically loaded by 
internal pressure varying along the longitudinal axis. Both pressure and tangent forces 
were treated in the disc example. The harmonic software was tested with four uniform 
meshes, doubling the grid density in each succeeding case, to demonstrate convergence to 
the conventionally obtained solution. 

In theory the Fourier series contains an infinite number of terms, but only a finite number 
can be included in a practical numerical analysis. One of the objectives of the validation 
was to determine the minimum number required for good results. The disc test exam
ples were run with about 25% more harmonics than actually needed to obtain accurate 
solutions. Examination of the results revealed two important points. First, the highest 
harmonic that must be included should have 4 to 6 wavelengths in the circumferential 
width of the contact zone. Second, adding still higher harmonics does not improve the 
quality of the solution if the finite element mesh is too coarse. 

The validation was continued with an example analysis of contact stresses in the MU 
wheel. Since it was not possible to obtain good quality results from a conventional 3D 
finite element analysis, the finite element mesh was repeatedly refined in the region near 
the contact zone until convergence could be inferred from agreement of results from the 
two most dense grids. Convergence was demonstrated with five levels of mesh refinement, 
of which the coarsest was a slight modification of the mesh the Volpe Center used in a heat 
transfer model to calculate MU wheel temperatures during stop braking (see the second 
report in this series). The two most dense grids consisted of 1495 and 1621 finite elements, 
respectively. Examples of contact pressure alone and contact pressure (P) combined with 
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longitudinal tangent forces (L) in the ratio L/ P.....:. 0.2 were executed. The first example 
required 1189 harmonics, based on the criterion of at least 6 wavelengths per contact 
zone width; the second example required twice as many because anti-symmetric as well as 
symmetric harmonic modes were required to represent the tangent force effects. 

The original software for estimation of rail shakedown stress states had to be modified for 
adaptation to wheel analysis. The finite element had been formulated in cartesian geometry 
to include four stress components: normal stress parallel to the rail axis, lateral and vertical 
normal stresses, and the shear stress in the transverse plane. The modified element was 
reformulated in cylindrical geometry in a manner similar to a conventional axisymmetric 
element, but all six stress components (three normal stresses and three shears) had to be 
included in order to represent the antisymmetric effects of longitudinal tangent forces as 
well as the axisymmetric effects of pressure and thermal stresses. 

Two example analyses were carried out and compared with results obtained from conven
tional 2D finite element software. In each case, the material was assumed to be elastic
peifectly plastic (no strain hardening), and only one load type was considered. Under 
these conditions, only one cycle of loading and unloading is needed to attain the shake
down residual stress state, and the conventional approach of incremental elastic-plastic 
analysis can be applied. 

The first case involved the same thick-walled cylinder that was used in the validation of the 
elastic contact stress software. Convergence to agreement with the conventional solution 
was demonstrated by means of the same mesh refinement technique. The results for this 
case suggested that the quality of the residual stress solution was influenced by the elastic 
contact stress solution, as well as by grid density. 

In the second case, the MU wheel model was subjected to a cycle of temperature gradients 
and thermal stresses representing a stop from 128 km/h (80 mph) at 0.091 g (2 mph/s) with 
154.6 kN (17.4 ton) axle load. The time histories of the temperature and elastic thermal 
stress were supplied by the Volpe Center. Since there were no contact forces involved 
in this example, the medium-density finite element grid was used in order to allow the 
conventional analysis to be run. 

Since the material properties depend on temperature, the yield strength is a function of 
both time and location in the wheel cross section, as well as the elastic thermal stress. The 
simplest way to carry out a shakedown analysis under such conditions is to consider only 
the maximum magnitude of the thermal stresses, an approach that would be fully justified 
if the yield strength were constant. To obtain accurate results, however, it was found 
necessary to treat the thermal stresses at a number of discrete times as different load types 
and to apply a modification of the heuristic procedure outlined earlier for dealing with 
shifting contact locations. The main purpose of this test was to validate this extension 
and to determine the number of such load types needed for acceptable solution quality. In 
the modified procedure, the elastic thermal stress solution was first used to determine the 
discrete times at which the first and last occurrences of yielding would be expected; the 
period between these times was then divided into equal intervals, and the thermal stresses 
at the ends of the intervals were used as the load types. Solutions with 8 and 15 load types 
agreed reasonably well with the conventional finite element results, and the two shakedown 
solutions also agreed closely, indicating the achievement of convergence. 

Several additional example analyses of shakedown stresses in MU wheels were carried out in 
order to demonstrate the software capabilities. In most cases, the load environment factors 

xx 



were considered either individually or in pairs in order to illustrate their interactions. The 
results led to the following observations: 

• Wheel/rail contact loading with or without shifting of the contact location 
gave results that were qualitatively similar to the solutions for rail residual 
stress. For example, both hoop stress in the wheel and axial stress in the 
rail consisted of a tension zone underlying a compression zone just below the 
tread surface. 

• Lateral shifting of the contact location broadens the residual stress patterns 
and also causes some increase in the hoop stress magnitude. 

• When the contact loading includes longitudinal tangent forces, antisymmet
ric residual shear stresses occur, and their magnitudes are on the order of 10 
to 30% of the normal stress magnitudes. The magnitude of the axisymmetric 
shear stress component is also increased by about 20%, relative to its magni
tude when the contact loading is limited to pressure. However, longitudinal 
tangent forces of the amount studied (L/ P = 0.2) have no significant effect 
on the magnitude of residual hoop stress. · 

• In order to obtain accurate results when longitudinal tangent forces are in
cluded, it is necessary to define a number of wheel cross section planes at 
intervals through the contact zone, to treat the elastic contact stresses in 
each plane as the results of an individual load type, and to apply a heuristic 
procedure similar to the one described above for the thermal stresses. Close 
agreement was obtained from cases in which 9 and 17 load types were so 
defined. In contrast, a shakedown analysis with only pressure loading re
quires only one load type (the stresses in the cross section plane containing 
the center of contact). 

• Loading due to the thermal stress cycle only, as was used in the validation 
example, can also be viewed as a simulation of a wheel subjected to induc
tive heating or dynamometer drag braking. The resulting shakedown state 
includes, as expected, quite large tensile residual hoop stresses in the outer 
rim region. 

• When contact loads without shifting and thermal stresses due to stop braking 
are considered in combination, the compressive hoop residual stress layer just 
below the tread surface is decreased in magnitude under the contact zone and 
reversed to tension on either side of the contact zone. 

• Thermal stresses due to stop braking were also considered in combination 
with initial manufacturing stresses. The initial stresses, obtained from a 
Volpe Center simulation of a rim quenching heat treatment, exhibited a deep 
layer of hoop compression in the rim. The computed stresses, representing 
the effect of repeated inductive heating or dynamometer drag braking, in
cluded a reversal to residual hoop tension in the outer rim region. 

The foregoing results lead to the following general conclusions. First, the wheel shakedown 
stress software has been validated as far as regards its basic logic and the quality of stress 
solutions obtained under the given assumptions. Second, the extra computational effort 
required to consider tangent as well as pressure loads is not justified for low load ratios (L/P 
not exceeding 0.2) in view of the lack of significant effect on the stress of most concern, but 
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such effort will likely be needed to evaluate high tractive effort wheels (0.3 < L/ P < 0.4). 
Third, the predicted effects and interactions appear to be consistent with expectations 
based on field experience. 

A final step in the validation process still remains to be taken, namely: detailed comparison 
of the model predictions with field experience. Work on this step is now in progress, based 
on the MU field experience, and will be the subject of a later report. In view of the results 
already demonstrated, it appears reasonable to expect that this last step will provide the 
practical key to interpretation of the model results, namely: the level at which predicted 
hoop stress reduction or reversal should be considered to indicate loss of resistance to 
thermal cracking. 
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1. INTRODUCTION 

This report is the seventh of a series on the results of an engineering study of the effects of 
service loads on railroad vehicle wheels. The study began in September 1991, in response 
to a request for assessment of contributing factors and corrective actions taken regarding 
high rates of crack occurrence in certain multiple unit (MU) power cars used in commuter 
service. The ultimate goal of the study is the evaluation of safe limits on performance 
demand (weight carried per wheel, maximum speed, vehicle braking rate) as a function 
of wheel design, material selection, and manufacture, as well as percentage of braking 
effort absorbed through the wheel tread. The models developed in the study are intended 
to provide the capability for similar engineering design analyses of other railroad vehicle 
wheels besides the types used on MU cars. 

1.1 BACKGROUND 

Special inspections of commuter rail vehicles conducted by the Federal Railroad Adminis
tration (FRA) Office of Safety in 1991 revealed chronic problems of cracking in the wheels 
of MU cars operated by three railroads serving the Greater New York area. The car design 
types are similar, but the vehicle characteristics and wheel cracking features were found 
to have significant differences. 

The highest rate of cracking was found in the wheels of moderate weight vehicles, operated 
at moderate speeds, and equipped with blended dynamic braking to supplement the wheel 
tread brakes. The wheel cracks in this fleet, predominantly of thermal origin at the front 
rim edge, were attributed to maintenance problems: (1) dispatching of vehicles with in
operative traction motors, and thus also inoperative dynamic braking; and (2) inadequate 
tread brake unit refurbishment, leading to brake shoes riding over the front rim edge. 

A comparable rate of cracking was found in the wheels of moderate weight vehicles, oper
ated at high speed (lOOmph), and equipped solely with tread brakes. The wheel cracks 
in this fleet, of thermal origin in the center tread position, were attributed to the demand 
for heat absorption through the tread imposed by high-speed operation without auxiliary 
brakes. 

A lower rate of cracking with mixed thermal and mechanical origins was found in the third 
fleet. This fleet consists of heavy vehicles, operated at moderate speeds, and equipped 
with blended dynamic braking to supplement the tread brakes. Vehicle weight, heat input 
to the wheel tread, and occasional maintenance problems were identified as the factors 
contributing to wheel cracks in this case. 

The FRA Office of Safety took immediate action to address identified maintenance prob
lems, set requirements for daily inspection of wheels in service, and required re-profiling 
of wheels found to have cracks before returning them to service. Each affected railroad 
also started to take longer term actions and develop options for lasting solutions. Actions 
already taken include upgrade of material properties and adoption of an advanced plate 
design in the specifications for new wheel orders and, for those MU cars not so equipped, 
retrofit of new motors with dynamic braking capability. 

1.2 PRELIMINARY STUDIES 

Preliminary studies undertaken from September 1991 through September 1992 included 
reviews of wheel maintenance records, fluorescent magnetic particle inspections of wheels 
removed from service to locate and measure cracks, saw cutting of a new wheel and one 
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removed from service for estimation of residual stresses in the rim, metallographic ex
aminations, hardness testing, fractography, laboratory simulation of the combined high 
temperature and rapid plastic compression experienced by wheel rims in service, and heat 
transfer calculations with an approximate model. The results of the preliminary studies 
suggested that cracks of thermal origin are the main concern, and that a process of shal
low stress reversal is responsible for the formation of such cracks in the wheels of the MU 
cars [1]. 

Stress reversal (from hoop compression to tension) is a well known cause of thermal cracking 
and fracture in freight car wheels which have been subjected to repeated drag braking for 
long periods of time at low power, but in such cases the stress is usually reversed in the 
bulk of the rim, most of which is heated to high temperature. Conversely, typical stop
braking profiles involve high power for short periods of time and tend to Hash-heat the outer 
rim region to temperatures much higher than those in the bulk of the rim. The thermal 
stresses, which are induced by temperature gradients, then concentrate in the outer rim 
region. Thus, wheel thermal response to stop-braking is not necessarily indicated by its 
response to drag-braking. Also, any subsequent drag-braking can apparently cause rapid 
propagation of thermal cracks which have formed under less severe conditions. 

Based on these findings, the decision was made to develop a set of detailed finite element 
models which could be used to evaluate the potential for different types of wheels to resist 
cracking under various combinations of service conditions. The approach, relation between 
models, and relation of models to validation tests are outlined in the following section. 

1.3 DETAILED ENGINEERING STUDIES 

The wheels of a typical MU car experience on the order of 104 stop-braking events and 
107 wheel/rail contact cycles in a year of service. Many stops and contact cycles are thus 
involved, even if rim stress is reversed in just a few days or weeks. The performance demand 
(weight carried per wheel, maximum speed, vehicle braking rate) may either modify or 
reverse the residual hoop stress in the rim. These outcomes can be distinguished by 
assuming that the modified or reversed stresses are stable, i.e., they are not changed 
simply by further repetition of the same performance demands after some period of service 
has elapsed. Such states, referred to as shakedown stresses, can be calculated from the 
known initial conditions (residual stress from manufacture) and descriptions of the loads 
imposed by repeated performance demands. 

A recently developed method for estimating shakedown stresses in a body requires only 
that each load be described in terms of the stress magnitudes it would cause in the body, 
assuming purely elastic behavior [2]. This task is easily accomplished by means of elas
tic finite element stress analysis models. The method has been successfully applied to 
the problem of estimating shakedown stresses in rails [3], including cases in which ini
tial conditions must be accounted for [4], [5]. This method can also be used to estimate 
wheel shakedown stresses, with both mechanical (weight per wheel) and thermal (braking) 
loads as inputs. The method is also computationally efficient because one can assume the 
sought shakedown state to be axially symmetric, based on the logical hypothesis that, for 
each location in the wheel profile, every material point around the circumference should 
experience substantially the same history of live stresses. 

The block diagram in figure 1.1 illustrates the organization of models and tests required to 
develop a realistic procedure for estimating wheel shakedown stresses. The shaded blocks 
denote items covered in this report. 
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The dashed box encloses those items which constitute the inputs and output of the wheel 
shakedown stress model. The other blocks in figure 1.1 represent the tasks required to 
prepare the inputs for the shakedown stress model. 

The theoretical paths are emphasized because the models can produce complete descrip
tions of input stresses which also conform to the laws of mechanical equilibrium. Com
pleteness and conformity are necessary to avoid propagation and amplification of numerical 
errors in the shakedown stress calculations. Conversely, experimental stress analyses usu
ally cover only part of the body, and the results often contain equilibrium errors when 
measurements are made on complex bodies such as wheels or rails. In spite of these 
limitations, experiments are still essential for checking the realism of the models. 

Axisymmetric heat transfer and elastic stress finite element models have been used to 
compute the temperature and thermal stress distributions representing a variety of MU 
stop-braking events and braking systems configurations. The validation of and results 
obtained from these models were documented earlier (see bibliography of reports in this 
series). A thermal stress history for a moderate weight MU car braked at 2 mph/ s from 
80 mph to a full stop, as computed by these models, is used as an illustrative case for the 
thermal stress envelope in the work reported here. 
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Figure 1.1 Model and Test Relationships 

Estimation of the initial manufacturing stresses also requires experimental validation of 
models, activities which are still in progress. Axisymmetric heat transfer and elastic
plastic stress finite element models are being used to estimate the manufacturing stresses. 
Preliminary results in reasonable agreement with the available experimental data have 
been obtained [6] and are used for illustrative purposes as the initial manufacturing stress 
input in the work reported here. 
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This report describes the development and validation of modifications to the rail soft
ware f4] for the purpose of estimating shakedown stresses in wheels. The modifications 
inclucfe a change from cartesian to axisymmetric geometry, allowance for thermal as well as 
mechanical live stresses, wheel/rail contact areas of any specified shape and size, traction 
forces as well as axle loading, and temperature-dependent material properties. 

The general treatment of wheel/rail contact loading requires a numerical approach to the 
computation of live mechanical stresses. These loads and stresses are not axisymmetric, 
but the stress computations can be dealt with in the format of an axisymmetric model by 
means of the Fourier harmonic method. Section 2 explains the formulation and summarizes 
the validation of this part of the model by reference to independently derived solutions of 
problems with simplified geometry. 

The addition of temperature dependence to the material properties in the shakedown esti
mation model is also validated by reference to independently derived solutions, including 
one simplified example of a wheel assumed to be subjected only to thermal stress cycles. 
In such cases the shakedown state is the same as would be obtained from an incremen
tal plasticity analysis of a single cycle, and the independent solution was thus computed 
with a well established commercial software package. This part of the validation and the 
results of several illustrative examples of wheel shakedown stress estimation are presented 
in section 3. 
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2. ELASTIC MODEL FOR ANALYSIS OF CONTACT STRESSES 

This section covers all the matters associated with the development of an elastic model for 
analysis of contact stresses in railroad car wheels. Section 2.1 contains some introductory 
remarks dealing with possible ways of such analysis. Sections 2.2 and 2.3 describe the 
mechanical and numerical models, respectively. The above models have been implemented 
in two computer programs described in section 2.4. The approach has been validated by 
means of test problems formulated for a circular disk and a thick-walled cylinder. The 
results of these tests and their discussion are presented in section 2.5. Finally, the model 
has been applied to the evaluation of elastic contact stresses in a railroad car wheel subject 
to both normal and tangent tractions (section 2.6). 

2.1 INTRODUCTORY SECTION 

The subject of this section is analysis of elastic stresses in a selected class of axisymmetric 
bodies subject to contact loading. The purpose of the work is to formulate a reliable method 
of analysis of such stresses in railroad car wheels under normal and tangent tractions. 

In general, there are two approaches to the problem of analysis of elastic contact stresses. 
The first one is mainly based on analytical formulae and certain experimental observations. 
The second approach takes advantage of numerical methods, especially of the finite element 
method. 

As far as the first approach is concerned, the engineering design of rail and wheel rrofiles 
is traditionally based on the simplified application of the Hertz contact theory r1 . Both 
the rail and the wheel are modelled as circular cylinders crossing at right angles. The 
cylinder radii are defined as the design crown radius of the rail and the design nominal 
rolling radius of the wheel, respectively. The normal load pressing the cylinders together 
is defined as equal to the design static load supported by the wheel. The contact area is 
an ellipse with semi-major axis A and semi-minor axis B computed by means of the Hertz 
formulae. The normal pressure distribution over the contact zone is given by 

p(X, Y) Pol- G)' -(~)' (2.1) 

with respect to tangent-plane coordinates (X, Y) and with the origin at the center of the 
contact zone. The peak pressure Po is also computed using the Hertz formulae. The main 
task in the next step of this approach is to compute the corresponding stresses. This is 
usually done by means of integration of the classical Boussinesq influence functions [7] for 
stresses due to a unit normal force acting at a surface point on an unbounded half space. 
In this case the pressure distribution determined from the Hertz formulae plays the role of 
a weighting function. A similar approach may be applied in case of a tangent load using 
the classical Cerruti influence functions [7] for stresses due to a unit tangent force acting 
at a surface point on an unbounded half space. 

The main disadvantage of this approach is quite restrictive assumptions concerning the 
shape of the surfaces in contact. As for the shape of the contact zone and the distribution 
of the surface tractions, they can be modified quite easily in order to take into account 
real conditions, e.g., to deal with offset contacts (by introducing local radii, including 
the third radius representing the wheel profile curvature) or to comply with experimental 
observations. On the contrary, the application of simplified formulae for stress distributions 
may result in significant violation of the equilibrium equations and the static boundary 
conditions. 
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As regards the second approach, numerical methods seem to be the most powerful methods 
of analysis of contact problems. They allow not only to take into account the real geom
etry of the bodies in contact and their material properties but also to model the contact 
phenomenon including all accompanying effects. The problem could be solved using one 
of the widespread finite element analysis programs. However, their practical applications 
in the case under consideration are limited, especially when one takes into account the 
fact that the problem is fully three-dimensional, the shapes of the wheel and rail are quite 
complex, and the size of the contact zone is very small. It implies application of meshes 
that consist of a huge number of finite elements. The analysis becomes extremely memory
and time-consuming, not to mention all the problems connected with mesh generation. 

In this work, the main purpose of the elastic analysis of contact stresses is to provide 
essential input data for the elastic-plastic analysis of residual stresses. The elastic analysis 
usually has to be performed repeatedly, especially when multiple loading paths are con
sidered. That is why it has been decided to apply a simplified approach to the problem. 
Both the shape and size of the contact zone and the surface tractions as well are treated 
as known data, usually but not necessarily obtained by means of the Hertz formulae. The 
approach also allows one to eliminate the rail from the analysis and. to take advantage of 
the axisymmetric shape of the wheel. The key point in this approach is that the external 
loads can be expanded in the Fourier series and the complete analysis can be performed 
by superimposing the response due to the symmetric and antisymmetric load contribu
tions. The problem is still three-dimensional but only a selected radial plane has to be 
discretized. This allows one to reduce significantly the total number of unknown variables 
and consequently the required amount of computer memory, unfortunately at the expense 
of central processor time. This approach is described in section 2.3. 

2.2 MECHANICAL MODEL 

Let a body be in a state of static equilibrium under the action of body forces Fi ( x) in V, 
surface tractions Ti(x) on av.,., and displacements ui(x) on avu, where Vis the volume 
occupied by the body, av.,. and aVu are parts of the boundary surface 8V, x represents a 
point of the body, and i = 1, 2, 3. 

It has been assumed that both the stress-strain and strain-displacement relations are linear. 
These assumptions, usually considered to be very restrictive in analysis of contact stresses, 
are consistent with the assumptions underlying the model for analysis of residual stresses 
(section 3) where elastic stresses are used as input data. 

Thus, the problem of analysis of elastic stresses is the classical boundary value problem of 
linear elasticity and may be solved using the minimum total potential energy principle [8]. 
This principle may be stated in the form of the following optimization problem: 

Find the minimum of the total potential energy functional 

II = J ~E:ijEijklCkl dV - J UiFi dV - J UiTi dS 
v v a~ 

with respect to the displacement field ui(x) satisfying the kinematical 
boundary conditions 

on 8Vu, 
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(2.2) 

(2.3) 



where Sij(x) is the strain field related to the displacement field ui(x) by 

(2.4) 

and Eijkl is the tensor of elasticity coefficients that relates the stress field O"i;(x) to the 
strain field ei;(x) in generalized Hooke's law 

(2.5) 

For proof of the minimum total potential energy principle, the reader is referred to [8]. 

2.3 NUMERICAL MODEL 

This section describes the numerical model applied to the analysis of elastic stresses. It 
has been divided into three parts. The first part presents some basics of the finite element 
method, its concepts and notation. The second and third parts deal with the detailed 
description of the finite element that has been implemented in the computer programs 
worked out for the problem under consideration. 

2.3.1 Finite-Element Formulation 

The numerical model applied to the analysis of elastic stresses is the displacement model 
of the finite element method. It may be derived from the minimum total potential energy 
principle (see the previous section). The region of the body V is divided into a finite 
number Ne disjoint subregions Vn (finite elements) and the functional (2.2) is written 
(using matrix notation) in the form 

in which 

7rn = J ~eTEedV-J uTFdV- J uTTdS, 

Vn Vn (8V~)n 

where (8Vu )n denotes the part of 8Vu that belongs to the nth element. 

For each finite element, the displacements u are represented in the following form 

u=Nqn 

(2.6) 

(2.7) 

(2.8) 

where N is the displacement interpolation matrix and qn is the vector of generalized 
displacements defined at a finite number of nodal points of the element. The corresponding 
strains e, related to the displacements u by (2.4), and stresses u, related to the strains e 
by (2.5), can also be expressed in terms of the generalized displacements qn, that is 

u =Ee= EBqn 

7 

(2.9) 

(2.10) 



where Lis the matrix of differential operators and B is the strain interpolation matrix. 

The substitution of (2.8) and (2.9) into (2. 7) results in 

(2.11) 

in which 
(2.12) 

and 

Qn = J NTFdV + J NTTdS (2.13) 

Vn (8V,,.)n 

are, respectively, the element stiffness matrix and the vector of generalized forces due to 
loads acting on the element. 

Finally, the substitution of (2.11) into (2.6) yields 

which may be written in the following short form 

1 T T II= -q Kq q Q, 
2 

(2.14) 

(2.15) 

where K is the stiffness matrix of the whole domain, q is the vector of total generalized 
displacements, and Q is the vector of total generalized forces. The total generalized dis
placements q can be found as such values that satisfy the kinematical boundary conditions 
(2.3) and minimize the total potential energy of the body (2.15). After they have been de
termined, the corresponding strains e and stresses u can be evaluated using formulae (2.9) 
and (2.10). For more extensive description of the finite element method and its techniques, 
the reader is referred to [9], [10], [11]. 

2.3.2 Axisymmetric Element with Non-Symmetric Deformation 

The subject of analysis is an axisymmetric body subject to non-symmetric external loads. 
It has been assumed that the loads can be represented by means of the Fourier series. 
Taking into account the well-known orthogonality properties of these series and assuming 
that the material of the body is linear elastic, uncoupling between the Fourier modes 
occurs and the analysis can be performed by superimposing the response of the body due 
to the symmetric and antisymmetric load contributions. Thus, the description of the finite 
element can be simplified significantly [9], [11]. 

In the case under consideration, it is convenient to describe the problem in the system 
of cylindrical coordinates ( r, <.p, z). Some of the relations just presented can be rewritten 
almost automatically and it will be done without any extensive comment. The other 
relations, especially those connected with the strain interpolation matrix and element 
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stiffness matrix, will be discussed in detail to provide assistance in case the computer 
programs have to be modified. 

The first goal of the analysis is to describe the external loads and their Fourier represen
tation. The vector of surface tractions T can be written in the following form 

in which 
L 

Tr(1.p,s) = L [T:1(s)cosl1.p+T;1(s)sinl<p], 
l=O 

L 

Ti.p(<p,s) = L [1'~1 (s)sinl1.p+T~1 (s)cosl1.p], 
l=O 

L 

Tz(1.p,s) = L [T:1(s)cosl1.p + T:1(s)sinl<p] 
l=O 

(2.16) 

(2.17) 

where the indices s and a denote the symmetric and antisymmetric load contributions, 
respectively. Ahnost identical expansions can also be written for body forces, boundary 
conditions, etc. The coordinate s represents any local coordinate that allows one to describe 
the surface tractions uniquely for all points of the boundary surface. Usually, it is identified 
with the axial coordinate z except for fl.at vertical parts of the boundary surface where the 
radial coordinate r is used instead. 

In order to simplify the notation, further considerations will be restricted to the symmetric 
load contributions and only the lth Fourier mode will be taken into account (consequently, 
the indices s, a, and l will be omitted). For the antisymmetric loading, the sine function 
should be replaced by the cosine function and vice versa. When derivatives are calculated 
(matrix B), such replacement is sometimes accompanied by the change in the sign. 

The vector of displacements u, the vector of generalized displacements qn, and the displace
ment interpolation matrix N defined in (2.9) can be written in the system of cylindrical 
coordinates as follows 

q~ = { qf qf}' 
N(r,1.p,z)=[N1(r,1.p,z) ... Nk(r,1.p,z)] 

in which 
qr {q q . q } • ri <pi zi , i = 1, ... ' k, 

[

Ni(r,z)cosl<p 0 0 ] 
Ni(r,1.p,z) = 0 Ni(r,z)sinl<p 0 

0 0 Ni ( r, z) cos l<p 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

where k is equal to the number of nodal points of the element, qi is the vector of generalized 
nodal displacements at the ith node of the element, and Ni is the shape function associated 
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with this node. Such assemblage of different parameters connected with nodal points of 
finite elements will be used quite frequently. It corresponds to the structure of the computer 
programs. There also exists an opposite approach where the information of the same type 
is grouped for the whole element or even for the whole structure. In spite of the fact that 
it usually allows one to describe the problem much more concisely, it is rarely implemented 
in computer codes. 

Further analysis requires the relations (2.9) and (2.10) also to be specified in the system 
of cylindrical coordinates. The stress <T and strain e vectors, and the matrix of differential 
operators L can be written as follows 

eT = { C:rr C:t.pt.p C:zz "/rt.p "/t.pz "/rz } , (2.23) 

T_{ <T - Urr Ut.pt.p Uzz Trt.p 'rt.pz Trz}, (2.24) 

o 
0 0 or 

1 1 o 
0 r r 01.p 

0 0 
o 

L= 
oz (2.25) 1 o o 1 

--- 0 r 01.p 8r r 
0 

o 1 o 
oz r 8<.p 

o 
0 

o 
oz or 

The form of the matrix of elasticity coefficients E does not depend on the system of 
coordinates, that is 

1-v v v 0 0 0 

1 v v 0 0 0 

E= E 
1-v 0 0 0 

1- 2v (2.26) 
(1 + v)(l - 2v) 0 0 

2 
1-2v 

0 sym 
2 

1-2v 

2 

where E is Young's modulus and v is Poisson's ratio. 

10 



Before the strain interpolation matrix B is derived, it is convenient, as it was done in 
(2.19) and (2.20), to divide it into submatrices that are associated with the nodal points 
of the element 

B = [B1 Bk]. (2.27) 

The substitution of (2.27), (2.25), (2.20), and (2.22) into (2.9) results in 

8Ni 
8r cosl<.p 0 0 

Ni 
cos lcp 

Ni cos lcp 0 
r r 

0 0 8Ni l --cos <p 

Bi= 
8z 

(2.28) 
zNi . l (8Ni Ni) . l - -sm <p ---- sm <p 0 

r 8r r 

0 8Ni . l zNi . l 
8z sm <p - -sm <p 

r 
8Ni l 0 

8Ni 
--cos <p 8r coslcp 
8z 

Consequently, before the element stiffness matrix kn is computed, the integrand in (2.12) 
should be decomposed, to yield 

(2.29) 

in which 

BfEBj = -(l __ E ___ [ku ~:~ ~~:]. 
v )( 1 - 2v) ** sym** k33 

(2.30) 

It should be stressed that the matrix in (2.30) is not symmetric. The abbreviation **sym** 
is used to point out that the components of the lower triangular part of the matrix may be 
computed using the expressions for the corresponding symmetric components of the upper 
part but at the same time the indices i and j have to be exchanged i.e. 

kmn(i,j) = knm(i, i). (2.31) 

The substitution of (2.28) with the appropriate indices and (2.26) into the left-hand side 
of (2.30) results in the following expressions for the components of the matrix on the 
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right-hand side of (2.30) 

( )
8Ni 8Nj 2 8Ni Nj 2z Ni 8Nj 2z l -v ---cos lr,p+v--cos r,p+v---cos r,p 
8r8r 8rr r8r ( ) 2.32a 

[ 
1 - 2v 2 l Ni N · 1 - 2v 8Ni 8N; 2 

ku 

+ (1- v) cos2 lr,p + 2 l sin2 lr,p -:;-:/- + 2 Bz Bz cos lr,p, 

(2.32b) 

8Ni 8Ni 2 1- 2v8Ni 8Ni 2 Ni 8Ni 2 k13 = v---cos lip+ ---cos lip+v---cos lip, 
8r 8z 2 8z 8r r 8z 

(2.32c) 

k 
1 - 2v 8N;, 8Ni . 2 l 1 - 2v 8N;, Ni . 21 1 - 2v Ni 8Ni . 2 l 

22= ---sm <p- --sm <p- --sm <p 
2 8r8r 2 8rr 2 r8r ( d) 

1-2v N·N· l-2v8N;. N· [ l a 2.32 

+ (1 - v)l2 cos2 l<p + 2 sin2 lr,p -;--: + 2 az' sin2 lr,p, 

k lNi8Nj 2z l-2vl8NiNj . 2z 
23 = v - -- cos <p - - - sm r,p, 

r 8z 2 8z r 
(2.32e) 

k 
1 - 2v 8Ni 8Nj 21 1 2v 12 Ni Nj . 2 z 

33 = ---cos 1.p+ ---sm <p 
2 8r8r 2 rr 

( )
8Ni 8N; 2 + 1 - v Bz az cos l<p. 

(2.32f) 

Finally, the integrand in the second term of (2.13) should be found (in case of the body 
forces the procedure is identical). Using the same approach as before, it can be written as 
follows 

(2.33) 

in which 

(2.34) 

This way, the most important formulae that allow one to compute the element stiffness 
matrix kn and the vector of the generalized forces Qn, defined respectively in (2.12) and 
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(2.13), have been derived. After the displacement interpolation matrix N has been as
sumed, the appropriate integration (usually numerical) can be performed and both the 
matrices can be assembled. The integration should be carried out in the system of cylin
drical coordinates, that is 

271' 

j J(x,y,z)dV = j j J(r,r.p,z)rdrdr.pdz, (2.35a) 

Vn 0 An 

211' 

j J(x,y,z)dS = j j J(r,r.p, z) r dsd.p (2.35b) 

0 Sn 

where An is the area of the nth element and Sn denotes the side of the element that belongs 
to (8Vu )n· In the above finite-element formulae, the only functions that depend on r.p are 
the trigonometric functions, so the integration along the circumference may be carried out 
separately. Additionally, taking into account the following integrals 

271" 

J 2 z ,,,,,., { 27r, if z = o 
cos r.p '-"'I-" = 'f l - 1 2 ' 

Jr, 1 - ' ' •.• 
0 

211' 

j sin
2 lr.p d.p = { ~', 

0 

the formulae can be simplified significantly. 

2.3.3 Quadrilateral Finite Element 

if l = 0 
if l = 1, 2, ... 

(2.36a) 

(2.36b) 

The finite element applied to the analysis of elastic stresses is the isopararnetric four-node 
element with the bilinear interpolation of the displacement field. It corresponds to the 
element that is used for the analysis of residual stresses in order to simplify the process of 
data preparation. 

All the elements are described in the system of global coordinates (r,z) defined on a 
selected radial plane. In general, they are irregular quadrilateral elements (figure 2.la) 
and that is why it is convenient first to transform them into squares (figure 2.lb) and then 
to construct the interpolation functions only for one typical elefI!.ent. For the case under 
consideration, the transformation can be written as follows 

in which 

4 

r = 'L1ice,11)ri, 
i=I 

4 

z = L fi(e, 11)zi 
i=I 

13 

(2.37) 

(2.38) 



(a} (b} 
T/ 

4(-1,1) 3(1,1) 

r ~ 

1(-1,-1) 2(1,-1) 

2 ( r2 , z2 ) 

Figure 2.1 Quadrilateral Finite Element 

where (ri, Zi) and (6, 'r/i) are the coordinates of the nodes in the systems of global and 
local coordinates, respectively. 

The computation of the basic finite-element matrices requires the differentiation and inte
gration in the system of global coordinates ( r, z). However, both these operations can also 
be carried out in the system of local coordinates ( e' 'r/) using the following relations 

where 

8 
8r 

8 
8z 

1 1 

8 

ae 
8 

8ry 

j g(r, z) dr dz= j j g(e, ry) I <let JI de dry 
An -1-1 

8r 8z 

J= 
ae ae 

8r 8z 
-

8ry 8ry 

(2.39) 

(2.40) 

(2.41) 

is the Jacobian matrix (operator) relating the global coordinate derivatives to the local 
coordinate derivatives and 

det J 
8r 8z 8r 8z 
-----
ae ary ary ae 

(2.42) 
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is the determinant of the Jacobian matrix. The substitution of (2.37) and (2.38) into (2.41) 
and (2.42) results in 

J = [a1 + aa'l} bi+ ba'l}] , 
a2 + aae b2 + bae 

<let J = ai~ - a2b1 + (a1b3 - aab1) e + (aa~ - a2ba) 'lJ 

where 

1 
ai = 4 (-r1 + r2 + ra - r4) 

1 
b1 = 4 ( -z1 + z2 + z3 z4) 

1 
a2 4 ( -r1 - r2 + ra + r4) , 

1 
~ = 4 ( -z1 - z2 + za + z4) 

1 
a3 = 

4 
( ri - r2 + ra r4) 

1 
ba = - ( z1 - z2 + za z4) 

4 

(2.43) 

(2.44) 

(2.45) 

As far as the shape functions Ni are concerned, they are assumed to have exactly the same 
form as the transformation functions (2.38), that is 

(2.46) 

2.4 COMPUTER PROGRAMS 

The mechanical and numerical models described in the previous sections have been imple
mented in two computer programs called WHEELE and FOURIER. Taking into account the 
goal of the work, both programs have been especially tailored for the analysis of elastic 
stresses in railroad car wheels subject to contact loads. However, their structures have 
been chosen so that they can be modified quite easily in order to include other types of 
loading. This section contains only some basic information about the programs. 

The program WHEELE is a finite element code that allows one to solve the problem of analysis 
of elastic stresses in an axisymmetric body subject to external loads represented by means 
of the Fourier series. It is executed in the batch mode i.e., both the input and output 
data have the form of external files and no interaction between the program and its user 
is required. The input data consist of six files of ASCII type that contain the information 
about the topology of the finite element mesh, material properties and loading. The last 
item of information is prepared by means of the program FOURIER. The output data consist 
of three files of ASCII type that contain the solution to the problem, i.e., the stresses and 
displacements for the earlier user-specified radial planes. 

The program FOURIER is an auxiliary program that computes the coefficients of the Fourier 
series for external loads. It has been assumed that a wheel may be subject to any number 
of loads of contact type. In order to define each of the loads, the systems of global ( r, <.p, z) 
and local (X, Y, Z) coordinates have to be established (figure 2.2). The system of global 
coordinates is a cylindrical system in which (r, z) is the profile plane containing the center 
of the contact zone. The way the system of local coordinates is defined is very flexible. 
In the simplest case (figure 2.2), the origin C of the system coincides with the center of 
the contact zone, the X axis is normal to the plane ( r, z) and has the direction of the 
<.p axis, the Y axis has the direction of the z axis, and the Z axis is defined so that the 
system (X, Y, Z) is a right-handed, rectangular cartesian system. In the most general case 
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(figure 2.3), the location of the origin does not have to coincide with the center of the 
contact zone and, additionally, the slope of the (X, Y) plane may be specified by giving 
the value of the angle a. In this case, the center of the contact zone C' is defined as the 
projection of the point C onto the wheel surface in the Z direction. 

The dimensions of the contact zone and the surface tractions are defined in the system of 
local coordinates. According to experimental observations, it has been assumed that the 
contact zone can be approximated by a rectangle with sides 2a and 2b which are parallel 
to the X and Y axes, respectively (figure 2.4), and the surface tractions can be described 
by means of bi-parabolic functions 

in which 

t,(x, Y) = t., [1- ( :r] [1- (~)'], 

9 7'i 
toi = 16 ab' 

i =X, Y, Z (2.47) 

(2.48) 

where ti denotes the surface tractions caused by the force Ti acting in the ith local direction; 
the parameters A and B are the semi-major and semi-minor axes of the ellipse computed 
using the Hertz formulae. It should be stressed that such a definition does not correspond 
to the definition of the surface tractions in (2.16), where the system of global coordinates 
was used, but the appropriate transformation has been included in the program. 
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Figure 2.2 Conventions for the Global and Local Systems of Coordinates 
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Figure 2.3 Conventions for the Local System of Coordinates - General Case 
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Figure 2.4 Conventions for a Rectangular Contact Zone with Bi
Parabolic Distribution of Surface Tractions 
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2.5 NUMERICAL TESTS 

A wide variety of numerical tests has been carried out in order to validate the approach 
applied to the analysis of elastic stresses, especially the computer programs described in 
the previous section. All the tests performed can be divided into two groups. 

The first one consists of relatively simple benchmark problems with known analytical 
solutions. Unfortunately, these tests are one-dimensional and they did not allow one to 
draw many conclusions that could be useful for real three-dimensional problems. A thick
walled cylinder subject to internal pressure may be given as an example. These tests were 
performed in the initial stage of testing and their results are not presented here. There also 
exist more combined two- and three-dimensional problems with known analytical solutions 
but the simplifying assumptions made in order to formulate them are so restrictive that 
their usefulness can also be questioned. 

The second group of tests consists of more complex problems with unknown analytical 
solutions. The most important examples are a circular disk subject to contact loading 
and a thick-walled cylinder under internal loading varying along the longitudinal axis. 
The solutions to these problems have been compared with solutions obtained by means of 
ABAQUS, v. 5. 3-2 [12]. It should be stressed that such comparisons were possible because 
all the problems were two-dimensional. If they had been formulated as three-dimensional 
problems, a special approach would have had to be applied while using ABAQUS. It also 
could have turned out that much more powerful computer equipment would have been 
necessary. 

2.5.1 Circular Disk 

In this test, a circular disk of inner radius r i , outer radius r 0 , and thickness 2b was subjected 
to the concentrated surface tractions t(X) of parabolic distribution (figure 2.5). The width 
of the contact zone 2a was chosen so that it corresponded to the angle 2rp0 • It was assumed 
that the disk was in plane stress conditions and all the points on the surface r = r i were 
subject to the following constraints: Ur = 0, Ut.p = 0. Two cases of loading were considered 
(figure 2.6) in which the disk was subject to the vertical tz(X) and horizontal tx(X) surface 
tractions. The corresponding Fourier series included only symmetric and antisymmetric 
modes, respectively. 

Some selected results are shown in figures 2.7 through 2.14. They were obtained assuming 
the following non-dimensional data: inner radius ri = 1, outer radius r 0 = 8, Young's 
modulus E = 1, and Poisson's ratio v = 0.3; the intensity of the surface tractions (peak 
value) was equal to 1.0; the width of the contact zone 2a Rj 2.088 corresponded to the 
angle 2rp0 = 15°. 

The problem was solved using four finite element meshes. In each case the number of 
elements in the z direction was constant and equal to two elements. In theory, the solution 
to the problem does not depend on this direction, so any number of elements could have 
been used, particularly only one row of elements could have been considered. In practice, 
the solution may be z-dependent because the static boundary. conditions on the surfaces 
z =band z =-bare not satisfied precisely. The influence of this effect on the quality of 
the solution may be exposed if two or more rows of finite elements are used. The number 
of elements in the radial direction was equal to 8, 16, 32, and 64 elements. The width of 
the disk 2b was equal to 2.0, 1.0, 0.5, and 0.25, respectively, so a constant aspect ratio for 
all the meshes was kept. 
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Figure 2.5 Circular Disk under Concentrated Surface Tractions 

As far as the number of Fourier modes (harmonics) is concerned, it was assumed to be 
equal to 250 modes. Such a number seems to be too excessive for the problem under 
consideration but it allowed checking the influence of higher harmonics on the solution. In 
general, it is not possible to determine in advance how many harmonics have to be taken 
into account in order to obtain a high quality solution. On the one hand, the number of 
harmonics should be chosen so that the load is described precisely. For surface tractions 
of parabolic distribution, the wavelength for the highest harmonic should be at least from 
4 to 6 times smaller than the angular width of the contact zone 2ip0 , i.e., in the case 
considered from 96 to 144 harmonics should be included. On the other hand, the quality 
of the solution also depends on the mesh density and that is why it cannot be improved 
by the increase in the number of harmonics if the mesh is too coarse. 

For comparison, the problem was also solved using ABAQUS. In this case, it was treated 
as a two-dimensional plane stress problem. Only half the disk was considered and it was 
discretized using two irregular meshes of 8-node finite elements. 

The results for the case of vertical loading are shown in figures 2.7 through 2.10. The radial 
O'rr and hoop O'r.pr.p stresses are plotted for two selected rays <p = 0° and <p =I.Po 7.5° that 
contain the center and the end point of the contact zone, respectively. The shear stresses 
O"rr.p are also plotted for two rays, but instead of the ray ip = 0°, where these stresses are 
equal to zero, an additional ray ip = 2ip0 = 15° was chosen. The influence of the number 
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Figure ~.6 Vertical and Horizontal Surface Tractions in the Circular 
Disk Problem 

of harmonics and the mesh density on the quality of the solution is shown in figure 2.7 for 
the most representative stresses arr at two points on the outer surface. 

The results for the case of horizontal loading are shown in figures 2.11 through 2.14. The 
stress tensor components are plotted for the same rays as before, i.e., containing the center 
of the contact zone and either the end point of the zone or the point of the coordinate 
tp = 2tp0 = 15°, depending on where non-zero values exist. This time, the shear stresses 
a r((' have been chosen as the most representative stresses to visualize the influence of the 
number of harmonics and the mesh density on the quality of the solution. 

In both cases of the vertical and horizontal loads, high quality solutions have been ob
tained. The biggest errors occur on both the inner and outer surfaces (a consequence of 
the bilinear interpolation of the displacement field). However, the values at the centroids 
of the elements, which are used in the analysis of residual stresses, are subject to much 
smaller errors, even in the vicinity of the contact zone. With regard to the number of har
monics necessary to obtain a good solution, the estimate based on the wavelength seems 
to be correct, though in real problems an excess is still recommended. As for the minimal 
mesh density, it should be determined for each specific problem separately and an attempt 
to draw general conclusions from the above test seemed to be aimless. 
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Figure 2.11 Shear 'Elastic' Stresses O'rr.p as a Function of the Number 
of Fourier Modes in the Circular Disk under Concentrated 
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Figure 2.12 Radial 'Elastic' Stresses O'rr in the Circular Disk under 
Concentrated Horizontal Surface Tractions 
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Figure 2.13 Hoop 'Elastic' Stresses <Tr.pep in the Circular Disk under 
Concentrated Horizontal Surface 'Tractions 
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Figure 2.14 Shear 'Elastic' Stresses ur<p in the Circular Disk under 
Concentrated Horizontal Surface Tractions 
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2.5.2 Thick-Walled Cylinder 

In this test, a thick-walled cylinder of inner radius n, outer radius r0 , and thickness 2d was 
subject to internal pressure p(z) (figure 2.15). The width of the loading zone was equal 
to d. It was assumed that the distribution of the load in the longitudinal direction was 
parabolic. In the circumferential direction the load was axisyrnmetric, so the corresponding 
Fourier series included only the zeroth mode. With regard to the boundary conditions, 
the plane stress state was considered. 

(a) r 
(b) 

Ar 
I 

z 

Figure 2.15 Thick-Walled Cylinder under Internal Loading 

Some selected results are shown in figures 2.16 through 2.24. They were obtained assuming 
the following non-dimensional data: inner radius ri = 2, outer radius r 0 4, cylinder 
thickness 2d = 2, Young's modulus E = 1, and Poisson's ratio v = 0.3; the intensity of the 
internal load (peak pressure value) was equal to 1.0. Taking into account the symmetry 
of the problem, only half the cylinder was considered with the appropriate boundary 
conditions Uz = 0 on the plane of symmetry z = 0. 

The problem was solved using four finite element meshes of square elements that consisted 
of 8, 16, 32, and 64 elements in the radial direction, and 4, 8, 16, and 32 elements in the 
longitudinal direction, respectively. The coarsest and ~nest meshes are shown in figure 2.16. 

For comparison, the problem was also solved by means of ABAQUS, using the same finite 
element meshes. In this case, 8-node a:xisymmetric elements were applied. 
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The convergence of the solution is presented in figures 2.17 through 2.20. The radial <Yrr, 

hoop a <pep, and axial a zz stresses are plotted for two selected cross sections z 0 and 
z = 0.5 that contain the center and the end point of the loading zone, respectively. The 
shear stresses <Yrz are also plotted for two cross sections, but instead of the cross section 
z = 0, where these stresses are equal to zero, an additional cross section z = 0.25 was 
chosen. In figures 2.21 through 2.24, the above stress tensor components are presented in 
the form of contour line plots. This time, only the best solution obtained for the mesh #4 
together with the ABAQUS solution are shown. 

The results obtained for the problem of the thick-walled cylinder as well as the ones for 
the problem of the circular disk validate both of the programs worked out for the analysis 
of elastic stresses. Also in this case the biggest errors can be observed in the zone where 
the highest concentration of stresses occurs. This fact should be taken into consideration 
during the process of mesh generation and appropriate mesh refinement in both the radial 
and longitudinal directions should be applied. 
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Figure 2.16 Finite Element Meshes #1 and #4 in the Problem of a 
Thick-Walled Cylinder under Internal Loading 
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Figure 2.17 Radial 'Elastic' Stresses CTrr in the Thick-Walled Cylinder 
under Internal Loading 
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Figure 2.19 Axial 'Elastic' Stresses <Tzz in the Thick-Walled Cylinder 
under Internal Loading 
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under Internal Loading 
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Figure 2.21 Contour Lines of Radial 'Elastic' Stresses <Trr in the Thick
Walled Cylinder under Internal Loading 
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Figure 2.22 Contour Lines of Hoop 'Elastic' Stresses CT"IXP in the Thick
Walled Cylinder under Internal Loading 
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2.6 EXAMPLE ANALYSES FOR A RAILROAD CAR WHEEL 

After the computer programs had been successfully validated using the test problems 
described in the previous section, they were applied to the evaluation of elastic stresses 
in a railroad car wheel subject to contact loading. The profile plane geometry used in 
these analyses was limited to that of a 32-inch diameter MU commuter vehicle wheel with 
'S'-design flexible plate. 

Two cases of loading were considered. In the first one, the wheel was subject only to 
the vertical surface tractions tz(X, Y) of intensity toz 1239.98MPa acting over the 
rectangular contact area of dimensions a= 6.947mm and b = 5.083mm, with the center C 
of coordinates r = 0.405655m and z = 0.084882m and the slope a= 0° (for the notation 
and conventions see section 2.4 ). The parameters t0 z, a and b were calculated using the 
formulae (2.48) where the vertical force Tz was equal to 77.84kN and the dimensions of 
the elliptical contact area A= 6.4mm and B = 4.683mm were obtained by means of the 
Hertz formulae assuming the following data: radius of the wheel R2 = 0.4064m, radius of 
the wheel profile R!i, = oo, and radius of the rail profile R1 = 0.254m; the rail was assumed 
to be flat in the longitudinal direction, i.e., R'i = oo. 

In the second case of loading, the wheel was subject to the vertical surface tractions 
tz(X, Y) of intensity toz = 1239.98MPa and the horizontal surface tractions tx(X, Y) 
of intensity tox = 0.2t0 z = 247.996 MPa. For simplicity, the influence of the horizontal 
loading on the dimensions of the contact zone was neglected. 

The number of the Fourier modes (harmonics) was assumed to be equal to 1189 modes for 
both of the cases considered (in fact, in the second case this number was doubled because 
the load had to be described by means of both the symmetric and anti-symmetric Fourier 
modes). The above value was determined in two steps. In the first one, it was chosen 
so that the wavelength for the highest harmonic was 6 times smaller than the angular 
width of the contact zone (see discussion in section 2.5), resulting in 1103 modes. In the 
second step, the dependence of the Fourier coefficients on the number of modes was drawn, 
the half-wave with the 1103rd mode was identified, and all the modes belonging to this 
half-wave (up to 1189) were taken into account. 

As far as the material properties are concerned, Young's modulus E and Poisson's ratio v 
were assumed to be temperature-independent and equal to 206.832 GPa and 0.3, respec
tively. Additionally, the dimensions of the Hertz ellipse were calculated assuming that 
both the rail and the wheel were made of material with the same elastic constants. 

The problem was solved using five finite element meshes that consisted of 399, 559, 907, 
1495, and 1621 elements, respectively. The first mesh, shown in figures 2.25 and 2.26, is 
based on one of the meshes supplied by the Volpe National Transportation Systems Center 
(see report no. 2 in this series); the original mesh was slightly modified, so that the gener
ation of denser meshes could be performed partly automatically. The mesh refinement was 
restricted to the rim where the highest concentration of stresses was expected, particularly 
to the area below the tread surface (figures 2.27 through 2.30). 

The results for the case of vertical loading are shown in figures 2.31 through 2.42. The 
convergence of the solution with respect to the mesh density is presented in figures 2.31 
through 2.36 where the stress tensor components are plotted along the line a - a shown 
in figures 2.26 through 2.30. The radial O'rr, hoop <7'P<P' axial O'zz, and shear O'rz stresses 
are plotted for two selected radial planes 1.p = 0° ~d 1.p = 0.981° that contain the center 
and the end point of the contact zone, respectively. The shear stresses O'r<P and O'tpz are 
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also plotted for two radial planes, but instead of the plane IP = 0°, where these stresses 
are equal to zero, an additional plane IP= 1.962° was chosen. These results indicate that 
the meshes #1 and #2 are definitely too coarse for the problem under consideration. It 
seems to be obvious when one takes into account the number of finite elements along the 
contact zone (2 and 4 elements, respectively). The results obtained for the mesh #3 are 
reasonable but the mesh is still too coarse to reflect the variation of stresses correctly. Both 
the meshes #4 and #5 may be recognized as appropriate for the problem considered. 

The convergence of the solution with respect to the number of harmonics is presented in 
figures 2.37 and 2.38. Only one point of the wheel the center of the contact zone -was 
chosen to investigate this problem and that is why the stresses ar1.p and 0'1.pz (which are 
equal to zero at this point) are not shown. The minimal number of harmonics based on 
the wavelength criterion seems to be too excessive, but, as for the problem of the circular 
disk, some excess is still recommended, especially when the elastic stresses are used as 
input data for the analysis of residual stresses where even small variations in the elastic 
stresses may result in different solutions. 

Finally, in figures 2.39 through 2.42, the stress tensor components are shown in the form 
of contour line plots. This time only the solutions obtained for the meshes #4 and #5 and 
for the radial planes IP 0° are presented. 

The results for the second case of loading where both the vertical and horizontal surface 
tractions were taken into account are shown in figures 2.43 through 2.45. Only the contour 
line plots for the radial plane cp = 0° are presented because all the conclusions drawn for 
the first case of loading are still valid. The horizontal loading has significant influence only 
on the shear stresses O'r1.p and 0'1.pz, both qualitatively and quantitatively, and the other 
stress tensor components remain almost unchanged. In order to restrict the number of 
figures, it has been decided not to show the solution obtained for the mesh #5. First of 
all, the differences between this solution and the one obtained for the mesh #4 are quite 
small. Secondly, only the solutions used as input data in the analysis of residual stresses 
are presented and, unfortunately, the available computer equipment did not allow solution 
of the latter problem for the mesh #5. 
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Figure 2.40 Contour Lines of Radial Urr and Hoop u'P'P 'Elastic' Stresses 
in the Railroad Car Wheel under Vertical Loading - Solution 
for Mesh #5 
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Figure 2.41 Contour Lines of Axial <Tzz and Shear <Trz 'Elastic' Stresses in 
the Railroad Car Wheel under Vertical Loading - Solution 
for Mesh #4 
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Figure 2.42 Contour Lines of Axial D'zz and Shear D'rz 'Elastic' Stresses in 
the Railroad Car Wheel under Vertical Loading - Solution 
for Mesh #5 
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Figure 2.43 Contour Lines of Radial O'rr and Hoop a'IXI' 'Elastic' Stresses 
in the Railroad Car Wheel under Vertical and Horizontal 
Loading - Solution for Mesh #4 

61 



........ 
E 

..!::?.. .... 

'Elastic' stress Ozz (mesh #4) 
41 

40 

0 

39 

38.__,__.__.____.__,___.__,__,__._..._'--'--'--'-~-'--'--'--'-...__..__...___.__.__ 

6 

41 

• 0 

~ 

40 0 

39 

7 8 9 10 
z [cm] 

O'min = -1056.29 MPa, O'm.ax = 116.421 MPa 
contour level incremem = 100.0 MPa 

'Elastic' stress crr (mesh #4) 

11 

38.__.___.__.____.__,___.__.__.__._..__.__._,__.____.__,__,__._....__,__~.__._,_~ 

6 7 8 9 10 
z [cm] 

O'min = -0.306533 MPa, O'!:llax = 212.633 MPa 
contour level incremem = 25.0 MPa 

11 

Figure 2.44 Contour Lines of Axial O'zz and Shear ur"f.P 'Elastic' Stresses 
in the Railroad Car Wheel under Vertical and Horizontal 
Loading - Solution for Mesh #4 
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3. MODEL FOR ANALYSIS OF RESIDUAL STRESSES 

This chapter covers all the matters associated with the development of an elastic-plastic 
model for analysis of residual stresses in railroad car wheels. Section 3.1 contains some 
introductory remarks dealing with possible ways of such analysis. Sections 3.2 and 3.3 
describe the mechanical and numerical models, respectively. The above models have been 
implemented in a package of computer programs described in section 3.4. The approach has 
been extensively validated by means of test problems formulated for a thick-walled cylinder. 
Some selected results of these tests and their discussion are presented in section 3.5. Finally, 
the model has been applied to the evaluation of residual stresses in a railroad car wheel 
subject to both mechanical and thermal loading (section 3.6). 

3.1 INTRODUCTORY REMARKS 

The subject of this chapter is analysis of residual stresses in a selected class of axisymmetric 
bodies made of an elastic-perfectly plastic material and subject to both mechanical and 
thermal cyclic loads. The purpose of the work is to formulate a reliable method of analysis 
of such stresses in railroad car wheels working in service conditions. 

In general, there are two methods of analysis of residual stresses in a body under a cyclic 
load. The first one is the classical incremental analysis [10], [11] oriented towards tracing 
the full process of loading of the body. It allows one to determine the behavior of the body 
at each moment of the loading process, and the information obtained this way is complete, 
i.e., both the statical and kinematical quantities are known. The main disadvantage of 
incremental analysis is the fact that in case of cyclic loads it is extremely time-consuming. 
An attempt to trace only one cycle of loading for a real railroad car wheel would probably 
require hundreds or thousands of increments. The number of cycles that should be taken 
into account in order to reach a state of shakedown may also be quite large. Moreover, 
the service load-time history required as input data is not known, so, such analysis should 
be performed several times assuming the most representative loading paths. Finally, the 
dimension of a problem that is solved using incremental analysis is determined by total 
stress or strain states and for a railroad car wheel has to be assumed equal to three. Thus, 
practical applications of this approach to the problem under consideration seem to be out 
of the question unless very powerful computer equipment is available. 

The second method of analysis of residual stresses is the shakedown analysis. It allows one 
to determine whether the body under consideration is able to adapt to current cyclic loads. 
If the body shakes down, some additional information of either stress or displacement 
type may be obtained dependin~ on the method used (the classical statical Melan and 
kinematical Koiter theorems [13]). The main advantage of this approach is the fact that 
only the final state of the body after adaptation is considered without tracing the whole 
service load-time history. The analysis requires only the enveloping load states to be known 
and they can be usually found quite easily. Moreover, the dimension of a problem that 
is solved using shakedown analysis is determined by residual stress or strain states. For 
railroad car wheels these states can be assumed to be two-dimensional, simplifying the 
analysis significantly. The main disadvantage of this approach in the classical sense is 
the fact that only some selected information may be obtained, and it corresponds to the 
maximal magnitude of the load for which shakedown is possible. 

A novel approach to the f,roblem of evaluation of residual stresses, the constrained energy 
minimization method [2, [14], [15], has been applied in this work. In contrast to the 
classical shakedown analysis, it allows one to compute residual stresses not only for the 
load of maximal magnitude but also for a load of any magnitude for which shakedown 
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is possible (so-called actual stresses). This approach has been successfully applied to the 
evaluation of residual stresses in railroad rails [4], [16), [17]. It has proven to be powerful 
and reliable and gives estimates of rail residual stress fields that seem to be in reasonable 
agreement with available experimental measurements. 

The above method has been modified so that it can be used for the evaluation of residual 
stresses in railroad car wheels. First of all, the prismatic geometry used for rails has been 
replaced with axisymmetric toroidal geometry. Similarly, the assumption that a residual 
stress state in a rail does not depend on the rail's longitudinal direction has been replaced 
with the assumption that a residual stress state in a wheel is axisymmetric, even though 
some of the live-load stresses (e.g., due to rail/wheel contact) are not. Consequently, an 
appropriate hybrid finite element has been formulated and used to modify the numerical 
model for evaluation of residual stresses. 

Significant changes have been made regarding the types of loads. They can be divided 
into two groups. The first one deals with traction loads. In the rail analyses to date, only 
normal tractions due to wheel/rail contact have been modelled because this appears to be 
a reasonable approximation for the unpowered wheels of freight cars, which constitute the 
major source of rail mechanical loading. Conversely, the wheels which most immediately 
require attention are powered and thus subject to significant tangent as well as normal 
tractions. Additionally, in this case the selection of an enveloping stress state that would 
represent external loads is not straightforward and usually more than one enveloping stress 
state should be considered. The above issues have been taken into account while formulat
ing the new finite element (all the stress tensor components are included) and expanding 
the constraint flow logic in the computer programs (many enveloping stress states can 
be defined). The second group of modifications is connected with thermal loads. Ther
mal stresses in rails are limited to simple states of uniform axial tension or compression 
with low magnitudes, and have not been included so far in the shakedown analyses. In 
wheels, thermal stresses may constitute a significant part of total stresses and cannot be 
neglected. Additionally, they are accompanied by substantial variations in material prop
erties, requiring the application of an appropriate algorithm for the evaluation of residual 
stresses. Such an algorithm has been proposed in [14] and implemented in the computer 
programs described in section 3.4. 

3.2 MECHANICAL MODEL 

The mechanical model applied to the analysis of residual stresses in railroad car wheels 
is based on the classical Melan theorem and the Haar-Karman principle [13]. It has been 
formulated for an elastic-perfectly plastic body that is subject to cyclic loading 

body forces 

Fi(X, t) = Fi(x, t + ntc) in V, 

surface tractions 
on 8Vu, (3.1) 

- and displacements 
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-·-· -- ------------------------------------------

where V is the volume occupied by the body, 8VO' and 8Vu are parts of the boundary 
surface av' x represents a point of the body, t the time, tc the period of one cycle, n the 
number of cycles, and i = 1, 2, 3. 

The problem of the evaluation of residual stresses takes the form of the following optimiza
tion problem 

Find the minimum of the total complementary energy functional 

Ile= j ~(o'fi - a~0 )Cijk1(aI1 - aft) dV 
v 

with respect to the residual stress field a[j(x) satisfying 

the equilibrium equations 
a'.. · = 0 JJ,J 

- the statical boundary conditions 
v;a[; = 0 

and the yield conditions 

<P(a'.. +a~) 0 i1 lJ 

in v, 

on avO', 

in vu av, 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

where a~0 = a~0 
( x) is an initial residual stress field, af; = af; ( x, t) is an elastic stress 

field, <P(uii) is a function which represents the yield conditions, v; is a unit normal vector 
to the surtace 8VO', and Ci;k1 is the tensor of elastic compliances. 

The solution a[j obtained this way is either the exact solution a~ or an upper bound in 
sense of the total complementary energy of the body, i.e., 

Ile (a!l. - a~0 
) < Ile (a'.· iJ i1 - i1 (3.6) 

In this work, the above mechanical model has been applied to a selected class of axisym
metric bodies made of an elastic-perfectly plastic material with temperature-dependent 
properties. It has been assumed that the residual stress state does not depend on the cir
cumferential direction. Consequently, the problem may be considered as a two-dimensional 
one. However, the total stress state is still three-dimensional and the yield conditions 
should be imposed on enveloping stress states that correspond to different radial planes. 
The number of such states depends on the type of loading applied to the body and cannot 
usually be determined in advance. 

The elastic stress field uf;(x, t) is the solution to the given boundary value problem under 
the assumptions of the linear theory of elasticity. It represents both the stresses due to 
rail/wheel contact and the stresses associated with thermal effects. The latter stresses are 
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accompanied by substantial variation in material properties, and the optimization problem 
(3.2-3.5) has to be replaced by a sequence of subproblems corresponding to subsequent time 
parameter values t = t0, t 1 , ..• , tk. The ith subproblem is solved by applying the relevant 
thermal stresses and material properties and assuming that there exist initial residual 
stresses equal to the residual stresses obtained in the (i-l)th step, i.e., 0'~0 (ti)= O'[j(ti-i). 

3.3 NUMERICAL MODEL 

This section describes the numerical model applied to the analysis of residual stresses in 
railroad car wheels. It has been divided into two parts. The first one presents the general 
formulation of the model, its concepts and notation. The second part deals with detailed 
description of the finite element that has been implemented in the computer programs 
worked out for the problem under consideration. 

3.3.1 Finite-Element Formulation 

The numerical model applied to the analysis of residual stresses has been derived from the 
mechanical model presented in the previous section using the assumed stress model of the 
finite element method [9]. The region of the body Vis divided into a finite number Ne 
of disjoint subregions Vn (finite elements). For each finite element, the following fields are 
assumed 

(1) a self-equilibrated residual stress field O'[j, 

(2) a displacement field Ui that has to be continuous along the common boundary of two 
adjacent elements, and 

(3) the corresponding strain field Sij related to the displacement field Ui by (2.4). 

The stress field approximation in the assumed stress model is discontinuous along the in
terelement boundaries. In general, this is allowed in solid continuum mechanics provided 
that the corresponding surface tractions are in equilibrium. In order to satisfy this require
ment, the total complementary energy functional (3.2) has to be modified by an additional 
term with the strain field playing the role of Lagrange multipliers. Taking into account the 
division of the region into finite elements, the mechanical model (3.2-3.5) may be written 
as follows 

Find the minimum of the total complementary energy functional 

(3.7) 

with respect to the self-equilibrated residual stress field O"[j(x) satisfying 
the yield conditions · 

(3.8) 

where 
O' •;· = a:. - O'~o • ZJ ZJ • (3.9) 
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It should be stressed that the statical boundary conditions (3.4) are satisfied automatically 
when the modified form (3.7) of the total complementary energy functional is used. 

For each finite element, the stresses O'ij and the displacements Ui are represented {using 
matrix notation) as follows 

(3.10) 

(3.11) 

where Q is a stress interpolation matrix, f3n is a vector of stress parameters, N is a dis
placement interpolation matrix, and qn is a vector of generalized displacements defined at 
a finite number of nodal points of the element. The corresponding strains e, related to the 
displacements u by (2.4), can also be expressed in terms of the generalized displacements 
qn, that is 

e = Lu = LNqn = Bqn (3.12) 

where L is the matrix of differential operators and B is a strain interpolation matrix. 

The substitution of (3.10) and (3.12) into (3.7) and (3.8) results in the following numerical 
model for the evaluation of residual stresses 

in which 

Find the minimum of the total complementary energy functional 

with respect to the generalized displacements Qn and the stress param
eters f3n satisfying the yield conditions 

in Vn U (8V)n, 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

where Eis Young's modulus, vis Poisson's ratio, Cd is the deviatoric part of the matrix 
of elastic compliances, and o-o is a fl.ow stress, usually assumed to be 5 or 10% above the 
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specified average 0.2% offset yield strength. The forms of the yield conditions (3.14) and 
matrices (3.17-3.19) have been derived assuming the Mises-Hencky yield criterion. 

The above description of the numerical model applied to the analysis of residual stresses 
is very concise. Its scope was to present the basics of the model, particularly the notation 
that is necessary to understand the detailed information about the finite element used in 
case of railroad car wheels. For more extensive description of the model and the techniques 
that are used in real implementations, the reader is referred to [15], [17]. 

3.3.2 Axisymmetric Quadrilateral Finite Element 

The finite element applied to the analysis of residual stresses in railroad car wheels is an 
axisymmetric four-node element with linear approximation of the stress field and bilinear 
approximation of the displacement field. In the present case, all elements are described 
in the global system of cylindrical coordinates (r, z) defined on a selected radial plane. 
In general, they are irregular quadrilateral elements (figure 2.la) and that is why it is 
usually convenient first to transform them into squares (figure 2.lb) and then to construct 
the interpolation functions and basic finite element matrices only for one typical element 
defined in the local system of rectangular cartesian coordinates ( e, ry). The transformation 
and the relations between integration and differentiation in both the systems of coordinates 
are described in section 2.3.3. 

The vector of stresses <T, the vector of stress parameters /3n, and the stress interpolation 
matrix Q defined in (3.10) can be written in the global system of cylindrical coordinates 
as follows 

-T { <T = CTrr CT 'P'P CTzz Tr'P T'Pz Trz}, (3.20) 

13';; ={/Ji ... ,89}' (3.21) 

1 r z 0 0 0 0 0 0 
1 2r z 0 0 0 0 0 0 

Q= 0 0 0 1 r 2z 0 0 0 (3.22) 0 0 0 0 0 0 r 0 0 
0 0 0 0 0 0 -3z 1 r 
0 0 0 0 0 -r 0 0 0 

where the matrix Q has been derived assuming the linear approximation of the stress 
tensor components and then satisfying the equilibrium equations. 

Before the matrix Hn defined in (3.15) is derived, it is convenient to divide it into two 
parts that correspond to the deviatoric Cd and volumetric Cv parts of the matrix of elastic 
compliances C, that is 

Hn = Hdn + Hvn (3.23) 

in which 

(3.24) 

Hvn = j QTCvQdV, (3.25) 

Vn 

70 



where 
2 -1 0 0 0 

2 -1 0 0 0 
Cd= 1 +v 2 0 0 0 

3E 6 0 0 ' 
(3.26) 

sym 6 0 
6 

1 1 1 0 0 0 
1 1 0 0 0 

Cv= 
1-2v 1 0 0 0 

3E 0 0 0 (3.27) 

sym 0 0 
0 

The substitution of (3.22), (3.26) and (3.27) into (3.24) and (3.25) results in the following 
form of both the integrands 

QTCdQ=~X 
3E 

2 3r 2z -2 -2r 
6r2 3rz -3r -3r2 

2z2 -2z -2rz 
2 2r 

2r2 

sym 

4 

1-2v 
QTCvQ = 

3E 

-4z 
-6rz 
-4z2 

4z 
4rz 

8z2 + 6r2 

6r 4z 
9r2 6rz 

4z2 

sym 

2 
3r 
2z 
1 

0 
0 
0 
0 
0 
0 

6r2 + 54z2 

2r 4z 
3r2 6rz 
2rz 4z2 
r 2z 
r2 2rz 

4z2 

0 
0 
0 
0 
0 
0 

-18z 
6 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

0 

0 
0 
0 
0 
0 
0 

-18rz 
6r 
6r2 

0 
0 
0 
0 
0 
0 
0 
0 
0 

(3.28) 

(3.29) 

Finally, in order to compute the matrices Hdn and Hvn, appropriate integration should be 
performed. Taking into account the fact that the problem is axisymmetric, such integration 
can be carried out over the area An of the nth element, that is 

j f(r,z)dV = 2rr j f(r,z)rdrdz. (3.30) 

Vn An 

Usually, it is much more convenient to use the local system of coordinates ( e, T/) instead of 
the global system (r, z), thus the formula (2.40) should be additionally applied. 
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The vector of displacements u, the vector of generalized displacements qn, and the dis
placement interpolation matrix N defined in (3.11) can be written in the local system of 
coordinates as follows 

in which 

q~ { qf ... qr}, 

N(e,11) = [N1(e,11) ... N4(e,11)J 

i = 1, ... ' 4, 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

where qi is the vector of generalized nodal displacements at the ith node of the element, 
and Ni is the shape function associated with this node, that is 

(3.36) 

Further analysis requires the relation (3.12) also to be specified in the local system of 
coordinates. The strain vector e and the matrix of differential operators L can be written 
as follows T_{ e - err c'P'P Czz "'f r<p "'(<pz "Yrz } , (3.37) 

{) 
0 0 

8r 
1 

0 0 
r 

0 0 
{) 

L= 
{)z 

(3.38) {) 1 
0 

8r 
0 

r 

0 
{) 

0 
{)z 

a 
0 

{) 

{)z {Jr 

Before the strain interpolation matrix B is derived, it is convenient, as it was done in 
(3.32) and (3.33), to divide it into submatrices that are associated with the nodal points 
of the element 

B = [B1 B4]. (3.39) 
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The substitution of (3.39), (3.38), (3.33) and (3.35) into (3.12) results in 

oNi 
0 0 

or 
Ni 

0 0 
r 

0 0 
8Ni 

Bi= az (3.40) 
oNi Ni 

0 0 
&r r 

0 
oNi 

0 
az 

oNi 
0 

8Ni 
az or 

Consequently, before the matrix Gn is computed, the integrand in (3.16) should be de
composed, that yields 

QTB= [QTB1 ... QTB4] (3.41) 

in which 

8N· N· _i+_i 0 0 
or r 

(oNi 2Ni) -+ - r 
ar r 

0 0 

-+- z (oNi Ni) 
&r r 

0 0 

0 0 
oNi 
oz 

QTBi= 0 0 
oNi (3.42) -r 
oz 

8Ni 
0 2aNi z _ 8Ni

1 --r 
oz az ar 

0 --- r-3-z (aNi Ni) aNi 
&r r oz 

0 

0 
a Ni 

0 
az 

0 
8Ni 

0 -r 
az 

The integration necessary to compute the matrix Gn should be carried out using the same 
technique as in case of the matrices Hdn and Hvn. 
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With regard to the matrices (3.17-3.19), they can be computed quite easily. The form of 
the matrix Yin has been already derived and can be recognized on the right-hand side of 
(3.28). The substitution of (3.22) and (3.26) into (3.18) and (3.19) results in the following 
forms of the vector Y 2n and sea.far Yan 

Y2n = 

Cf rr + Cf 'f>'f> - 2Cf zz 

3 ( Cf'f>'f> - Cf zz) r 

(Cf rr + Cf 'P'f> - 2Cf zz) Z 

- ( Clrr +Cf <pip - 2Cf zz) 

- (Cf rr + Cf 'f>'f> - 2Cf zz) r 

-2 (C!rr + CT'f>'f> - 2CTzz) Z - 6Trzr 

6Tripr 18T ipzZ 

6T 'f>Z 

6T<pzr 

(3.43) 

Yan=~ [(C!rr - 17'f>'f>)
2 + (aipip Clzz)

2 + (C!rr - O'zz)
2 + 6 (T;'P + T;z + T';z)] -17~ (3.44) 

where the vector u represents the sum uRo + uE. 

3.4 COMPUTER PROGRAMS 

The mechanical and numerical models described in the previous sections have been im
plemented in a package of computer programs. The package consists of six programs that 
can be divided into two groups. 

The first group contains four programs called STRATEGY, STATCOND, OPTIM, and ELASTZON. 
These programs constitute the most important part of the package. They allow one to solve 

. the problem of the evaluation of residual stresses not only for railroad car wheels but also for 
rails (41, (16], fl 7]. As far as the type of finite elements is concerned, virtually any assumed 
stress fu:iite element can be used. The second group consists of two auxiliary programs 
called MATRIX and RESIDUAL. These relatively simple programs are strictly connected with 
the problem to be solved (rail, wheel), with the type of finite elements (quadrilateral, 
triangular), and finally with the approximations of the stress and displacement fields. 

The structure of the programs and the program fl.ow logic are relatively straightforward, 
except that the user should be prepared to monitor the progress of the optimization and, 
if necessary, to adjust certain control parameters. The first program to be executed is 
MATRIX which computes the finite-element matrices defined in (3.15-3.19) for given input 
data. Based on this information and the current state of residual stresses, the control 
program STRATEGY examines the yield conditions (3.14) for all enveloping stress states 
and divides the whole body into two parts - elastic and plastic zones. If all the yield 
conditions are satisfied, the current residual stress state is the final one and the post
processing program RESIDUAL is executed. If it is not the case, a new residual stress state 
has to be found and the pro~am STATCOND is called. This program allows one to formulate 
the optimization problem (3.13-3.14) in terms of unknown stress parameters associated 
only with the plastic zone. The influence of the elastic zone on the form of the total 
complementary functional (3.13) is found using a procedure of static condensation. The 
optimization problem is solved by means of the program OPTIM using the method of feasible 
directions (18J. It should be stressed that OPTIM is the only program which has to be run 
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interactively. In spite of the fact that a special procedure of automated optimization has 
been worked out, usually user's involvement is required, especially in case of very large 
optimization problems. After the optimization problem has been solved and the stress 
parameters in the plastic zone have been found, the program ELASTZON is executed and 
the solution in the elastic zone is computed. The latter program terminates the basic loop 
in the program flow logic and STRATEGY is called again. 

The input data for the programs consist of seven files of ASCII type. Four of them contain 
the information about the topology of the finite element mesh and material properties. 
They have exactly the same format as the input files used in the program WHEELE described 
in section 2.4. The other three files contain the information about elastic, thermal and 
initial residual stresses. As for the elastic stresses, the number of enveloping stress states 
is defined by the user and limited only by available computer equipment. With regard to 
the thermal stresses, they have been assumed to be rotationally symmetric. In fact, these 
stresses are elastic stresses and an additional file has been created for user's convenience. 
Finally, the initial residual stresses have also been assumed to be rotationally symmetric 
(basic assumption in the numerical model) and self-equilibrated (obvious). It should be 
stressed that, if the initial residual stresses come from experiment, the latter requirement 
is usually not satisfied unless the measurements are post-processed. 

The output data consist of five files of ASCII type. Four of them contain the solution to 
the problem, i.e., the residual and total stresses computed at the centroids and nodes of the 
finite elements. The fifth file contains some information about the optimization problems, 
elements in the plastic zone, and active constraints (yield conditions) for all enveloping 
stress states. 

3.5 NUMERICAL TESTS 

The approach applied to the analysis of residual stresses in railroad car wheels is analo
gous to that applied in case of railroad rails [4], [16], [17]. As far as the mechanical and 
numerical models are concerned, prismatic geometry used for rails has been replaced with 
axisymmetric toroidal geometry and additionally the dependence of material properties on 
temperature has been taken into account [14]. With regard to the computer programs, 
those worked out for the evaluation of residual stresses in rails [17] have been extended 
accordingly, including some additional changes associated with the fact that more than 
one enveloping stress state must be taken into consideration. 

The approach applied to the analysis of residual stresses in rails has been verified thor
oughly using various benchmark tests with both known and unknown analytical solutions. 
That is why the number of tests performed in this work have been reduced significantly 
to those concerning the new axisymmetric topology and temperature-dependent material 
properties. 

The most important test is that carried out for a thick-walled cylinder subject to internal 
loading varying along the longitudinal axis. This test was performed assuming exactly the 
same data as in the case of analysis of elastic contact stresses (section 2.5.2) except for the 
material properties. This time the cylinder was assumed to be made of an elastic-perfectly 
plastic material with the non-dimensional flow stress u0 = 0.8. 

The problem was solved using three finite element meshes of square elements that consisted 
of 16, 32, and 64 elements in the radial direction, and 8, 16, and 32 elements in the 
longitudinal direction, resp~ctively. The coarsest mesh #1 was absolutely inappropriate 
for this problem and was not considered. 
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For comparison, the problem was also solved by means of ABAQUS, using the same finite 
element meshes. In this case, 8-node axisymmetric elements were applied. The analysis 
was performed applying ten cycles of loading and unloading in order to assure that the 
solution corresponds to the state after adaptation. In fact there were almost no differences 
between the residual stress states after the first and the second cycles and maybe they 
were caused only by that fact that the problem was solved using incremental analysis. The 
quality of the solution is lower than in the case of elastic analysis, as expected, but still 
good for the purpose of comparison. 

Some selected results are shown in figures 3.1 through 3.8. The convergence of the solution 
is presented in figures 3.1 through 3.4. The radial O'rn hoop O'cpcp, and axial O'zz stresses 
are plotted for two selected cross sections z = 0 and z = 0.5 that contain the center and 
the end of the loading zone, respectively. The shear stresses O'rz are also plotted for two 
cross sections, but instead of the cross section z = O, where these stresses are equal to 
zero, an additional cross section z = 0.25 was chosen. In figures 3.5 through 3.8, the above 
stress components are presented in the form of contour line plots. This time, only the best 
solution obtained for the mesh #4 and the ABAQUS solution are shown. 

The results obtained for the problem under consideration validate both the mechanical and 
numerical models and the computer programs worked out for the evaluation of residual 
stresses. The biggest errors occur in the plastic zone where the residual stresses change 
very rapidly. It should be stressed that the quality of the solution is influenced not only by 
the mesh density but also by the quality of the elastic solution which is used as input data. 
Comparative tests carried out for problems with known analytical solutions indicate that 
even small differences in the latter solution may result in different residual stress states, 
and that is why appropriate mesh refinement should not be neglected. 

As for the test dealing with temperature-dependent material properties, 'thanks to ax
isymmetry it could be performed for a real railroad car wheel. This test is presented in 
section 3.6. 
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3.6 EXAMPLE ANALYSES FOR A RAILROAD CAR WHEEL 

The computer programs worked out for the evaluation of residual stresses have been applied 
to estimate wheel shakedown stress states in a series of analyses. The profile geometry 
used in these analyses has been limited to that of a 32-inch diameter MU commuter vehicle 
wheel with 'S'-design flexible plate. Seven cases of loading have been considered and they 
can be divided into two groups. The first one consists of four cases in which the wheel 
has been subjected only to mechanical loading due to rail/wheel contact. Both vertical 
and horizontal surface tractions, and multiple running paths as well have been taken into 
account. The second group consists of three cases in which the influence of thermal loading 
on the residual stress state has been tested. All the cases considered are summarized in 
table 3.1. 

Table 3.1 Case Matrix for Shakedown Stress State 
Analyses in Railroad Car Wheels 

Case Number 1 2 3 4 5 6 
Vertical Force YES YES YES YES NO YES 
Horizontal Force NO YES NO YES NO YES 
Running Paths 1 1 MULTI MULTI - 1 
Thermal Loading NO NO NO NO YES YES 
Initial Stresses NO NO NO NO NO NO 

3.6.1 Cases 1 through 4 

7 
NO 
NO 
-

YES 
YES 

In case #1, the wheel was subject only to the vertical surface tractions tz(X, Y) of intensity 
t0 z = 1239.98MPa acting over a rectangular contact area of dimensions a= 6.947mm and 
b = 5.083mm, with the center C of coordinates r = 0.405655m and z = 0.084882m and 
the slope a= 0° (for the notation and conventions see section 2.4). The parameters t0z, a 
and b were calculated using the formulae (2.48), where the vertical force Tz was equal to 
77.84kN, and the dimensions of the elliptical contact area A= 6.4mm and B = 4.683mm 
were obtained by means of the Hertz formulae assuming the following data: radius of the 
wheel R2 0.4064 m, radius of the wheel profile Ri = oo, and radius of the rail profile 
R1 = 0.254m; the rail was assumed to be fl.at in the longitudinal direction, i.e., R!1 = oo. 

As far as the material properties are concerned, Young's modulus E, Poisson's ratio v, and 
the fl.ow stress O'o were assumed to be temperature-independent and equal to 206.832 GPa, 
0.3, and 448.137MPa, respectively. Additionally, the dimensions of the Hertz ellipse were 
calculated assuming that both the rail and the wheel were made of material with the same 
elastic constants. 

The problem was solved using the same finite element meshes that were used in the elastic 
analyses presented in section 2.6. The coarsest mesh #1 was absolutely inappropriate for 
this problem and was not considered. The elastic solution necessary as input data was 
found by means of the programs described is section 2.4. The contour line plots of elastic 
stresses for the meshes #4 and #5 and for the radial plane <p = 0° are shown in figures 2.39 
through 2.42. 

The analysis of residual stresses was performed assuming only one enveloping elastic stress 
state for the radial plane that contained the center of the contact zone l <p = 0° ). In spite 
of the fact that such selection seems to be straightforward, after the residual stress state 
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had been found, the yield conditions were additionally examined for neighboring radial 
planes. 

Some selected results for case #1 are shown in figures 3.9 through 3.14. The convergence of 
the solution with respect to the mesh density is presented in figures 3.9 and 3.10, where the 
stress tensor components are plotted along the line a:-a: shown in figures 2.27 through 2.30. 
The contour line plots of stresses for the meshes #4 and #5 are presented in figures 3.11 
through 3.14. 

These results indicate that meshes #2 and #3 are definitely too coarse. Mesh #4 seems 
to be acceptable, and mesh #5 may be recognized as appropriate for the problem under 
consideration. The solutions obtained for meshes #4 and #5 are in quite good agreement. 
Significant differences can be observed only for the maximal values of hoop u'P'P and axial 
O'zz stresses. These values correspond to points on the tread surface and they are not 
reliable because they were computed using a quite simple extrapolation technique imple
mented in the procedure for contour line plotting. With regard to mesh #5, the application 
of such dense meshes in real analyses that usually have to be carried out repeatedly seems 
to be unrealistic. The number of decision variables and the number of constraints in the 
biggest optimization problem that had to be solved for mesh #5 were equal to 856 and 
205, respectively. The CPU time spent on this analysis was approximately equal to 26 
hours on VAX Station 4000-90. Thus, in practical applications, coarser meshes have to be 
used unless a much more powerful computer is available. 

In case #~, the wheel was subject to the vertical surface tractions tz(X, Y) of inten
sity t0z = 1239.98MPa and the horizontal surface tractions tx(X,Y) of intensity t 0x = 
0.2t0z = 24 7.996 MPa. The other data were assumed to be exactly the same as for case # 1. 
The elastic solution was found using the programs described in section 2.4. The contour 
line plots of elastic stresses for mesh #4 and for the radial plane t.p 0° are presented in 
figures 2.43 through 2.45. 

The problem was solved using meshes #2, #3 and #4. Available computer equipment did 
not allow one to solve this problem for mesh #5. First, the plastic zone was bigger than in 
case #1, as should be explained from the addition of horizontal loading. Consequently, the 
number of decision variables and the number of constraints in the optimization problem 
were higher. Second, the latter number was increased dramatically due to the number of 
enveloping stress states to be taken into consideration. In the first step the number of 
such states was assumed to be equal to 9, corresponding to the division of the contact 
zone into 8 sectors in the circumferential direction. In the second step, the number of 
sectors was doubled, resulting in 17 enveloping stress states. The differences between the 
corresponding solutions were very small and further division was not considered. 

The results in the form of contour line plots of residual stresses for mesh #4 are shown 
in figures 3.15 through 3.17. For comparison, the minimal and maximal values of residual 
stresses from mesh #4 for all four cases of loading considered in this section are summa
rized in table 3.2. In spite of the fact that the horizontal loading constitutes only 20% 
of the vertical loading, it has relatively significant influence on the results. Except for 
the compressive radial stresses O'rr, all the other stress tensor components are higher in 
magnitude. As far as quantitative differences are concerned, the biggest changes may be 
observed at the tread surface, especially for the hoop u'P'P and axial O'zz stresses. Of course, 
the action of the horizontal load is accompanied by non-zero shear stresses O'rt.p and O't.pz. 

In cases #3 and #4, the wheel was subject to the same loading as in cases #1 and #2, 
respectively, but the effect of wheel wandering was additionally taken into account. The 
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Table 3.2 Minimal and Maximal Residual Stresses (MPa) 
in Railroad Car Wheels (Cases 1through4) 

Case Number 1 2 3 4 
IIlln -61.6 -37.9 -56.2 -37.5 

O'rr 50.7 72.3 46.6 68.0 max 
min -307.3 -319.5 -347.3 -325.4 

O'i.pr.p max 52.1 72.2 45.8 61.1 
mJn -209.3 -251.3 -279.4 -328.2 

(J' zz 163.1 174.0 132.4 149.9 max 
min - -45.8 -26.4 

O' rr.p max - 34.0 - 33.7 
mJn - -90.5 - -74.2 

(J' 'f'Z 
max 76.4 .;v.v 

mm -53.8 -64.0 -63.5 -79.4 
O'rz 55.4 67.5 64.2 84.8 max 

term 'wheel wandering' refers to the tendency of wheels with different worn profiles to 
contact the rail at different lateral locations, resulting in multiple running paths. Both 
cases were solved using a heuristic procedure proposed in [4]. In this procedure, a wheel is 
subject to a sequence of loads corresponding to different locations of the contact zone. For 
the ith location, the residual stress state is computed applying the existing cyclic loading 
program and assuming that there exist initial residual stresses equal to the residual stresses 
obtained for the ( i - 1 )th location. 

Cases #3 and #4 were solved with mesh #4 for two programs of loading. In the first one 
the load was applied at 8 different locations 1, 2, ... , 8, as shown in figure 3.18. In the 
second program, the return of the load to the starting location was additionally considered. 
For each location, the elastic and residual stress states were found assuming exactly the 
same data as in cases #1 and #2, except for the coordinates of the center of the contact 
zone. For simplicity, the variation of the wheel radius R2 along the tread surface was 
neglected. 

The results in the form of contour line plots are presented in figures 3.19 through 3.22 for 
case #3 and in figures 3.23 through 3.28 for case #4. Each figure consists of two plots, 
for the first and second programs of loading (top and bottom, respectively). The minimal 
and maximal values of stresses are summarized in table 3.2. These results resemble the 
results obtained in cases #1 and #2, both qualitatively and quantitatively. As far as the 
shapes of the contour lines are concerned, they look as if they were obtained by simple 
stretching of the contour lines corresponding to a fixed location of loading along the tread 
surface. The isles and peninsulas of low magnitudes that can be observed for the radial 
O'rr and shear O'rr.p, O'r.pz and Urz stresses are an artificial effect caused by the application of 
the load in a finite number of steps (the real process would be continuous). It should be 
noted that the return of the load to the staring position usually had no significant influence 
on the distribution of residual stresses. The relatively big difference between the maximal 
values of axial stresses Uzz for the two programs of loading (figure 3.21) is probably again 
connected with the application of a quite simple extrapolation technique to contour line 
plotting. 
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Figure 3.10 Axial O"zz and Shear O"rz Residual Stresses in the Railroad 
Car Wheel under Vertical Loading (Loading Case #1) 
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Figure 3.11 Contour Lines of Radial Urr and Hoop <Tipip Residual Stresses 
in the Railroad Car Wheel under Vertical Loading (Loading 
Case #1) - Solution for Mesh #4 
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Figure 3.12 Contour Lines of Radial D'rr and Hoop D'/.f:XP Residual Stresses 
in the Railroad Car Wheel under Vertical Loading (Loading 
Case #1) - Solution for Mesh #5 
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Figure 3.13 Contour Lines of Axial Uzz and Shear Urz Residual Stresses 
in the Railroad Car Wheel under Vertical Loading (Loading 
Case #1) - Solution for Mesh #4 
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Figure 3.14 Contour Lines of Axial O'zz and Shear O'rz Residual Stresses 
in the Railroad Car Wheel under Vertical Loading (Loading 
Case #1) - Solution for Mesh #5 
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Figure 3.15 Contour Lines of Radial O"rr and Hoop Uc.pep Residual Stresses 
in the Railroad Car Wheel under Vertical and Horizontal 
Loading (Loading Case #2) - Solution for Mesh #4 
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Figure 3.16 Contour Lines of Axial CTzz and Shear CTr<.p Residual Stresses 
in the Railroad Car Wheel under Vertical and Horizontal 
Loading (Loading Case #2) - Solution for Mesh #4 
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Figure 3.17 Contour Lines of Shear Residual Stresses O'ipz and O'rz in the 
Railroad Car Wheel under Vertical and Horizontal Loading 
(Loading Case #2) - Solution for Mesh #4 
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Paths (Loading Cases #3 and #4) 
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Figure 3.19 Contour Lines of Radial Residual Stresses t1'rr in the Railroad 
Car Wheel under Vertical Loading with Multiple Running 
Paths (Loading Case #3) 
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Figure 3.20 Contour Lines of Hoop Residual Stresses <Tcpcp in the Railroad 
Car Wheel under Vertical Loading with Multiple Running 
Paths (Loading Case #3) 
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Figure 3.21 Contour Lines of Axial Residual Stresses D'zz in the Railroad 
Car Wheel under Vertical Loading with Multiple Running 
Paths (Loading Case #3) 
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Figure 3.22 Contour Lines of Shear Residual Stresses O'rz in the Railroad 
Car Wheel under Vertical Loading with Multiple Running 
Paths (Loading Case #3) 
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Figure 3.23 Contour Lines of Radial Residual Stresses D'rr in the Railroad 
Car Wheel under Vertical and Horizontal Loading with 
Multiple Running Paths (Loading Case #4) 
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. Figure 3.24 Contour Lines of Hoop Residual Stresses <Tr.pep in the Railroad 
Car Wheel under Vertical and Horizontal Loading with 
Multiple Running Paths (Loading Case #4) 
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Figure 3.25 Contour Lines of Axial Residual Stresses D'zz in the Railroad 
Car Wheel under Vertical and Horizontal Loading with 
Multiple Running Paths (Loading Case #4) 
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Figure 3.26 Contour Lines of Shear Residual Stresses Urcp in the Railroad 
Car Wheel under Vertical and Horizontal Loading with 
Multiple Running Paths (Loading Case #4) 
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Figure 3.27 Contour Lines of Shear Residual Stresses tT"'z in the Railroad 
Car Wheel under Vertical and Horizontal Loading with 
Multiple Running Paths (Loading Case #4) 
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Figure 3.28 Contour Lines of Shear Residual Stresses o-rz in the Railroad 
Car Wheel under Vertical and Horizontal Loading with 
Multiple Running Paths (Loading Case #4) 
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3.6.2 Cases 5 through 7 

In case #5, the wheel was subject only to thermal loading due to stop-braking. No me
chanical effects were included. Despite the fact that such a case of loading is purely hypo
thetical, thanks to its axisymmetry the problem could be reduced to a two-dimensional one 
and solved using incremental analysis implemented in one of available commercial finite 
element codes. This way the procedure proposed for the case of temperature-dependent 
material properties could be numerically verified. 

In the preliminary analyses dealing with thermal loading, the thermal stresses (the elastic 
solution to the problem of thermal conductivity) were supplied by the Volpe National 
Transportation Systems Center (see report no. 2 in this series). They were obtained using 
finite element program NIKE2D. In further analyses, including those presented here, such 
solutions were obtained by means of ABAQUS, v. 5. 3-2 [12]. There were two reasons for such 
replacement. First, intensive testing required the thermal stresses to be found repeatedly, 
and ABAQUS was the only appropriate program accessible to the authors. Second, for the 
purpose of verification, it was necessary to find another numerical solution to the problem 
of the evaluation of residual stresses. ABAQUS turned out to be a convenient program for 
this type of analysis, and the elastic solution could be obtained as a byproduct, without 
any, additional effort. 

The thermal analysis was performed for one typical stop-braking maneuver from 80 mph 
at 2 mph/ s. It was assumed that the wheel was made of material with the temperature
dependent properties shown in figure 3.29. The thermal loading due to braking was simu
lated by applying a uniform heat flux along the tread surface. The heat flux versus time 
function is shown in figure 3.30. With regard to all the input data, they strictly corre
sponded to those given by the Volpe Center. The elastic analysis was carried out using 
fully coupled heat transfer/ stress analysis. In fact it was not needed, as the stress analysis 
was dependent on the temperature distribution but there was no inverse dependency. In 
such cases, it is usually recommended that the heat analysis be done first with the temper
atures being saved on the ABAQUS results file, and the stress analysis be done afterwards. 
However, such an approach would be extremely time-consuming because a great many 
elastic stress states corresponding to consecutive stages of the process were required. The 
elastic-plastic analysis was performed assuming identical input data except for the mate
rial properties and the cyclical character of the process. One cycle was defined as a period 
of ten hours with the heat flux being applied during the first forty seconds and was long 
enough to obtain a stable temperature distribution. The analysis was carried out applying 
ten cycles in order to assure that the solution corresponded to the state after adaptation. 
In fact, the difference between the residual stress states after the first and second cycles 
was negligible. 

The problem was solved using the same finite element meshes as those used in the elastic 
analyses presented in section 2.6. The first goal was to examine the convergence of the 
solution with respect to mesh density. For simplicity, the residual stress state was found 
in one step, i.e., assuming the input data that corresponded to the maximal intensity of 
the thermal stresses at the center C of the heat flux zone. In order to determine the 
appropriate moment during the application of the heat flux, the curve shown in figure 3.30 
was used. Taking into account further results, where the analysis was performed using the 
multistep procedure, such an arbitrary selection appeared to be very reasonable. 

The results of this test are shown in figures 3.31 through 3.34 (top graphs), where the stress 
tensor components are drawn along the line a-a shown in figures 2.26 through 2.28. These 
results indicate that mesh #3 is dense enough for the problem under consideration. Such 

108 



a conclusion may be surprising in the light of the results presented in section 3.6.1 unless 
one takes into account the fact that the plastic zone in this case is much bigger than the 
one caused by contact loading. That is why meshes #4 and #5 were not considered here. 
They were accompanied by huge optimization problems that could not have been solved 
using the available computer equipment. 

The multistep procedure proposed for the case of temperature-dependent material prop
erties was verified using only mesh #3. Two cases were considered. In the first one, the 
analysis was performed in 8 steps. The first step corresponded to the first appearance 
of plastic strains. It was found by testing the elastic stress intensity for consecutive in
crements in the elastic analysis. Then, it was assumed that significant changes in the 
temperature distribution and consequently in the material properties and elastic stresses 
occurred every ten increments. The last, eighth step was the one in which there was no 
further plastic deformation. In the second case, each time interval (ten increments) was 
divided into two subintervals, resulting in 15 steps. The corresponding temperature and 
elastic stress intensity at the center of the heat flux zone are shown in figure 3.30 as small 
points. 

The results of this test are presented in figures 3.31 through 3.34 (bottom graphs) and 
in figures 3.35 through 3.38 in the form of contour line plots. They indicate that there 
is almost no difference between the solutions obtained using 8- and 15-step procedures. 
Both of these solutions are in very good agreement with the ABAQUS solution. The biggest 
differences may be observed in the plastic zone, particularly at the tread surface. It 
should be noticed that the static boundary conditions in the ABAQUS solution are not fully 
satisfied. The radial residual stresses arr should be approximately equal to zero on the 
tread surface but they are not (see figure 3.35), a factor that influences the quality of the 
whole solution in this region. The one-step solution is subject to some errors but seems to 
be quite reasonable and may be used in preliminary analyses, e.g., when an appropriate 
finite element mesh has to be chosen. 

In case #6, the wheel was subject to the thermal loading due to one stop-braking ma
neuver from 80mph at 2mph/s, the vertical surface tractions tz(X, Y) of intensity toz = 
1239.98MPa and the horizontal surface tractions tx(X, Y) of intensity t0x = 0.2t0z 
247.996MPa. This type of residual stress analysis appeared to be extremely time-con
suming. First, the multistep procedure connected with temperature-dependent material 
properties had to be applied. Second, there were a great many active constraints in each 
optimization problem. The number of enveloping stress states was exactly the same as 
before but this time the stress field intensity was very high not only near the center of the 
contact zone but also at distant points due to the thermal loading. 

This problem was solved using mesh #3, and its results are presented in figures 3.39 
through 3.41.. To the best of the authors' knowledge, these are the first results of the 
evaluation of residual stresses in a railroad car wheel where both mechanical and thermal 
effects are taken into account. Thus, their quality can be judged only by the quality of the 
other results presented in this report. The comparison with the results obtained in cases 
#2 and #5, where the wheel was subject to the components of the loading considered here, 
indicates that the solution is correct. It looks as if the solutions for the cases of contact 
(#2) and thermal (#6) loads were superimposed. Of course, such superimposition can be 
considered only qualitatively because the analysis was nonlinear. 

In case #7, the wheel was subject to the thermal loading due to one stop-braking maneu
ver from 80mph at 2mph/s. It was assumed that there existed initial residual stresses 
representing the original as-manufactured stress state. The appropriate data had been 
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obtained at the Volpe National Transportation Systems Center by means of the stress 
reconstruction procedure described in report no. 3 in this series. 

This problem was solved using mesh #3, and its results are presented in figures 3.42 
through 3.45. The comparison with the results obtained in case #5 (figures 3.35 through 
3.38), where the presence of the as-manufactured stresses was not taken into consideration, 
indicates that the solution is correct. The contour lines at the tread surface and its vicinity 
are very similar to those obtained in case #5. The influence of the initial residual stresses 
in this area is relatively small, which is not surprising if one takes into account the fact that 
the thermal loading is accompanied here by plastic strains of high intensity. Conversely, the 
distribution of the final residual stresses at points that are distant from the tread surface 
is mainly influenced by the initial residual stresses, both qualitatively and quantitatively. 
It should be stressed that the magnitudes of the initial residual stresses are relatively high, 
resulting in a much bigger plastic zone than in case #5 and, consequently, in much bigger 
optimization problems to be solved. 
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Figure 3.29 Material Properties Used to Represent Wheel Steel in Cases 
of Thermal Loading (Loading Cases #5, #6 and #7) 
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Figure 3.30 Heat Flux, Temperature and Elastic Stress Intensity at Point 
C in Cases of Thermal Loading (Loading Cases #5, #6 and 
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under Thermal Loading (Loading Case #5) 
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Figure 3.35 Contour Lines of Radial Residual Stresses O'rr in the Railroad 
Car Wheel under Thermal Loading (Loading Case #5) -
Solution for Mesh #3 
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Figure 3.36 Contour Lines of Hoop Residual Stresses O'cpcp in the Railroad 
Car Wheel under Thermal Loading (Loading Case #5) -
Solution for Mesh #3 
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Figure 3.37 Contour Lines of Axial Residual Stresses tTzz in the Railroad 
Car Wheel under Thermal Loading (Loading Case #5) -
Solution for Mesh #3 
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Figure 3.38 Contour Lines of Shear Residual Stresses u rz in the Railroad 
Car Wheel under Thermal Loading (Loading Case #5) -
Solution for Mesh #3 
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Figure 3.40 Contour Lines of Axial O"zz and Shear O"rc.p Residual Stresses 
in the Railroad Car Wheel under Thermal and Mechanical 
Loading (Loading Case #6) 
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Figure 3.41 Contour Lines of Shear Residual Stresses <Tcpz and <Trz in the 
Railroad Car Wheel under Thermal and Mechanical Loading 
(Loading Case #6) 
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Figure 3.42 Contour Lines of Radial Residual Stresses D'rr in the Railroad 
Car Wheel under Thermal Loading (Loading Case #7) 
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Figure 3.43 Contour Lines of Hoop Residual Stresses er 1.p1.p in the Railroad 
Car Wheel under Thermal Loading (Loading Case #7) 
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Figure 3.44 Contour Lines of Axial Residual Stresses O'zz in the Railroad 
Car Wheel under Thermal Loading (Loading Case #7) 
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Figure 3.45 Contour Lines of Shear Residual Stresses O"rz in the Railroad 
Car Wheel under Thermal Loading (Loading Case #7) 
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4. FINAL REMARKS 

The numerical tests and the example analyses for railroad car wheels presented in this re
port validate the computer programs worked out for the analysis of elastic contact stresses 
and the evaluation of residual stresses in a selected class of axisymmetric bodies. High 
quality agreement with other numerical solutions has been obtained and the convergence 
of the solution as a function of mesh density has been demonstrated. The example anal
yses performed for real railroad car wheels have shown that the computer programs are 
a very useful and effective tool, especially for the analysis of residual stresses in shake
down conditions. In spite of the fact that the assumptions underlying the mechanical 
and numerical models, and consequently the computer programs, may be considered as 
quite restrictive, all the major phenomena typical for railroad car wheels can be taken into 
account in real analyses. Thus, not only surface tractions due to rail/wheel contact but 
also thermal stresses associated with braking maneuvers can be taken into consideration. 
The material of the wheel may be assumed to be temperature-dependent. Additionally, 
such phenomena as initial residual stresses coming from different sources, multiple running 
paths and more than one contact zone can also be included. Finally, it is worth stressing 
that almost all the examples presented here were solved using less than 16 MB of computer 
memory. Bigger memory, up to 24 MB, was required only when the finest mesh #5 was 
considered. 
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