·

.

## INSTRUMENTATION FOR MEASURING FORCES ON WHEELS OF RAIL VEHICLES



MAY 1974



02-Frack-Train Dynamics

Document is available to the public through National Technical information Service Springfield, Virginia 22151

Prepared for U.S. DEPARTMENT OF TRANSPORTATION FEDERAL RAILROAD ADMINISTRATION OFFICE OF RESEARCH AND DEVELOPMENT Washington, D.C. 20590

PB

The contents of this report reflect the views of ENSCO, Inc. and the AAR, which is responsible for the facts and the accuracy of the data.

The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification, or regulation.

TECHNICAL REPORT STANDARD TITLE PAGE

| 1. Report No.                              | 2. Government Accession No.            | 3. Recipient's Catalog N | 10.                                   |
|--------------------------------------------|----------------------------------------|--------------------------|---------------------------------------|
|                                            |                                        | 1                        |                                       |
| FRA-ORD&D-75-11                            |                                        |                          |                                       |
| 4. Title and Subtitle                      | ·                                      | 5. Report Date           |                                       |
| Instrumentation for M                      | easurement of Forces                   | May 1974                 | /                                     |
| on wheels of Rall veh                      | ICIES                                  | 6. Performing Organizati | on Code                               |
| 7. Author(s)                               |                                        | 8. Performing Organizati | on Report No.                         |
|                                            |                                        | LT-328                   | ,                                     |
| 9. Performing Organization Name and Addres | S                                      | 10. Work Unit No.        | ,<br>,<br>,                           |
| Association of American Rail               | roads ENSCO, INC.                      | 11. Contract or Grant No | ).                                    |
| Research and Test Department               | 5408A Port Royal Rd.                   | DOT-FR-2001              | 10                                    |
| chicago, filinois                          | Springiteid, Va. 22151                 | 13. Type of Report and F | Period Covered                        |
| 12. Sponsoring Agency Name and Address     | ······································ |                          | ,                                     |
| U.S. Department of Tr                      | ansportation                           | Project Eng              | gineering                             |
| Federal Railroad Admi                      | nistration                             |                          | · · · · · · · · · · · · · · · · · · · |
| Office of Research, D                      | evelopment &                           | 14. Sponsoring Agency C  | Code                                  |
| Demonstrations                             | Nashington, D.C.                       |                          |                                       |
| 15. Supplementary Notes                    |                                        |                          | •                                     |
|                                            |                                        |                          |                                       |
| •                                          |                                        |                          |                                       |
| 16 Abound                                  |                                        |                          | <u> </u>                              |
| The information in                         | this report covers the                 | nrocurement              |                                       |
| development and tos                        | this report covers the                 | designed to              | ,                                     |
| measure the dynamic                        | forces and temperature                 | which are                |                                       |
| created in the wheel                       | is of a loaded rail vehi               | icle truck               |                                       |
|                                            |                                        | ieie eraek.              |                                       |
| The information con                        | tained herein is intende               | ed for use by            |                                       |
| scientific, researc                        | and engineering person                 | nnel who are             |                                       |
| involved in the mea                        | surement of dynamic load               | ds of rail               |                                       |
| vehicle wheels.                            | · ·                                    |                          |                                       |
|                                            |                                        |                          |                                       |
|                                            |                                        |                          |                                       |
|                                            |                                        |                          |                                       |
|                                            |                                        |                          |                                       |
|                                            |                                        |                          | /                                     |
| · .                                        |                                        |                          |                                       |
|                                            |                                        |                          |                                       |
|                                            |                                        |                          |                                       |
|                                            |                                        |                          |                                       |
|                                            | · · · ·                                |                          |                                       |
|                                            |                                        |                          |                                       |
| •                                          |                                        |                          |                                       |
| 17. Key Words                              | 18. Distribution State                 | ment                     |                                       |
| Instrumented Wheel                         |                                        |                          |                                       |
| Wheel Stresses                             |                                        |                          |                                       |
| Wheel Forces                               | Distribut                              | ion Unlimited            |                                       |
| Force Measurement                          |                                        |                          |                                       |
|                                            |                                        |                          |                                       |
| 19. Security Classif. (of this report)     | 20. Security Classif. (of this page)   | 21. No. of Pages         | 22. Price                             |
| Unclassified                               | Inclassified                           | 103                      |                                       |

Form DOT F 1700.7 (8-69)

.

.

#### EXECUTIVE SUMMARY

The information in this report covers the procurement, development and testing of instrumentation designed to measure the dynamic forces and temperatures which are created in the wheels of a loaded rail vehicle truck. This report is comprised of three seperate documents which cover, chronologically, the original measurement requirements, design and calibration of wheel-mounted sensors, and the design and assembly of sensor data acquisition, data processing and data display hardware.

The Federal Railroad Administration initiated the activities covered herein by issuing a Task Statement (Section 1) which outlined the requirement for the instrumentation of 36-inch wheel sets. The wheel sets were then instrumented by the Association of American Railroads, who also provided calibration data relating wheel stress to measurement parameters (Section 2). ENSCO, INC. then fitted the instrumented wheels with appropriate instrumentation needed for data acquisition, signal conditioning and data display (Section 3). A final step will be taken by ENSCO, INC. to gather data applicable to the examination of wheel/rail interaction. This work will be described upon completion in an FRA report.

iii

## CONTENTS

|         |   |                                                                                                                                    | Page |
|---------|---|------------------------------------------------------------------------------------------------------------------------------------|------|
| Section | 1 | <br>Federal Railroad Administration's Task<br>Statement for the Development of Rail<br>Wheel Instrumentation                       | 1-1  |
| Section | 2 | <br>Association of American Railroad's<br>Report on Instrumented Wheels for<br>Measurement of Vertical and Lateral<br>Wheel Forces | 2-1  |
| Section | 3 | <br>ENSCO Technical Description of Rail<br>Wheel Data Acquisition and Signal<br>Processing Instrumentation                         | 3-1  |

. 19

• •

## SECTION 1

## FEDERAL RAILROAD ADMINISTRATION'S TASK STATEMENT FOR THE DEVELOPMENT OF RAIL WHEEL INSTRUMENTATION

, , , Task Statement for the Instrumentation of 36" Railroad Car Wheel Sets to be Used for Measurement of Laterial and Vertical Forces at the Wheel/Rail Interface

#### I. BACKGROUND:

The Federal Railroad Administration wishes to procure two instrumented railroad car wheelsets. These wheelsets will be placed in a Barber S-2 freight car truck to obtain information related to the forces developed in the wheel-rail contract area under various loading conditions. Instrumentation electrical connections shall be made to slip ring assemblies and shall provide an essentially linear measurement of the magnitude of the vertical and lateral forces. The lateral force load measurement shall be continuous for 360° wheel rotation. The vertical force measurement shall be obtained instantaneously at least four times each wheel rotation.

#### II. SCOPE:

The contractor shall provide and instrument two wheelsets utilizing a two step process. The first being the application of a series of strain gages to identify points of maximum lateral and vertical load sensitivity. The second being the application of load gages at the experimentally determined critical points, calibration of the load gages and mounting of such wheel sets in the government furnished truck, including slip ring connections.

The vertical load package shall be such that the output from four sensors shall provide one vertical-load spike signal every ninety degrees (90°) of rotation when the sensor or sensors are directly along the line connecting the axle and the wheel/rail contact point.

The lateral load sensor package shall be such that the summation of six gage locations connected in a 360 ohm wheatstone bridge configuration will give a continuous strain signal representative of lateral loading.

#### III. MATERIALS TO BE FURNISHED:

- 1. Four rotating end cap type Timken roller bearings (6 1/2" X 12").
- 2. Four 20 contact Michigan Scientific slip ring assemblies.
- 3. Eight iron-copper thermocouples.
- 4. Four 36" cast steel multiple-wear wheels complying with AAR standard CK-36 design. Each wheel shall have an unbalance of less than 0.2 lbs. after machining.
- 5. Four slip ring adapters.

- 6. Four flexible couplings for slip rings.
- 7. Twenty-four or more SR-4 (A-7) exploratory strain gages (used to locate point of maximum sensitivity to loading).

 $\mathbf{v}$ 

q.

- 8. Eighty (80) 1/4" Series 105 encapsulated polyimide backed strain gages (20 per wheel), wires, epoxy cement and glyptal waterproof protective coating.
- 9. Two roller bearing axles (63,000 lbs. capacity).

The above wheels, axle and roller bearings shall be mounted and placed in the Barbar S-2 freight car truck supplied by the Government.

#### IV. INFORMATION TO BE FURNISHED

)

The following information shall be furnished:

- 1. Wheel identification information.
- 2. Wheel plate profile drawing showing location of exploratory strain gages and final strain gage locations.
- 3. Exploratory calibration curves.
- 4. Wiring diagram for vertical and lateral load bridges.
- 5. Final calibration curves with listing of equipment (Visicorder, amplifiers, etc.) and calibration resistance values used in obtaining the calibration values.
- 6. Photographic documentation of all steps and processes.

#### V. WORK REQUIREMENTS:

Part I

- A. The inner and outer web surfaces of the wheels shall be machined to the minimum web thickness for multi-wear wheels, as per AAR Standard wrought steel wheel design CK-36. The web surface shall be such that it assures proper application of the strain gage instrumentation. All wheel web profiles shall be finished to the same profile and web thickness which shall be documented.
- B. To locate the points of maximum lateral and vertical load sensitivity on the web for all wheels, the contractor shall place the exploratory strain gages along a radial line through the axis of the wheel on the inner and outer web surface of one wheel; twelve or more strain gages shall be placed at intervals of approximately 1/2" in each

web surface so as to cover most of the wheel plate except for the rim fillet area. Location of strain gages shall be graphically and pictorially documented.

- A twenty ton vertical load, applied to the top of each roller bearing housing by hydraulic jack, shall be impressed on the taper line of the wheel tread (see Figure 1) and strain gage output monitored, recorded and documented. Determine the change in strain for each gage for every thirty (30) degrees of wheel rotation from 0° to 180°. Repeat for 5, 10, and 15 ton loads. All calibration test readings shall be made using a D.C. Signal Carrier System.
- 2. A twenty ton lateral load shall be applied to the wheel tread by a hydraulic jack placed at the end of the axle opposite the wheel to be calibrated. The strain gage output shall be monitored, recorded and documented. Determine the change in strain of each gage for every 30° of wheel rotation from 0° to 180°. Repeat for 5, 10, and 15 ton loads.
- 3. Simultaneously, a twenty ton vertical load and a twenty ton lateral load shall be applied as in the previous two paragraphs. The strain gage output shall be monitored, recorded and documented. Determine the change in strain of each gage for every 30 degrees of wheel rotation from 0° to 180°. Repeat for 5, 10, and 15 ton loads.
- C. Prepare the following graphs for both inner and outer gage sets showing strain gage output versus strain gage location. The curves shall include:
  - (1) Corrected strain for each location due to the 20-ton lateral load at 0°, 30°, 60°, 90° and 180° wheel rotation. Corrected strain is the result of a vertical load correction applied to the values recorded during the lateral load test. This correction shall be equal to and have the opposite sign of the lateral strain gage reading caused by the application of the pure vertical load, used to restrain the wheel during the lateral load tests.
  - (2) Sum of corrected strain gage output values due to the 20 ton lateral load for wheel rotation positions of 0°, 60°, 120°, 180°, 240°, and 300°.
  - (3) Strain gage output values due to a vertical load of 20 tons at 0°, 30°, 60°, 90°, 180°, 270° wheel rotation.
  - (4) Sum of strain output values due to the 20 ton vertical load for wheel rotation positions of 0°, 60°, 120°, 180°, 240°, and 300°.

1-5

5



INITIAL LOAD POINT



ADDITIONAL LOAD POINT

LOADING POINTS

FIGURE 1

D. The 20 ton vertical and lateral loads shall be impressed on the wheel tread at the one additional point of wheel/rail contact defined in Figure 1, to determine sensitivity to loading point variation. Data shall be obtained per the requirements of Paragraph B and displayed per Paragraph C. Strain gage output curves for the two load points shall be compared and the loadpoint sensitivity of strain gage cutput determined and documented.

#### Part II

- E. Establish in consultation with the FRA representative the final strain gage locations (for the 20 strain gages per wheel) from the strain value curves of Paragraph C in the following manner:
  - One set of four vertical load measurement gages are to be located in pairs 180° apart at that location on the wheel web face with maximum sensitivity to vertical loads where the change in strain due to the lateral load of 20 ton at 0° is equal to (and the same sign as) the value at 180°. The second set shall be 90° from the first.
  - 2. The (twelve) lateral load measurement gages are to be located on the inside or outside face of the web such that maximum sensitivity is to lateral loads and with one every 60° at each of two distances from the axis of the wheel such that-
    - a. The sum of the six 60° wheel rotation position strain values due to a 20 ton vertical load is the same at each distance from the wheel axis.
    - b. The sum of the six 60° wheel rotation position values due to a 20 ton lateral load for the two distances from the wheel axis is a maximum (unlike signs add and like signs substract).
- F. All strain gages shall be mounted with epoxy cement, and together with the connecting wires shall be waterproofed with several coats of "glyptal".

Two sets (per wheel) of four vertical load gages shall be wired to form a 120 ohm bridge and twelve lateral load gages (per wheel) shall be wired to form a 360 ohm bridge so as to obtain in each case the desired additive and subtractive effects (see Figure 2).

The strain gage wiring leads from each wheel shall enter the axle via a 3/8 inch hole drilled (to the center of the axle) between the bearing and continue out the end of the axle through another 3/8 inch hole drilled along the axle axis from the end of the axle taking care to avoid wire damage due to sharp corners. Twenty contact Michigan Scientific slip rings and adapters shall be assembled and mounted at each end of the axle.



Lateral Load 360 OHM Wheatstone Bridge Configuration



Vertical Load 120 OHM Wheatstone Bridge Configuration



- G. Two iron copper thermocouples shall be attached to each wheel as shown in Figure 3 to monitor the web temperature. One shall be attached to the wheel web at the location of the lateral gages and one near the vertical load sensor. These thermocouple readings will be utilized to determine the magnitude of temperature corrections to loading values recorded during actual operating \_ conditions.
- H. The contractor shall then rotate each wheelset up to a maximum of 1000 rpm (corresponding to 108 m.p.h. ground speed) in a no-load condition. Variations in signal output shall be recorded.
- I. Before final calibration, the contractor shall mount the wheel sets in the Barber S-2 truck. Final calibration shall involve both vertical and lateral load bridge output readings for one ton load increments up to the twenty ton lateral and twenty ton vertical loads (including the distributed truck weight), at the zero degree wheel rotation position and for every 30° of wheel rotation from 0° to 360° degrees.
- J. The contractor shall recommend and specify types of recording and signal conditioning devices to be connected during FRA testing.

#### VI. SPECIAL PROVISIONS

- 1. The FRA may have a representative at the contractors facility to observe the installation and calibration of the wheel sets. The contractor shall provide the FRA representative with all information and assistance in documenting the procedures used in the instrumentation of a railroad wheel.
- 2. The task shall not be considered complete until contractor supplied documentation is presented to and satisfactorily reviewed by the FRA contract officer.



Load Point

Figure 3

Appropriate Thermocouple Locations

## SECTION 2

## ASSOCIATION OF AMERICAN RAILROAD'S REPORT ON INSTRUMENTED WHEELS FOR MEASUREMENT OF VERTICAL AND LATERAL WHEEL FORCES

.

#### ASSOCIATION OF AMERICAN RAILROADS

#### RESEARCH AND TEST DEPARTMENT

#### REPORT NO. LT-328 (Project No. 71-S-71)

#### INSTRUMENTED WHEELS FOR MEASUREMENT OF VERTICAL AND LATERAL WHEEL FORCES

#### Prepared For Federal Railway Administration U. S. Department of Transportation

#### FRA Contract No. DOT-FR-20010

#### SEPTEMBER 1972

AAR RESEARCH CENTER Chicago, Illinois

#### ASSOCIATION OF AMERICAN RAILROADS RESEARCH AND TEST DEPARTMENT

NOV 13 B //

#### REPORT NO. LT-328 (Project No. 71-S-71)

#### INSTRUMENTED WHEELS FOR MEASUREMENT OF VERTICAL AND LATERAL WHEEL FORCES

#### INTRODUCTION

The Department of Transportation of the Federal Railroad Administration contracted the Association of American Railroads to furnish a fully assembled Barber S-2 100-ton freight car truck. The wheel sets were to be instrumented and calibrated to measure wheel forces and temperature. Each wheel was dynamically balanced to ten inch ounces and will carry five signal outputs. These outputs are a lateral wheel force signal, two vertical wheel force signals, and two wheel plate temperature signals. Slip rings attached to the ends of each axle transfer the electrical wheel measurements to signal conditioners and amplifiers.

#### ACKNOWLEDGMENTS

Calibration and instrumentation of the wheels and the acquisition of the Barber S-2 truck was under the general direction of R. F. Laskowski, Senior Electrical Engineer, who analyzed the data and prepared this report, assisted by H. H. Remington, Assistant Electrical Engineer, C. Stamper and F. Strozinski, Electronics Assistants. The Department of Transportation reimbursed the AAR for the work described in this report.

#### DESCRIPTION OF CALIBRATING EQUIPMENT

The test pad consisted of two 132 lb. rails, 10 ft. in length, placed on four 7 in. x 9 in. x 8 1/2 ft. oak ties that had eight roller bearing tie plates attached. The roller bearing tie plates reduced friction during lateral loading. Two 1-1/2 in. x 10 ft. rods spaced 6 ft. apart located just below the rail head, applied the lateral load by squeezing the rails against the wheel flanges. This load was controlled and maintained with two Simplex hydraulic rams of 50-ton capacity. Track gage was maintained after lateral loadings by returning the rails to 56 1/2 in. using a hand operated hydraulic jack of 10-ton capacity. Two 50-ton hydraulic Amsler jacks applied the vertical loads, and they were controlled and maintained by a pendulum dynamometer console.

Twenty four (24) SR-4 strain gages type FAP-25-12 were cemented to the inner and outer web plate surfaces of a CK-36 cast steel wheel No. 65584. They were spaced 1/2 in. apart on a radial axis extending from the hub fillet toward the wheel rim. Strain output data from vertical and lateral loads were analyzed and graphed to select the sensitive positions necessary for full bridge measurement of these loads. A 20-ton vertical load was applied to the top of each roller bearing housing (maintaining standard track gage) while changes in strain were recorded for each of the 24 gages, every 30° of wheel rotation from 0° to 300°. Changes in strain readings were also recorded for each gage during the lateral loadings in similar fashion to the vertical loadings. The lateral and vertical loads were applied in 10,000 lb. increments. Tables 1 through 9 contain the strain readings of the exploratory gages and their respective outputs under load. These data were used to plot curves for each exploratory gage. They appear in Fig. 1 and Fig. 2. These curves are the corrected strains resulting from a vertical load correction applied to the values recorded during lateral loading, as per paragraph 6.3.1, page 4, of the schedule under work requirements.

Fig. 3 contains a family of curves that are useful in selecting the sensitive positions for full bridge placement of strain gages. Curve V.T. is the algebraic strain output for each gage on the outer wheel plate, from a 20-ton vertical load at angular wheel positions of  $0^{\circ}$ ,  $60^{\circ}$ ,  $120^{\circ}$ ,  $180^{\circ}$ ,  $240^{\circ}$  and  $300^{\circ}$ . L.T. is the curve resulting from the 15-ton lateral load, for each gage with the vertical load correction at  $0^{\circ}$ ,  $60^{\circ}$ ,  $120^{\circ}$ ,  $180^{\circ}$ ,  $240^{\circ}$  and  $300^{\circ}$ . L at  $0^{\circ}$  is the 15-ton lateral load for each gage with the wheel in the  $0^{\circ}$  position, and L at 180° with the wheel in the 180° position respectively. V at  $0^{\circ}$ is the strain output with 20-ton vertical load applied when the wheel is at  $0^{\circ}$ and V at 180° with the wheel at 180°. The radial axis of exploratory gages with the wheel at 180° is between the rail and roller bearing housing.

Referring to the V.T. curve at gage positions No. 3 and 8.85 they read -50 micro-in./in. These same positions located on the L.T. curve (15-ton lateral load summation of six angular wheel positions) yield +305 micro-in./in. at No. 3 and -355 micro-in./in at No. 8.85. If six strain gages are placed 60° apart radially at position No. 3 and at position No. 8.85, and wired into the Wheatstone bridge configuration of Fig. 4 we have zero output due to the vertical loading and 660 micro-in./in. output from the lateral loading. However, since three gages are used in each bridge leg, the total lateral strain is reduced by one third, resulting in 220 micro-in./in. To select the vertical sensitive position we find the point of intersection of curves L at 0° and L at 180° at position No. 7.35. V at 0° at this position reads  $\pm 43$  micro-in./in. and -225 micro-in./in. on the V at 180° curve. The vertical bridge configuration of Fig. 4 reveals a zero output from lateral loads but 2 (-225-(43)) = -536 micro-in./in. output from a 20-ton vertical load. Since a pair of gages

are placed at gage position 7.35 and another pair 180° apart radially in adjacent legs of a Wheatstone bridge, we realize -536 micro-in./in. and +536 micro-in./in. spike signal outputs each wheel revolution. The additional vertical channel designated  $V_2$  is not shown in Fig. 4. Gages 1 and 2 are located at 90° and gages 3 and 4 at 270°.

#### CALIBRATION OF FULLY ASSEMBLED TRUCK

A photographic target slide graduated in 30° sectors was focused on the outer plate of each wheel to mark the lateral radii of positions No. 3 and 8.85 as per Fig. 4. The vertical radii at position 7.35 were located at 0° and 180° for channel  $V_1$  and at 90° and 270° for channel  $V_2$ . Twenty Micro-Measurement strain gages type EA-06-250AF-120 with option "W" were cemented to each wheel using "M-M" type AE-10 epoxy with room temperature curing. Photographs illustrating this technique of gage application have been submitted to Ensco Inc. representatives. Two ironconstantan thermocouples were soldered to the wheel as requested and are labeled (0° offset) and (180° offset). They are located adjacent to the strain gages of channel  $V_1$ . Scotchflex No. 700 adhesive backed "lo-profile" cable completed the bridge circuits as shown in Fig. 4.

The wheel set was returned to the test pad and subjected to 20 tons of vertical and 15 tons of lateral load. After confirmation of data, the remaining three wheels were strain gaged. The Barber S-2 truck was assembled employing a D-5 spring group consisting of seven outer, six inner springs having double side springs with friction blocks. The truck assembly was placed on the test pad and loaded dynamically for 20,000 cycles. The dynamic load varied between 20 K lb. to 160 K lb. This procedure was inaugurated to insure against friction block hang up during the static calibration loading.

Final calibration was performed in 5 K lb. increments of vertical and lateral loads. Tables 10 through 33 contain the strain readings and microstrain outputs for given loads, from which the strain output-wheel rotation curves were plotted for each wheel. These curves are shown in Figs. 6 through 9. The load column labeled Vertical Load K lb./Jack lists eight loadings from 10 K lb. to 80 K lb./jack. The 5 K lb./wheel relates to the first loading of 10 K lb./jack or a total of 20 K lb., resulting in 5 K lb./wheel. Included is the Lateral Load K lb. total, again the 5 K lb./wheel only relates to the first loading of 10 K lb., which is for two wheel sets. The column labeled Diff. Micro-in./in.is the change in strain from the zero reading appearing on the bottom and the reading opposite the load increment under the individual wheel channel columns.

2

An additional point of wheel/rail loading was introduced to determine variations in sensitivity. Track gage of the test pad was adjusted to 60 in. resulting in 1 3/4 in. off the taping line per wheel and loaded vertically in 10 K lb. increments. An average strain output of the four wheels was used for channels  $V_1$  and  $V_2$ , and their curves are illustrated in Fig. 5.

In addition to load-strain calibrations each wheel set was rotated at a ground speed of 76 mph in a no-load condition. A variation in signal output was noted. This is probably due to centrifugal force(see references) and varies exponentially with the speed. The variation in signal output is shown in the Appendix.

References:

- 1. Rushing, F. C., "Determination of Stresses in Rotating Discs of Conical Profile," Trans. ASME, Vol. 53, p 91, 1931.
- Hodkinson, B, "Rotating Discs of Conical Profile, Engineering, Vol. 115, p 1, 1923

Senior Electrical Engineer

Approved: Mahager Tests óf

## APPENDIX

| EXPLOR | ATORY | STRAIN DAT | <b>FA UNDER</b> | VERTICAL | AND L | ATERAL | WHEEL | LOADINGS |
|--------|-------|------------|-----------------|----------|-------|--------|-------|----------|
|        |       |            |                 |          |       |        |       |          |

|         |            |                 |            |             |              |           |            |       | W          | HEEL            | NO.          | 65584 |        | • •   |       |      |      |                 |
|---------|------------|-----------------|------------|-------------|--------------|-----------|------------|-------|------------|-----------------|--------------|-------|--------|-------|-------|------|------|-----------------|
|         |            |                 | <u>VE</u>  | RTICA       | l loa        | D IN      | K LBS      | /WHEI |            | LA              | <u>rerai</u> | , LOA | D IN K | LBS/V | VHEEL |      |      |                 |
|         |            |                 |            |             |              |           |            |       |            |                 |              |       |        |       |       |      |      |                 |
| GAGE 1  | <u>NO.</u> |                 | 10         |             | 20           |           | 30         |       | 40         |                 |              | 0     | 10     |       | 20    |      | 30   |                 |
|         |            |                 | RDG        | DIFF        | RDG          | DIFF      | RDG        | DIFF  | RDG        | $\mathbf{DIFF}$ |              | RDG   | RDG    | DIFF  | RDG   | DIFF | RDG  | $\mathbf{DIFF}$ |
| Outer I | Plate      | 1               | 1628       | 39          | 1650         | 61        | 1670       | 81    | 1706       | 117             |              | 1589  | 1572   | - 17  | 1453  | - 64 | 1394 | -195            |
|         |            | 2               | 2255       | 37          | 2284         | 66        | 2325       | 107   | 2368       | 150             |              | 2218  | 2142   | - 76  | 2044  | -126 | 1950 | -268            |
|         |            | 3               | 1678       | 38          | 1718         | 78        | 1760       | 120   | 1801       | 161             |              | 1640  | 1543   | - 97  | 1439  | -201 | 1328 | -312            |
|         |            | 4               | 1738       | 38          | 1780         | 80        | 1822       | 122   | 1865       | 165             |              | 1700  | 1602   | - 98  | 1491  | -209 | 1378 | -322            |
|         |            | 5               | 626        | <b>34</b>   | 662          | 70        | 699        | 107   | 736        | 144             |              | 592   | 512    | - 80  | 424   | -168 | 339  | -253            |
|         |            | 6               | 2377       | 26          | 2402         | 51        | 2434       | 83    | 2456       | 105             |              | 2351  | 2305   | - 46  | 2241  | -110 | 2190 | -161            |
|         |            | 7               | 1424       | .12         | 1436         | <b>24</b> | 1451       | 39    | 1474       | 62              |              | 1412  | 1396   | - 16  | 1368  | - 44 | 1342 | - 70            |
|         |            | 8               | 199        | <del></del> | 204          | 05        | <b>216</b> | 17    | <b>212</b> | 13              | •            | 199   | 196    | - 03  | 197   | - 02 | 205  | 06              |
|         |            | 9               | 1848       | 01          | 1838         | -09       | 1837       | -10   | 1827       | - 20            |              | 1847  | 1874   | 27    | 1896  | 49   | 1935 | . 88            |
|         |            | 10              | 1510       | -11         | 1500         | -21       | 1492       | -29   | 1470       | - 51            | ۰.           | 1521  | 1564   | 43    | 1611  | 90   | 1651 | 130             |
|         |            | 11              | 1718       | -15         | 1700         | -33       | 1682       | -51   | 1664       | - 69            | ·            | 1733  | 1790   | 57    | 1840  | 107  | 1906 | 173             |
|         |            | 12              | 1536       | -22         | 1512         | -46       | 1495       | -63   | 1478       | - 80            |              | 1558  | 1612   | 54    | 1677  | 119  | 1730 | 172             |
| İnner P | late       | 13              | 916        | -19         | 897          | -38       | 880        | -55   | 862        | - 73            |              | 935   | 1007   | 72    | 1080  | 145  | 1148 | <b>207</b>      |
|         |            | 14              | 868        | -18         | 844          | -42       | 818        | -68   | 804        | - 82            |              | 886   | 972    | 86    | 1064  | 178  | 1142 | 256             |
|         |            | 15              | 2200       | -26         | 2168         | -58       | 2137       | -89   | 2106       | -120            |              | 2226  | 2324   | 98    | 2430  | 204  | 2526 | 300             |
|         |            | 16              | 1946       | -27         | 1912         | -61       | 1880       | -93   | 1845       | -128            |              | 1973  | 2078   | 105   | 2188  | 215  | 2290 | 317             |
|         |            | 17              | <b>764</b> | -24         | 734          | -54       | 706        | -82   | 676        | -112            |              | 788   | 874    | 86    | 970   | 182  | 1056 | 268             |
|         |            | 18              | 788        | -20         | 766          | -42       | 742        | -66   | 718        | - 90            |              | 808   | 874    | 66    | 948   | 140  | 1012 | <b>204</b>      |
|         |            | 19              | 2502       | -14         | 2486         | -30       | 2470       | -46   | 2452       | - 64            |              | 2516  | 2564   | 48    | 2616  | 100  | 2658 | 142             |
|         |            | 20              | 1130       | -07         | 1121         | -16       | 1112       | -25   | 1105       | - 32            | . •          | 1137  | 1164   | 27    | 1193  | 56   | 1216 | 79              |
|         |            | 21              | 770        | -           | 768          | -02       | 766        | -04   | 764        | - 06            |              | 770   | 776    | 06    | 782   | 12   | 786  | 16              |
|         |            | 22              | 1272       | 07          | 1278         | 13        | 1286       | 21    | 1292       | · 37            |              | 1265  | 1255   | - 10  | 1242  | - 23 | 1228 | - 37            |
| •       |            | 23              | 1412       | 12          | 1425         | 25        | 1440       | 40    | 1454       | 54              |              | 1400  | 1374   | - 26  | 1342  | - 58 | 1312 | - 88            |
|         |            | $\frac{10}{24}$ | 882        | 14          | 9 <b>0</b> 0 | 32        | 918        | 50    | 938        | 70              |              | 868   | 830    | 38    | 785   | - 83 | 746  | -122            |

DIFF Column expressed in microinches per inch.

2-1<u>1</u>

## EXPLORATORY STRAIN DATA UNDER VERTICAL AND LATERAL WHEEL LOADINGS

|                 |           |      |           |            |                 |            |             | W           | HEEL            | NO. 65584 |      |                 |            |        | •     |                 |
|-----------------|-----------|------|-----------|------------|-----------------|------------|-------------|-------------|-----------------|-----------|------|-----------------|------------|--------|-------|-----------------|
|                 |           | VEE  | RTICAL    | LOA        | D IN K          | LBS/       | WHEF        | <u>er</u> _ | 30              | )0        | LAT  | TERAL           | LOA        | D IN K | LBS/W | HEEL            |
|                 |           |      |           |            |                 |            |             |             |                 |           |      |                 |            |        |       |                 |
| <u>GAGE NO.</u> |           | 10   |           | 20         |                 | 30         |             | 40          |                 | 0         | 10   |                 | 20         |        | 30    |                 |
|                 |           | RDG  | DIFF      | RDG        | $\mathbf{DIFF}$ | RDG        | DIFI        | FRDG        | $\mathbf{DIFF}$ | RDG       | RDG  | $\mathbf{DIFF}$ | RDG        | DIFF   | RDG   | $\mathbf{DIFF}$ |
| Outer Plate     | 1         | 1606 | <b>24</b> | 1630       | <b>48</b>       | 1655       | <u>்</u> 73 | 1680        | 98              | 1582      | 1530 | <b>∽</b> 55     | 1457       | -125   | 1396  | -186            |
|                 | 2         | 2234 | 31        | 2265       | 62              | 2296       | 93          | 2327        | 124             | 2203      | 2135 | -68             | 2039       | -164   | 1957  | -246            |
|                 | 3         | 1646 | 34        | 1682       | 70              | 1718       | 106         | 1754        | <b>142</b>      | 1612      | 1534 | -78             | 1424       | 188    | 1333  | -279            |
|                 | 4         | 1700 | 36        | 1736       | <b>72</b>       | 1773       | 109         | 1811        | 147             | 1664      | 1586 | -78             | 1480       | -184   | 1386  | -278            |
| v               | 5         | 604  | 30        | 637        | 63              | 670        | 96          | 702         | 128             | 574       | 513  | -61             | 420        | -154   | 342   | -232            |
|                 | 6         | 2369 | 22        | 2395       | 48              | 2418       | 71          | 2443        | 96              | 2347      | 2306 | -41             | 2240       | -107   | 2184  | -163            |
|                 | 7         | 1422 | 15        | 1434       | 27              | 1451       | 44          | 1468        | 64              | 1407      | 1390 | -17             | 1351       | 56     | 1322  | - 85            |
|                 | 8         | 200  | 06        | <b>204</b> | 10              | 210        | 16          | 215         | 21              | 194       | 198  | 04              | 186        | - 08   | 180   | - 14            |
| -               | 9         | 1846 | -02       | 1843       | -05             | 1840       | <b>∸</b> 08 | 1837        | - 11            | 1848      | 1871 | 23              | 1884       | 36     | 1898  | 50              |
|                 | 10        | 1508 | -10       | 1500       | -18             | 1490       | -28         | 1480        | - 38            | 1518      | 1552 | 34              | 1586       | 68     | 1620  | 102             |
|                 | 11        | 1727 | -07       | 1708       | -26             | 1695       | -39         | 1682        | - 52            | 1734      | 1840 | 106             | 1820       | 86     | 1860  | 126             |
|                 | <b>12</b> | 1544 | -11       | 1530       | -25             | 1511       | -44         | 1498        | - 57            | 1555      | 1646 | 91              | 1673       | 118    | 1701  | 146             |
| Inner Plate     | 13        | 926  | -12       | 908        | -30             | 890        | -48         | 876         | - 62            | 938       | 1000 | 62              | 1070       | 132    | 1130  | 192             |
|                 | <b>14</b> | 874  | -14       | 854        | -34             | 832        | -56         | 810         | - 78            | 888       | .960 | 72              | 1044       | 156    | 1114  | 226             |
|                 | 15        | 2208 | -22       | 2181       | -49             | 2156       | -74         | 2130        | -100            | 2230      | 2310 | 80              | 2410       | 120    | 2497  | 267             |
|                 | 16        | 1958 | -25       | 1930       | -53             | 1901       | -82         | 1875        | -108            | 1983      | 2068 | 85              | 2170       | 187    | 2260  | 277             |
|                 | 17        | 774  | -21       | 749        | -46             | 724        | -71         | <b>69</b> 8 | - 97            | 795       | 864  | 69              | 953        | 158    | 1032  | 237             |
|                 | 18        | 791  | -18       | 770        | -39             | 750        | -59         | 730         | - 79            | 809       | 864  | 55              | 934        | 125    | 996   | .187            |
|                 | 19        | 2502 | -10       | 2486       | -26             | 2472       | -40         | 2456        | - 56            | 2512      | 2554 | 42              | 2605       | 93     | 2648  | 136             |
| •               | 20        | 1129 | -07       | 1121       | -15             | 1113       | -23         | 1105        | - 31            | 1136      | 1161 | 25              | 1188       | 52     | 1214  | 78              |
|                 | 21        | 766  | -         | 765        | -01             | <b>764</b> | -02         | 762         | - 04            | 766       | 775  | 09              | <b>784</b> | 18     | 790   | 24              |
|                 | 22        | 1270 | 06        | 1274       | 10              | 1280       | 16          | 1287        | 23              | 1264      | 1258 | ~06             | 1250       | -14    | 1240  | - 24            |
|                 | 23        | 1411 | 11        | 1422       | 22              | 1433       | 33          | 1445        | 45              | 1400      | 1381 | -19             | 1353       | -47    | 1328  | - 72            |
|                 | <b>24</b> | 882  | <b>12</b> | 895        | 25              | 913        | 43          | 928         | 58              | 870       | 843  | -27             | 803        | -67    | 768   | -102            |

DIFF Column expressed in microinches per inch.

## EXPLORATORY STRAIN DATA UNDER VERTICAL AND LATERAL WHEEL LOADINGS

|             |           |                                                                                                                                                                                                                                                                                        |           |      |                 |            |           | WH         | EEL N | O. 65584 |      |      |      |                 |            |      |
|-------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|-----------------|------------|-----------|------------|-------|----------|------|------|------|-----------------|------------|------|
|             |           | VERTICAL LOAD IN K LBS/WHEEL60°LATERAL LOAD IN K LBS/102030400102030                                                                                                                                                                                                                   |           |      |                 |            |           |            |       |          |      |      |      |                 |            | HEEL |
| GAGE NO.    |           | 10       20       30       40       0       10       20       30         RDG DIFF RDG 1598       18       1614       34       1631       51       1647       67       1580       1547       -33       1506       - 74       1471 |           |      |                 |            |           |            |       |          |      |      |      |                 |            |      |
|             |           | RDG                                                                                                                                                                                                                                                                                    | DIFF      | RDG  | $\mathbf{DIFF}$ | RDG        | DIFF      | RDG        | DIFF  | RDG      | RDG  | DIFF | RDG  | $\mathbf{DIFF}$ | RDG        | DIFF |
| Outer Plate | 1         | 1598                                                                                                                                                                                                                                                                                   | 18        | 1614 | 34              | 1631       | 51        | 1647       | 67    | 1580     | 1547 | -33  | 1506 | - 74            | 1471       | -109 |
|             | 2         | 2222                                                                                                                                                                                                                                                                                   | 20        | 2244 | 42              | 2266       | 64        | 2288       | 86    | 2202     | 2155 | -47  | 2098 | -104            | 2051       | -151 |
|             | 3         | 1633                                                                                                                                                                                                                                                                                   | 26        | 1657 | 50              | 1684       | 77        | 1710       | 103   | 1607     | 1553 | -54  | 1485 | -122            | 1430       | -177 |
|             | 4         | 1686                                                                                                                                                                                                                                                                                   | <b>25</b> | 1712 | 51              | 1740       | 79        | 1768       | 107   | 1661     | 1604 | -57  | 1535 | -126            | 1478       | -183 |
|             | 5         | 594                                                                                                                                                                                                                                                                                    | 22        | 620  | <b>48</b>       | 644        | 72        | 670        | 98    | 572      | 520  | -52  | 458  | -114            | 406        | -166 |
|             | 6         | 2363                                                                                                                                                                                                                                                                                   | <b>20</b> | 2383 | 40              | 2404       | 61        | 2423       | 80    | 2343     | 2310 | -33  | 2260 | - 83            | 2216       | -127 |
|             | 7         | 1420                                                                                                                                                                                                                                                                                   | 16        | 1433 | 29              | 1450       | <b>46</b> | 1462       | 58    | 1404     | 1379 | -25  | 1344 | - 60            | 1313       | - 91 |
|             | 8         | 200                                                                                                                                                                                                                                                                                    | 08        | 207  | 15              | <b>214</b> | <b>22</b> | 222        | 30    | 192      | 181  | -11  | 165  | - 27            | <b>148</b> | - 44 |
|             | 9         | 1848                                                                                                                                                                                                                                                                                   | 02        | 1848 | 02              | 1850       | 04        | 1850       | 04    | 1846     | 1848 | 02   | 1848 | 02              | 1845       | - 01 |
|             | 10        | 1518                                                                                                                                                                                                                                                                                   | -02       | 1514 | -06             | 1511       | -09       | 1506       | -14   | 1520     | 1530 | 10   | 1542 | 22              | 1546       | 26   |
|             | 11        | 1730                                                                                                                                                                                                                                                                                   | -04       | 1725 | -09             | 1719       | -15       | 1712       | -22   | 1734     | 1750 | 16   | 1765 | <b>31</b>       | 1773       | 39   |
|             | 12        | 1553                                                                                                                                                                                                                                                                                   | -07       | 1547 | -13             | 1534       | -26       | 1528       | -32   | 1560     | 1580 | 20   | 1601 | 41              | 1610       | 50   |
| Inner Plate | 13        | 937                                                                                                                                                                                                                                                                                    | -07       | 927  | -17             | 917        | -27       | 908        | -36   | 944      | 978  | 34   | 1018 | 74              | 1044       | 100  |
|             | 14        | 881                                                                                                                                                                                                                                                                                    | -09       | 871  | -19             | 858        | -32       | 846        | -44   | 890      | 933  | 43   | 981  | 91              | 1016       | 126  |
|             | 15        | 2220                                                                                                                                                                                                                                                                                   | -14       | 2204 | -30             | 2187       | -47       | 2170       | -64   | 2234     | 2280 | 46   | 2340 | 106             | 2383       | 149  |
|             | 16        | 1970                                                                                                                                                                                                                                                                                   | -16       | 1954 | -32             | 1935       | -51       | 1917       | -69   | 1986     | 2040 | 56   | 2101 | 115             | 2146       | 160  |
|             | 17        | 784                                                                                                                                                                                                                                                                                    | -14       | 768  | -30             | 751        | -47       | ` 736      | -62   | 798      | 844  | 46   | 894  | 96              | 936        | 138  |
|             | 18        | 800                                                                                                                                                                                                                                                                                    | -10       | 786  | -24             | 773        | -37       | 759        | -51   | 810      | 848  | 38   | 891  | 81              | 927        | 117  |
|             | 19        | 2508                                                                                                                                                                                                                                                                                   | -07       | 2498 | -17             | 2488       | -27       | 2478       | -37   | 2515     | 2545 | 30   | 2578 | 63              | 2606       | 91   |
|             | 20        | 1134                                                                                                                                                                                                                                                                                   | -04       | 1126 | -12             | 1122       | -16       | 1115       | -23   | 1138     | 1156 | 18   | 1180 | 42              | 1197       | 59   |
|             | 21        | 768                                                                                                                                                                                                                                                                                    | -         | 768  | -               | 766        | -02       | <b>764</b> | -04   | 768      | 775  | 07   | 784  | 16              | 792        | 24   |
|             | 22        | 1270                                                                                                                                                                                                                                                                                   | 03        | 1274 | 07              | 1277       | 10        | 1280       | 13    | 1267     | 1265 | -02  | 1263 | -04             | 1264       | -03  |
|             | 23        | 1410                                                                                                                                                                                                                                                                                   | 06        | 1418 | 14              | 1425       | 21        | 1434       | 30    | 1404     | 1393 | -11  | 1380 | -24             | 1371       | -33  |
|             | <b>24</b> | 882                                                                                                                                                                                                                                                                                    | 10        | 890  | 18              | 902        | 30        | 912        | 40    | 872      | 856  | -16  | 834  | -38             | 818        | -54  |
|             |           |                                                                                                                                                                                                                                                                                        |           |      |                 |            |           |            |       | N .      |      |      |      |                 |            |      |

DIFF Column expressed in microinches per inch.

#### EXPLORATORY STRAIN DATA UNDER VERTICAL AND LATERAL WHEEL LOADINGS

|              |             |             |        |      |           |      |       | WE   | IEEL N   | IO. 65584      |             |            |        |       |               |             |
|--------------|-------------|-------------|--------|------|-----------|------|-------|------|----------|----------------|-------------|------------|--------|-------|---------------|-------------|
|              |             | VER         | TICAL  | LOA  | d in k    | LBS/ | WHEE  | Ľ    | 90       | 0 <sup>0</sup> | LATI        | ERAL L     | OAD II | NKLB  | <u>s/wh</u> 1 | EEL         |
| CACE NO      |             | 10          |        | 90   |           | 10   |       | 20   |          | 30             |             |            |        |       |               |             |
| GAGE NO.     |             |             | ਹਾਦਾਦਾ |      | יםים זרו  |      | יםיות |      | ייידיר   | PDC            | PDC         | ਹਾਬਾਬਾ     | PDC.   | יזידו | סתק           | יםים ורו    |
| Outor Diato  | 1           | 1584        | 04     | 1589 | DIFF      | 1592 | 12    | 1595 | 15       | 1580           | 1586        | 1111<br>06 | 1509   | 19    | T DG          | 94<br>01F F |
| Outer 1 late | 2           | 2208        | 06     | 2216 | 10        | 2220 | 14    | 2227 | 21       | 2202           | 2206        | 04         | 2210   | 08    | 2220          | 24<br>18    |
|              | 3           | 1614        | 06     | 1626 | 18        | 1634 | 26    | 1644 | 36       | 1608           | 1604        | -04        | 1604   | -04   | 1608          | -04         |
|              | 4           | 1670        | 09     | 1680 | 19        | 1691 | 30    | 1702 | 41       | 1661           | 1654        | -07        | 1650   | -11   | 1651          | -10         |
|              | 5           | 580         | 11     | 592  | 23        | 604  | 35    | 617  | 48       | 569            | 560         | -09        | 546    | -23   | 639           | -30         |
|              | 6           | 2355        | Ì1     | 2366 | 22        | 2378 | 34    | 2392 | 48       | 2344           | 2326        | -18        | 2309   | -35   | 2291          | -53         |
| ,            | 7           | 1415        | 09     | 1427 | 21        | 1439 | 33    | 1451 | 45       | 1406           | 1384        | -22        | 1354   | -52   | 1327          | -79         |
|              | 8           | 198         | 07     | 208  | 17        | 216  | 25    | 226  | 35       | 191            | 173         | -18        | 146    | -45   | 122           | -69         |
|              | 9           | 1851        | 05     | 1857 | 11        | 1864 | 18    | 1868 | 22       | 1846           | 1831        | -15        | 1807   | -39   | 1786          | -62         |
|              | 10          | 1523        | 05     | 1526 | 08        | 1532 | 14    | 1534 | 16       | 1518           | 1507        | -11        | 1483   | -35   | 1460          | -58         |
|              | 11          | 1739        | 03     | 1745 | 09        | 1748 | 12    | 1750 | 14       | 1736           | 1718        | -18        | 1691   | -45   | 1663          | -73         |
|              | <b>12</b>   | 1563        | 01     | 1564 | 02        | 1564 | 02    | 1568 | 04       | 1562           | 1551        | -11        | 1527   | -35   | 1502          | -60         |
| Inner Plate  | 13          | 945         | 01     | 949  | 05        | 950  | 06    | 950  | 06       | 944            | 934         | -10        | 917    | -27   | 895           | -49         |
|              | 14          | 892         | 02     | 892  | 02        | 894  | 04    | 894  | 04       | 890            | 884         | -06        | 868    | -22   | 845           | -45         |
|              | 15          | 2234        | -      | 2234 | -         | 2233 | -01   | 2233 | -01      | 2234           | 2225        | -09        | 2208   | -26   | 2185          | -49         |
|              | 16          | 1986        | -02    | 1985 | -03       | 1984 | -04   | 1983 | -05      | 1988           | 1981        | -07        | 1968   | -20   | 1946          | -42         |
|              | 17          | 797         | -01    | 794  | -04       | 793  | -05   | 791  | -07      | 798            | 797         | -01        | 788    | -10   | 775           | -23         |
| ·            | 18          | 807         | -03    | 805  | -05       | 804  | -06   | 801  | -09      | 810            | 813         | 03         | 810    |       | 803           | -07         |
|              | 19          | 2516        | -      | 2514 | -02       | 2513 | -03   | 2510 | -06      | 2516           | 2522        | 06         | 2523   | 07    | 2521          | 05          |
|              | 20          | 1138        | -01    | 1136 | -03       | 1136 | -03   | 1135 | -04      | 1139           | 1146        | 07         | 1150   | 11    | 1152          | 13          |
|              | <b>21</b> . | 1970        | -      | 771  | 01        | 770  | -     | 1072 | 02       | 770            | 1979        | 05         | 780    | 10    | 783           | 13          |
|              | 22          | 1407        | 02     | 1410 | 10        | 1274 | 06    | 1400 | 09       | 1409           | 1409        | 05         | 1280   | 12    | 1286          | 18          |
|              | 23          | 1407<br>876 | 00     | 1412 | 06<br>T.O | 1416 | 14    | 142U | 18<br>17 | 140Z<br>97/    | 1408<br>977 | 00<br>09   | 1412   | 10    | 1410          | 70<br>T0    |
|              | 24          | 010         | 04     | 002  | .08       | 000  | 14    | 091  | Тí       | 014            | 011         | 00         | 000    | 00    | 004           | υð          |

DIFF Column expressed in microinches per inch.

## EXPLORATORY STRAIN DATA UNDER VERTICAL AND LATERAL WHEEL LOADINGS

|             |    |      |           |       |                 |            |           | w    | HEELN           | NO. 65584 |              |                 | 1     |      |      |            |
|-------------|----|------|-----------|-------|-----------------|------------|-----------|------|-----------------|-----------|--------------|-----------------|-------|------|------|------------|
|             |    | VE   | RTICA     | L LOA | D IN K          | LBS/       | WHEE      | 20   | LAT             | ERAL I    | OAD I        | NK LI           | BS/WH | EEL  |      |            |
| GAGE NO.    |    | 10   |           | 20    |                 | 30         |           | 40   |                 | 0         | 10           |                 | 20    |      | 30   |            |
|             |    | RDG  | DIFF      | RDG   | $\mathbf{DIFF}$ | RDG        | DIFF      | RDG  | $\mathbf{DIFF}$ | RDG       | RDG          | $\mathbf{DIFF}$ | RDG   | DIFF | RDG  | DIFF       |
| Outer Plate | 1  | 1567 | -15       | 1554  | -28             | 1540       | -42       | 1528 | -54             | 1582      | 1635         | 53              | 1707  | 125  | 1778 | 196        |
|             | 2  | 2189 | -17       | 2172  | -34             | 2154       | -52       | 2138 | -68             | 2206      | 2270         | 64              | 2356  | 150  | 2447 | 241        |
| ,           | 3  | 1594 | -20       | 1578  | -36             | 1561       | -53       | 1546 | -68             | 1614      | 1678         | 64              | 1766  | 152  | 1856 | <b>242</b> |
|             | 4  | 1647 | -20       | 1630  | -37             | 1612       | -55       | 1598 | -69             | 1667      | 1724         | 57              | 1806  | 139  | 1890 | 223        |
|             | 5  | 560  | -16       | 547   | -29             | 536        | -40       | 525  | -51             | 576       | 612          | 36              | 666   | 90   | 722  | 146        |
|             | 6  | 2339 | -11       | 2334  | -16             | 2326       | -24       | 2320 | -30             | 2350      | 2360         | 10              | 2380  | 30   | 2405 | 55         |
|             | 7  | 1407 | -03       | 1407  | -03             | 1410       | -         | 1411 | 01              | 1410      | 1394         | -16             | 1379  | -31  | 1369 | - 41       |
|             | 8  | 197  | 03        | 200   | 06              | <b>204</b> | 10        | 210  | 16              | 194       | 168          | -26             | 135   | -59  | 105  | - 89       |
|             | 9  | 1853 | 06        | 1860  | 13              | 1868       | <b>21</b> | 1875 | 28              | 1847      | 1812         | -35             | 1766  | -81  | 1722 | -125       |
|             | 10 | 1534 | 10        | 1542  | 18              | 1553       | 29        | 1566 | <b>42</b>       | 1524      | 1482         | -42             | 1417  | -107 | 1363 | -161       |
|             | 11 | 1753 | 16        | 1766  | 29              | 1780       | <b>43</b> | 1795 | 58              | 1737      | 1690         | -47             | 1615  | -122 | 1550 | -187       |
|             | 12 | 1576 | 16        | 1603  | 43              | 1606       | 46        | 1620 | 60              | 1560      | 1508         | -52             | 1441  | -119 | 1380 | -180       |
| Inner Plate | 13 | 954  | 12        | 968   | 26              | 981        | 39        | 994  | 52              | 942       | 874          | -68             | 782   | -160 | 692  | -250       |
|             | 14 | 906  | 16        | 923   | 33              | 941        | 51        | 960  | 70              | 89.0      | 813          | -77             | 710   | -180 | 605  | -285       |
|             | 15 | 2250 | 18        | 2270  | 38              | 2290       | 58        | 2310 | 78              | 2232      | 2142         | -90             | 2026  | -196 | 1907 | -325       |
|             | 16 | 2006 | 21        | 2028  | 43              | 2050       | 65        | 2072 | 87              | 1985      | 1898         | -87             | 1781  | -204 | 1664 | -321       |
|             | 17 | 816  | 20        | 834   | 38              | 853        | 57        | 872  | 76              | 796       | 727          | -69             | 632   | -164 | 535  | -261       |
|             | 18 | 824  | 15        | 838   | 29              | 855        | 46        | 870  | 61              | 809       | 758          | -51             | 690   | -119 | 616  | -193       |
|             | 19 | 2528 | <b>12</b> | 2540  | <b>24</b>       | 2552       | 36        | 2564 | 48              | 2516      | 2482         | -34             | 2434  | -82  | 2384 | -132       |
|             | 20 | 1147 | 08        | 1154  | 15              | 1164       | <b>25</b> | 1172 | 33              | 1139      | 1122         | -17             | 1096  | -43  | 1068 | - 71       |
|             | 21 | 774  | 04        | 779   | 09              | 785        | 15        | 790  | 20              | 770       | 765          | -05             | 756   | -14  | 744  | - 26       |
|             | 22 | 1270 | -02       | 1274  | 06              | 1278       | 10        | 1277 | 09              | 1268      | 1277         | 09              | 1281  | 13   | 1284 | 16         |
|             | 23 | 1402 | -04       | 1402  | -04             | 1402       | -04       | 1402 | -04             | 1406      | <b>1</b> 418 | 12              | 1436  | 30   | 1452 | 46         |
|             | 24 | 870  | -06       | 868   | -08             | 868        | -08       | 865  | -11             | 876       | 890          | 14              | 916   | 40   | 940  | 66         |

DIFF Column expressed in microinches per inch.

.

## EXPLORATORY STRAIN DATA UNDER VERTICAL AND LATERAL WHEEL LOADINGS

|             |    |      |                 |       |        |       |                 | v         | VHEEL            | NO. 65584   |         |                 |      |                 |      |                 |
|-------------|----|------|-----------------|-------|--------|-------|-----------------|-----------|------------------|-------------|---------|-----------------|------|-----------------|------|-----------------|
|             |    | VE   | RTICA           | L LOA | D IN K | LBS/  | WHEI            | <u>sr</u> | 150 <sup>0</sup> | LA          | CERAL I | LOAD I          | NKLI | BS/WH           | EEL  |                 |
|             |    |      |                 |       | _      |       |                 |           |                  |             |         |                 |      |                 | ~ ~  |                 |
| GAGE NO.    |    | 10   |                 | 20    |        | 30    | •               | 40        |                  | 0           | 10      |                 | 20   |                 | 30   |                 |
|             |    | RDG  | $\mathbf{DIFF}$ | RDG ( | DIFF   | RDG 1 | $\mathbf{DIFF}$ | RDG       | $\mathbf{DIFF}$  | RDG         | RDG     | $\mathbf{DIFF}$ | RDG  | $\mathbf{DIFF}$ | RDG  | $\mathbf{DIFF}$ |
| Outer Plate | 1  | 1548 | -32             | 1512  | - 68   | 1481  | - 99            | 1446      | -134             | 1580        | 1717    | 137             | 1808 | <b>228</b>      | 1922 | 342             |
|             | 2  | 2161 | -45             | 2116  | - 90   | 2071  | -135            | 2028      | -178             | 2206        | 2374    | 167             | 2492 | <b>286</b>      | 2641 | <b>435</b>      |
|             | 3  | 1558 | -54             | 1508  | -104   | 1456  | -156            | 1408      | -204             | 1612        | 1786    | 174             | 1907 | 295             | 2063 | 451             |
|             | 4  | 1603 | -57             | 1550  | -110   | 1492  | -168            | 1436      | -224             | 1660        | 1821    | 161             | 1936 | 276             | 2080 | 420             |
|             | 5  | 516  | -50             | 466   | -100   | 412   | -154            | 358       | -208             | 566         | 676     | 110             | 758  | 192             | 862  | 296             |
|             | 6  | 2300 | -40             | 2257  | - 83   | 2212  | -128            | 2166      | -174             | 2340        | 2388    | 44              | 2428 | 88              | 2483 | 143             |
|             | 7  | 1375 | -30             | 1348  | - 57   | 1319  | - 86            | 1290      | -115             | 1405        | 1394    | - 11            | 1397 | - 08            | 1400 | - 05            |
|             | 8  | 174  | -20             | 156   | - 38   | 137   | - 57            | 120       | - 74             | 194         | 145     | - 49            | 118  | - 76            | 100  | - 94            |
|             | 9  | 1841 | -05             | 1836  | - 10   | 1830  | - 16            | 1824      | - 22             | 1846        | 1774    | - 72            | 1729 | -117            | 1675 | -171            |
|             | 10 | 1530 | 06              | 1536  | 12     | 1546  | 22              | 1554      | 30               | 1524        | 1433    | - 91            | 1370 | -154            | 1298 | -226            |
|             | 11 | 1772 | 32              | 1778  | 38     | 1797  | 57              | 1813      | 73               | 1740        | 1640    | -100            | 1568 | -172            | 1486 | -256            |
|             | 12 | 1611 | 43              | 1630  | 62     | 1647  | 79              | 1660      | 92               | 1568        | 1470    | - 98            | 1397 | -171            | 1314 | -254            |
| Inner Plate | 13 | 970  | 32              | 982   | 40     | 1002  | 60              | 1014      | 72               | 942         | 763     | - 79            | 643  | -299            | 498  | -444            |
|             | 14 | 921  | 29              | 948   | 56     | 974   | 82              | 996       | 104              | 89 <u>2</u> | 688     | -204            | 550  | -342            | 388  | -504            |
|             | 15 | 2270 | 32              | 2302  | 64     | 2334  | 96              | 2368      | 130              | 2238        | 2000    | -238            | 1845 | -393            | 1650 | -588            |
|             | 16 | 2030 | 39              | 2068  | 77     | 2105  | 114             | 2140      | 149              | 1991        | 1752    | -239            | 1592 | -399            | 1396 | -595            |
|             | 17 | 836  | 34              | 872   | 70     | 906   | 104             | 942       | 140              | 802         | 605     | -197            | 470  | -332            | 310  | -492            |
|             | 18 | 848  | 30              | 876   | 58     | 908   | 90              | 940       | 122              | 818         | 668     | -150            | 563  | -255            | 436  | -382            |
|             | 19 | 2546 | 23              | 2570  | 47     | 2596  | 73              | 2616      | 93               | 2523        | 2411    | -112            | 2334 | -189            | 2245 | -278            |
|             | 20 | 1158 | 16              | 1173  | 31     | 1187  | 45              | 1200      | 58               | 1142        | 1072    | - 70            | 1020 | -122            | 964  | -178            |
|             | 21 | 780  | 10              | 785   | 15     | 792   | 22              | 800       | 30               | 770         | 731     | - 39            | 704  | - 66            | 676  | - 94            |
|             | 22 | 1267 | -01             | 1265  | - 03   | 1260  | - 08            | 1256      | -12              | 1268        | 1254    | - 14            | 1246 | - 22            | 1240 | - 28            |
|             | 23 | 1391 | -12             | 1380  | - 23   | 1365  | - 38            | 1352      | -51              | 1403        | 1409    | 06              | 1418 | 15              | 1428 | 25              |
|             | 24 | 854  | -18             | 835   | - 37   | 816   | - 56            | 798       | -74              | 872         | 890     | 18              | 912  | 40              | 934  | 62              |

DIFF Golumn expressed in microinches per inch.

## EXPLORATORY STRAIN DATA UNDER VERTICAL AND LATERAL WHEEL LOADINGS

|             |           |            |                 |              |        |      |      | V          | VHEEL            | NO. 65584 |       |                 |      |            |      |                 |
|-------------|-----------|------------|-----------------|--------------|--------|------|------|------------|------------------|-----------|-------|-----------------|------|------------|------|-----------------|
|             |           | VE         | RTICA           | L LOA        | D IN F | LBS/ | WHEI | EL         | 180 <sup>0</sup> | LATE      | RAL L | OAD IN          | IKLE | S/WH       | EEL  |                 |
| GAGE NO.    |           | 10         |                 | 20           |        | 30   |      | 40         |                  | 0         | 10    |                 | 20   |            | 30   |                 |
|             |           | RDG        | $\mathbf{DIFF}$ | RDG          | DIFF   | RDG  | DIFF | RDG        | $\mathbf{DIFF}$  | RDG       | RDG   | $\mathbf{DIFF}$ | RDG  | DIFF       | RDG  | $\mathbf{DIFF}$ |
| Outer Plate | 1         | 1547       | -41             | 1506         | - 82   | 1466 | -122 | 1428       | -160             | 1588      | 1703  | 115             | 1850 | 262        | 1980 | 392             |
|             | 2         | 2158       | -58             | 2102         | -114   | 2045 | -171 | 1992       | -224             | 2216      | 2358  | 142             | 2548 | 332        | 2719 | 503             |
|             | · 3       | 1552       | -70             | 1482         | -288   | 1414 | -356 | 1349       | -273             | 1622      | 1770  | 148             | 1966 | <b>344</b> | 2144 | 522             |
| :           | -4        | 1589       | -77             | 1510         | -156   | 1428 | -238 | 1349       | -317             | 1666      | 1793  | 127             | 1977 | <b>311</b> | 2143 | 477             |
|             | 5         | <b>490</b> | -54             | 406          | -138   | 328  | -216 | <b>232</b> | -312             | 544       | 624   | 80              | 758  | <b>214</b> | 878  | <b>334</b>      |
|             | 6         | 2264       | -57             | 2188         | -133   | 2110 | -211 | 2024       | -297             | 2321      | 2346  | 45              | 2413 | 92         | 2476 | 155             |
|             | 7         | 1340       | -66             | 1278         | -128   | 1218 | -188 | 1160       | -246             | 1406      | 1384  | - 22            | 1391 | - 15       | 1400 | - 06            |
|             | 8         | 139        | -55             | 94           | -100   | 50   | -144 | 06         | -188             | 194       | 136   | - 58            | 98   | - 96       | 68   | -126            |
|             | 9         | 1812       | -33             | 1785         | - 60   | 1758 | - 87 | 1732       | -113             | 1845      | 1772  | - 73            | 1702 | -143       | 1642 | -203            |
|             | 10        | 1506       | -14             | 1494         | - 26   | 1482 | - 38 | 1469       | - 51             | 1520      | 1434  | - 86            | 1344 | -176       | 1264 | -256            |
|             | 11        | 1732       | -06             | 1732         | - 06   | 1746 | 08   | 1740       | 02               | 1738      | 1656  | - 82            | 1552 | -186       | 1460 | -278            |
|             | 12        | 1574       | 14              | 1567         | 07     | 1574 | 14   | 1577       | 17               | 1560      | 1476  | - 84            | 1372 | -188       | 1288 | -272            |
| Inner Plate | <b>13</b> | 948        | 12              | 958          | 22     | 972  | 36   | 986        | 50               | 936       | 770   | -166            | 586  | -250       | 420  | -516            |
|             | 14        | 902        | 14              | 924          | 36     | 948  | 60   | 968        | 80               | 888       | 698   | -190            | 485  | -403       | 291  | -597            |
|             | 15        | 2250       | - 27            | 2280         | 57     | 2310 | 87   | 2338       | 115              | 2223      | 2005  | -218            | 1762 | -461       | 1538 | -685            |
|             | 16        | 2012       | 34              | 2048         | 70     | 2088 | 110  | 2118       | 140              | 1978      | 1762  | -216            | 1507 | -471       | 1280 | -698            |
|             | 17        | 826        | 30              | 860          | 64     | 891  | 95   | 928        | 132              | 796       | 615   | -181            | 402  | -394       | 214  | -582            |
|             | 18        | 838        | 25              | 866          | 53     | 892  | 79   | 925        | 112              | 813       | 671   | -142            | 502  | -311       | 352  | -461            |
|             | 19        | 2534       | 17              | <b>2</b> 555 | 38     | 2577 | 60   | 2596       | 79               | 2517      | 2406  | -111            | 2282 | -235       | 2174 | -343            |
|             | 20        | 1143       | 09              | 1154         | 20     | 1163 | 29   | 1170       | 36               | 1134      | 1058  | - 76            | 974  | -160       | 896  | -238            |
|             | 21        | 761        | -03             | 756          | - 08   | 748  | - 16 | 743        | - 21             | 764       | 708   | - 56            | 658  | -106       | 613  | -151            |
|             | 22        | 1242       | -14             | 1220         | - 46   | 1202 | - 64 | 1179       | - 87             | 1266      | 1228  | - 38            | 1202 | - 64       | 1184 | - 82            |
|             | 23        | 1360       | -42             | 1321         | - 81   | 1284 | -118 | 1247       | -155             | 1402      | 1376  | - 26            | 1370 | - 32       | 1370 | - 32            |
| •           | <b>24</b> | 818        | -46             | 768          | - 96   | 720  | -144 | 664        | -200             | 864       | 845   | - 21            | 857  | - 07       | 868  | 04              |

DIFF Column expressed in microinches per inch.

## EXPLORATORY STRAIN DATA UNDER VERTICAL AND LATERAL WHEEL LOADINGS

|             |     |      |       |              |               |      |           | N            | HEEL      | NO. 6 | 5584 |                        |                |         |                 |      |      |
|-------------|-----|------|-------|--------------|---------------|------|-----------|--------------|-----------|-------|------|------------------------|----------------|---------|-----------------|------|------|
|             |     | VE   | RTICA | <u>l loa</u> | <u>D IN K</u> | LBS/ | WHE       |              | LA        | TERAL | LOAD | NKL                    | 3S/WH          | [EEL    |                 |      |      |
|             |     |      |       | ,            |               |      |           |              |           |       |      |                        |                | <u></u> |                 | 90   |      |
| GAGE NO.    |     | 10   |       | 20           |               | 30   |           | 40           |           | •     | 0    | 10                     |                | 20      |                 | 30   |      |
|             |     | RDG  | DIFF  | RDG          | DIFF          | RDG  | DIFI      | FRDG         | DIFF      |       | RDG  | $\mathbf{R}\mathbf{D}$ | G DIF          | F RDG   | $\mathbf{DIFF}$ | RDG  | DIFF |
| Outer Plate | 1   | 1572 | -13   | 1559         | -26           | 1545 | -40       | 1531         | -54       |       | 1585 | 163                    | 4 4            | ə 1694  | 109             | 1742 | 157  |
|             | 2   | 2200 | -16   | 2182         | -34           | 2165 | -51       | 2148         | -68       |       | 2216 | 227                    | 9 6            | 3 2353  | 137             | 2415 | 199  |
|             | 3   | 1606 | -19   | 1587         | -48           | 1568 | -57       | 1550         | -75       |       | 1625 | 169                    | 0 6            | 5 1772  | 147             | 1836 | 211  |
|             | 4   | 1652 | -18   | 1635         | -35           | 1619 | -51       | 1602         | -68       |       | 1670 | 172                    | 8 5            | 3 1796  | 126             | 1853 | 183  |
|             | 5   | 538  | -12   | 526          | -24           | 514  | -36       | 504          | -46       |       | 550  | 59                     | 0 4            | ) 636   | 8 <b>6</b>      | 673  | 123  |
|             | 6   | 2326 | -04   | 2319         | -11           | 2314 | -16       | 2310         | -20       |       | 2330 | 234                    | <b>4 1</b> 4   | £ 2361  | 31              | 2371 | 41   |
|             | 7   | 1414 | -02   | 1411         | -05           | 1412 | -04       | 1408         | -08       | 1     | 1416 | 141                    | 2 -04          | 1406 L  | - 10            | 1400 | - 16 |
|             | . 8 | 210  | 07    | 214          | 11            | 219  | 16        | 224          | 21        |       | 203  | 17                     | 6 -21          | 7 146   | - 57            | 116  | - 87 |
|             | 9   | 1863 | 09    | 1874         | 20            | 1883 | 29        | .1894        | 40        |       | 1854 | 181                    | 6 <b>-</b> 38  | 3 1767  | - 87            | 1725 | -129 |
|             | 10  | 1540 | 12    | 1552         | <b>24</b>     | 1562 | <b>34</b> | 1577         | 49        | •     | 1528 | 148                    | <b>4 –4</b> 4  | ų 1426  | -102            | 1387 | -141 |
| •           | 11  | 1752 | 08    | 1764         | 20            | 1774 | 30        | 1786         | 42        |       | 1744 | 170                    | 4 -40          | ) 1646  | - 98            | 1601 | -143 |
| ,           | 12  | 1582 | 16    | 1590         | <b>24</b>     | 1604 | 38        | 16 <b>21</b> | 55        |       | 1566 | 152                    | 0 -46          | ; 1469  | - 97            | 1422 | -144 |
| Inner Plate | 13  | 960  | - 19  | - <b>973</b> | 32            | 978  | 37`       | 992          | 51        |       | 941  | 89                     | 0 -51          | 808     | -133            | 750  | -191 |
|             | 14  | 911  | 21    | 926          | 36            | 941  | 51        | 960          | 70        |       | 890  | 82                     | 8 -62          | 738     | -152            | 674  | -226 |
| · · ·       | 15  | 2248 | 14    | 2266         | 32            | 2286 | 52        | 2306         | 72        |       | 2234 | 215                    | 0 -84          | 2056    | -178            | 1980 | -254 |
|             | 16  | 2018 | 32    | 2026         | 40            | 2044 | 58        | 2064         | 78        |       | 1986 | 190                    | 5 -81          | 1810    | -176            | 1736 | -250 |
|             | 17  | 820  | 16    | 836          | ` 32          | 853  | 49        | 870          | 66        |       | 804  | 74                     | 0 -64          | 662     | -142            | 601  | -203 |
|             | 18  | 834  | 15    | 848          | 29            | 860  | 41        | 876          | 57        |       | 819  | 77                     | 2 -47          | 716     | -103            | 673  | -146 |
|             | 19  | 2530 | 11    | 2542         | 13            | 2554 | 35        | 2565         | <b>46</b> |       | 2519 | 249                    | 0 -29          | 2450    | - 69            | 2426 | - 93 |
|             | 20  | 1150 | 13    | 1154         | 17            | 1160 | 23        | 1170         | 33        |       | 1137 | 112                    | 3, <b>-</b> 14 | 1104    | - 33            | 1090 | - 47 |
|             | 21  | 775  | 03    | 775          | 03            | 780  | 08        | 788          | 16        |       | 772  | 76                     | 3 – 06         | 762     | - 10            | 760  | - 12 |
|             | 22  | 1274 | 0     | 1276         | 02            | 1278 | 04        | 1283         | 09        |       | 1274 | 128                    | ) 06           | 1288    | 14              | 1294 | 20   |
|             | 23  | 1414 | 03    | 1410         | -01           | 1408 | -03       | 1410         | -01       |       | 1411 | 142                    | ł 13           | 1444    | 33              | 1455 | 44   |
|             | 24  | 872  | -04   | 870          | -07           | 868  | -08       | 868          | -08       |       | 876  | 89                     | ) 14           | 915     | 39              | 936  | 60   |

DIFF Column expressed in microinches per inch.

- `\_

#### EXPLORATORY STRAIN DATA UNDER VERTICAL AND LATERAL WHEEL LOADINGS

|                 |     |             |            |             |                                                  |             |                                                    | W               | HEEL       | NO. 65584        |                   |             |             |              |               |              |
|-----------------|-----|-------------|------------|-------------|--------------------------------------------------|-------------|----------------------------------------------------|-----------------|------------|------------------|-------------------|-------------|-------------|--------------|---------------|--------------|
|                 |     | VEI         | RTICAI     | LOA         | <u>D IN K</u>                                    | LBS/        | WHEF                                               | EL –            |            | 300 <sup>0</sup> | $\mathbf{LAT}$    | ERAL L      | OAD I       | NKL          | BS/WH         | IEEL         |
| <u>GAGE NO.</u> |     | 10          |            | 20          |                                                  | 30          | 1.                                                 | 40              |            | 0                | 10                |             | 20          |              | 30            |              |
| Outer Plate     | 1   | RDG<br>1610 | DIFF<br>19 | RDG<br>1626 | $\begin{array}{c} \text{DIFF} \\ 35 \end{array}$ | RDG<br>1644 | $\begin{array}{c} \mathrm{DIFF} \\ 53 \end{array}$ | $rac{R}{1663}$ | DIFF<br>72 | $f R DG \ 1591$  | $rac{RDG}{1551}$ | DIFF<br>-40 | RDG<br>1500 | DIFF<br>- 91 | ' RDG<br>1455 | DIFF<br>-136 |
|                 | 2   | 2245        | 24         | 2266        | 45                                               | 2290        | 69                                                 | 2312            | 91         | 2221             | 2168              | -53         | 2102        | -119         | 2042          | -176         |
|                 | 3   | 1654        | 26         | 1680        | 52                                               | 1706        | 68                                                 | 1731            | 103        | 1628             | 1572              | -56         | 1498        | -130         | 1432          | -193         |
|                 | 4   | 1702        | 31         | 1728        | 57                                               | 1757        | 86                                                 | 1784            | 113        | 1671             | 1612              | -59         | 1534        | -137         | 1464          | -205         |
|                 | 5   | 580         | <b>26</b>  | 606         | 52                                               | 630         | 76                                                 | 656             | 102        | 554              | 502               | -52         | 434         | -120         | 375           | -175         |
|                 | 6   | 2354        | 21         | 2375        | <b>42</b>                                        | 2395        | 62                                                 | 2414            | 81         | 2333             | 2294              | -39         | 2244        | - 89         | 2198          | -132         |
|                 | 7   | 1431        | 14         | 1444        | 27                                               | 1456        | 39                                                 | 1470            | 53         | 1417             | 1397              | -20         | 1370        | - 47         | 1345          | - 70         |
|                 | 8   | 213         | 09         | 220         | 16                                               | 228         | <b>24</b>                                          | <b>234</b>      | 30         | <b>204</b>       | 195               | - 9         | 181         | - 23         | 169           | - 33         |
| ŕ               | 9   | 1856        | 02         | 1858        | 04                                               | 1860        | 06                                                 | 1861            | 07         | 1854             | 1856              | 02          | 1858        | 04           | 1860          | 06           |
|                 | 10  | 1535        | 05         | 1535        | 05                                               | 1520        | -10                                                | 1518            | - 12       | 1530             | 1546              | 16          | 1562        | 32           | 1573          | 43           |
|                 | 11  | 1734        | -08        | 1725        | -17                                              | 1717        | -25                                                | 1708            | - 34       | 1742             | 1770              | 28          | 1802        | 60           | 1816          | 76           |
|                 | 12  | 1600        | <b>28</b>  | 1554        | -18                                              | 1547        | -25                                                | 1529            | - 43       | 1572             | 1596              | 24          | 1622        | 50           | 1655          | 72           |
| Inner Plate     | 13  | 944         | -04        | 931         | -17                                              | 927         | -21                                                | 905             | - 43       | 948              | 1000              | 52          | 1045        | 97           | 1082          | 136          |
|                 | 14  | 893         | -01        | 876         | -18                                              | 861         | -33                                                | 845             | - 49       | 894              | 950               | 56          | 1015        | 121          | 1064          | 166          |
|                 | 15  | 2231        | -03        | 2207        | -27                                              | 2189        | -45                                                | 2170            | - 64       | <b>2234</b> .    | 2300              | 66          | 2368        | 134          | 2430          | 190          |
|                 | 16  | 1976        | -14        | 1956        | -34                                              | 1934        | -56                                                | 1914            | _ 76       | 1990             | 2057              | 67          | 2132        | 142          | 2196          | 204          |
|                 | 1.7 | 796         | -14        | 778         | -32                                              | 758         | -52                                                | 737             | - 73       | 810              | 865               | 55          | 930         | 120          | 988           | 178          |
|                 | 18  | 817         | -09        | 802         | -24                                              | 785         | -41                                                | 767             | - 59       | 826              | 872               | 46          | 928         | 102          | 973           | 147          |
|                 | 19  | 2519        | -06        | 2512        | -13                                              | 2496        | -29                                                | 2484            | - 41       | 2525             | 2564              | 39          | 2602        | 77           | 2637          | 113          |
|                 | 20  | .1144       | -02        | 1138        | -08                                              | 1128        | -18                                                | 1119            | - 27       | 1146             | 1167              | 21          | 1194        | 48           | 1216          | 71           |
|                 | 21  | 778         | 01         | 777         | -                                                | 773         | -04                                                | 768             | - 09       | 777              | 788               | 11          | 804         | 27           | 812           | 37           |
|                 | 22  | 1286        | 08         | 1294        | 16                                               | 1294        | 16                                                 | 1291            | 13         | 1278             | 1278              | -           | 1278        | -            | 1272          | - 08         |
|                 | 23  | 1432        | 14         | 1446        | 28                                               | 1440        | <b>22</b>                                          | 1450            | 32         | 1418             | 1404              | -14         | 1388        | - 30         | 1372          | - 44         |
|                 | 24  | 892         | 14         | 910         | 32                                               | 913         | 35                                                 | 922             | 44         | 878              | 860               | -18         | 835         | - 43         | 812           | - 65         |

DIFF Column expressed in microinches per inch.

|                                                 | WHEEL 65594 @ 0 <sup>0</sup> |       |                       |                 |       |            | WHEEL 65495 @ 0 <sup>0</sup> |            |                       |            |       |       |  |  |
|-------------------------------------------------|------------------------------|-------|-----------------------|-----------------|-------|------------|------------------------------|------------|-----------------------|------------|-------|-------|--|--|
|                                                 | Channel                      |       | Channel               |                 |       |            | Channel                      | ·          | Channel               |            |       |       |  |  |
| Vertical Load                                   | 0 <sup>0</sup> +             | Diff. | 90 <mark>0</mark> -   | Diff.           | Chan. | Diff.      | .00+                         | Diff.      | . 90 <sup>0</sup> +   | Diff.      | Chan. | Diff. |  |  |
| K lbs./Jack                                     | V1 180 <sup>0</sup> -        | Micro | V2 270 <sup>0</sup> + | Micro           | Lat.  | Micro      | V1 180 <sup>0</sup> -        | Micro      | V2 270 <sup>0</sup> + | Micro      | Lat.  | Micro |  |  |
| (5K Lbs./Wheel)                                 | Reading                      | 11/11 | Reading               | "/"             | Rdg.  | <u>n/n</u> | Reading                      | <u>"/"</u> | Reading               | <u>"/"</u> | Rdg.  | "/"   |  |  |
| 10                                              | -4299                        | 77    | -2924                 | 02              | -6041 | ·· 02      | -3881                        | 75         | -2867                 | - 03       | -6044 | - 08  |  |  |
| 20                                              | -4231                        | 145   | -2922                 | 04              | -6045 | - 06       | -3816                        | 140        | -2870                 | - 06       | -6048 | - 12  |  |  |
| 30.                                             | -4165                        | 211   | -2921                 | 05 <sup>.</sup> | -6046 | - 07       | -3750                        | 206        | -2874                 | - 10       | -6050 | - 14  |  |  |
| 40                                              | -4100                        | 276   | -2921                 | . 05            | -6048 | - 09       | -3684                        | 272        | -2878                 | - 14       | -6052 | - 16  |  |  |
| 50                                              | -4034                        | 342   | -2922                 | 04              | -6050 | - 11       | -3620                        | 336        | -2881                 | - 17       | -6056 | - 20  |  |  |
| 60                                              | -3969                        | 407   | -2922                 | 04              | -6051 | - 12       | -3555                        | 401        | -2885                 | - 21       | -6059 | - 23  |  |  |
| 70                                              | -3905                        | 471   | -2922                 | 04              | -6053 | - 14       | -3488                        | 468        | -2888                 | - 24       | -6061 | - 25  |  |  |
| 80                                              | -3848                        | 526   | -2922                 | 04              | -6054 | - 15       | -3430                        | 526        | -2891                 | - 27       | -6063 | - 27  |  |  |
| Lateral Load<br>K lbs. Total<br>(5K Lbs./Wheel) |                              |       |                       |                 |       |            | -                            |            |                       |            |       |       |  |  |
| + 10K Vertical<br>10                            | -4315                        | 61    | -2924                 | 02              | -6000 | 39         | -3896                        | 60         | -2860                 | 04         | -6000 | 36    |  |  |
| 20                                              | -4328                        | 48    | -2922                 | · 04            | -5952 | 87         | -3908                        | 48         | -2850                 | 14         | -5952 | 84    |  |  |
| 30                                              | -4338                        | 38    | -2920                 | 06              | -5912 | 127        | -3914                        | 42         | -2842                 | 22         | -5910 | 126   |  |  |
| 40                                              | -4350                        | .26   | -2922                 | 04              | -5866 | 173        | -3921                        | 35         | -2834                 | 30         | -5868 | 168   |  |  |
| 50                                              | -4362                        | 14    | -2923                 | 03              | -5825 | 214        | -3978                        | 28         | -2826                 | 38         | -5827 | 209   |  |  |
| 60                                              | -4375                        | -     | -2921                 | 05              | -5783 | 256        | -3936                        | 20         | -2818                 | 46         | -5785 | 251   |  |  |
| 0                                               | -4376                        | 1 ~   | -2926                 |                 | -6039 |            | -3956                        | •          | -2864                 | ,          | -6036 |       |  |  |

|       | TABLE 10                                 |        |  |  |  |  |  |  |  |  |  |  |  |
|-------|------------------------------------------|--------|--|--|--|--|--|--|--|--|--|--|--|
|       | CALIBRATION DATA                         |        |  |  |  |  |  |  |  |  |  |  |  |
| FULLY | ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEE | L SETS |  |  |  |  |  |  |  |  |  |  |  |

|                                                 |                                                      | WHE                 | CEL 65594                                             |                    | WHEEL 65495 @ 30 <sup>0</sup> |                      |                                                      |                    |                                                       |                     |                      |                    |  |
|-------------------------------------------------|------------------------------------------------------|---------------------|-------------------------------------------------------|--------------------|-------------------------------|----------------------|------------------------------------------------------|--------------------|-------------------------------------------------------|---------------------|----------------------|--------------------|--|
| Vertical Load<br>K lbs./Jack                    | Channel<br>0 <sup>0</sup> +<br>V1 180 <sup>0</sup> - | Diff.<br>Micro      | Channel<br>90 <sup>0</sup> -<br>V2 270 <sup>0</sup> + | Diff.<br>Micro     | Chan.<br>Lat.                 | Diff.<br>Micro       | Channel<br>0 <sup>0</sup> +<br>V1 180 <sup>0</sup> - | Diff.<br>Micro     | Channel<br>90 <sup>0</sup> +<br>V2 270 <sup>0</sup> + | Diff.<br>Micro      | Chan.<br>Lat.        | Diff.<br>Micro     |  |
| (5K Lbs./Wheel)<br>10                           | Reading<br>-4361                                     | <u>''/''</u><br>39: | Reading<br>-2938                                      | <u>"/"</u><br>- 10 | <u>Rdg.</u><br>-6044          | <u>''/''</u><br>- 02 | Reading<br>-3930                                     | <u>''/''</u><br>44 | Reading<br>-2882                                      | " <u>/"</u><br>- 10 | <u>Rdg.</u><br>-6044 | <u>"/"</u><br>- 08 |  |
| 20                                              | -4326                                                | 74                  | -2948                                                 | - 20               | -6047                         | - 05                 | -3892                                                | 82                 | -2892                                                 | - 20                | -6045                | - 09               |  |
| 30                                              | -4294                                                | 106                 | -2961                                                 | - 33               | -6050                         | - 08                 | -3852                                                | 122                | -2904                                                 | - 32                | -6047                | - 11               |  |
| 40                                              | -4260                                                | 140                 | -2972                                                 | - 44               | -6050                         | - 08                 | -3814                                                | 160                | -2912                                                 | - 40                | -6049                | - 13               |  |
| 50                                              | -4227                                                | 173                 | -2984                                                 | - 56               | -6052                         | - 10                 | -3777                                                | 197                | -2924                                                 | - 52                | -6050                | - 14 -             |  |
| 60                                              | -4193                                                | 207                 | -2996                                                 | - 68               | -6053                         | - 11                 | -3738                                                | 236                | -2934                                                 | - 62                | -6053                | - 17               |  |
| 70                                              | -4160                                                | 240                 | -3007                                                 | - 79               | -6055                         | - 13                 | -3700                                                | 274                | -2945                                                 | - 73                | -6052                | - 16               |  |
| 80                                              | -4128                                                | 272                 | -3018                                                 | - 90               | -6056                         | - 14                 | -3662                                                | 312                | -2954                                                 | - 82                | -6053                | - 17               |  |
| Lateral Load<br>K lbs. Total<br>(5K Lbs./Wheel) | ·                                                    |                     |                                                       |                    |                               |                      |                                                      |                    |                                                       |                     |                      |                    |  |
| +10K Vertical 10                                | -4378                                                | 22                  | -2930                                                 | 02                 | -5999                         | 43                   | -3942                                                | 32                 | -2868                                                 | 04                  | -5999                | 37                 |  |
| 20                                              | -4387                                                | 13                  | -2926                                                 | 02                 | -5967                         | 75                   | -3950                                                | 24                 | -2857                                                 | 15                  | -5960                | . 76               |  |
| 30                                              | -4398                                                | 02                  | -2916                                                 | . 12               | -5918                         | 124                  | -3960                                                | 14                 | -2844                                                 | 28                  | -5914                | 122                |  |
| 40                                              | -4410                                                | -10                 | -2908                                                 | 20                 | -5874                         | 168                  | -3968                                                | 06                 | -2834                                                 | 38                  | -5878                | 158                |  |
| 50                                              | -4422                                                | -22                 | -2900                                                 | 28                 | -5830                         | 212                  | -3974                                                | -                  | -2826                                                 | 46                  | -5840                | 196                |  |
| 60                                              | -4433                                                | -33                 | -2895                                                 | 33                 | -5794                         | <b>24</b> 8          | -3980                                                | - 06               | -2818                                                 | 54                  | -5800                | 236                |  |
| 0                                               | -4400                                                |                     | -2928                                                 |                    | -6042                         |                      | -3974                                                |                    | -2872                                                 |                     | -6036                | •                  |  |

# TABLE 11CALIBRATION DATAFULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

|                  |                       | EL 65594   |                       | WHEEL 65495 @ 60° |       |       |                       |            |                       |            |       |       |
|------------------|-----------------------|------------|-----------------------|-------------------|-------|-------|-----------------------|------------|-----------------------|------------|-------|-------|
|                  | Channel               |            | Channel               |                   |       |       | Channel               |            | Channel               |            |       |       |
| Vertical Load    | 0 <sup>0</sup> +      | Diff.      | 90 <sup>0</sup> -     | Diff.             | Chan. | Diff. | 0 <sup>0</sup> +      | Diff.      | 90 <mark>0</mark> +   | Diff.      | Chan. | Diff. |
| K lbs. /Jack     | V1 180 <sup>0</sup> - | Micro      | V2 270 <sup>0</sup> + | Micro             | Lat.  | Micro | V1 180 <sup>0</sup> - | Micro      | V2 270 <sup>0</sup> + | Micro      | Lat.  | Micro |
| (5K Lbs./Wheel)  | Reading               | <u>"/"</u> | Reading               | 11/11             | Rdg.  | "/"   | Reading               | <u>"/"</u> | <u>Reading</u>        | <u>"/"</u> | Rdg.  | 11/11 |
| 10               | -4385                 | 15         | -2974                 | - 44              | -6046 | - 06  | -3985                 | - 11       | -2931                 | - 41       | -6044 | - 06  |
| 20               | -4376                 | 24         | -3012                 | - 82              | -6049 | - 09  | -3995                 | - 21       | -2970                 | - 80       | -6045 | - 07  |
| 30               | -4366                 | 34         | -3042                 | -112              | -6052 | - 12  | -4007                 | - 33       | -3009                 | -119       | -6047 | - 09  |
| 40               | -4355                 | 45         | -3074                 | -144              | -6054 | - 14  | -4018                 | - 44       | -3048                 | -158       | -6048 | - 10  |
| 50               | -4344                 | 56         | -3116                 | -186              | -6057 | - 17  | -4030                 | - 56       | -3087                 | -197       | -6050 | - 12  |
| 60               | -4335                 | 65         | -3164                 | -234              | -6060 | - 20  | -4040                 | - 66       | -3126                 | -236       | -6052 | - 14  |
| 70               | -4326                 | 74         | -3203                 | -273              | -6063 | - 23  | -4050                 | - 76       | -3164                 | -274       | ~6053 | - 15  |
| 80               | -4317                 | 83         | -3237                 | -307              | -6026 | - 26  | -4060                 | - 86       | -3200                 | -310       | -6054 | - 16  |
| Lateral Load     |                       |            |                       |                   |       |       |                       |            |                       |            |       |       |
| (5K Lbs. /Wheel) |                       |            |                       |                   |       |       |                       |            |                       |            |       |       |
| + 10K Vertical   | -4387                 | 13         | -2966                 | - 36              | -5997 | 43    | -3965                 | 09         | -2915                 | - 25       | -6001 | 37    |
|                  |                       |            |                       |                   |       |       |                       |            |                       |            |       |       |
| 20               | -4391                 | 09         | -2960                 | - 30              | -5956 | 84    | -3968                 | 06         | -2901                 | - 11       | -5959 | 79    |
| 30               | -4395                 | . 05       | -2955                 | - 25              | -5904 | 136   | -3972                 | 02         | -2891                 | - 01       | -5916 | 122   |
| 40               | -4399                 | 01         | -2952                 | - 22              | -5866 | 174   | 3973                  | 01         | -2878                 | 12         | -5878 | 160   |
| 50               | -4406                 | -06        | -2942                 | - 12              | -5829 | 211   | 3978                  | - 04       | -2860                 | 30         | -5837 | 201   |
| 60               | -4410                 | -10        | -2938                 | - 08.             | -5790 | 250   | 3982                  | - 08       | -2849                 | 41         | -5793 | 245   |
| 0                | -4400                 |            | -2930                 | · .               | -6040 |       | -3974                 |            | -2890                 |            | -6038 |       |

#### TABLE 12 CALIBRATION DATA FULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

| ·                                               | WHEEL 65594 @ 90 <sup>0</sup> |              |                   |       |       |       |                       | WHEEL 65495 @ 90 <sup>0</sup> |                       |              |               |       |  |  |
|-------------------------------------------------|-------------------------------|--------------|-------------------|-------|-------|-------|-----------------------|-------------------------------|-----------------------|--------------|---------------|-------|--|--|
|                                                 | Channel                       |              | Channel Channel   |       |       |       |                       |                               |                       |              |               |       |  |  |
| Vertical Load                                   | 0 <sup>0</sup> +              | Diff.        | 90 <sup>0</sup> - | Diff. | Chan. | Diff. | 00+                   | Diff.                         | 90 <sup>0</sup> +     | Diff.        | Chan.         | Diff. |  |  |
| K lbs./Jack                                     | V1 180 <sup>0</sup> -         | Micro        | V2 270°+          | Micro | Lat.  | Micro | V1 180 <sup>0</sup> - | Micro                         | V2 270 <sup>0</sup> + | Micro        | Lat.          | Micro |  |  |
| (5K Lbs. /Wheel)                                | Reading                       | <u>11/11</u> | Reading           | 11/11 | Rdg.  | "/"   | Reading               | <u>"/"</u>                    | Reading               | <u>''/''</u> | Rdg.          | "/"   |  |  |
| 10                                              | -4397                         | 04           | -3030             | - 75  | -6042 | - 04  | -3977                 | - 03                          | 2964                  | - 70         | - 6042        | - 09  |  |  |
| 20                                              | -4398                         | 03           | -3099             | -144  | -6046 | - 08  | -3978                 | - 04                          | 3030                  | -136         | -6044         | - 06  |  |  |
| 30                                              | -4398                         | 03           | -3165             | -210  | -6048 | - 10  | -3980                 | - 06                          | 3096                  | -202         | -6045         | - 07  |  |  |
| 40                                              | -4398                         | 03           | -3232             | -277  | -6050 | - 12  | -3980                 | - 06                          | 3160                  | -266         | -6046         | - 08  |  |  |
| 50                                              | -4399                         | 02           | -3300             | -345  | -6052 | - 14  | -3982                 | - 08                          | 3227                  | -233         | -6048         | - 10  |  |  |
| <b>60</b>                                       | -4400                         | 01           | -3368             | -413  | -6055 | - 17  | -3984                 | - 10                          | 3294                  | -300         | -6051         | - 13  |  |  |
| 70                                              | -4401                         | 02           | -3433             | -478  | -6057 | - 19  | -3986                 | - 12                          | 3359                  | -365         | -605 <b>2</b> | - 14  |  |  |
| 80                                              | -4401                         | 01           | -3492             | -537  | -6058 | - 20  | -3986                 | - 12                          | 3416                  | -522         | -6054         | - 16  |  |  |
| Lateral Load<br>K lbs. Total<br>(5K Lbs./Wheel) |                               | ·            |                   |       |       |       |                       |                               |                       |              |               |       |  |  |
| +10K Vertical                                   |                               |              |                   |       |       |       |                       |                               |                       |              |               |       |  |  |
| 10                                              | -4396                         | 04           | -3026             | - 71  | -5994 | 44    | -3970                 | 04                            | -2957                 | - 63         | -6001         | 37    |  |  |
| 20                                              | -4394                         | 06           | -3019             | - 64  | -5951 | 81    | -3965                 | 09 <sup>.</sup>               | -2950                 | - 56         | -5956         | 82    |  |  |
| 30                                              | -4392                         | 08           | -3014             | - 59  | -5904 | 134   | -3962                 | 12                            | -2944                 | - 50         | -5916         | 122   |  |  |
| 40                                              | -4389                         | 11           | -3008             | - 53  | -5854 | 184   | -3958                 | 16                            | -2940                 | - 46         | -5877         | 161   |  |  |
| 50                                              | -4390                         | 10           | -3000             | - 45  | -5807 | 231   | -3954                 | 20                            | -2934                 | - 40         | -5831         | 207   |  |  |
| 60                                              | -4386                         | 14           | -3000             | - 45  | -5767 | 271   | -3952                 | 22                            | -2930                 | - 36         | -5789         | 249   |  |  |
| 0                                               | -4400                         |              | -2955             |       | -6038 | l     | -3974                 |                               | -2894                 |              | -6038         |       |  |  |

# TABLE 13CALIBRATION DATAFULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

.

|                                    |                       | WHE   | EL 65594          | @ 120 <sup>0</sup> | WHEEL 65495 @ 120 <sup>0</sup> |       |                       |       |                       |              |       |            |  |  |
|------------------------------------|-----------------------|-------|-------------------|--------------------|--------------------------------|-------|-----------------------|-------|-----------------------|--------------|-------|------------|--|--|
|                                    | Channel               |       | Channel           |                    |                                |       | Channel               |       | Channel               |              | _     |            |  |  |
| Vertical Load                      | 00+                   | Diff. | 90 <sup>0</sup> - | Diff.              | Chan.                          | Diff. | 0~+                   | Diff. | 90 <sup>0</sup> +     | Diff.        | Chan. | Diff.      |  |  |
| K lbs./Jack                        | V1 180 <sup>0</sup> - | Micro | V2 270°+          | Micro              | Lat.                           | Micro | V1 180 <sup>0</sup> - | Micro | V2 270 <sup>0</sup> + | Micro        | Lat.  | Micro      |  |  |
| (5K Lbs./Wheel)                    | Reading               | 11/11 | Reading           | "/"                | Rdg.                           | "/"   | Reading               | "/"   | <u>Reading</u>        | <u>''/''</u> | Rdg.  | <u>"/"</u> |  |  |
| 10                                 | -4421                 | - 11  | -2970             | - 40               | -6041                          | - 01  | -3987                 | - 12  | -2919                 | - 39         | -6039 | - 01       |  |  |
| 20                                 | -4431                 | - 21  | -3009             | - 79               | -6043                          | - 03  | -3997                 | - 22  | -2958                 | - 78         | -6041 | - 03       |  |  |
| 30                                 | -4441                 | - 31  | -3048             | -118               | -6044                          | - 04  | -4008                 | - 33  | -2998                 | -118         | -6042 | - 04       |  |  |
| 40                                 | -4451                 | - 41  | -3088             | -158               | -6047                          | - 07  | -4019                 | - 44  | -3036                 | -156         | -6045 | - 07       |  |  |
| 50                                 | -4462                 | - 52  | -3126             | -196               | -6049                          | - 09  | -4029                 | - 54  | -3076                 | -196         | -6047 | - 09       |  |  |
| 60                                 | -4472                 | - 62  | -3158             | -228               | -6050                          | - 10  | -4042                 | - 67  | -3114                 | -234         | -6052 | - 14       |  |  |
| 70                                 | -4481                 | - 71  | -3197             | -267               | -6049                          | - 09  | -4053                 | - 78  | -3153                 | -273         | -6053 | - 15       |  |  |
| 80                                 | -4493                 | - 83  | -3247             | -317               | -6049                          | - 09  | -4062                 | - 87  | -3189                 | -309         | -6055 | - 17       |  |  |
| Lateral Load                       |                       |       |                   |                    |                                |       |                       |       |                       |              |       |            |  |  |
| K IDS. TOTAL                       |                       |       |                   |                    |                                |       |                       |       |                       |              |       |            |  |  |
| (5K Lbs./Wheel)                    |                       |       |                   |                    |                                |       |                       |       |                       |              |       |            |  |  |
| $\frac{+10K \text{ Vertical}}{10}$ | -4429                 | - 19  | -2962             | - 32               | -6005                          | 35    | -3995                 | - 20  | -2908                 | - 28         | -6003 | 35         |  |  |
| 00                                 | 441 8                 | 07    | 0040              |                    |                                |       |                       |       |                       |              |       |            |  |  |
| 20                                 | -4417                 | - 07  | -2960             | - 30               | -5957                          | 83    | -3986                 | - 11  | -2897                 | - 17         | -5962 | 76         |  |  |
| 30                                 | -4412                 | - 02  | -2959             | - 29               | -5910                          | 130   | -3977                 | - 02  | -2888                 | - 08         | -5918 | 120        |  |  |
| 40                                 | -4402                 | 08    | -2954             | - 24               | -5861                          | 179   | -3968                 | 07    | -2880                 | -            | -5879 | 159        |  |  |
| 50                                 | -4394                 | 16    | -2950             | - 20               | -5825                          | 225   | -3959                 | 16    | -2873                 | 07           | -5836 | 202        |  |  |
| 60                                 | -4381                 | 29    | -2948             | - 18               | -5775                          | 265   | -3949                 | 26    | -2867                 | 13           | -5793 | 245        |  |  |
| 0                                  | -4410                 |       | -2930             |                    | -6040                          |       | -3975                 |       | -2880                 |              | -6038 |            |  |  |

# TABLE 14 CALIBRATION DATA FULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

۰.

••~

1997 - 1997 <u>-</u>
|                             |                       | WHE        | EL 65594            | @ 150 <sup>0</sup> |       |       |                       | WH    | EEL 6549              | 95 @ 15C | o     |              |
|-----------------------------|-----------------------|------------|---------------------|--------------------|-------|-------|-----------------------|-------|-----------------------|----------|-------|--------------|
| •                           | Channel               |            | Channel             |                    |       |       | Channel               |       | Channel               |          |       |              |
| Vertical Load               | , 0 <mark>0</mark> +  | Diff.      | 90 <mark>0</mark> - | Diff.              | Chan. | Diff. | 0 <sup>0</sup> +      | Diff. | 90 <sup>0</sup> +     | Diff.    | Chan. | Diff.        |
| K lbs./Jack                 | V1 180 <sup>0</sup> - | Micro      | V2 270°≁            | Micro              | Lat.  | Micro | V1 180 <sup>0</sup> - | Micro | V2 270 <sup>0</sup> + | Micro    | Lat.  | Micro        |
| (5K Lbs. /Wheel)            | Reading               | <u>"/"</u> | Reading             | 11/11              | Rdg.  | "/"   | Reading               | 11/11 | Reading               | 11/11    | Rdg.  | <u>''/''</u> |
| 10                          | -4459                 | - 45       | -2930               | - 06               | -6039 | 01    | -4029                 | - 45  | -2871                 | - 04     | -6041 | - 01         |
| 20                          | -4500                 | - 86       | -2938               | - 14               | -6043 | - 03  | -4065                 | - 81  | -2878                 | - 11     | -6043 | - 03         |
| 30                          | -4538                 | - 124      | -2946               | - 22               | -6046 | - 06  | -4102                 | -118  | -2885                 | - 18     | -6046 | - 06         |
| 40                          | -4578                 | - 164      | -2954               | - 30               | -6048 | - 08  | -4140                 | -156  | -2892                 | - 25     | -6047 | - 07         |
| 50                          | -4618                 | 204        | -2962               | - 38               | -6050 | - 10  | -4176                 | -192  | -2898                 | - 31     | -6049 | - 09         |
| 60                          | -4658                 | - 244      | -2972               | - 48               | -6054 | - 14  | -4215                 | -231  | -2908                 | - 41     | -6054 | - 14         |
| . 70                        | -4698                 | - 284      | -2979               | - 55               | -6057 | - 17  | -4252                 | -268  | -2914                 | - 47     | -6056 | - 16         |
| 80                          | -4734                 | - 320      | -2987               | - 63               | -6058 | - 18  | -4285                 | -301  | -2920                 | - 53     | -6058 | - 18         |
| Lateral Load<br>K lbs Total |                       |            |                     |                    |       |       |                       |       |                       |          |       |              |
| (5K Lbs. /Wheel)            |                       |            |                     |                    |       |       |                       |       |                       |          |       |              |
| + 10K Vertical              |                       |            |                     |                    |       |       |                       |       |                       |          |       |              |
| 10                          | -4446                 | - 32       | -2929               | - 05               | -6002 | 38    | -4013                 | - 29  | -2876                 | - 09     | -6004 | 36           |
| 20                          | -4431                 | - 17       | -2928               | - 04               | -5954 | 86    | -3997                 | - 13  | -2878                 | - 11     | -5957 | 83           |
| 30                          | -4416                 | - 02       | -2924               | -                  | -5908 | 132   | -3982                 | 02    | -2880                 | - 13     | -5915 | 125          |
| 40                          | -4398                 | 16         | -2920               | 04                 | -5856 | 184   | -3969                 | 15    | -2882                 | - 15     | -5876 | 164          |
| 50                          | -4382                 | 32         | -2919               | 03                 | -5806 | 234   | -3954                 | 30    | -2884                 | - 17     | -5830 | 210          |
| 60                          | -4370                 | 44         | -2918               | 06                 | -5768 | 272   | -3940                 | 44    | -2888                 | -21      | -5784 | 256          |
| 0                           | -4414                 |            | -2924               |                    | -6040 |       | -3984                 |       | -2867                 |          | -6040 |              |

# TABLE 15CALIBRATION DATAFULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

| TABLE 16                                             |
|------------------------------------------------------|
| CALIBRATION DATA                                     |
| FULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS |

|                              |                       | WHE        | EEL 65594             | @ 180 <sup>0</sup> |                 |      |                       | WH           | EEL 65495             | 5 @ 180 <sup>0</sup> |       |              |
|------------------------------|-----------------------|------------|-----------------------|--------------------|-----------------|------|-----------------------|--------------|-----------------------|----------------------|-------|--------------|
|                              | Channel               |            | Channel               |                    |                 |      | Channel               |              | Channel               |                      |       |              |
| Vertical Load                | 0 <sup>0</sup> +      | Diff.      | 90 <mark>0-</mark>    | Diff.              | Chan. Di        | iff. | 00+                   | Diff.        | 90 <sup>0</sup> +     | Diff.                | Chan. | Diff.        |
| K lbs./Jack                  | V1 180 <sup>0</sup> - | Micro      | V2 270 <sup>0</sup> + | Micro              | Lat. M          | icro | V1 180 <sup>0</sup> - | Micro        | V2 270 <sup>0</sup> + | Micro                | Lat.  | Micro        |
| (5K Lbs./Wheel)              | Reading               | <u>"/"</u> | Reading               | 11/11              | <u>Rdg. "</u> , | /''  | Reading               | <u>''/''</u> | Reading               | "/"                  | Rdg.  | <u>''/''</u> |
| 10                           | -4495                 | , - 70     | -2924                 | - 04               | -6042 -         | - 02 | -4065                 | - 69         | -2862                 | 01                   | -6048 | - 07         |
| 20                           | -4562                 | -137       | -2922                 | - 02               | -6047 -         | - 07 | -4133                 | -137         | -2861                 | 02                   | -6052 | - 11         |
| 30                           | -4630                 | -205       | -2920                 | <b>-</b> '         | -6052 -         | - 12 | -4200                 | -204         | -285                  | 04                   | -6055 | - 14         |
| 40                           | -4698                 | -273       | -2918                 | 02                 | -6054 -         | - 14 | -4266                 | -270         | -2858                 | 05                   | -6060 | - 19         |
| 50                           | -4764                 | -339       | -2918                 | 02                 | -6059 -         | - 19 | -4334                 | -338         | -2855                 | 08                   | -6063 | - 22         |
| 60                           | -4828                 | -403       | -2916                 | 04                 | -6062 -         | - 22 | -4401                 | -405         | -2853                 | 10                   | -6067 | - 26         |
| 70                           | -4892                 | -467       | -2915                 | 05                 | -6064 -         | - 24 | -4468                 | -472         | -2851                 | 12                   | -6070 | - 29         |
| 80                           | -4952                 | -524       | -2914                 | 06                 | -6068 -         | - 28 | -4530                 | -536         | -2850                 | 13                   | -6072 | - 31         |
| Lateral Load<br>K lbs. Total |                       |            |                       |                    |                 |      |                       |              |                       |                      |       |              |
| (5K Lbs./Wheel)              |                       |            |                       |                    |                 |      |                       |              |                       |                      |       |              |
| 10                           | -4495                 | - 70       | -2922                 | - 02               | -6006           | 34   | -4059                 | - 63         | -2872                 | - 09                 | -6005 | 36           |
| 20                           | -4481                 | - 56       | -2924                 | - 04               | -5959           | 81   | -4046                 | - 50         | -2878                 | - 15                 | -5961 | 80           |
| 30                           | -4471                 | - 46       | -2929                 | - 09               | -5910 1         | .30  | -4038                 | - 42         | -2886                 | - 23                 | -5918 | 123          |
| 40                           | -4460                 | - 35       | -2930                 | - 10               | -5860 1         | .80  | -4030                 | - 34         | -2891                 | - 28                 | -5879 | 162          |
| 50                           | -4450                 | - 25       | -2932                 | - 12               | -5815 2         | 25   | -4024                 | - 28         | -2897                 | - 34                 | -5835 | 206          |
| 60                           | -4440                 | - 15       | -2932                 | - 12               | -5772 2         | 68   | -4017                 | - 21         | -2901                 | - 38                 | -5795 | 246          |
| 0.                           | -4425                 |            | -2920                 |                    | -6040           |      | -3996                 |              | -2863                 |                      | -6041 |              |

**,** 

| ÷                                               |              | WHI   | EEL 65594 | @ 210 <sup>0</sup> |         |       |          | WH    | EEL 6549            | 5 @ 210 | 0            |       |
|-------------------------------------------------|--------------|-------|-----------|--------------------|---------|-------|----------|-------|---------------------|---------|--------------|-------|
|                                                 | Channel      | · .   | Channel   |                    |         |       | Channel  |       | Channel             |         | - •          |       |
| Vertical Load                                   | 00+          | Diff. | 900-      | Diff.              | Chan. D | )iff. | + 0 +    | Diff. | 90 <sup>0</sup> +   | Diff.   | Chan.        | Diff. |
| K IDS. / Jack                                   | VI 180°-     | Micro | V2 2700+  | Micro              | Lat. M  | 11cro | VI 180°- | Micro | VZ Z70°+<br>Pooding | 11/11   | Lat.<br>Pdo  | MICTO |
| 10                                              | <u>-4441</u> | - 33  | -2906     | <u> </u>           | -6038   | - 01  | -4020    | - 36  | -2850               | 12      | <u>-6038</u> | - 01  |
| 20                                              | -4475        | - 67  | -2895     | 22                 | -6041   | - 04  | -4056    | - 72  | -2840               | 22      | -6041        | - 04  |
| 30                                              | -4507        | - 99  | -2885     | 32                 | -6042   | - 06  | -4092    | -108  | -2828               | 34      | -6042        | - 05  |
| 40                                              | -4538        | -130  | -2872     | 45                 | -6042   | - 05  | -4130    | -146  | -2818               | 44      | -6042        | - 05  |
| 50                                              | -4572        | -164  | -2864     | 53                 | -6046   | - 09  | -4166    | -182  | -2809               | 53      | -6046        | - 09  |
| 60                                              | -4604        | -196  | -2852     | 65                 | -6047   | - 10  | -4202    | -218  | -2797               | 65      | -6045        | - 08  |
| 70                                              | -4634        | -226  | -2841     | 76                 | -6046   | - 09  | -4240    | -256  | -2786               | 76      | -6046        | - 09  |
| <b>Ś</b> 0                                      | -4666        | -258  | -2831     | 86                 | -6046   | - 09  | -4273    | -289  | -2778               | 84      | -6046        | - 09  |
| Lateral Load<br>K lbs. Total<br>(5K Lbs./Wheel) |              |       |           |                    |         |       |          |       |                     |         |              |       |
| $\frac{+10K}{10}$                               | -4432        | - 24  | -2914     | 03                 | -6002   | 35    | -4014    | - 30  | -2862               | ÷       | -6002        | 35    |
| 20                                              | -4416        | - 08  | -2924     | - 07               | -5953   | 84    | -4001    | - 17  | -2874               | -12     | -5956        | 81    |
| 3 <u>0</u>                                      | -4404        | 04    | -2933     | - 16               | -5906   | 131   | -3993    | - 09  | -2886               | -24     | -5915        | 122   |
| 40                                              | -4392        | 16    | -2942     | - 25               | -5860   | 177   | -3986    | - 02  | -2895               | -33     | -5882        | 155   |
| 50                                              | -4380        | 28    | -2950     | - 33               | -5812   | 225   | -3978    | 06    | -2905               | -41     | -5839        | 198   |
| 60                                              | -4370        | 38    | -2955     | - 38               | -5775   | 262   | -3972    | 12    | -2914               | -52     | -5795        | 242   |
| Û                                               | -4408        |       | -2917     |                    | -6037   |       | -3984    |       | -2862               |         | -6037        |       |

# TABLE 17 -CALIBRATION DATAFULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

|                                                                   |     |                                                                        | WHI            | EEL 65594                                                               | @ 240 <sup>0</sup>             |                              |                                |                                                                        | WH                      | EEL 65495                                                               | 5@240 <sup>0</sup> |                              |                |
|-------------------------------------------------------------------|-----|------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------|--------------------------------|------------------------------|--------------------------------|------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------|--------------------|------------------------------|----------------|
| Vertical Load<br>K lbs./Jack<br>(5K Lbs./Wheel)                   | • • | Channel<br>0 <sup>0</sup> +<br>V1 180 <sup>0</sup> -<br><u>Reading</u> | Diff.<br>Micro | Channel<br>90 <sup>0</sup> –<br>V2 270 <sup>0</sup> +<br><u>Reading</u> | Diff.<br>Micro<br><u>''/''</u> | Chan.<br>Lat.<br><u>Rdg.</u> | Diff.<br>Micro<br><u>''/''</u> | Channel<br>0 <sup>0</sup> +<br>V1 180 <sup>0</sup> -<br><u>Reading</u> | Diff.<br>Micro<br>''/'' | Channel<br>90 <sup>0</sup> +<br>V2 270 <sup>0</sup> +<br><u>Reading</u> | Diff.<br>Micro     | Chan.<br>Lat.<br><u>Rdg.</u> | Diff.<br>Micro |
| 10                                                                |     | -4408                                                                  | - 10           | -2866                                                                   | 42                             | -6042                        | - 03                           | -3979                                                                  | - 08                    | -2816                                                                   | 40                 | -6040                        | - 01           |
| 20                                                                |     | -4418                                                                  | - 20           | -2829                                                                   | 79                             | -6047                        | - 08                           | -3989                                                                  | - 18                    | -2781                                                                   | 75                 | -6044                        | - 05           |
| 30                                                                |     | -4425                                                                  | - 27           | -2793                                                                   | 115                            | -6049                        | - 10                           | -3998                                                                  | - 27                    | -2746                                                                   | 110                | -6046                        | - 07           |
| 40                                                                |     | -4434                                                                  | - 36           | -2756                                                                   | 152                            | -6054                        | - 15                           | -4006                                                                  | - 35                    | -2710                                                                   | 146                | -6049                        | - 10           |
| 50                                                                |     | -4442                                                                  | - 44           | -2718                                                                   | 190                            | -6056                        | - 17                           | -4016                                                                  | - 45                    | -2676                                                                   | 180                | -6051                        | - 12           |
| 60                                                                |     | -4450                                                                  | - 52           | -268 0                                                                  | 228                            | -6059                        | - 20                           | -4024                                                                  | - 53                    | -2640                                                                   | 216                | -6054                        | - 15           |
| 70                                                                |     | -4460                                                                  | - 62           | -2642                                                                   | 266                            | -6060                        | - 21                           | -4031                                                                  | - 60                    | -2605                                                                   | 251                | -6057                        | - 18           |
| 80                                                                |     | -4469                                                                  | - 71           | -2606                                                                   | 302                            | -6064                        | - 25                           | -4042                                                                  | - 71                    | -2570                                                                   | 286                | -6059                        | - 20           |
| Lateral Load<br>K lbs. Total<br>(5K Lbs./Wheel)<br>+ 10K Vertical |     |                                                                        |                |                                                                         |                                |                              |                                |                                                                        |                         |                                                                         |                    |                              |                |
| 10                                                                |     | -4398                                                                  | -              | -2884                                                                   | 24                             | -6006                        | 33                             | -3980                                                                  | - 09                    | -2830                                                                   | 26                 | -6000                        | - 39           |
| 20                                                                |     | -4392                                                                  | 06             | -2895                                                                   | 13                             | -5960                        | 79                             | -3977                                                                  | - 06                    | -2844                                                                   | 12                 | -5960                        | 79             |
| 30                                                                |     | -4386                                                                  | 12             | -2912                                                                   | -04                            | -5915                        | 124                            | -3974                                                                  | - 03                    | -2856                                                                   | -                  | -5920                        | 119            |
| 40                                                                | •   | -4378                                                                  | 20             | -2928                                                                   | - 20                           | -5870                        | 169                            | -3972                                                                  | - 01                    | -2868                                                                   | - 12               | -5884                        | 155            |
| 50                                                                |     | -4370                                                                  | 28             | -2942                                                                   | - 34                           | -5826                        | 213                            | -3968                                                                  | 03                      | -2884                                                                   | - 28               | -5842                        | 197            |
| <b>6</b> Q                                                        |     | -4364                                                                  | 34             | -2956                                                                   | - 48                           | -5786                        | 253                            | -3966                                                                  | 05                      | -2898                                                                   | - 42               | -5800                        | 239            |
| 0                                                                 |     | -4398                                                                  |                | -2908                                                                   |                                | -6039                        |                                | -3971                                                                  |                         | -2856                                                                   |                    | -6039                        |                |

TABLE 18 CALIBRATION DATA FULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

~

|                                                 |                       | WHI        | EEL 65594         | @ 270 <sup>0</sup> |       |       |                       | WH           | EEL 6549              | 5 @ 270 <sup>0</sup> | •     |            |
|-------------------------------------------------|-----------------------|------------|-------------------|--------------------|-------|-------|-----------------------|--------------|-----------------------|----------------------|-------|------------|
|                                                 | Channel               |            | Channel           | •                  |       |       | Channel               |              | Channel               |                      |       |            |
| Vertical Load                                   | 0 <sup>0</sup> +      | Diff.      | 90 <sup>0</sup> - | Diff.              | Chan. | Diff. | 0 <sup>0</sup> +      | Diff.        | 90 <sup>0</sup> +     | Diff.                | Chan. | Diff.      |
| K lbs./Jack                                     | V1 180 <sup>0</sup> - | Micro      | V2 270°+          | Micro              | Lat.  | Micro | V1 180 <sup>0</sup> - | Micro        | V2 270 <sup>0</sup> + | Micro                | Lat.  | Micro      |
| (5K Lbs. /Wheel)                                | <u>Reading</u>        | <u>"/"</u> | Reading           | 11/11              | Rdg.  | "/"   | Reading               | <u>11/11</u> | Reading               | "/"                  | Rdg.  | <u>"/"</u> |
| 10                                              | -4395                 | 02         | -2820             | 71                 | -6035 | 03    | -3964                 | 08           | -2769                 | 70                   | -6038 | - 06       |
| 20                                              | -4395                 | 02         | -2754             | 137                | -6038 | -     | -3963                 | 09           | -2702                 | 137                  | -6042 | - 10       |
| <b>30</b>                                       | -4394                 | 03         | -2687             | 204                | -6040 | -02   | -3963                 | 09           | -2635                 | 204                  | -6043 | - 11       |
| 40                                              | -4394                 | 03         | -2618             | 273                | -6040 | -02   | -3961                 | 11           | -2568                 | 271                  | -6044 | - 12       |
| 50                                              | -4392                 | 05         | -2550             | 341                | -6042 | -04   | -3961                 | 11 .         | -2502                 | <b>`337</b> '        | -6044 | - 12       |
| 60                                              | -4392                 | 05         | -2484             | 407                | -6042 | -04   | -3960                 | 12           | -2435                 | 404                  | -6046 | - 14       |
| 70                                              | -4391                 | 06         | -2420             | 471                | -6042 | -04   | -3960                 | 12           | -2370                 | 470                  | -6047 | - 15       |
| 80                                              | -4392                 | 05         | -2358             | 533                | -6044 | -06   | -3959                 | 13           | -2306                 | 534                  | -6048 | - 16       |
| Lateral Load<br>K lbs. Total<br>(5K Lbs./Wheel) |                       |            |                   |                    |       |       |                       |              |                       |                      |       |            |
| <u>+ 10K Vertical</u><br>10                     | -4398                 | 01         | -2832             | 59                 | -5993 | 45    | -3975                 | -03          | -2775                 | 64                   | -5993 | - 39       |
| 20                                              | -4397                 | -          | -2845             | <b>46</b>          | -5960 | 78    | -3979                 | -07          | -2786                 | 53                   | -5950 | 82         |
| . 30                                            | -4396                 | 01         | -2857             | 34                 | -5917 | 121   | -3982                 | -10          | -2794                 | 45                   | -5913 | 119        |
| . 40                                            | -4394                 | 03         | -2872             | 19                 | -5874 | 164   | -3987                 | -15          | -2800                 | 39                   | -5874 | 158        |
| 50                                              | -4394                 | 03         | -2882             | 09                 | -5834 | 204   | -3988                 | - 16         | -2806                 | 33                   | -5834 | 198        |
| 60                                              | -4391                 | 06         | -2894             | -03                | -5792 | 246   | -3990                 | -18          | -2814                 | 25                   | -5792 | 240        |
| 0                                               | -4397                 |            | -2891             |                    | -6038 |       | -3972                 |              | -2839                 | ·                    | -6032 |            |

### TABLE 19 CALIBRATION DATA FULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

| ÷.                                                                |                                                                        | WHI            | EEL 65594                                                        | @ 300 <sup>0</sup> |                              |                                | 01                               | WH                      | EEL 65495                        | 5 @ 300 <sup>0</sup>    | )                            |                   |
|-------------------------------------------------------------------|------------------------------------------------------------------------|----------------|------------------------------------------------------------------|--------------------|------------------------------|--------------------------------|----------------------------------|-------------------------|----------------------------------|-------------------------|------------------------------|-------------------|
| Vertical Load<br>K lbs./Jack<br>(5K Lbs./Wheel)                   | Channel<br>0 <sup>0</sup> +<br>V1 180 <sup>0</sup> -<br><u>Reading</u> | Diff.<br>Micro | Channel<br>90 <sup>0</sup> -<br>V2 270 <sup>0</sup> +<br>Reading | Diff.<br>Micro     | Chan.<br>Lat.<br><u>Rdg.</u> | Diff.<br>Micro<br><u>''/''</u> | V1 180 <sup>o</sup> -<br>Reading | Diff.<br>Micro<br>''/'' | V2 270 <sup>0</sup> +<br>Reading | Diff.<br>Micro<br>''/'' | Chan.<br>Lat.<br><u>Rdg.</u> | Diff.<br>Micro    |
| 10                                                                | -4371                                                                  | 39             | -2919                                                            | 11                 | -6041                        | - 01                           | -3937                            | 38                      | -2868                            | 12                      | -6039                        | - 01              |
| 20                                                                | -4331                                                                  | 79             | -2909                                                            | 21                 | -6045                        | - 05                           | -3900                            | 75                      | -2857                            | 23                      | -6041                        | - 03              |
| 30                                                                | -4293                                                                  | 117            | -2900                                                            | 30                 | -6048                        | - 08                           | -3862                            | 113                     | -2845                            | 35                      | -6043                        | - 05              |
| 40                                                                | -4254                                                                  | 156            | -2888                                                            | 42                 | -6049                        | - 09                           | -3824                            | 151                     | -2834                            | 46                      | -6044                        | - 06              |
| 50                                                                | -4216                                                                  | 194            | -2878                                                            | 52                 | -6051                        | - 11                           | -3786                            | 189                     | -2824                            | 56                      | -6046                        | - 08              |
| 60                                                                | -4176                                                                  | 234            | -2867                                                            | 63                 | -6054                        | - 14                           | -3749                            | 226                     | -2812                            | 68                      | -6048                        | - 10              |
| 70                                                                | -4138                                                                  | 272            | -2856                                                            | 74                 | -6056                        | - 16                           | -3711                            | 264                     | -2801                            | 79                      | -6050                        | - 12              |
| 80                                                                | -4100                                                                  | 310            | -2846                                                            | 84                 | -6058                        | - 18                           | -3674                            | 301                     | -2784                            | 96                      | -6052                        | - 14 <sup>.</sup> |
| Lateral Load<br>K lbs. Total<br>(5K Lbs./Wheel)<br>+ 10K Vertical |                                                                        |                |                                                                  |                    |                              |                                |                                  |                         |                                  |                         |                              |                   |
| 10                                                                | -4390                                                                  | 20             | -2906                                                            | 24                 | -6012                        | 38                             | -3978                            | -03                     | -2909                            | - 29                    | -6003                        | 35                |
| 20                                                                | -4401                                                                  | 09             | -2918                                                            | 12                 | -5957                        | 83                             | -3989                            | -14                     | -2898                            | - 18                    | -6064                        | 74                |
| 30                                                                | -4408                                                                  | 02             | -2930                                                            | -                  | -5909                        | 131                            | -4001                            | -26                     | -2888                            | - 08                    | -6020                        | 118               |
| 40                                                                | -4417                                                                  | -07            | -2939                                                            | -09                | -5862                        | 178                            | -4008                            | - 33                    | -2881                            | - 01                    | -5977                        | 161 <sup>°</sup>  |
| 50                                                                | -4432                                                                  | -22            | -2947                                                            | -17                | -5820                        | 220                            | -4015                            | - 40                    | -2872                            | 08                      | -5938                        | 200               |
| 60                                                                | -4446                                                                  | -36            | -2950                                                            | -20                | -5782                        | 258                            | -4022                            | - 47                    | -2869                            | 11                      | -5898                        | 240               |
| 0                                                                 | -4410                                                                  |                | -2930                                                            |                    | -6040                        |                                | -3975                            |                         | -2880                            |                         | -6038                        |                   |

# TABLE 20CALIBRATION DATAFULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

٠.

# TABLE 21CALIBRATION DATAFULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

|                                 |                       | WHI        | EEL 65594           | @ 330 <sup>0</sup> |       |       |                       | WH    | EEL 654               | 95@330 | ) <sup>0</sup> |       |
|---------------------------------|-----------------------|------------|---------------------|--------------------|-------|-------|-----------------------|-------|-----------------------|--------|----------------|-------|
|                                 | Channel               |            | Channel             |                    |       |       | Channel               |       | Channel               |        |                |       |
| Vertical Load                   | 0 <sup>0</sup> +      | Diff.      | 90 <mark>0</mark> – | Diff.              | Chan. | Diff. | 0 <sup>0</sup> +      | Diff. | 90 <sup>0</sup> +     | Diff.  | Chan.          | Diff. |
| K lbs./Jack                     | V1 180 <sup>0</sup> - | Micro      | V2 270°+            | Micro              | Lat.  | Micro | V1 180 <sup>0</sup> - | Micro | V2 270 <sup>0</sup> + | Micro  | Lat.           | Micro |
| (5K Lbs./Wheel)                 | Reading               | <u>"/"</u> | Reading             | -11/11             | Rdg.  | 11/11 | Reading               | "/"   | Reading               | "/"    | Rdg.           | 11/11 |
| 10                              | -4352                 | 44         | -2913               | 10                 | -6034 | 01    | -3936                 | 42    | -2859                 | 08     | -6034          | - 04  |
| 20                              | -4312                 | 84         | -2904               | 19                 | -6035 | -     | -3903                 | 75    | -2849                 | 18     | -6035          | · 05  |
| 30                              | -4276                 | 120        | -2895               | 28                 | -6036 | -01   | -3872                 | 106   | -2841                 | 26     | -6036          | - 06  |
| 40                              | -4239                 | 157        | -2887               | 36 <sup>.</sup>    | -6036 | -01   | -3838                 | 140   | -2832                 | 35     | -6038          | - 08  |
| 50                              | -4200                 | 196        | -2878               | 45                 | -6036 | -01   | -3806                 | 172   | -2824                 | 43     | -6038          | - 08  |
| . 60                            | -4164                 | 232        | -2871               | 52                 | -6035 | -     | -3773                 | 205   | -2815                 | 52     | -6040          | - 10  |
| 70                              | -4129                 | 267        | -2862               | 61                 | -6035 | -     | -3739                 | 239   | -2806                 | 61     | -6042          | - 12  |
| 80                              | -4092                 | 304        | -2853               | 70                 | -6035 | -     | -3710                 | 268   | -2798                 | 69     | -6042          | - 12  |
| Lateral Load                    |                       |            |                     |                    |       |       |                       |       |                       |        |                |       |
| K lbs. Total<br>(5K Lbs./Wheel) |                       |            |                     |                    |       |       |                       |       |                       |        |                |       |
| +10K Vertical                   |                       |            |                     |                    |       |       |                       |       |                       |        |                |       |
| 10                              | -4366                 | 30         | -2921               | 02                 | -5999 | 36    | -3954                 | 24    | -2856                 | 11     | -5990          | 40    |
| 20                              | -4376                 | 20         | -2925               | -02                | -5960 | 75    | -3964                 | 14    | -2857                 | 10     | -5954          | 76    |
| 30                              | -4389                 | 07         | -2932               | - 09               | -5918 | 117   | -3977                 | 01    | -2858                 | 09     | -5910          | 120   |
| · <b>40</b>                     | -4403                 | -07        | -2938               | - 15               | -5872 | 163   | -3989                 | - 11  | -2859                 | 08     | -5872          | 158   |
| 50                              | -4416                 | -20        | -2943               | - 20               | -5827 | 208   | -4000                 | - 22  | -2859                 | 08     | -5834          | 196   |
| 60                              | -4426                 | -30        | -2950               | - 27               | -5788 | 247   | -4006                 | - 28  | -2861                 | 06     | -5798          | 232   |
| 0                               | -4396                 | •          | -2923               |                    | -6035 |       | -3978                 |       | -2867                 |        | -6030          |       |

|                                                 |                       | WHE          | EEL 65164             | @ 0 <sup>0</sup> |       |            |                       | WH    | EEL 65584             | 4 @ 0 <sup>0</sup> . |              |            |
|-------------------------------------------------|-----------------------|--------------|-----------------------|------------------|-------|------------|-----------------------|-------|-----------------------|----------------------|--------------|------------|
|                                                 | Channel               |              | Channel               |                  |       |            | Channel               |       | Channel               |                      |              |            |
| Vertical Load                                   | 0 <sup>0</sup> +      | Diff.        | 90 <sup>0</sup> -     | Diff.            | Chan. | Diff.      | 00+                   | Diff. | 90 <sup>0</sup> +     | Diff.                | Chan.        | Diff.      |
| K lbs./Jack                                     | V1 180 <sup>0</sup> - | Micro        | V2 270 <sup>0</sup> + | Micro            | Lat.  | Micro      | V1 180 <sup>0</sup> - | Micro | V2 270 <sup>0</sup> + | Micro                | Lat.         | Micro      |
| (5K Lbs./Wheel)                                 | Reading               | <u>11/11</u> | Reading               | 11/17            | Rdg.  | <u>"/"</u> | Reading               | "/"   | Reading               | <u>"/"</u>           | Rdg.         | <u>"/"</u> |
| 10                                              | 045                   | 78           | 1300                  | 02               | 4965  | -05        | -235                  | 73    | 1646                  | <b>Q1</b>            | 5321         | -01        |
| 20                                              | 108                   | 141          | 1300                  | 02               | 4964  | -06        | - 173                 | 135   | 1646                  | 01                   | 5317         | -05        |
| /s> <b>30</b>                                   | 173                   | 206          | 1301                  | . 03             | 4965  | -05        | -109                  | 199   | 1648                  | 03                   | 5316         | -06        |
| 40                                              | 238                   | 271          | 1300                  | J2               | 4961  | -09        | -045                  | 263   | 1648                  | 03                   | 5312         | -10        |
| 50                                              | 302                   | 335          | 1301                  | 03               | 4960  | -10        | 0 23                  | 331   | 1649                  | 04                   | 5312         | -10        |
| 60                                              | 367                   | 400          | 1301                  | 03               | 4959  | -11        | 087                   | 395   | 1651                  | 06                   | 5313         | -09        |
| 70                                              | 431                   | 464          | 1302                  | 04               | 4960  | -10        | 153                   | 461   | 1652                  | 07                   | 5315         | -07        |
| 80                                              | 496                   | 529          | 1306                  | 08               | 4957  | -13        | 214                   | 522   | 1653                  | 08                   | 5312         | -10        |
| Lateral Load<br>K lbs. Total<br>(5K Lbs./Wheel) |                       |              |                       |                  |       |            |                       |       |                       |                      |              |            |
| + 10K Vertical<br>10                            | 030                   | 63           | 1298                  | •                | 5013  | 43         | -242                  | 66    | 1645                  | -                    | <u>5</u> 360 | 38         |
| 20                                              | 021                   | 54           | 1295                  | -03              | 5060  | 90         | -244                  | 64    | 1643                  | -02                  | 5405         | 83         |
| 30                                              | 014                   | 47           | 1290                  | -08              | 5100  | 130        | - 246                 | 62    | 1640                  | -05                  | 5447         | 125        |
| 40                                              | 007                   | 40           | 1291                  | -07              | 5141  | 171        | -246                  | 62    | 1640                  | -05                  | 5491         | 169        |
| 50                                              | -003                  | 36           | 1288                  | -10              | 5182  | 212        | -248                  | 60    | 1638                  | -07                  | 5530         | 208        |
| 60                                              | -013                  | 46           | 1284                  | -14              | 5235  | 265        | -251                  | 57    | 1636                  | -09                  | 5573         | 249        |
| 0                                               | -033                  |              | 1298                  |                  | 4970  |            | -308                  |       | 1645                  |                      | 5322         |            |

TABLE 22CALIBRATION DATAFULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

|                  |                       | WHE          | CEL 65164             | @ 30 <sup>0</sup> |       |       |                       | WH    | EEL 65584             | 4 @ 30 <sup>0</sup> |       |       |
|------------------|-----------------------|--------------|-----------------------|-------------------|-------|-------|-----------------------|-------|-----------------------|---------------------|-------|-------|
|                  | Channel               |              | Channel               |                   |       |       | Channel               |       | Channel               |                     |       |       |
| Vertical Load    | 0 <sup>0</sup> +      | Diff.        | 90 <sup>0</sup>       | Diff.             | Chan. | Diff. | 0 <sup>0</sup> +      | Diff. | 90 <sup>0</sup> +     | Diff.               | Chan. | Diff. |
| K lbs./Jack      | V1 180 <sup>0</sup> - | Micro        | V2 270 <sup>0</sup> + | Micro             | Lat.  | Micro | V1 180 <sup>0</sup> - | Micro | V2 270 <sup>0</sup> + | Micro               | Lat.  | Micro |
| (5K Lbs. /Wheel) | <u>Reading</u>        | <u>11/11</u> | Reading               | 11/12             | Rdg.  | "/"   | Reading               | "/"   | Reading               | <u>''/''</u>        | Rdg.  | 11/11 |
| 10               | -002                  | 33           | 1283                  | -12               | 4970  | -05   | -306                  | 33    | 1623                  | -10                 | 5312  | -01   |
| 20               | 35                    | 70           | 1274                  | <b>-2</b> 1       | 4971  | -04   | -272                  | 67    | 1614                  | -19                 | 5310  | -03   |
| 30               | 71                    | 106          | 1264                  | -31               | 4970  | -05   | -238                  | 101   | 1606                  | -27                 | 5310  | 03    |
| 40               | 106                   | 141          | 1257                  | -38               | 4971  | -04   | -205                  | 134   | 1598                  | -35                 | 5310  | -03   |
| 50               | 143                   | 178          | 1247                  | <del>-</del> 48   | 4970  | -05   | -170                  | 169   | 1591                  | -42                 | 5311  | -02   |
| . 60             | 180                   | 215          | 1237                  | -58               | 4971  | -04   | -134                  | 205   | 1583                  | -50                 | 5312  | -01   |
| 70               | 215                   | 250          | 1229                  | -66               | 4971  | -04   | -101                  | 238   | 1573                  | -60                 | 5313  | -     |
| 80               | 250                   | 285          | 1219                  | -76               | 4970  | -05   | -064                  | 275   | 1566                  | -67                 | 5312  | -01   |
| Lateral Load     |                       |              |                       |                   |       |       |                       |       |                       |                     |       |       |
| (5K Lbs. /Wheel) |                       |              |                       |                   |       |       |                       |       |                       |                     |       |       |
| + 10K Vertical   |                       |              |                       |                   |       |       |                       |       |                       |                     |       |       |
| 10               | -016                  | 19           | 1288                  | 21                | 5016  | 41    | -310                  | 29    | 1624                  | -09                 | 5351  | 38    |
| 20               | -030                  | 05           | 1289                  | 21                | 5061  | 86    | -312                  | 27    | 1625                  | -08                 | 5391  | 78    |
| 30               | -044                  | -09          | 1295                  | 27                | 5110  | 135   | -316                  | 23    | 1623                  | -10                 | 5439  | 126   |
| 40               | -055                  | -20          | 1300                  | 20                | 5146  | 171   | -320                  | 19    | 1625                  | -08                 | 5,479 | 166   |
| 50               | -067                  | -32          | 1301                  | 21                | 5186  | 211   | -324                  | 15    | 1625                  | -08                 | 5520  | 207   |
| 60               | -079                  | -44          | 1305                  | 15                | 5224  | 249   | -327                  | 12    | 1624                  | -09                 | 5553  | 240   |
| 0                | -035                  |              | 1295                  |                   | 4975  |       | -339                  |       | 1633                  |                     | 5313  |       |

#### TABLE 23 CALIBRATION DATA FULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

2-33

2

.

| •                                               |                       | WHE        | EEL 65164 (           | @ 60 <sup>0</sup> |       |              |                       | WH         | EEL 65584             | @ 60 <sup>0</sup> |       |            |
|-------------------------------------------------|-----------------------|------------|-----------------------|-------------------|-------|--------------|-----------------------|------------|-----------------------|-------------------|-------|------------|
|                                                 | Channel               |            | Channel               |                   |       |              | Channel               |            | Channel               |                   |       |            |
| Vertical Load                                   | 0 <sup>0</sup> +      | Diff.      | 90 <sup>0</sup> -     | Diff.             | Chan. | Diff.        | 00+                   | Diff.      | 90 <sup>0</sup> +     | Diff.             | Chan. | Diff.      |
| K lbs./Jack                                     | V1 180 <sup>0</sup> - | Micro      | V2 270 <sup>0</sup> + | Micro             | Lat.  | Micro        | V1 180 <sup>0</sup> - | Micro      | V2 270 <sup>0</sup> + | Micro             | Lat.  | Micro      |
| (5K Lbs./Wheel)                                 | Reading               | <u>"/"</u> | Reading               | <u>"/"</u>        | Rdg.  | <u>''/''</u> | Reading               | <u>"/"</u> | Reading               | <u>''/''</u>      | Rdg.  | <u>"/"</u> |
| 10                                              | 053                   | 13         | 1256                  | - 39              | 4964  | - 06         | -300                  | 10         | 1600                  | - 45              | 5319  | - 01       |
| 20                                              | × 066 · · · ·         | 26         | 1218                  | - 77              | 4964  | - 06         | -291                  | 19         | 1557                  | - 88              | 5320  | -          |
| 30                                              | 079                   | 39         | 1179                  | -116              | 4963  | - 07         | -281                  | 29         | 1516                  | -129              | 5319  | - 01       |
| 40                                              | 093                   | 53         | 1143                  | -152              | 4963  | - 07         | -271                  | 39         | 1477                  | -168              | 5320  | -          |
| 50                                              | 107                   | 67         | 1105                  | -190              | 4962  | - 08         | -260                  | 50         | 1443                  | 202               | 5321  | 01         |
| 60                                              | 120                   | 80         | 1066                  | -229              | 4963  | - 07         | -250                  | 60         | 1400                  | -245              | 5321  | 01         |
| 70                                              | 133                   | 93         | 1027                  | -268              | 4963  | - 07         | -241                  | 69         | 1365                  | -280              | 5322  | 02         |
| · 80                                            | 145                   | 105        | 993                   | -302              | 4964  | - 06         | -233                  | 77         | 1333                  | -312              | 5320  | -          |
| Lateral Load<br>K lbs. Total<br>(5K Lbs./Wheel) |                       |            |                       |                   |       |              |                       |            |                       |                   |       |            |
| 10                                              | 041                   | 01         | 1266                  | -29               | 5009  | 39           | -315                  | -05        | 1610                  | -35               | 5357  | 37         |
| 20                                              | 034                   | -06        | 1275                  | -20               | 5048  | 78           | -311                  | -01        | 1615                  | -30               | 5395  | 75         |
| 30                                              | 027                   | -13        | 1283                  | -12               | 5091  | 121          | -310                  | -          | 1620                  | -25               | 5434  | 114        |
| 40                                              | 029                   | -21        | 1291                  | -04               | 5129  | 159          | -306                  | 04         | 1626                  | -19               | 5476  | 156        |
| 50                                              | 012                   | -28        | 1299                  | 04                | 5169  | 199          | -303                  | 07         | 1634                  | -11               | 5519  | 199        |
| 60                                              | 05                    | -35        | 1306                  | 11                | 5208  | 238          | -300                  | 10         | 1642                  | -03               | 5557  | 237        |
| 0                                               | 40                    |            | 1295                  |                   | 4970  |              | -310                  |            | 1645                  |                   | 5320  |            |

| TABLE 24                                          |      |
|---------------------------------------------------|------|
| CALIBRATION DATA                                  |      |
| FULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL S | SETS |

/

2 - 34.

|                                                       |                                                                                | WHE                                  | CEL 65164                                                                       | @ 90 <sup>0</sup>              |                                      |                                |                                                                                 | WH                      | EEL 65584                                                                       | @ 90 <sup>0</sup>               |                                      |                               |
|-------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------|--------------------------------|--------------------------------------|--------------------------------|---------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------|
| Vertical Load<br>K lbs./Jack<br>(5K Lbs./Wheel)<br>10 | Channel<br>0 <sup>0</sup> +<br>V1 180 <sup>0</sup> -<br><u>Reading</u><br>-049 | Diff.<br>Micro<br><u>''/''</u><br>04 | Channel<br>90 <sup>0</sup> -<br>V2 270 <sup>0</sup> +<br><u>Reading</u><br>1195 | Diff.<br>Micro<br>''/''<br>-69 | Chan.<br>Lat.<br><u>Rdg.</u><br>4975 | Diff.<br>Micro<br>''/''<br>-03 | $\frac{\text{Channel}}{0^{0}+}$ V1 180 <sup>0</sup> -<br><u>Reading</u><br>-354 | Diff.<br>Micro<br>''/'' | Channel<br>90 <sup>0</sup> +<br>V2 270 <sup>0</sup> +<br><u>Reading</u><br>1534 | Diff.<br>Micro<br>''/''<br>- 72 | Chan.<br>Lat.<br><u>Rdg.</u><br>5315 | Diff.<br>Micro<br>''/''<br>01 |
| 20                                                    | -047                                                                           | 06.                                  | 1128                                                                            | -136                           | 497 <u>3</u>                         | -05                            | -355                                                                            | -01                     | 1468                                                                            | -138                            | 5313                                 | -01                           |
| 30                                                    | -044                                                                           | 09                                   | 1062                                                                            | -202                           | 4974                                 | -04                            | -355                                                                            | -01                     | 1405                                                                            | -201                            | 5313                                 | -01                           |
| 40                                                    | -042                                                                           | 11                                   | 996                                                                             | -268                           | 4970                                 | -08                            | -357                                                                            | -03                     | 1340                                                                            | -266                            | 5313                                 | -01                           |
| 50                                                    | -040                                                                           | 13                                   | 927                                                                             | -337                           | 4968                                 | -10                            | -358                                                                            | -04                     | 1275                                                                            | -331                            | 5311                                 | -03                           |
| 60                                                    | -038                                                                           | 15                                   | 858                                                                             | -406                           | 4969                                 | -09                            | -357                                                                            | -03                     | 1209                                                                            | -397                            | 5312                                 | -02                           |
| 70                                                    | -034                                                                           | 19                                   | 792                                                                             | -472                           | 4968                                 | -10                            | -358                                                                            | -04                     | 1145                                                                            | -461                            | 5311                                 | -03                           |
| 80                                                    | -032                                                                           | 21                                   | 726                                                                             | -538                           | 4967                                 | -11                            | -359                                                                            | -05                     | 1080                                                                            | -526                            | 5313                                 | -01                           |
| Lateral Load<br>K lbs. Total<br>(5K Lbs./Wheel)       |                                                                                |                                      |                                                                                 |                                |                                      |                                |                                                                                 |                         |                                                                                 |                                 |                                      |                               |
| 10                                                    | -060                                                                           | -07                                  | 1203                                                                            | - 61                           | 5017                                 | 39                             | -353                                                                            | 01                      | 1538                                                                            | - 68                            | -5351                                | 37                            |
| 20                                                    | -066                                                                           | -13                                  | 1210                                                                            | - 54                           | 5064                                 | 86                             | -349                                                                            | 05                      | 1538                                                                            | - 68                            | 5390                                 | 76                            |
| 30                                                    | -074                                                                           | -21                                  | 1218                                                                            | - 46                           | 5116                                 | 138                            | -349                                                                            | 05                      | 1540                                                                            | - 66                            | 5433                                 | 119                           |
| 40                                                    | -080                                                                           | -27                                  | 1228                                                                            | - 36                           | 5151                                 | 173                            | -349                                                                            | 05                      | 1544                                                                            | - 62                            | 5477                                 | 163                           |
| 50                                                    | -085                                                                           | -32                                  | 1238                                                                            | - 26                           | 5194                                 | 216                            | -345                                                                            | 09                      | 1550                                                                            | - 56                            | 5520                                 | 206                           |
| 60                                                    | -093                                                                           | -40                                  | 1250                                                                            | - 14                           | 5238                                 | 260                            | -346                                                                            | 08                      | 1556                                                                            | - 50                            | 5557                                 | 243                           |
| 0                                                     | -053                                                                           |                                      | 1264                                                                            |                                | 4978                                 |                                | -354                                                                            |                         | 1606                                                                            |                                 | 5314                                 |                               |

#### TABLE 25 CALIBRATION DATA FULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

, .<sup>-</sup>

|                   | WHEEL 65164 @ 120 <sup>0</sup> |              |                       |       |         |       | WHEEL 65164 @ 120 <sup>0</sup> |       |                       |       |               |       |
|-------------------|--------------------------------|--------------|-----------------------|-------|---------|-------|--------------------------------|-------|-----------------------|-------|---------------|-------|
|                   | Channel                        |              | Channel               |       |         |       | Channel                        |       | Channel               |       |               |       |
| Vertical Load     | 0 <sup>0</sup> +               | Diff.        | 90°-                  | Diff. | Chan.   | Diff. | 00+                            | Diff. | 90 <sup>0</sup> +     | Diff. | Chan.         | Diff. |
| K lbs./Jack       | V1 180 <sup>0</sup> -          | Micro        | V2 270 <sup>0</sup> + | Micro | Lat.    | Micro | V1 180 <sup>0</sup> -          | Micro | V2 270 <sup>0</sup> + | Micro | Lat.          | Micro |
| (5K Lbs./Wheel)   | Reading                        | <u>11/11</u> | Reading               | "/"   | Rdg.    | "/"   | Reading                        | "/"   | Reading               | "/"   | Rdg.          | "/"   |
| 10                | 056                            | 11           | 1259                  | -39   | 4973    | -02   | -322                           | -12   | 1606                  | -39   | 5319          | -01   |
| 20                | 061                            | 21           | 1219                  | -79   | 4971    | -04   | <del>-</del> 333               | -23   | 1569                  | -76   | 5320          | -     |
| 30                | 076                            | 31           | 1180                  | -118  | 4968    | -07   | -345                           | -35   | 1531                  | -114  | 5318          | -02   |
| 40                | 085                            | 40           | 1139                  | -159  | 4967    | -08   | -355                           | -45   | 1494                  | -151  | 5316          | -04   |
| 50                | 095                            | 50           | 1099                  | -199  | 4965    | -10   | -366                           | -56   | 1457                  | -188  | 5317          | -03   |
| 60                | 105                            | 60           | 1060                  | -238  | 4964    | -11   | -377                           | -67   | 1419                  | -226  | 5318          | -02   |
| 70                | 116                            | 71           | 1021                  | -277  | 4962    | -13   | -388                           | -78   | 1382                  | -263  | 5317          | -03   |
| 80                | 125                            | 80           | 983                   | -315  | 4961    | -14   | -398                           | -88   | 1346                  | -299  | 5319          | -01   |
| Lateral Load      |                                |              |                       |       |         |       |                                |       |                       |       |               |       |
| K lbs. Total      |                                |              |                       |       |         |       |                                |       |                       |       |               |       |
| (5K LDS. / Wheel) |                                |              |                       |       | ч.<br>1 |       |                                |       |                       |       |               |       |
| 10<br>10          | 026                            | -19          | 1277                  | -21   | 5015    | 40    | -319                           | ~09   | 1619                  | -26   | 5358          | 38    |
| 20                | 026                            | -19          | 1295                  | -03   | 5056    | 81    | -318                           | -08   | 1618                  | -27   | 5395          | 75    |
| 30                | 022                            | -23          | 1309                  | 11    | 5097    | 122   | -318                           | -08   | 1621                  | -24   | 54 <b>3</b> 8 | 118   |
| 40                | 026                            | -19          | 1319                  | 21    | 5134    | 159   | -320                           | -10   | 1627                  | -18   | 5482          | 162   |
| 50                | 025                            | -20          | 1327                  | 29    | 5177    | 202   | -319                           | -09   | 1631                  | -14   | 5524          | 204 . |
| 60                | 029                            | -16          | 1338                  | 40    | 5215    | 240   | -319                           | -09   | 1632                  | -13   | 5563          | 243   |
| 0                 | 045                            |              | 1298                  |       | 4975    |       | -310                           |       | 1645                  |       | 5320          |       |

ć

.

٠

#### TABLE 26 CALIBRATION DATA FULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

,

|                              | WHEEL 65164 @ 150 <sup>o</sup> |            |                       |       |       |                | WHEEL 65584 @ 150 <sup>0</sup> |       |                       |            |       |            |  |
|------------------------------|--------------------------------|------------|-----------------------|-------|-------|----------------|--------------------------------|-------|-----------------------|------------|-------|------------|--|
|                              | Channel                        |            | Channel               |       |       |                | Channel                        |       | Channel               |            |       |            |  |
| Vertical Load                | 0 <sup>0</sup> +               | Diff.      | 90 <sup>0</sup> -     | Diff. | Chan. | Diff.          | 00+                            | Diff. | 90 <sup>0</sup> +     | Diff.      | Chan. | Diff.      |  |
| K lbs./Jack                  | V1 180 <sup>0</sup> -          | Micro      | V2 270 <sup>o</sup> + | Micro | Lat.  | Micro          | V1 180 <sup>0</sup> -          | Micro | V2 270 <sup>0</sup> + | Micro      | Lat.  | Micro      |  |
| (5K Lbs. /Wheel)             | <u>Reading</u>                 | <u>"/"</u> | Reading               | "/"   | Rdg.  | · <u>''/''</u> | Reading                        | "/"   | Reading               | <u>"/"</u> | Rdg.  | <u>"/"</u> |  |
| 10                           | -098                           | - 38       | 1282                  | -14   | 4972  | - 06           | -406                           | - 46  | 1626                  | -10        | .5314 | - 01       |  |
| 20                           | -128                           | - 68       | 1270                  | -26   | 4970  | - 08           | -438                           | - 78  | 1615                  | -21        | 5313  | - 02       |  |
| 30                           | -158                           | - 98       | 1258                  | -38   | 4970  | - 08           | -472                           | -112  | 1606                  | -30        | 5313  | - 02       |  |
| 40                           | -188                           | -128-      | 1246                  | -50   | 4969  | - 09           | -508                           | -148  | 1596                  | -40        | 5312  | - 03       |  |
| 50                           | -218                           | -158       | 1234                  | -62   | 4966  | - 12           | -542                           | -182  | 1585                  | -51        | 5311  | - 04       |  |
| 60                           | -249                           | -189       | 1222                  | -74   | 4965  | - 13           | -577                           | -217  | 1576                  | -60        | 5309  | - 06       |  |
| 70                           | -276                           | -216       | 1210                  | -86   | 4964  | - 14           | -611                           | -251  | 1565                  | -71        | 5308  | - 07       |  |
| 80                           | -306                           | -246       | 1198                  | -98   | 4961  | - 17           | <b>-</b> 645                   | -285  | 1555                  | -81        | 5308  | - 07       |  |
| Lateral Load<br>K lbs. Total |                                |            |                       |       |       |                |                                |       |                       |            |       |            |  |
| (5K Lbs./Wheel)              |                                |            |                       |       |       |                |                                |       |                       |            |       |            |  |
| +10K Vertical                | _                              |            |                       |       |       |                |                                |       | -                     |            |       |            |  |
| 10                           | -096                           | - 36       | 1292                  | -04   | 5020  | 42             | -394                           | - 34  | 1632                  | -04        | 5346  | 31         |  |
| 20                           | -094                           | - 34       | 1300                  | -04   | 5067  | 89             | -390                           | - 30  | 1637                  | 01         | 5387  | 72         |  |
| 30                           | -092                           | - 32       | 1309                  | 13    | 5113  | 135            | -383                           | - 23  | 1643                  | 07         | 5430  | 115        |  |
| 40                           | -090                           | - 30       | 1315                  | 19    | 5154  | 176            | -380                           | - 20  | 1650                  | 14         | 5475  | 160        |  |
| 50                           | -085                           | - 25       | 1321                  | 25    | 5202  | 224            | -372                           | - 12  | 1654                  | 18         | 5520  | 205        |  |
| 60                           | -081                           | - 21       | 1328                  | 32    | 5248  | 270            | -365                           | - 05  | 1656                  | 20         | 5560  | 245        |  |
| 0                            | -060                           |            | 1296                  |       | 4978  |                | -360                           |       | 1636                  |            | 5315  |            |  |

# TABLE 27 -<br/>CALIBRATION DATAFULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

.

|                  |                       | WHE        | EL 65164              | @ 180 <sup>0</sup> |             |            |                       | WH         | EEL 6558              | 84 @ 180     | 0     |       |
|------------------|-----------------------|------------|-----------------------|--------------------|-------------|------------|-----------------------|------------|-----------------------|--------------|-------|-------|
|                  | Channel               |            | Channel               |                    |             |            | Channel               |            | Channel               |              |       |       |
| Vertical Load    | 0 <sup>0</sup> +      | Diff.      | 90°-                  | Diff.              | Chan.       | Diff.      | • 00+                 | Diff.      | 90 <sup>0</sup> +     | Diff.        | Chan. | Diff. |
| K lbs./Jack      | V1 180 <sup>0</sup> - | Micro      | V2 270 <sup>0</sup> + | Micro              | Lat.        | Micro      | V1 180 <sup>0</sup> - | Micro      | V2 270 <sup>0</sup> + | Micro        | Lat.  | Micro |
| (5K Lbs. /Wheel) | Reading               | <u>"/"</u> | Reading               | "/"                | <u>Rdg.</u> | <u>"/"</u> | Reading               | <u>"/"</u> | Reading               | <u>11/11</u> | Rdg.  | "/"   |
| 10               | -148                  | - 69       | 1295                  | -05                | 4972        | - 05       | -440                  | - 67       | 1641                  | 01           | 5315  | -     |
| 20               | -214                  | -135       | 1293                  | -07                | 4970        | - 07       | -507                  | -134       | 1641                  | 01           | 5311  | - 04  |
| 30               | -278                  | -199       | 1292                  | -08                | 4966        | - 11       | -570                  | -197       | 1641                  | 01           | 5307  | - 08  |
| 40               | -341                  | -262       | 1289                  | -11                | 4965        | - 12       | -634                  | -261       | 1640                  | -            | 5305  | - 10  |
| 50               | -406                  | -327       | 1286                  | -14                | 4960        | - 17       | -700                  | -327       | 1640                  | ÷-           | 5301  | - 14  |
| 60               | -470                  | -391       | 1282                  | -18                | 4958        | - 19       | -766                  | -393       | 1640                  | -            | 5300  | - 15  |
| 70               | -534                  | -455       | 1280                  | -20                | 4957        | - 20       | -829                  | -456       | 1640                  | -            | 5300  | - 15  |
| 80               | -602                  | -526       | 1280                  | -20                | 4954        | - 23       | -896                  | -523       | 1640                  | . –          | 5298  | - 17  |
| Lateral Load     |                       |            |                       |                    |             |            | •                     |            |                       |              |       |       |
| K lbs. Total     |                       |            |                       |                    |             |            |                       |            |                       |              |       |       |
| (5K Lbs./Wheel)  |                       |            | \<br>\                |                    |             |            |                       |            |                       |              |       |       |
| + 10K Vertical   | 140                   | 60         | 1800                  |                    |             |            |                       |            |                       |              |       |       |
| 10               | -147                  | - 68       | 1300                  | -                  | 5018        | 41         | -437                  | - 64       | 1640                  | -            | 5340  | 25    |
| 20               | -147                  | - 68       | 1303                  | 03                 | 5062        | 85         | -432                  | - 59       | 1642                  | 02           | 5383  | 68    |
| 30               | -145                  | - 66       | <u>1305</u>           | 05                 | 5108        | 131        | -433                  | - 60       | 1643                  | 03           | 5426  | 111   |
| 40               | -146                  | - 67       | 1308                  | 08                 | 5149        | 172        | -430                  | - 57       | 1646                  | 06           | 5472  | 157   |
| 50               | -144                  | - 65       | 1310                  | 10                 | 5194        | 217        | -426                  | - 53       | 1647                  | 07           | 5514  | 199   |
| 60               | -138                  | - 59       | 1312                  | 12                 | 5232        | 255        | -426                  | - 53       | 1648                  | 08           | 5552  | 237   |
| 0                | -079                  |            | 1300                  | •                  | 4977        |            | -373                  |            | 1640                  |              | 5315  |       |

TABLE 28 CALIBRATION DATA FULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

|                 | WHEEL 65164 @ 210 <sup>0</sup> |       |                       |       |       | WHEEL 65584 @ 210 <sup>0</sup> |                       |       |                       |       |       |       |
|-----------------|--------------------------------|-------|-----------------------|-------|-------|--------------------------------|-----------------------|-------|-----------------------|-------|-------|-------|
|                 | Channel                        |       | Channel               |       |       |                                | Channel               |       | Channel               | •     |       |       |
| Vertical Load   | 0 <sup>0</sup> +               | Diff. | 90 <mark>0-</mark>    | Diff. | Chan. | Diff.                          | 0 <sup>0</sup> +      | Diff. | 90 <sup>0</sup> +     | Diff. | Chan. | Diff. |
| K lbs./Jack     | V1 180 <sup>0</sup> -          | Micro | V2 270 <sup>0</sup> + | Micro | Lat.  | Micro                          | V1 180 <sup>0</sup> - | Micro | V2 270 <sup>0</sup> + | Micro | Lat.  | Miċro |
| (5K Lbs./Wheel) | Reading                        | "/"   | Reading               | "/"   | Rdg.  | "/"                            | Reading               | "/"   | Reading               | "/"   | Rdg.  | "/"   |
| 10              | -112                           | - 54  | 1309                  | 10    | 4977  | 01                             | -394                  | - 34  | 1655                  | 17    | 5316  | 02    |
| 20              | -154                           | - 96  | 1316                  | 17    | 4975  | -01                            | -428                  | - 68  | 1666                  | 28    | 5313  | -01   |
| 30              | -198                           | -130  | 1323                  | 24    | 4974  | -02                            | -463                  | -103  | 1675                  | 37    | 5312  | -02   |
| 40              | -240                           | -172  | 1330                  | 31    | 4973  | -03                            | -497                  | -137  | 1685                  | 47    | 5312  | -02   |
| 50              | -283                           | -215  | 1338                  | 39    | 4970  | -06                            | -532                  | -172  | 1695                  | 57    | 5310  | -04   |
| 60              | -324                           | -256  | 1341                  | 42    | 4970  | -06                            | -566                  | -206  | 1704                  | . 66  | 5310  | -04   |
| 70              | -366                           | -298  | 1348                  | 49    | 4968  | -08                            | -603                  | -243  | 1713                  | 75    | 5310  | -04   |
| 80              | -410                           | -342  | 1356                  | 57    | 4968  | -08                            | -640                  | -280  | 1723                  | 85    | 5310  | -04   |
| Lateral Load    |                                |       |                       |       |       |                                |                       |       |                       |       |       |       |
| K lbs. Total    |                                |       |                       |       |       |                                |                       |       |                       |       |       |       |
| (5K Lbs./Wheel) |                                |       |                       |       | ,     |                                |                       |       |                       |       |       |       |
| + 10K Vertical  |                                |       |                       |       |       |                                |                       |       |                       |       |       |       |
| 10              | -105                           | - 37  | 1304                  | 05    | 5014  | 38                             | -390                  | - 30  | 1649                  | 11    | 5343  | 29    |
| 20              | -100                           | - 32  | 1300                  | 01    | 5064  | 88                             | -385                  | - 25  | 1646                  | 08    | 5389  | 75    |
| 30              | -094                           | - 26  | 1295                  | -04   | 5106  | 130                            | -380                  | - 20  | <b>1643</b>           | 05    | 5430  | 116   |
| 40              | -090                           | - 22  | 1292                  | -07   | 5142  | 166                            | -374                  | - 14  | 1640                  | 02    | 5471  | 157   |
| 50              | -085                           | - 17  | 1288                  | -11   | 5184  | 208                            | -369                  | - 09  | 1637                  | - 01  | 5513  | 199   |
| 60              | -080                           | - 12  | 1284                  | -15   | 5223  | 247                            | -369                  | - 09  | 1631                  | - 07  | 5550  | 236   |
| 0               | -068                           |       | 1299                  |       | 4976  |                                | -360                  |       | 1638                  |       | 5314  |       |

# TABLE 29CALIBRATION DATAFULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

5

|                  | WHEEL 65164 @ 240 <sup>0</sup> |            |                       |       |       |       | WHEEL 65584 @ 240 <sup>o</sup> |       |                       |       |       |       |  |
|------------------|--------------------------------|------------|-----------------------|-------|-------|-------|--------------------------------|-------|-----------------------|-------|-------|-------|--|
|                  | Channel                        |            | Channel               |       |       |       | Channel                        |       | Channel               |       |       |       |  |
| Vertical Load    | 0 <sup>0</sup> +               | Diff.      | 90 <sup>0</sup> -     | Diff. | Chan. | Diff. | 0 <sup>0</sup> +               | Diff. | 90 <sup>0</sup> +     | Diff. | Chan. | Diff. |  |
| K lbs./Jack      | V1 180 <sup>0</sup> -          | Micro      | V2 270 <sup>o</sup> + | Micro | Lat.  | Micro | V1 180 <sup>0</sup> -          | Micro | V2 270 <sup>0</sup> + | Micro | Lat.  | Micro |  |
| (5K Lbs. /Wheel) | Reading                        | <u>"/"</u> | Reading               | 11/11 | Rdg.  | "/"   | Reading                        | "/"   | Reading               | 11/11 | Rdg.  | "/"   |  |
| 10               | -065                           | - 13       | 1341                  | 34    | 4972  | - 04  | -358                           | - 10  | 1689                  | 40    | 5311  | - 01  |  |
| 20               | -078                           | 26         | 1370                  | 63    | 4970  | - 06  | -366                           | - 18  | 1725                  | 76    | 5309  | - 03  |  |
| 30               | -090                           | - 38       | 1398                  | 92    | 4968  | - 08  | -377                           | - 29  | 1760                  | 111   | 5306  | - 06  |  |
| 40               | -103                           | - 51       | 1427                  | 120   | 4966  | - 10  | -387                           | - 39  | 1796                  | 147   | 5305  | - 07  |  |
| 50               | -117                           | - 65       | 1457                  | 150   | 4964  | - 12  | -397                           | - 49  | 1833                  | 184   | 5304  | - 08  |  |
| 60               | -130                           | - 78       | 1488                  | 181   | 4962  | - 14  | -405                           | - 57  | 1869                  | 220   | 5303  | - 09  |  |
| 70               | -142                           | - 90       | 1516                  | 209   | 4959  | - 17  | -416                           | - 68  | 1904                  | 255   | 5302  | - 10  |  |
| 80               | -155                           | -103       | 1548                  | 241   | 4958  | - 18  | -425                           | - 77  | 1942                  | 293   | 5300  | - 12  |  |
| Lateral Load     |                                |            | , · ·                 |       |       |       |                                |       |                       |       | . •   |       |  |
| K lbs. Total     |                                |            |                       |       |       |       |                                |       |                       |       |       |       |  |
| (5K Lbs. /Wheel) |                                |            |                       |       |       | . •   |                                |       |                       |       | ~     |       |  |
| + 10K Vertical   |                                |            |                       |       | · .   |       |                                |       |                       |       |       |       |  |
| 10               | -056                           | 04         | 1330                  | 23    | 5018  | 42    | -357                           | - 09  | 1682                  | 33    | 5350  | 38    |  |
| 20               | -051                           | 01         | 1319                  | 12    | 5057  | 81    | -354                           | - 06  | 1678                  | 29    | 5388  | 76    |  |
| 30               | -046                           | 06         | 1308                  | 01    | 5098  | 122   | -352                           | - 04  | 1672                  | 23    | 5428  | 116   |  |
| <b>40</b>        | -040                           | 12         | 1298                  | -09   | 5135  | 159   | -350                           | - 02  | 1667                  | 18    | 5470  | 158   |  |
| 50               | -035                           | 17         | 1285                  | -22   | 5178  | 202   | -348                           | -     | 1660                  | 11    | 5511  | 199   |  |
| 60               | -030                           | 22         | 1272                  | -35   | 5219  | 243   | -348                           | -     | 1651                  | 02    | 5550  | 238   |  |
| 0                | -052                           |            | 1307                  | •     | 4976  |       | -348                           |       | 1649                  |       | 5312  |       |  |

#### TABLE 30 -CALIBRATION DATA FULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

|                 | WHEEL 65164 @ 270 <sup>0</sup> |       |                       |            |       | WHEEL 65584 @ 270 <sup>0</sup> |                       |       |                       |             |       |       |
|-----------------|--------------------------------|-------|-----------------------|------------|-------|--------------------------------|-----------------------|-------|-----------------------|-------------|-------|-------|
|                 | Channel                        |       | Channel               | -          |       |                                | Channel               |       | Channel               |             |       |       |
| Vertical Load   | 0 <sup>0</sup> +               | Diff. | 90 <mark>0</mark> -   | Diff.      | Chan. | Diff.                          | 0 <sup>0</sup> +      | Diff. | 90 <sup>0</sup> +     | Diff.       | Chan. | Diff. |
| K lbs./Jack     | V1 180 <sup>0</sup> -          | Micro | V2 270 <sup>0</sup> + | Micro      | Lat.  | Micro                          | V1 180 <sup>0</sup> - | Micro | V2 270 <sup>0</sup> + | Micro       | Lat.  | Micro |
| (5K Lbs./Wheel) | Reading                        | "/"   | Reading               | "/"        | Rdg.  | "/"                            | Reading               | "/"   | Reading               | 11/11       | Rdg.  | 11/11 |
| 10              | -050                           | 02    | 1392                  | 66         | 4976  | -04                            | -340                  | 05    | 1732                  | 68          | 5314  | - 05  |
| 20              | -053                           | -01   | 1456                  | 130        | 4975  | -05                            | -338                  | 07    | 1796                  | 132         | 5314  | - 05  |
| 30              | -056                           | -04   | 1521                  | 195        | 4976  | -04                            | -338                  | 07    | 1858                  | 194         | 5313  | - 06  |
| 40              | -060                           | -08   | 1587                  | 261        | 4976  | -04                            | -338                  | 07    | 1922                  | 258         | 5314  | - 05  |
| 50              | -063                           | -11   | 1654                  | 328        | 4976  | <b>-0</b> 4                    | -339                  | 06    | 1986                  | 322         | 5312  | - 07  |
| 60              | -066                           | -14   | 1720                  | 394        | 4977  | -03                            | -338                  | 07    | 2052                  | <b>38</b> 8 | 5312  | - 07  |
| 70              | -070                           | -18   | 1781                  | 455        | 4978  | -02                            | -338                  | 07    | 2114                  | 450         | 5312  | - 07  |
| 80              | -073                           | -21   | 1846                  | 520        | 4976  | -04                            | -338                  | 07    | 2180                  | 526         | 5316  | - 03  |
| Lateral Load    |                                |       |                       |            |       |                                |                       |       |                       |             |       |       |
| K lbs. Total    |                                |       |                       |            |       |                                |                       |       |                       |             |       |       |
| (5K Lbs./Wheel) |                                |       |                       |            |       |                                |                       |       |                       |             |       |       |
| + 10K Vertical  |                                |       |                       |            |       |                                |                       |       |                       |             |       |       |
| 10              | -050                           | 02    | 1382                  | <u>5</u> 6 | 5020  | 40                             | -348                  | -03   | 1728                  | 64          | 5358  | 39    |
| 20              | -046                           | 06    | 1370                  | 44         | 5061  | 81                             | -348                  | -03   | 1722                  | 58          | 5393  | 74    |
| 30              | -042                           | 10    | 1362                  | 36         | 5102  | 122                            | -350                  | -05   | 1720                  | 56          | 5432  | 113   |
| 40              | -037                           | 15    | 1354                  | 28         | 5140  | 160                            | -353                  | -08   | 1720                  | 56          | 5476  | 157   |
| 50              | -032                           | 20    | 1344                  | 18         | 5176  | 196                            | -354                  | -09   | 1715                  | 51          | 5515  | 196   |
| 60              | -030                           | 22    | 1330                  | 04         | 5225  | 245                            | -356                  | -11   | 1710                  | 46          | 5553  | 234   |
| 0               | -052                           |       | 1326                  |            | 4980  |                                | -345                  |       | 1664                  |             | 5319  |       |

TABLE 31CALIBRATION DATAFULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

#### TABLE 32 CALIBRATION DATA FULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

|                                                 | WHEEL 65164 @ 300 <sup>0</sup> |            |                       |              |             | WHEEL 65584 @ 300 <sup>0</sup> |                       |            |                       |              |       |            |
|-------------------------------------------------|--------------------------------|------------|-----------------------|--------------|-------------|--------------------------------|-----------------------|------------|-----------------------|--------------|-------|------------|
|                                                 | Channel                        |            | Channel               |              |             |                                | Channel               |            | Channel               |              |       |            |
| Vertical Load                                   | 0 <sup>0</sup> +               | Diff.      | 90 <sup>0</sup> -     | Diff.        | Chan.       | Diff.                          | 00+                   | Diff.      | 90 <sup>0</sup> +     | Diff.        | Chan. | Diff.      |
| K lbs. /Jack                                    | V1 180 <sup>0</sup> -          | Micro      | V2 270 <sup>0</sup> + | Micro        | Lat.        | Micro                          | V1 180 <sup>0</sup> - | Micro      | V2 270 <sup>0</sup> + | Micro        | Lat.  | Micro      |
| (5K Lbs. /Wheel)                                | Reading                        | <u>"/"</u> | Reading               | <u>''/''</u> | Rdg.        | "/"                            | Reading               | <u>"/"</u> | Reading               | <u>''/''</u> | Rdg.  | <u>"/"</u> |
| 10                                              | 059                            | 09         | 1340                  | 40           | 4973        | - 02                           | -298                  | 12         | 1684                  | 39           | .5324 | 04         |
| 20                                              | 068                            | 18         | 1380                  | 80           | 4974        | - 01                           | -287                  | 23         | 1724                  | 79           | 5320  | -          |
| 30                                              | 077                            | 27         | 1419                  | 119          | 4974        | - 01                           | -276                  | 34         | 1763                  | 118          | 5318  | - 02       |
| 40                                              | 086                            | 36         | 1460                  | 160          | 4975        | <u>~</u>                       | -265                  | 45         | 1803                  | 158          | 5318  | - 02       |
| 50                                              | 096                            | 46         | 1499                  | 199          | 4976        | 01                             | -253                  | 57         | 1841                  | 196          | 5316  | - 04       |
| 60                                              | 106                            | 56         | 1539                  | 239          | 4975        | -                              | -242                  | 68         | 1880                  | 235          | 5316  | - 04       |
| 70                                              | 114                            | 64         | 1579                  | 279          | 4977        | 02                             | -231                  | 79         | 1920                  | 275          | 5316  | - 04       |
| 80                                              | 120                            | 70         | 1619                  | 319          | 4977        | 02                             | -222                  | 88         | 1959                  | 314          | 5316  | - 04       |
| Lateral Load<br>K lbs. Total<br>(5K Lbs./Wheel) |                                |            |                       |              |             |                                |                       |            |                       |              |       |            |
| <u>+ 10K Verticar</u><br>10                     | 059                            | 09         | 1329                  | 29           | 5017        | 42                             | -298                  | 12         | 1675                  | 30           | 5348  | 38         |
| 20                                              | 051                            | 01         | 1321                  | 21           | 5063        | 88                             | -302                  | 08         | 1670                  | 25           | 5396  | 76         |
| 30                                              | 048                            | -02        | 1315                  | 15           | 5111        | 136                            | -305                  | 05         | 1665                  | 20           | 5440  | 120        |
| 40                                              | 044                            | -06        | 1311                  | 11           | <b>5151</b> | 176                            | -310                  | -          | 1661                  | 16           | 5483  | 163        |
| 50                                              | 040                            | -10        | 1307                  | 07           | 5190        | 215                            | -313                  | -03        | 1655                  | 10           | 5525  | 205        |
| 60                                              | 038                            | -12        | 1304                  | 04           | 5227        | 252                            | -316                  | -06        | 1654                  | 09           | 5560  | 240        |
| 0                                               | 050                            |            | 1300                  |              | 4975        |                                | -310                  |            | 1645                  |              | 5320  |            |

|                                                                   |                       | WHE   | EL 65164          | @ 330 <sup>0</sup> |             |       |                       | WH    | EEL 655               | 584 @ 33 | 00    |       |
|-------------------------------------------------------------------|-----------------------|-------|-------------------|--------------------|-------------|-------|-----------------------|-------|-----------------------|----------|-------|-------|
|                                                                   | Channel               |       | Channel           |                    |             |       | Channel               |       | Channel               |          |       |       |
| Vertical Load                                                     | 0 <sup>0</sup> +      | Diff. | 90 <sup>0</sup> - | Diff.              | Chan.       | Diff. | 00+                   | Diff. | 90 <sup>0</sup> +     | Diff.    | Chan. | Diff. |
| K lbs./Jack                                                       | V1 180 <sup>0</sup> - | Micro | V2 270°+          | Micro              | Lat.        | Micro | V1 180 <sup>0</sup> - | Micro | V2 270 <sup>0</sup> + | Micro    | Lat.  | Micro |
| (5K Lbs./Wheel)                                                   | Reading               | 11/11 | Reading           | 11/11              | <u>Rdg.</u> | 11/11 | Reading               | "/"   | Reading               | 11/11    | Rdg.  | /     |
| 10                                                                | -024                  | 34    | 1314              | 13                 | 4981        | -01   | -304                  | 47    | 1642                  | 06       | 5323  | -01   |
| 20                                                                | 002                   | 60    | 1328              | 27                 | 4983        | -03   | -267                  | 84    | 1652                  | 16       | 5324  | -     |
| 30                                                                | 026                   | 84    | 1341              | 40                 | 4982        | -     | -231                  | 120   | 1661                  | 25       | 5324  | -     |
| 40                                                                | 053                   | 111   | 1355              | 54                 | 4982        | -     | -196                  | 155   | 1670                  | 34       | 5323  | -01.  |
| 50                                                                | 077                   | 135   | 1369              | 68                 | 4982        | -     | -159                  | 192   | 1678                  | 42       | 5323  | -01   |
| 60                                                                | 103                   | 161   | 1382              | 81                 | 4983        | 01    | -122                  | 229   | 1686                  | 50       | 5324  | · –   |
| 70                                                                | 127                   | 185   | 1395              | 94                 | 4984        | 02    | -085                  | 266   | 1696                  | 60       | 5323  | - 01  |
| 80                                                                | 154                   | 212   | 1410              | 109                | 4984        | 02    | -049                  | 302   | 1704                  | 68       | 5324  | -     |
| Lateral Load<br>K lbs. Total<br>(5K Lbs./Wheel)<br>+ 16K Vertical |                       |       |                   |                    |             |       |                       |       |                       |          |       |       |
| 10                                                                | -034                  | 24    | 1299              | -02                | 5027        | 45    | -317                  | 34    | 1640                  | 04       | 5354  | 30    |
| 20                                                                | -038                  | 20    | 1292              | -09                | 5062        | 80    | -320                  | 31    | 1636                  | -        | 5390  | 66    |
| 30                                                                | -044                  | 14    | 1283              | -18                | 5105        | 123   | -326                  | 25    | 1634                  | -02      | 5432  | 108   |
| 40                                                                | -051                  | 07    | 1277              | -24                | 5140        | 158   | -333                  | 18    | 1629                  | -06      | 5478  | 154   |
| 50                                                                | -058                  | -     | 1269              | -32                | 5178        | 196   | -340                  | 11    | 1626                  | -10      | 5520  | 196   |
| 60                                                                | -065                  | -07   | 1264              | -37                | 5217        | 235   | -349                  | 02    | 1626                  | -10      | 5558  | 234   |
| 0                                                                 | -058                  |       | 1301              |                    | 4982        |       | -351                  |       | 1636                  |          | 5324  |       |

# TABLE 33CALIBRATION DATAFULLY ASSEMBLED BARBER S-2 TRUCK WITH TWO WHEEL SETS

### TABLE 34

#### CALIBRATION RESISTANCE

| WHEEL NUMBER | <u>v1</u>    | <u>V2</u>    | LATERAL      |
|--------------|--------------|--------------|--------------|
| 65594        | 114,000 OHMS | 113,000 OHMS | 700,000 OHMS |
| 65584        | 115,000 OHMS | 115,000 OHMS | 754,000 OHMS |
| 65495        | 113,000 OHMS | 114,000 OHMS | 743,000 OHMS |
| 65164        | 114,000 OHMS | 115,000 OHMS | 720,000 OHMS |

A Budd portable strain indicator, Model P-350, and a Shallcross decade potentiometer were used to obtain the calibration resistances for the above numbered wheels.

Calibration resistances are to be shunted across A and B (Black and Green) and B and C (Green and Red) respectively.

Calibration resistors should be precision resistors with a tolerance of 1% or less or a precision resistance decade box.

Calibration resistances were found by shunting, as mentioned above, at the Slip Ring. However, it is more convenient to calibrate at the amplifier. This can accurately be done by allowing for line loss in the cable.

#### TABLE 35

### WHEEL 65594

## (LATERAL BRIDGE)\*

| Speed | Strain Rdg.      |            |
|-------|------------------|------------|
| MPH   | Microinches/Inch | Difference |
| 76    | 5872             | 91         |
| 70    | 5856             | 7:5.       |
| 60    | 5836             | 55         |
| 50    | - 5820           | 39         |
| 40    | 5805             | 24         |
| 30    | 5794             | 13         |
| 20    | 5786             | 5          |
| 10    | 5782             | 1          |
| 0     | 5781             | 0          |
|       |                  |            |

#### WHEEL 65584

### (LATERAL BRIDGE)\*

| 76 | -6382 | 91 |
|----|-------|----|
| 70 | -6398 | 75 |
| 60 | -6416 | 57 |
| 50 | -6434 | 39 |
| 40 | -6447 | 26 |
| 30 | -6458 | 15 |
| 20 | -6465 | 8  |
| 10 | -6471 | 2  |
| 0  | -6473 | ~0 |
|    |       |    |

\*Due to bridge configuration of vertical gages no change in output signal was recorded.

## TABLE 36

### WHEEL 65164

#### (LATERAL BRIDGE)\*

١,

\_ \_ \_ .

| Speed<br><u>MPH</u> | Strain Rdg.<br>Microinches/Inch | Difference |
|---------------------|---------------------------------|------------|
| 76                  | 5057                            | . 87       |
| 70                  | 5044                            | 74         |
| 60                  | 5022                            | 52         |
| 50                  | 5001                            | 31         |
| 40                  | 4987                            | 17         |
| 30                  | 4982                            | 12         |
| 20                  | 4975                            | 5          |
| 10                  | 4970                            | 0          |
| 0                   | 4970                            | 0          |

/

ł

#### WHEEL 65495

### (LATERAL BRIDGE)\*

| 76 | 3286   | 86 |
|----|--------|----|
| 70 | 3273   | 73 |
| 60 | 3252 . | 52 |
| 50 | 3236   | 36 |
| 40 | 3222   | 22 |
| 30 | 3212   | 12 |
| 20 | 3204   | 4  |
| 10 | 3200   | 0  |
| 0  | 3200   | 0  |
|    |        |    |

\*Due to bridge configuration of vertical gages no change in output signal was recorded.











FIGURE 4





WHEEL 65584



\$





WHEEL 65164





FIGURE 10

## CONNECTOR WIRING DIAGRAM



BOTTOM VIEW

# AXLE END MALE CONNECTOR

- VERTICAL I (0°-180°)
- A**→→**Black
- B → Green
- C ──► Red
- D → White
- E ──► Shield

LATERAL L---Black M----Green N----Red P----White R----Shield

| VERTICAL II(90°-270°) | THERMOCOUPLE(O° OFFSET)    |
|-----------------------|----------------------------|
| F►Black               | S → Red (Minus)            |
| G <b>──</b> ►Green    | T ──►White ( Plus )        |
| H─►Red                | THERMOCOUPLE (180° OFFSET) |
| J — White             | U—►Red(Minus)              |
| K► Shield             | V—►White (Plus)            |

FIGURE II



PHOTO 1 - WHEEL LAYOUT FOR EXPLORATORY GAGES



PHOTO 2 - LOADING APPARATUS - EXPLORATORY STRAIN GAGE CALIBRATION



PHOTO 3 - LOADING APPARATUS SHOWING SIMPLEX JACKS USED TO APPLY LATERAL LOAD


PHOTO 4 - WHEEL LAYOUT FOR FINAL STRAIN GAGING



PHOTO - 5 STRAIN GAGING AND CLAMPING OPERATION



PHOTO 6 - STRAIN GAGE AND THERMOCOUPLE LOCATION AND WIRING



PHOTO 7 - APPLICATION OF SEALING AND DIELECTRIC COMPOUND



PHOTO 8 - WATERPROOFING OPERATION -APPLICATION OF GLYPTAL AND SEALING AND DIELECTRIC COMPOUND





PHOTO 10 - INSTALLATION OF SLIP-RING ASSEMBLY



PHOTO 11 - TEST FIXTURE FOR WHEEL ROTATION AND HONEYWELL INSTRUMENTATION USED TO MONITOR VERTICAL AND LATERAL GAGES ON WHEEL SET



PHOTO 12 - FULLY ASSEMBLED TRUCK IN LOADING APPARATUS



PHOTO 13 - LOADING APPARATUS - FINAL CALIBRATION OF FULLY ASSEMBLED TRUCK

It is recommended that the signal conditioning and recording equipment be of the following nature:

- 1. Any high quality D. C. type strain gage amplifier employing a differential input. A differential input is favorable due to the fact that one can operate several amplifiers from a single power supply.
- 2. Any high quality regulated D. C. power supply capable of delivering + 50 volts D. C. with a regulation of 0.01% + 1 milli-volt and ripple of 250 micro-volts RMS. It is favorable to use D. C. signal conditioning equipment that incorporates built-in power supplies for each individual channel.
- 3. Any high quality light beam recording oscillograph employing electrically damped galvanometers having a frequency response of 200 hertz or higher.

Listed below are a few of the many companies that are capable of supplying high quality strain gage instrumentation:

> Honeywell Gould, Inc. Bell and Howell Hewlett-Packard BLH Electronics Kepco Dana Laboratories

# LIST OF INSTRUMENTATION USED IN THE CALIBRATION PROCESS OF FRA WHEEL SETS

Budd P-350 Strain Indicators

Shallcross Resistance Decade Box

Honeywell Signal Amplifiers Type 1-113B and Associated Power Supply and Oscillator

Honeywell 1508 Visicorder

Honeywell M-1000 Galvanometers

# REFERENCES

- Rushing, F.C., "Determination of Stresses in Rotating Discs of Conical Profile," Trans. ASME, Vol. 53, p 91, 1931.
- Hodkinson, B, "Rotating Discs of Conical Profile", Engineering, Vol. 115, p 1, 1923.

In this paper a determination is made of the accuracy of stress-distribution curves obtained by the application of Donath's "Sum and Difference Curves" to rotating disks of conical profiles.



• OTATING disks of conical profiles (Fig. 1) are used rather extensively on account of their economy in the use of material and the facility with which they are produced. A rotating disk in which the stress is equally distributed is relatively thick near the axis and thin at the rim; the variation in the thickness of such a disk is not constant, however, and it is difficult to machine the sides to the exact shape. Since a conical profile approximates the profile necessary for

equal stress distribution, and since a disk with straight sides is easily machined, such a disk is commonly used.

In calculating the stresses in conical disks, use is made of approximate methods whose accuracies have never been determined. One of the most extensively used approximate methods is an application of Donath's "Sum and Difference Curves."3

Fortunately, an exact method of calculating stresses in conical-profiled disks has been published by Mr. H. M. Martin.<sup>4</sup> The chief purpose of the present paper is to determine, with the use of Mr. Martin's exact method, the accuracy of the results obtained by the approximate application of Donath's "Sum and Difference Curves" to disks of conical profiles. In accomplishing this purpose, it is deemed desirable to include here a brief description of the derivation of each method, together with an example of its application; followed by a comparison of results obtained by the application of the two methods to a wide variety of shapes and sizes of conical disks.

#### NOTATION

- x = radial distance from the axis
- = thickness of the disk at the distance xu
- = radial stress in pounds per square inch σ.
- = tangential stress in pounds per square inch σι
- $\mu$  = mass density of material of the disk
- = angular velocity of rotation ω
- 1 = Poisson's ratio
- ν
- = radial displacement at the end of radius xξ
- R = radius at which extended sides would meet

<sup>1</sup> The material presented in this paper was used in a thesis by the author for an M.S. degree from the University of Pittsburgh. <sup>2</sup> Westinghouse Electric & Manufacturing Co. Mr. Rushing was

design section of the Hubble Hubble Engineering Department of the Westinghouse Company.
 <sup>3</sup> Developed by M. Donath in "Die Berechnung rotierender Scheiben und Ringe" (Berlin, G. Springer, 1912), and described by H. Hearle in "The Strength of Rotating Discs," Engineering, vol. evi, Aug. 9, 1918, pp. 131-134.
 <sup>4</sup> "Stress Distribution in Rotating Disks of Conical Profile,"

Engineering, vol. cxv, Jan., 1923, p. 1. Contributed by the Applied Mechanics Division and presented

at the Annual Mceting, New York, N. Y., Dec. 1 to 5, 1930, of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS. NOTE: Statements and opinions advanced in papers are to be

understood as individual expressions of their authors, and not those of the Society.

| D | = | 2R                                                   |
|---|---|------------------------------------------------------|
| Y | = | thickness at center if sides were extended to center |
| Ν | = | revolutions per minute                               |
| z | = | x/R                                                  |
| P | - | (1 - n) -                                            |

Q  $= (1 - z)\sigma_t$  $= \omega x$ 

u s  $= \sigma_i + \sigma_r$ 

z P

D  $= \sigma_i - \sigma_r$ 

FIG. 1 DISK

T= stress that would be produced in ring at radius R due to the centrifugal force of the ring.

#### MARTIN'S EXACT METHOD

Mr. Martin, in his paper, derived a differential equation covering the stress distribution in a rotating disk of conical



OF

PROFILE

profile. This derivation can be accomplished by applying the principle of equilibrium and the theory of elasticity to a particle in the disk. Applying the principle of equilibrium to a particle in a disk gives

$$\int_{AL} \frac{a(xy\sigma_r)}{dx} - y\sigma_t + \mu\omega^2 x^2 y = 0. [1]$$

Applying the theory of elasticity to a particle in a disk gives the following pair of relations: .

CONIC

$$\sigma_{r} = \frac{E}{1 - \nu^{2}} \left\{ \frac{d\xi}{dx} + \nu \frac{\xi}{x} \right\}$$
  
$$\sigma_{t} = \frac{E}{1 - \nu^{2}} \left\{ \nu \frac{d\xi}{dx} + \frac{\xi}{x} \right\}$$
 .....[2]

The following compatability equation can be obtained by eliminating  $\xi$  in Equation [2]:

$$\frac{d\sigma_t}{dx} - \nu \frac{d\sigma_r}{dx} = (1 + \nu) \frac{\sigma_r - \sigma_t}{x} \dots \dots \dots [3]$$

By combining Equations [1] and [3], eliminating  $\sigma_i$  between them, and by making the following changes in coordinates, namely.

$$x = Rz$$
  

$$y = Y(1 - z)$$
  

$$P = \sigma_r(1 - z), \text{ and }$$
  

$$Q = \sigma_t(1 - z),$$

the following differential equation is obtained:5

$$z(1-z)\frac{d^2P}{dz^2} + (3-2z)\frac{dP}{dz} + (1-\nu)P + (3+\nu)Tz(1-z)^2 = 0...[4]$$

In deriving this differential equation, the following useful relations were found:

$$Q = P + z \frac{dP}{dz} + \mu \omega^2 R^2 (1 - z)$$
$$T = 2 \times 10^{-6} D^2 N^2$$

A complete solution of Equation [4] gives

 $P = P_1 + P_2 + P_3$ 

where  $P_1$  is the particular solution and

born in 1906 in Runge, Texas, where he lived until he entered the University of Texas in 1924. He received a B.S. degree from this university in 1928, and became an employee of the Westinghouse Flag 6. March 1928. Elec. & Mfg. Co. shortly thereafter. As an employee of this com-pany, he was permitted to take the design training course, which enabled him to attend the University of Michigan during the Summer session of 1929 and to receive also some graduate credit from the University of Pittsburgh. He received an M.S. degree from the University of Pittsburgh in 1930. At the present time he is in the design section of the Industrial Motor Engineering Department of

<sup>&</sup>lt;sup>6</sup> An error appeared in Mr. Martin's paper as published. In the last term of Equation [4], the factor  $(3 + \nu)$  was written and used as  $(3 - \nu)$ .

$$P_{1} = A \left( 1 - \frac{0.7}{3} z - \frac{0.7}{3} \frac{1.3}{8} z^{2} - \frac{0.7}{3} \frac{1.3}{8} \frac{5.3}{15} z^{3} - \dots - \right)$$

$$P_{2} = B (1 - z)^{2} \left[ 1 + \frac{5.3}{3} (1 - z) + \frac{5.3}{3} \frac{11.3}{8} (1 - z)^{2} + \frac{5.3}{3} \frac{11.3}{15} (1 - z)^{3} + \dots + + + \right]$$

 $P_3 = T(0.13525 - 0.03156z - 0.34263z^2 + 0.23894z^3)$ A and B being constants of integration.

Referring now to the change made in the coordinates, note that

$$\sigma_r = \frac{P_1 + P_2 + P_4}{(1 - z)}$$
$$\sigma_t = \frac{Q_1 + Q_2 + Q_3}{(1 - z)}$$

The use of this method is simplified by reducing the functions of z contained in P and Q to numerical form. This step is possible and practical since z varies only from zero to unity. Table I is the result of the introduction of numerical quantities in these functions.

Furthermore, since each of the terms in P and Q is divided by (1 - z), this division can be made in Table 1, and Table 2 is established.

In order to fully explain the use of this method, it is applied to a specific example (Fig. 2).

Calculating the radius at which the extended sides will meet gives



By graphical interpolation the following values for Table 2 are obtained for the boundary values of z:

 $p_1$  $q_1$  $p_2$  $q_2$  $p_3$  $q_3$ 0.1538 0.174 0.1743 1.6321.568-27.15035.000 0.6616 0.120 0.15253.490 2.608 - 0.747 3.407



FIG. 2 EXAMPLE OF USE OF MARTIN'S METHOD (Material of disk, steel; rim load, 8850 lb. per sq. in; hub load, -710 lb. per sq. in; speed, 3000 r.p.m.)

Substituting in the expression for T gives

 $T = 2 \times 10^{-6} \times 65^2 \times 3000^2 = 76,040$ 

Since, according to the solution of the differential equation,

 $\sigma_r = Tp_1 + Ap_2 + Bp_3$ 

and since the radial stresses on the rim and the hub are known, together with the above computed values of Table 2 for the rim and the hub,

$$8850 = 76,040 \times 0.12 + 3.490A + (-0.747)B$$

 $-710 = 76,040 \times 0.174 + 1.632A + (-27.15)B$ 

Solving the two equations for A and B gives

$$A = 29.9$$
 and  $B = 528$ 

|      |         |            | TABLE 11             |            |            |            |
|------|---------|------------|----------------------|------------|------------|------------|
| 2    | Pi 🕆 Ax | $Q_1 = Ax$ | $P_2 = Bx$           | $Q_3 = Bx$ | $P_3 = Tx$ | $Q_1 = Tx$ |
| 0.00 | 1,00000 | 1,00000    | ~~~ <u>~</u>         | 80         | 0.1655     | 0.1655     |
| 0.05 | 0 97627 | 0 95214    | -259.74              | 274.18     | 0 1577     | 0 1555     |
| 0.15 |         |            | - 24.380             | 31,065     | 0.1017     | 0.1000     |
| 0.20 | 0.95170 | 0.90163    | -12.431              | 17.525     | 0.1434     | 0.1410     |
| 0.30 | 0.92616 | 0.84800    | - 4,4597             | 7.6257     | 0.1233     | 0.1230     |
| 0.35 | 0.00050 | 0.40050    | - 2.8517             | 5.5453     |            |            |
| 0.40 | 0.89953 | 0.79059    | - 1.8949<br>- 1.2804 | 4.1494     | 0.1017     | 0.1043     |
| 0.50 | 0.87163 | 0.72853    | - 0.87163            | 2.4718     | 0.07799    | 0.0838     |
| 0.60 | 0.84220 | 0.66047    | - 0. <b>39</b> 950   | 1.5264     | 0.05423    | 0.0631     |
| 0.80 | 0.77723 | 0.49589    | - 0.05943            | 0.52287    | 0.03280    | 0.0433     |
| 0.90 | 0.74021 | 0.38711    | - 0.01205            | 0.22632    | 0.00442    | 0.0110     |
| 1.00 | 0.69702 | 0.20911    | - 0.00000            | 0,00000    | 0.00000    | 0.0000     |
|      |         |            |                      |            |            |            |

<sup>1</sup> Values of P<sub>1</sub>, Q<sub>1</sub>, P<sub>2</sub>, Q<sub>2</sub> from Martin's paper.

| TABLE | $2^{1}$ |
|-------|---------|
|-------|---------|

|      |            |            | Stresses   | due to     |              |              |
|------|------------|------------|------------|------------|--------------|--------------|
|      |            |            | a pull o   | of 1 lb.   |              |              |
|      |            |            | per inch   | run ap-    | Stress coef  | licients due |
|      |            |            | plied to   | o knife    | 'to an infin | ite pressure |
|      |            |            | edge fo    | rming      | applied to   | interior of  |
|      | Stresser   | s due to   | periph     | erv of     | infinitely s | mail hole in |
|      | centrifus  | al forces  | di         | sk         | the o        | enter        |
|      |            | Tangen-    |            | Tangen-    |              | Tangen.      |
|      | Radial     | tial       | Radial     | tial       | Radial       | tial         |
| 5    | $p_1 = Tx$ | $q_1 = Tx$ | $p_1 = Ax$ | $q_2 = Ax$ | $p_3 = Bx$   | a = Bx       |
| 00.0 | 0.1655     | 0.1655     | 1,435      | 1.435      | - 00         |              |
| 0.05 | 0.1709     | 0.1695     | 1.497      | 1.475      | -273.400     | 288,600      |
| 0.10 | 0.1753     | 0.1725     | 1.559      | 1.518      | - 66.620     | 77.280       |
| 1.15 | 0.1782     | 0.1749     | 1.627      | 1.565      | - 28,680     | 36 550       |
| .20  | 0.1794     | 0.1763     | 1,707      | 1.617      | - 15.540     | 21 910       |
| .25  | 0.1784     | 0.1773     | 1.796      | 1.674      | - 9.553      | 14.880       |
| .30  | 0.1761     | 0.1767     | 1.898      | 1.738      | - 6.371      | 10.890       |
| .35  | 0.1734     | 0,1757     | 2,015      | 1.809      | - 4.387      | 8,531        |
| 1.40 | 0.1694     | 0.1739     | 2,151      | 1,890      | → 3.158      | 6.915        |
| .45  | 0.1635     | 0.1712     | 2.311      | 1.983      | - 2.328      | 5.788        |
| . 50 | 0.1560     | 0.1675     | 2.501      | 2.090      | - 1.743      | 4.944        |
| . 55 | 0.1465     | 0.1633     | 2.733      | 2.217      | - 1.309      | 4.301        |
| . 60 | 0.1355     | 0.1579     | 3.021      | 2.369      | — 0.9988     | 3.816        |
| .65  | 0.1229     | 0.1525     | 3.390      | 2.556      | - 0.7523     | 3.419        |
| .70  | 0.1094     | 0.1445     | 3.860      | 2.794      | - 0.5670     | 3.102        |
| .75  | 0.0956     | 0.1370     | 4.559      | 3.111      | - 0.4161     | 2.835        |
| . 30 | 0,0805     | 0.1286     | 5.563      | 3.557      | - 0.2971     | 2.614        |
| .85  | 0.0634     | 0.1193     | 7.263      | 4.276      | - 0.1995     | 2.421        |
| . 90 | 0.0442     | 0.1100     | 10.620     | 5.554      | - 0.1203     | 2.263        |
| .95  | 0.0231     | 0.0976     | 20.645     | 8.890      | - 0.0555     | 2.140        |
| .00  | 0.0000     | 0.0840     | 80         | 8          | — 0.0000     | 2.051        |

1 Values of p2, g2, p2, g2 taken from Martin's paper.

Having found A and B from known boundary conditions, the stresses can be found for any radius in the disk. Consider a case when z = 0.2; then x the radius  $= 32.5 \times 0.2 = 6^{1}/_{2}$  in., and at  $6^{1}/_{2}$  in. the stresses are:

$$\sigma_r = 76,040 \times 0.1795 + 29.9 \times 1.707 - 528 \times 15.54 = 5,500$$

 $\sigma_t = 76,040 \times 0.1833 + 29.9 \times 1.617 + 528 \times 21.9 = 25,600$ 

The complete stress-distribution curves found in this manner are the exact stress curves in Fig. 8.

### DONATH'S "SUM AND DIFFERENCE CURVES"

An approximate application of Donath's "Sum and Difference Curves" has been a popular method of determining stresses in rotating disks of variable cross-section. The "Sum and Difference" in this case means the sum and difference of stresses along a radius.

The sum and difference curves in this case are of course linked with the differential equation covering stresses in a rotating disk. If the values of  $\sigma_i$  and  $\sigma_r$ , Equation [2], are introduced in Equation [1] the following differential equation is obtained:

$$\frac{d^{2}\xi}{dx^{2}} + \left[\frac{d(\log_{\epsilon} y)}{dx} + \frac{1}{x}\right]\frac{d\xi}{dx} + \left[\frac{\nu}{x}\frac{d(\log_{\epsilon} y)}{dx} - \frac{1}{x^{2}}\right]\xi + \frac{(1-\nu)}{E}\mu\omega^{2}x^{2} = 0\dots[5]$$

This equation differs from [4] only in its coordinates. Setting y equal to a constant in this equation, solving it for  $\xi$ , and placing the result in the expressions for  $\sigma_t$  and  $\sigma_r$ , Equation [2] gives the following well-known expressions for stresses in a rotating disk of uniform thickness:

$$\sigma_r = \frac{E}{1-\nu^2} \left[ (3+\nu) K x^2 + (1+\nu)b_1 - (1-\nu)b_2 \frac{1}{x^2} \right]$$



$$\sigma_{i} = \frac{E}{1-\nu^{2}} \left[ (1+3\nu) Kx^{2} + (1+\nu)b_{1} + (1-\nu)b_{2}\frac{1}{x^{2}} \right]$$

where  $K = \frac{(1 - \nu^2)\mu\omega^2}{8E}$ , and  $b_1$  and  $b_2$  are constants of integration.

Donath discovered that by adding and subtracting the expressions for  $\sigma_t$  and  $\sigma_r$  and letting

$$S = \sigma_t + \sigma_r$$
$$D = \sigma_t - \sigma_r$$
$$u = \omega x$$

the following relatively simple functions were obtained:

$$S = (1 + \nu) \frac{\mu}{2} \left[ -u^2 + K_1 \right]$$
$$D = (1 - \nu) \frac{\mu}{4} \left[ u^2 + \frac{K_2}{u^2} \right]^{\sqrt{2}}$$

These functions were plotted for a series of K's, Fig. 3, covering a field of stresses and speeds in which disks in practical use will fall.

The common method of applying these curves to a conical disk is to assume the disk to be divided into a number of disks of uniform thicknesses (Fig. 4).



FIG. 4 USE OF DONATH CURVES-"'EQUAL-DIVISION'' METHOD (Material of disk, steel; speed, 3000 r.p.m.; rim load, 8850 lb. per sq. in.; hub load, --710 lb. per sq. in.)

A simplification of the method of applying these curves to disks of variable cross-section was introduced by Mr. Driessen in his paper before the A.S.M.E: in the summer of 1928.<sup>o</sup> The use of the Donath curves by the common method with the Driessen simplifications can best be explained by applying them to a practical example. Refer to the example represented in Fig. 4, assume the disk to be made up of four disks of uniform axial thicknesses and of equal radial thicknesses as shown. Since the tangential stress on the rim is not known, assume

$$\sigma_i$$
 for the rim = 13,000 lb. per sq. in.

then

$$S_{\rm rim} = 13,000 + 8850 = 21,850$$
  
 $D_{\rm rim} = 13,000 - 8850 = 4150$ 

Having these values of S and D at the known rim speed locates the S- and D-curves applicable to this imaginary disk in Fig. 3. Transfer the S- and D-curves between the boundary speeds of this outer imaginary disk to Fig. 4.

Mr. Driessen's method of passing across a boundary by assuming that the tangential stress on either side of a boundary is the same and that the radial stress varies inversely as the thicknesses of the imaginary disks can be used at this point. He showed that

$$\Delta S = -0.65 \left( 1 - \frac{t_1}{t_2} \right) \left( S_1 - D_1 \right)$$
$$\Delta D = 0.35 \left( 1 - \frac{t_1}{t_2} \right) \left( S_1 - D_1 \right)$$

where  $\Delta S$  and  $\Delta D$  are the changes in S and D,  $t_1$  is the thickness of the disk just passed, and  $t_2$  the thickness of the disk being entered. In this case

$$\Delta S = -0.65 \left( 1 - \frac{0.72}{0.92} \right) \left( 29,500 - 1500 \right) = -3970$$
$$\Delta D = 0.35 \left( 1 - \frac{0.72}{0.92} \right) \left( 29,500 - 1500 \right) = 2140$$

Adding these increments to  $S_1$  and  $D_1$  gives  $S_2$  and  $D_2$ , which are known values of S and D on the outer boundary of Division 2.

Following this procedure in crossing each of the imaginary disks, the S- and D-curves can be established across the entire radius of the disk. It happens in this case that the radial stress indicated at the hub by these curves is 5100, while the actual radial stress is known to be -710; this difference is an indication that the wrong tangential stress was assumed for the rim. Assume another tangential stress of 13,800 for the rim, and

establish the second set of S- and D-curves as are indicated in



FIG. 5 RELATION BETWEEN RADIAL AND TANGENTIAL STRESSES ON HUB

Fig. 4. At the hub, this set of curves indicates a radial hub stress of 500, which is also incorrect.

At this point in the process, another one of Mr. Driessen's simplifications can be used. He showed that there was a direct relation between the radial stress on one boundary and the tangential stress on the opposite boundary. In this case the two assumed tangential rim stresses with their consequent radial hub stresses can be plotted as in Fig. 5. On this graph the tangential stress on the rim which will give a radial stress of -710 on the hub is indicated to be 14,000.

With this new value of tangential stress on the rim, the third set of S- and D-curves in Fig. 4 can be established.

<sup>&</sup>lt;sup>6</sup> "A Simplified Method of Determining Stresses in Rotating Disks," M. G. Driessen, Trans. A.S.M.E., 1928.

Since the midpoint between the boundaries of each of the divisions is of the same thickness as the actual disk at that point, the values of S and D indicated at such points are assumed to be most accurate. Through these points the stress-distribution curves, Fig. 4, are established.

The stress-distribution curves obtained in this manner, as well as others obtained by using two and eight divisions of the disk, have been transferred to Fig. 8 where their relative accuracies can be obtained by comparing them to the exact stressdistribution curves.

#### **ONE-EQUIVALENT-DISK METHOD**

Some experimentation with the application of Donath's curves has shown that there are other satisfactory methods of applying them. One of the methods involves the assuming of one equivalent disk of uniform thickness equal to the hub thickness of the conical disk for the conical disk. Also, it is assumed that the radial rim stress on this imaginary disk is equal to the radial rim stress of the conical disk. Also, it is assumed thickness to hub thickness of the conical disk. To this new disk apply Donath's curves just as they would be applied to a disk of uniform thickness. The stresses indicated by these curves at the hub and at the midpoint between the rim and the hub and the known stresses on the rim are used to construct the stress-distribution curves.

For a better explanation of this equivalent-disk method, consider an example (Fig. 6). Assume

for the rim = 
$$13,000$$

then

$$S_{\text{rim}} = \sigma_t + \sigma_r = 13,000 + 8850 = 21,850$$
  
 $D_{\text{rim}} = \sigma_t - \sigma_r = 13,000 - 8850 = 4150$ 

Reducing the rim radial stress in a ratio of rim thickness to hub thickness gives the change in S and D by Mr. Driessen's method as

$$\Delta S = -0.65 \left( 21,850 - 4150 \right) \left( 1 - \frac{0.6}{1.5} \right) = -6900$$
$$\Delta D = 0.35 \left( 21,850 - 4150 \right) \left( 1 - \frac{0.6}{1.5} \right) = 3700$$

so  $S_1 = 14,950$  and  $D_1 = 7850$ .

Locating these values of S and D on the Donath curve sheet at the rim speed establishes two curves which, when followed to the hub speed and transferred to Fig. 6, prove to be the correct ones since the indicated radial hub stress is the same as the actual hub stress. ( $\sigma_t$  for the rim was chosen correctly just by chance, otherwise other assumptions would have had to be made and Mr. Driessen's simplification would have been used if the second assumption had been incorrect.)

Refer to Fig. 8 for a comparison of the accuracy of this method with the exact stress curves and with the other approximate curves.

#### Two-Division Method

Experiment also shows that, by dividing the disk in the neighborhood of three-quarters of the distance from the hub to the rim, very satisfactory results can be obtained. With this method the S- and D-curves are established across the outer imaginary disk just as if the outer imaginary disk were of uniform thickness equal to the thickness of the rim. The boundary is crossed by assuming the indicated radial stress at the boundary to be decreased in a ratio of rim thickness to hub thickness of the conical disk. With the new values of S and D thus obtained the curves are established across the inner imaginary disk. The values of stress indicated at the rim and hub and at midpoint between the division and hub are taken as points through which to construct the stress-distribution curves.



FIG. 6 USE OF DONATH CURVES-"ONE EQUIVALENT DISK" METHOD

(Material of disk, steel; speed, 3000 r.p.m.; rim load, 8850 lb. per sq. in.; hub load, -710 lb. per sq. in.)

For a better explanation of the use of this method, apply it to an example (Fig. 7).

The radius of the division which has been found to give the best results can be calculated from the following formula:

$$X = \sqrt{\frac{\frac{b^4}{4} + \frac{a^4}{12} - \frac{ab^3}{3}}{\frac{b^2}{2} + \frac{a^2}{2} - ab}}$$

where b = rim radius, and

$$a = hub radius$$

Assume

 $\sigma_i$  for the rim = 13,250

then

$$S_{\rm rim} = 13,250 + 8850 = 22,100$$

$$D_{\rm rim} = 13,250 - 8850 = 4400$$

With these values of S and D, establish the S- and D-curves between the rim speed and the speed at the division.

Crossing the division by the use of Driessen's formulas gives

$$S_2 = 17,500$$

$$D_{2} = 6.000$$

With these values of S and D, the curves are established across the inner part of the disk.

For a comparison of the accuracy of this method with other methods, refer to Fig. 8. Note that the three points obtained for the tangential-stress curve fall upon the exact tangentialstress-distribution curve.

#### Application to a Variety of Disks

Figs. 8, 9, 10, 11, and 12 show the comparisons of the results obtained by the various methods on a variety of disks. The variations in the examples included are the diameters and tapers. From study of these examples, the most accurate approximate method can be selected for general use.





FIG. 7 USE OF DONATH CURVES—TWO-DIVISION METHOD (Material of disk, steel; speed, 3000 r.p.m.; rim load, 8850 lb. per sq in.; hub load, —710 lb. per sq. in.)

FIG. 8 COMPARISON OF RESULTS-LARGE DIAMETER, SMALL TAPER (Material of disk, steel; speed, 3000 r.p.m.; rim load, 8850 lb. per sq. in.; hub load, -710 lb. per sq. in.)



F1G. 9 COMPARISON OF RESULTS—LARGE DIAMETER, LARGE TAPER (Material of disk, steel; speed, 3000 r.p.m.; rim load, 8850 lb. per sq. in.; hub load, -710 lb. per sq. in.)



FIG. 10 COMPARISON OF RESULTS-LARGE DIAMETER, LARGE TAPER (Material of disk, steel; speed, 1500 r.p.m.; rim load, 15,000 lb. per sq. in.; hub load, -500 lb. per sq. in.)



RESULTS

One feature about the stress curves obtained by the equaldivision method is that they are in all cases higher than the exact stress curves. The reason for this higher stress indication is apparent since, in any one of the imaginary disks used, Fig. 4, there is assumed to be some material added and some material dropped along the radius, the added material being at a larger radius than the corresponding dropped piece of material. Since the effect of material varies as the square of its radius, this added material more than compensates for the dropped material.

In the comparisons of results, the relative accuracies obtained by two, four, and eight divisions of the disk can be seen. One important feature of the stress distributions obtained in this manner is that the accuracy increases at a rapidly decreasing rate as the number of equal divisions increases. For this reason, four equal divisions give as good results as eight. In one case where there was a high rim load and large taper, eight equal divisions gave an appreciable increase in accuracy over four divisions; however, sixteen divisions were very little better than eight in that case.

The stress-distribution curves obtained by the equivalentdisk method are satisfactory except in a case where the disk has a large taper and is running at a high speed. This method, Fig. 6, assumes 'a disk with more material at the rim, but the midpoint between the two boundaries is the point at which the additional material will compensate for the lower radial stress at the rim. As can be seen in the comparison of results, this method gives good results in most cases; and the error is fortunately on the safe side. The reason it does not give satis-

20,000

بي 16,000

WID

ŝġ.

De l 15'000

ė.

ess.

str

8,000

4.000

С

8

10

factory results for a disk of large taper and high speed is that the added material becomes more effective as the speed increases.

The "two-division" method is a successful method of assuming a decreased radial load at some point in the disk and adding material to compensate for it at some certain point. Having this method work satisfactorily on the variety of examples included in this paper is an indication that it will give good results in all cases.

The practical value of Mr. Driessen's "Simplified Method of Determining Stresses in Rotating Disks" has been determined in solving the examples included in this paper. It would seem on first sight that his method of determining a correct value of tangential stress to assume on the rim, after having assumed two values unsuccessfully, would be of great value in the use of Donath's curves. However, after having used these curves



FIG. 11 COMPARISON OF RESULTS-SMALL DIAME- FIG. 12 COMPARISON OF RESULTS-SMALL DIAME-TER, SMALL TAPER (Material of disk, steel; speed, 5000 r.p.m.; rim load, 5000 (Material of disk, steel; speed, 6000 r.p.m.; rim load, 5000 lb. per sq. in.; hub load, --500 lb. per sq. in.) lb. per sq. in.; hub load, --500 lb. per sq. in.)

TER, LARGE TAPER

for a number of disks, the author has found that a person with some experience in their use can determine mentally the correct stress to assume. Due to the limited field which the published S- and D-curves cover, a person will usually have to assume several stresses before he can establish curves which will not run off the curve sheet before they reach the hub speed; and by the time he has found a tangential rim stress which will not cause the D-curve to run off the sheet before reaching the hub speed, he is able to determine mentally the correct stress value to assume.

This condition is caused by the nature of the difference curves. The value of D on the hub is affected greatly by a small change in the tangential stress on the rim, while the value of S on the hub under similar conditions is affected but a comparatively small amount. The value of Mr. Driessen's method would be increased by an increase in the field which the published S- and D-curves cover.

Mr. Driessen's formulas for use in crossing a boundary between two imaginary disks of uniform thicknesses are of great value, as these simple expressions eliminate the necessity of computing an extensive table for that purpose.

#### CONCLUSIONS AND RECOMMENDATIONS

1 In applying the Donath curves by equal divisions along the radius of a disk, four equal divisions of the disk will be found to give satisfactory results.

2 By the method of assuming one equivalent disk of uniform thickness for a conical disk, results of satisfactory accuracy can be obtained for all disks except in cases where the speed is high and the taper large.

3 By the two-division method proposed in this paper, accurate results can always be obtained.

### Discussion

A. L. KIMBALL<sup>7</sup> The writer has read this paper with interest as one with some familiarity with methods of computing stresses in revolving turbine disks, though not having that intimate knowledge that comes from continued work in disk design.

The value of this paper consists primarily in an up-to-date review of the subject such as cannot be found in present literature without dipping into several sources. Although it cannot be said to contain a fundamentally new method, ingenious application of the Donath and Driessen methods have been made, particularly in separating a conical disk into two steps, as specified by the formula at the top of page 96. This should greatly shorten the labor of calculation of stress distribution in a variety of shapes of conical disks.

Apparently the equations at the bottom of page 94 and the top of page 95 refer to a different disk from that of Fig. 4, although the discussion following seems to refer to this figure.

The paper is clearly presented, and will be a useful reference to have at hand when brushing up on the subject of stress determination in revolving disks.

S. TIMOSHENKO.<sup>8</sup> The idea of investigating the accuracy of the well-known Donath method by using an exact solution for disks of conical profile seems a very interesting one. A considerable amount of work has been done by the author in comparing the Donath method, using various numbers of divisions, with the exact method. It is very desirable to give this comparison in percentages. For certain cases it appears that an increase in the number of divisions does not improve the results, and the approximate method does not converge toward the exact solution. It would be a good idea to check the calculations for these

<sup>a</sup> Professor of Mcchanical Engineering, University of Michigan, Ann Arbor, Mich. Mem. A.S.M.E. cases. It is important, also, to check over the equations on the fourth page for  $\Delta S$  and  $\Delta D$ ; the equations as they are printed are not correct. Possibly in some of the calculations the incorrect equations were used, so it will be well to look over these calculations.

M. G. DRIESSEN.<sup>9</sup> So far as the writer knows, the author is the first to compute the widely used approximate Donath method for the calculation of these stresses in rotating disks of conical profile. His studies show clearly the magnitude of the error made in applying the sum and difference curves.

The author also introduced a simplification by which the calculation of conical disks can be shortened considerably. He divides the disk in two parts as the radius of gyration, so that the upper part is a cylindrical disk with a width equal to the width at the rim and the lower part also a cylindrical disk with a width equal to that of the hub. He also showed that this latter method is the best approximation for different kinds of conical disks. The author uses the following formula for the radius of gyration X:

$$X = \sqrt{\frac{\frac{b^4}{4} + \frac{a^4}{12} - \frac{ab^3}{3}}{\frac{b^2}{2} + \frac{a^2}{2} - ab}}$$

where b = rim radiusa = hub radius.

This formula is independent of the widths at rim and hub, and the writer would therefore ask the author if the radius of gyration is the same for a large and for a small taper.

#### AUTHOR'S CLOSURE

The author wishes to express his gratitude for the constructive criticism given this paper in the discussion.

The general equations to be used in evaluating  $\Delta S$  and  $\Delta D$  were not written correctly when the paper was first printed; also, in the numerical example where the equations for  $\Delta S$  and  $\Delta D$  were used, the expressions were not written correctly. These changes do not affect any of the results obtained because a careful check of the original calculations has been made and it has been found that the correct forms of the two above-mentioned equations were used at all times.

The dividing point for the "Two-Division Method" was originally called the Radius of Gyration in this paper; it was incorrectly named, however. Since Mr. Driessen has called this glaring fact to the author's attention, stress-distribution curves have been obtained by using the actual radius of gyration of the cross-section as a dividing point in the "Two-Division Method." But the results obtained were not nearly as satisfactory as those obtained by using the dividing point originally introduced in the paper. As the facts stand at the present time, when using the "Two-Division Method," the dividing point originally introduced in the paper gives better results than any other known point; so it would best remain as it is until another can possibly be found when the subject receives further investigation.

\* Reymersbeek, Nuth (L).

<sup>&</sup>lt;sup>7</sup> Research Engineer, General Electric Company, Schenectady, N. Y. Assoc. A.S.M.E.

### ROTATING DISCS OF CONICAL PROFILE By: B. Hodkinson

### (Reprinted from "Engineering", Vol. 115, pl, 1923.)

As is well known, mathematicians have been unable to find exact expressions for the stresses in a rotating disc even when the latter is of the simplest possible form, that is to say, of constant thickness. Nevertheless, on certain assumptions which are at least approximately correct, it has been possible to determine, with an accuracy sufficient for the needs of the engineer, not merely the stresses in a disc of constant thickness, but also those arising in discs in which the thickness z at different radii can be expressed in the form

where r denotes the radius in question and C and a are numerical constants.

This problem appears to have been worked out in the first instance by Dr. de Laval, but his results were independently obtained by many later investigators, although they seem to have been first published by Professor Stodola. The formulæ thus obtained are of a type very inconvenient for practical use, but as was pointed out in ENGINEERING, the difficulty may be turned by adopting semigraphic methods of calculation, and the system then described has been subsequently still further developed by Mr. W. Knight, who computed and plotted many additional curves which were published in our issue of August 3, 1917. With the same assumptions as to the boundary conditions these diagrams necessarily yield the same results as the formulæ from which they are derived. This point seems to have been frequently overlooked, and naturally if one hypothesis is adopted in determining stresses from the diagrams and another in computing them from the original formulæ, discrepancies are bound to appear.

When the thickness of the disc varies according to the law  $z = \frac{C}{r^{\alpha}}$  the resultant profile is of the type

represented in Fig. 1. The bounding curves are somewhat troublesome to machine, and accordingly there has been a tendency towards the adoption of straight-sided profiles such as is represented in Fig. 2. If the straight sides are produced, as indicated by the dotted lines, to cut the axes of rotation at aand b, and in the opposite directions to intersect at c and d, the disc included between these lines consists of two cones placed base to base, and if the stresses in this "generalised" form can be found, we can also deduce those in any practical form derived from it.

No far as the writer is aware no general solution for the stresses which arise in these conical discs has **hither**to been published, although some nine or ten years ago an approximate arithmetical solution, which involved the solving of a number of simultaneous equations, appeared in the *Revue Mecanique*.

From the mathematical standpoint the general problem reduces itself to the determination of the stresses produced in the solid double cone d, a, c, b

(represented in Fig. 2) by two different sets of forces, viz., (1) by the centrifugal forces acting alone, and (2) by the application of a load of say 1 lb. per inch run applied along the knife-edge forming the periphery. For the complete solution we also require to know the stresses which would be produced in the disc by an infinitely great pressure applied to the interior of an infinitely small hole drilled through



the disc at its centre. As this infinite pressure is applied over an infinitely small area, the stresses are finite everywhere save at the surface of the infinitely small hole.

If we can determine the stresses due to these three independent systems of loading we can deduce from them the stresses developed in any concentric annulus cut from this rotating disc, loaded at its periphery with blading and joined on to a hub at its inner periphery.

Let the outer diameter of the disc be 2 R (see Fig. 3), and let r be any other radius. Consider a thin ring at this radius of radial thickness  $\Delta r$ . Then if this ring were completely isolated and rotating, the tangential stress developed in it by the centrifugal forces is accurately given in lb. per square inch by the expression

$$t = 2 \left(\frac{d}{10}\right)^2 \left(\frac{\text{R.P.M.}}{100}\right)^2.$$

In this formula it is assumed that the material is steel<sup>\*</sup> whilst d denotes the mean diameter of the thin ring expressed in inches.

The total tangential pull is equal to the stress t multiplied by the cross-section of the ring, that is to say, it is equal to  $t \ge \Delta r$ .

<sup>\*</sup> For other materials the coefficient 2 should be increased or decreased in the ratio of the specific gravity of the material used to the specific gravity of steel.

Actually, the ring is not free, but forms part of the disc and is thus subjected to radial tensions on its inner and outer surfaces. Let us denote those on the inner surface by p where p is expressed in pounds per square inch. Then by the ordinary formula for the strength of boiler shells this load will produce a total tangential force on the ring equal to p z r. The stress p being a tension, the resultant tangential force in the ring will be a thrust. Coming next to the external periphery of the ring we note that p z r is a function of r, hence, by Taylor's theorem, the total tangential force due to the tension applied to this outer periphery of the thin ring will be

$$p z r + \frac{d}{dr} \cdot (p z r) \Delta r + \text{terms}$$

involving higher power of  $\Delta r$  which may be neglected when  $\Delta r$  is small. This tangential force is obviously a tension. The total resultant tangential force on the ring is the algebraic sum of these three terms. If the resultant stress be denoted by q this resultant tangential force will be  $q z \Delta r$ , and we thus get the relation

$$qz \Delta r = tz \Delta r - pzr + pzr + \frac{\delta}{\delta r} (pzr) \Delta r$$
  
Whence  
$$qz = \frac{d}{dr} (pzr) + tz \quad . \quad . \quad (1)$$

This equation gives one relation between the radial stress p and the tangential stress q. It is convenient to replace t by  $\frac{T}{R^2}$ , where T is equal to

$$2 \left(\frac{D}{10}\right)^2 \left(\frac{R.P.M.}{100}\right)^2,$$

D being the external diameter of the disc, *i.e.*,  $D = 2 \cdot R$ . Hence we get from (1)

$$qz = \frac{d}{dr}(pzr) + \frac{T}{R^2}r^2z$$
 . . . (2)

In the foregoing it has been assumed that the stresses p and q may without any very serious error be taken as uniformly distributed over the sections on which they act. This assumption is the usual one made by Professor Stodola and others, and even within the elastic limit the condition is approximately satisfied if the faces of the double cone do not make a large angle with each other. So far as the ultimate strength of the disc is concerned, the hypothesis is very nearly true, even if the angle between the faces be fairly large.

There are various ways of eliminating q from equation (2). Perhaps that least open to criticism is based on Castigliano's theorem. Every elastic structure when stressed acts as a spring, and in virtue of being in a state of stress has accordingly stored up in it a certain potential energy. By Castigliano's principle, the stresses always adjust themselves so that this " potential energy of strain " is a minimum, consistent with the equilibrium of the forces acting on the structure. One advantage of this principle is that it is often possible to see from general considerations that certain of the stresses will contribute little to this store of potential energy, whilst in the other cases what they do contribute will vary but little with any reasonably conceivable distribution of the remaining stresses. In both cases, accordingly we need take into consideration only these remaining stresses. In the present case these considerations do not arise as it has already been assumed that the only stresses with which we need concern ourselves are p and q. Let e be the radial strain at any point of the disc where the radial tension is p. Then the strain

energy stored up in one cubic inch of the metal, due to the stress p, is  $\frac{p \cdot e}{2}$ . Similarly, if f be the tangential strain, the work stored up in one cubic inch, due to the stress q, is  $\frac{qf}{2}$ . Since the total volume of our thin ring is  $2 \pi r z dr$  cubic inches the total work stored in it is

$$2\pi r z \left(\frac{p e}{2} + \frac{q f}{2}\right) d r.$$

If  $\frac{1}{m}$  denotes Poisson's ratio, we have

$$e = \frac{p}{\mathbf{E}} - \frac{1}{m \mathbf{E}} q$$

whilst

$$f = \frac{q}{\mathrm{E}} - \frac{1}{m \mathrm{E}} p.$$

Substituting these values for f and e we get for the work d W stored in our elementary ring the expression

$$EW = \frac{\pi}{E} \cdot r z \left( p^2 - \frac{2 p q}{m} + q^2 \right) dr.$$

The work W stored up in the whole disc is found by integrating this between r = 0 and r = R. Whence

W = 
$$\frac{\pi}{E} \cdot \int_0^R \left( p^2 - \frac{2 p q}{m} + q^2 \right) r z \, dr$$
 (3)

and by Castigliano's principle this must be a minimum.

It is convenient to change the variable from r to x where  $x = \frac{r}{R}$ , so that dr = R dx. Then, if Z be the thickness of the disc at the centre, the thickness at any other point is given by z = Z(1-x). Making these substitutions in (2) gives

$$(1-x) q = \frac{d}{dx} p (1-x) x + T x^2 (1-x) .$$
(4)

whilst, ignoring certain constant coefficients, the integral in (3) reduces to

$$\int_{0}^{1} \left( p^{2} - \frac{2 p q}{m} + q^{2} \right) x (1 - x) dx \quad . \quad (5)$$

The mathematical work can be simplified by two further substitutions, viz., P = (1 - x) pand Q = (1 - x) q. We thus get from (4)

$$Q = P + x \frac{d P}{d x} + T x^2 (1 - x) \quad . \quad . \quad (6)$$

whilst (5) becomes

$$\int_{0}^{1} \left( P^{2} - \frac{2 P Q}{m} + Q^{2} \right) \frac{x}{1-x} dx \quad . \quad . \quad (7)$$

Let us denote the expression in the brackets by V. Then the calculus of variations shows us, that for this integral to be a minimum as required by Castigliano's theorem, we must have

$$\frac{x}{1-x} \cdot \frac{d \mathbf{V}}{d \mathbf{P}} - \frac{d}{d x} \cdot \frac{x}{1-x} \cdot \frac{d \mathbf{V}}{d \mathbf{P}'} = 0 \quad . \tag{8}$$

Where P' is "shorthand " for  $\frac{dP}{dx}$ , obviously

$$\frac{d \mathbf{V}}{d \mathbf{P}} = 2 \mathbf{P} - \frac{2 \mathbf{Q}}{m} - \frac{2 \mathbf{P}}{m} \frac{d \mathbf{Q}}{d \mathbf{P}} + 2 \mathbf{Q} \frac{d \mathbf{Q}}{d \mathbf{P}}$$

From equation (6) we see that  $\frac{dQ}{dP} = 1$ .

Again

an

$$\frac{d V}{d P'} = -\frac{2 P}{m} \frac{d Q}{d P'} + 2 Q \frac{d Q}{d P'},$$
  
d from (6)  
$$\frac{d Q}{d P'} = x.$$

Inserting these values and substituting for Q in (8) we finally arrive at the following differential equation for P—-

$$\begin{pmatrix} 1 - \frac{1}{m} \end{pmatrix} \mathbf{P} + (3 - 2x) \frac{d \mathbf{P}}{dx} + x (x - 1) \frac{d^2 \mathbf{P}}{dx^2} + \begin{pmatrix} 3 - \frac{1}{m} \end{pmatrix} \mathbf{T} x (1 - x)^2 = 0 \quad . \qquad (9)$$

From the theory of differential equations we know that the complete solution of this equation consists of three parts, viz., any solution whatever which satisfies (9), plus two independent solutions of the "auxiliary" equation—

$$\left(1-\frac{1}{m}\right)\mathbf{P}+\left(3-2x\right)\frac{d\mathbf{P}}{dx}+x\left(x-1\right)\frac{d^{2}\mathbf{P}}{dx^{2}}=0.$$

If we take Poisson's ratio as 0.3, this equation becomes—

$$0.7 P + (3 - 2x) \frac{d P}{d x} + x (x - 1) \frac{d 2P}{d x^2} = 0 \quad (10)$$

Solutions of this can be found in the form of infinite series. One such solution, valid for all values of x between 0 and 1, is—

$$\mathbf{P}_1 = \mathbf{A} \left( 1 - \frac{0 \cdot 7}{3} x - \frac{0 \cdot 7}{3} \cdot \frac{1 \cdot 3}{8} x^2 - \frac{0 \cdot 7}{3} \cdot \frac{1 \cdot 3}{8} \cdot \frac{5 \cdot 3}{15} x^3 - \&c. \right)$$

Here A is an arbitrary constant. We defor for the present the consideration of the physical significance of this solution, and thus merely note in passing that the radial stresses due to  $P_1$ are equal to  $\frac{P_1}{1-x}$ .

The corresponding tangential stresses are equal to  $\frac{Q_1}{1-x}$ , where

$$\mathbf{Q}_1 = \mathbf{P}_1 + x \, \frac{d \, \mathbf{P}_1}{d \, x}.$$

A second independent solution of (10) is-

$$\Gamma_2 = B \left( 1 - x \right)^2 \left( 1 + \frac{5 \cdot 3}{3} \left( 1 - x \right) + \frac{5 \cdot 3}{3} \cdot \frac{11 \cdot 3}{8} \left( 1 - x \right)^2 \right. \\ \left. + \frac{5 \cdot 3}{3} \cdot \frac{11 \cdot 3}{8} \cdot \frac{19 \cdot 3}{15} \left( 1 - x \right)^3 + \&c. \right)$$

Here B is another arbitrary constant. This series is convergent for all values of x between 0 and 1, but becomes infinite when x = 0. The radial stress  $\frac{P_2}{1-x}$  is that due to an infinite pressure applied to the interior of an infinitely small hole drilled through the centre of the disc. The corresponding tangential stress  $\frac{Q_2}{1-x}$  is derived from the expression—

$$\mathbf{Q}_2 = \mathbf{P}_2 + x \, rac{d \, \mathbf{P}_2}{d \, x}$$

The solution of the original equation (9) is easily derivable from  $P_1$  or can be obtained directly by the usual symbolic methods, on changing the variable from x to  $\theta$  where  $\theta$  is defined by the relation  $x = e^{\theta}$ . Denoting the solution thus found by  $P_3$  we have—

$$Q_3 = P_3 + x \frac{d P_3}{d x} + T \cdot x^2 (1 - x).$$

The stresses due to a combination of those corresponding to  $P_1$  and  $P_3$  are

$$p = \frac{C P_1 + \Gamma_3}{1 - x}$$
$$q = \frac{C Q_1 + Q_3}{1 - x}.$$

and

Here C denotes a constant, chosen so as to make  

$$CP_1 + P_3 = 0$$
 when  $x = 1$ . If we put  $CP_1 + P_3 = \phi$   
and  $CQ_1 + Q_2 = \psi$ , values of  $\phi$  and  $\psi$  for different  
values of x are tabulated in Table I, together with

corresponding values of  $P_1$ ,  $P_2$ , and  $Q_1$ ,  $Q_2$ . Both the series for  $P_1$  and  $P_2$  converge very slowly for certain values of x. In the first case the convergence is slow when x is nearly unity, and the second case the convergence is extremely slow when x is nearly zero. Fortunately, however, after some 50 terms

TABLE I.

|      | Pi         | $Q_1$   | - P2     | Q2      | $\phi = T x$ | $\psi = T$ . |
|------|------------|---------|----------|---------|--------------|--------------|
| 0.0  | 1.00000    | L-0000  |          |         | 0.13547      | 0.13547      |
| 0.02 | 1          |         | 259.74   | 2.7418  |              |              |
| 0-10 | 0.97627    | 0.95214 | 59.957   | 69-549  | 0.12913      | 0.12883      |
| 0.15 | <u> </u>   |         | 24.380   | 31.065  |              | ·            |
| 0-20 | 0-95170    | 0-90163 | 12.431   | 17.525  | 0.11736      | 0+12136      |
| 0.25 | ;          | · · ·   | 7.1497   | i11-159 |              | <u> </u>     |
| 0.30 | 0.92616    | 0.84799 | 4 • 4597 | 7.6257  | 0.10160      | 0.11280      |
| 0.35 | · <u> </u> |         | 2.8517   | 5.5453  |              |              |
| 0-40 | 0-89953    | 0.79060 | 1.8949   | 4.1494  | 0.083300     | 0.10350      |
| 0.45 | 1 _        |         | 1.2804   | 3.1844  |              | l            |
| 0.50 | 0-87163    | 0.72853 | 0.87163  | 2.4718  | 0.063876     | 0.091357     |
| 0.60 | 0-84220    | 0.66047 | 0-39950  | 1.5264  | 0.044768     | 0.077927     |
| 0.70 | 0-81091    | 0.58400 | 0.17011  | 0.93046 | 0.026904     | 0.062332     |
| 0+80 | 0.77723    | 0.49618 | 0.059426 | 0.52287 | 0.013232     | 0.044278     |
| 0.90 | 0.74021    | 0-38668 | 0.012053 | 0.2263  | 0.0036193    | 0.022706     |
| 1.00 | 0.69702    | 0.20911 |          | 1       | -            | ſ            |
|      | • ••••     |         |          |         | ļ            |              |

have been directly computed an asymptotic recurrent series can be substituted for the remainder, and the sum of such a recurrent series can be expressed in a finite form. Advantage has been taken of this in computing some of the values printed in Table I. With the aid of this table the stresses in conical discs can be computed about as casily as they can in the case of a disc of uniform thickness.

# SECTION 3

.

# ENSCO TECHNICAL DESCRIPTION OF RAIL WHEEL DATA ACQUISITION AND SIGNAL PROCESSING INSTRUMENTATION

## RAIL WHEEL DATA ACQUISITION & SIGNAL PROCESSING INSTRUMENTATION TECHNICAL DESCRIPTION

### INTRODUCTION

7

The instrumented truck supplied by the Association of American Railroads to the Federal Railroad Administration of the U.S. Department of Transportation is instrumented with strain gauges and thermocouples mounted on the wheel plates for measuring wheel forces and temperatures. Each wheel contains sensors for measuring the following characteristics:

- One lateral wheel force
- Two vertical wheel forces
- Two wheel plate temperatures

The signals produced by these sensors, and the outputs of absolute angular position shaft encoders attached to each axle, are processed to derive the following wheel/rail parameters for each wheel:

- Lateral force
- Vertical force
- Plate temperature
- Lateral/Vertical Ratio
- Angle of rotation of each axle relative to the vertical
- Speed

Slip ring assemblies at the end of each axle transfer the wheel signals to cables which are connected to amplifiers and conditioning circuits.

### DATA COLLECTION

Figure 1 shows a block diagram of the data collection system. The sensors on the instrumented wheel operate in conjunction with signal conditioning amplifiers which supply the necessary independent excitation, balancing, calibration and amplification of each bridge circuit. The signals normally produced by the wheel force sensors are rotationally dependent; that is, their peak response occurs as the wheel rotates through a point where the sensor is positioned between the rail and wheel axle.

The Wheel Signal Processor (Figure 1) combines the two rotationally dependent signals from each wheel into a single rotationally independent signal. The Wheel Signal Processor also developes signals representing L/V ratio, speed, plus test and calibration signals. Signal conditioning amplifiers provide scale adjustments for the vertical and lateral force signals, and establish a sca;e factor which relates Volts to Klbs.

All signals available for recording are filtered by antialiasing filters which are bandpass limited to 100 Hz. The resulting siganls are suitable for digital data recording, at sample rates of approximately 300 Hz and above, and for connection to various analog recording equipment.

The two Channel Selectors shown in Figure 1 can select twelve channels of data simultaneously and in any combination for recording on two six-channel oscillographs.

The Channel Monitor contains a DC digital voltmeter and a selector switch for checking the zero and gain for each channel. A front panel test jack is also provided for observing the selected channel on an oscilloscope or other test instrument.

The digital recorder to be used is the FRA Dynamic Data Collection system which: samples each channel at a predetermined rate; digitizes the analog signals; and formats the data and records it on magnetic tape. This system also provides a means for playing back recorded data for display on the strip chart recorders and for off-line digital processing.





### WHEEL SIGNAL PROCESSING

### VERTICAL PROCESSING

The vertical wheel signal is developed from two identical straingauge bridges positioned so that their output signals are in space quadrature. Each bridge signal produces two zeros, one positive maximum, and one equal negative maximum per wheel revolution. Due to the quadrature relationship, one bridge is always available for an output when the other bridge is in or near a zero output position. These bridge elements are located so that very little vertical output signal is produced for lateral forces. Also, the vertical bridges do not produce outputs for an unloaded wheel when it is rotated at rates equivalent to a speed of 76 miles per hour.

As the instrumented truck moves along the track and the wheel rotates, the vertical output signal should be a constant voltage level scaled to represent the constant load on the wheel caused by the weight of the boxcar. This assumes speeds slow enough to produce no vertical accelerations. At higher speeds, the vertical signal should respond linearly to changing vertical forces produced in the wheel by the wheel and rail interactions. The vertical bridges as described above do not produce this type of signal directly. Additional signal processing is required to combine the two vertical signals into a single unipolar signal.

Figure 2 is a block diagram of the vertical wheel signal processer. The operation of the circuit is as follows: An absolute angular position shaft encoder is driven from the axle and is used to divide the wheel into 64 sectors. The output of the encoder provides 64 memory addresses (one per sector). A digital word (gain value) is stored at each memory address which sets the gain of the programmable gain amplifier A1. The other input to



FIGURE 2. Block Diagram of Wheel Signal Processing Function.

the programmable gain amplifier is a combined signal from the two vertical bridges. Each bridge produces a bipolar signal similar to the signals shown at the inputs of A2 and A3 as the wheel rotates under constant load. The bridge signals are then rectified by precision full-wave rectifiers. A typical resultant waveform is shown at the output of A3.

A control signal is developed from the shaft encoder which operates switch S1. This switch selects the signal from B1 or B2 whenever the bridge sensor is within approximately 45° of its peak response position. Since the bridge outputs are 90° out of phase, switch S1 alternately selects B1 and B2 to produce the combined signal shown at the output of A4. This signal is produced by amplifier A1 where sixteen compensating gain values are provided between each minimum point. The gain values have been set to produce a constant scaled output voltage from A1 as the wheel rotates under constant load. Since the gain values for each wheel sector are fixed during calibration, the output of amplifier A1 changes linearly with changing wheel force signals caused by wheel and rail interaction under dynamic conditions.

Calibration of the vertical wheel signal is accomplished by placing switch S2 in the calibrate position and moving the truck through one wheel revolution. The scale factor adjustment, R1 is set to a value which produces a suitable scale factor. For example, if the empty weight of the vehicle is 62,000 lbs., this is equivalent to 7,750 lbs. per wheel. The voltage to the comparator is adjusted to 0.775 volts, and the scale factor will be 10,000 lbs. per volt. As the wheel rotates, the output of amplifier A1 is compared to the scale factor voltage. The comparator causes the counter to count to a digital gain value such that the gain of A1 is adjusted continuously to make its output analog wheel signal exactly equal to the scale factor voltage. A write command signal, developed from the wheel position encoder, transfers the digital gain value from the counter into the memory when the center of each wheel sector contacts the rail. At the completion of one wheel revolution, the correct digital gain value for each sector will have been stored at the sector address in the memory. Returning S2 to the operate position inhibits any further writing into the memory and calibration is complete.

### LATERAL FORCE SIGNALS

The lateral signals are developed in the bridge circuits to produce a nearly constant output as the wheel rotates under constant lateral loads. Final scaling amplifiers are provided to set a suitable scale factor. The lateral bridge circuits are calibrated by adjusting the signal conditioning amplifiers. A more accurate calibration of the lateral signals can be obtained on a section of superelevated track which is instrumented with precision load cells to determine the lateral force caused by the superelevated track.

Lateral-to-vertical force ratios (L/V) are developed for each wheel by analog dividers. The scale factor for these ratios is adjustable so that a L/V ratio of 1 can be set to full scale output between 1 and 10 volts. When the digital recording system is in use, L/V ratios can be calculated from the digital values of vertical and lateral forces.



PROPERTY OF FRA RESEARCH & DEVELOPMENT LIBRARY

(Real)