

of Transportation Federal Railroad Administration Office of Research and Development Washington, D.C. 20590

Railroad Financial Evaluation Model: Description and Computer Program Users' Manual

Bolt Beranek and Newman Inc.

50 Moulton Street Cambridge, MA 02238

FRA/ORD-81/25.II

August 1981

Final Report

J. A. Kane C. E. Waldman Document is available to the U.S. public through the National technical Information Service, Springfield, Virginia 22161

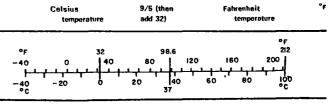
NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page


1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.				
FRD/ORD-81/25.II						
4. Title and Subtitle		5. Report Date				
Railroad Financial Evaluat						
Computer Program Users' Mar	nual	6. Performing Organization Code				
7. Author's)	<u></u>	8. Performing Organization Report No.				
		DDN Dement No. 4622				
J.A. Kane, C.E. Waldman	,	BBN Report No. 4632				
9. Performing Organization Name and Addre		10. Work Unit No. (TRAIS)				
Bolt Beranek and Newman Inc	•					
10 Moulton Street		11. Contract or Grant No.				
Cambridge, MA 02238		DOT-FR-8091				
		13. Type of Report and Period Covered				
12. Sponsoring Agency Name and Address		Final Report				
U.S. Department of Transpor		Sept. 1978-Feb. 1981				
Federal Railroad Administra						
Office of Research and Deve	elopment	14. Sponsoring Agency Code				
Washington, DC 20590		FRA/RRD-11.				
15. Supplementary Notes						
16. Abstract						
This report is part of a la	arger study to identify	potentially cost-effective ad-				
vanced braking and coupling						
		lementation of these systems.				
This report describes a mod		-				
-	-	. First the financial analysis				
concept of a discounted cash flow is explained. That analysis technique is then adapted for a user-oriented computer model. Several example cases are then						
	adapted for a user-oriented computer model. Several example cases are then presented to demonstrate the actual operation of the model.					
Presented to demonstrate tr	ie deedda operacion or e	me model.				
This study has also resulte	d in the following repo	orts; "Methodology for Evaluating				
		ing Systems" (FRA/ORD-79-57);				
		Braking and Coupling Systems"				
(FRA/ORD-80/49); "Recommend						
		ilroad Yard Simulation Model:				
Description and Computer Pr						
Description and computer PI	ogram users Manuar (FR	A/UKD-01/2J.1/.				
· · · · ·						
· · · · ·						
	•					
17. Key Words Decomposite 1	1 orz 18. Distributi	ion Statement				
17. Key Words Discounted cash f						
Braking and coupling system		t is available through the				
Cost and benefit analysis		1 Technical Information Service				
Freight cars		ield, VA 22161				
Computer Program Users' Man						
Railroad financial analysis	20. Security Classif. (of this pag	e) 21. No. of Pages 22. Price				
19. Security Classif. (of this report)	zu. Security Classif. (of this pag					
UNCLASSIFIED	UNCLASSIFIED	97				
Form DOT F 1700.7 (8-72)						

	Approximate Co	nversions to Metri	c Measures			Approximate Conve	rsions from Met	tric Measures	
ol	When Yes Knew	Multiply by	To find	Symbol		ol When You Know	Multiply by	To Find	S
						·	LENGTH	_	
		LENGTH				millimeters	0.04	inches	
						centimeters	0.4	inches	
	inches	•2.5	centimeters	cm		meters	3.3	føet	
	feet	30	centimeters	cm		meters	1.1	yards	
	yards	0.9	meters	m	km km	kilometers	0.6	miles	
	miles	1.6	kilometers	km					
		AREA					AREA	_	
						square centimeters	0.16	square inches	
	square inches	6.5	square centimeter		± ±^2	square meters	1.2	square yards	
	square feet	0.09	square meters	m ²		square kilometers	0.4	square miles	
	square yards	0.8	square meters	m ² ,		hectares (10,000 m ²	2.5	acres	
	square miles	2.6	square kilometers	km²					
	actos	0.4	hectores	ha					
		MASS (weight)					MASS (weight)	<u> </u>	
	ounces	28	grams			grams	0.035	OUNCES	
	pounds	0.45	kilograms	g kg		kitograms	2.2	pounds	
	short tons	0.9	tonnes	ry 1		tonnes (1000 kg)	1.1	short tons	
	(2000 lb)	0.5	ioninea.	•					
	<u></u>	VOLUME					VOLUME	_	
	teaspoons	5	millilitors	mł		milliliters	0.03	fluid ounces	
	teblespoons	15	milliliters	ml		liters	2.1	pints	
	fluid ounces	30	milliliters	mi	<u> </u>	liters	1.06	quarts	
	CUPS	0.24	liters	1		liters	0.26	gations	
	pints	0.47	liters	I	= m ³	cubic meters	35	cubic feet	
	quarts	0.95	liters	1		cubic meters	1.3	cubic yards	
	gallons	3.8	liters	1_					
	cubic feet	0.03	cubic meters	m ³		TEM	DEDATUDE Java	-41	
	cubic yards	0.76	cubic meters	m ³		<u>i c m</u>	PERATURE (exa		
	TEM	PERATURE (exact)				Celsius temperature	9/5 (then add 32)	Fahrenheit temperature	
	Fahrenheit	5/9 (after	Celsius	°c					
	temperature	subtracting	température			_			'F 212
		32)			8	°F 32	98.6		
<u>.</u>						-40 0 40	80 120	, 180 200 <u>1 </u>	
	lexactly). For other exact co	oversions and more detaile	d tables see NAS Misc Pi	bl 286	• <u> </u>	╋╌┺╍ <mark>┲╌┱_┲╸┎╌</mark> ╋╶	20 40	60 80 H	

METRIC CONVERSION FACTORS

יין ין

oz.

٠

.

-

t

X

PREFACE

The authors express their appreciation to the people and organizations that have helped considerably throughout this pro-The FRA COTRs, Ms. Marilynne Jacobs and subsequently Dr. ject. N. Thomas Tsai, have provided invaluable guidance and direction. In addition, an industry committee composed of Messrs. Geoffrey Cope of Dresser Industries, John Punwani of the Association of American Railroads, Bruce Shute of the New York Air Brake Co., Donald Whitney of the Burlington Northern Railroad, and Carl Wright of Westinghouse Air Brake Co. have performed important review and consultation. The American railroad industry, in particular the Southern Railway, Boston and Maine, Conrail, and several other railroads, has graciously provided information and an opportunity to observe railroad operations.

The model described in this report was initially developed by Alan Berger. The original computer code was written by Jonathan Cohen and later revised by Carol Waldman. Deborah Melone edited the entire report.

TABLE OF CONTENTS

page

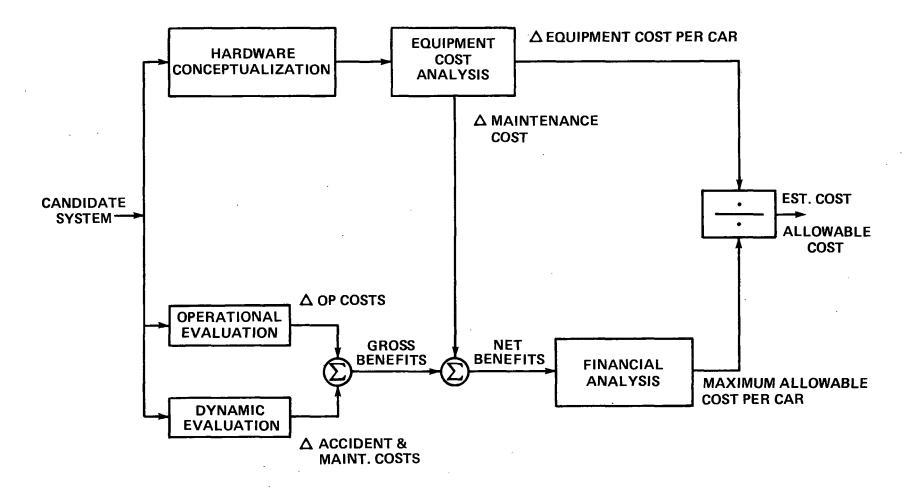
PREFACEiii					
LIST OF FIGURES AND TABLESvi					
SECTION 1	. GENERAL OVERVIEW1				
2	DESCRIPTION OF THE FIMOD MODEL				
	2.4 Program Structure				
3	PROGRAM OPERATION				
REFERENCES.					
APPENDIX A.	LISTING OF FORTRAN PROGRAM				

LIST OF FIGURES AND TABLES

page

Figure	1.	Method of analysis of braking and coupling systems2
	2.	Example of financial analysis using method shown in Fig. 18
	3.	Diagram of input of adjustments and parameters to FIMOD model10
	4.	Processing sequence flowchart21
	5.	Flowchart of MAIN routine28
	6.	Flowchart of LOOK subroutine
	7.	Flowchart of PRINT subroutine
	8.	Flowchart of GRAPH subroutine
Table	1.	Summary of adjustments and structural parameters11
	2.	Summary of program control
	3.	Summary of program input32
	4.	Summary of OUTPUT subroutines

£


.

1. GENERAL OVERVIEW

This report describes FIMOD, an interactive computer model for assessing the financial feasibility of investments by U.S. railroads in advanced braking and coupling systems. The purpose of this report is to introduce prospective users of the model to both the conceptual basis and the actual operation of the FIMOD model. Before discussing the model itself, we first discuss the larger project of which this model was a part and the methodology with which it was integrated in that project. In subsequent sections we describe the FIMOD model in detail and present examples of its operation by a user.

The FIMOD model was developed as part of a project sponsored by the Federal Railroad Administration (FRA) on advanced braking and coupling systems. That project was intended to determine a future course for railroad braking and coupling systems research and development through analysis of the costs and benefits of 16 specific innovative systems. The results of the project are presented in a three-volume series of reports [1,2,3].

The method of analysis used in the project is presented in Fig. 1. Briefly, analysts identify a candidate system and conceptualize the hardware for that system. Once the conceptual design of the system is established, they make an equipment cost analysis to estimate both the equipment cost per car and any associated changes in maintenance costs. The benefits of the candidate system - reductions in operating costs and reductions in accidents and maintenance costs - are estimated using operational and dynamic evaluation models. The output of those models, together with changes in maintenance costs from the equipment analysis, are primary inputs to the financial analysis model, FIMOD. The output of FIMOD is the maximum allowable cost per freight car that is financially feasible under conditions specified by the user. If allowable costs are greater than the

ł

.

FIG. 1. METHOD OF ANALYSIS OF BRAKING AND COUPLING SYSTEMS.

N

3

estimated cost per car, the candidate system is financially attractive. If they are less than the estimated cost per car, the investment is not worthwhile.

This overview of a relatively complex project is necessarily brief and general. Each element in the overall method represents a significant amount of analysis. For example, the operational evaluation is performed in part with the computer model RAIL, which is described and documented in a companion users' manual [4]. The financial model, described in this report, takes account of a wide variety of tax considerations, labor relations, policies, implementation strategies, and discount rates, all of which affect financial feasibility.

In its present configuration, the FIMOD model computes the allowable costs for the entire U.S. railroad industry. The model is constructed this way chiefly because the types of advanced systems under consideration require compatibility among all cars in interchange service. The model could be modified, however, to reflect more accurately the operations of a specific service.

The user's manual in this report follows the recommended format for computer program users' manuals shown in Federal Information Processing Standards Publication No. 38, "Guidelines for Documentation of Computer Programs and Automated Data Systems." In addition to those requirements, Sec. 2 includes an expanded section that describes the model. Section 3, Program Operation, presents several example cases demonstrating how to initiate the program, what types of commands can be made, and what the output looks like.

User Profile/Operational Environment

The financial evaluation model, FIMOD, is an interactive Fortran computer program developed to run on the computer system

maintained by the BBN Research Computer Center (RCC). The program is available through BBN on a time-shared system that uses Digital Equipment Corporation computers. Alternatively, tapes of the program can be obtained from BBN or NTIS and made operational on other computer systems.

After accessing the model through a keyboard computer terminal, users are prompted by instructions from the program. For example, typing the word HELP (followed by pressing the return key) will produce a brief explanation of the program, including a description of the commands that it will accept. The program is written in the Fortran computer language, but users do not need to know Fortran unless they want to make changes to the model. To run the program, users simply type brief commands on the terminal. Little typing skill is required to use the FIMOD program, because all the commands and other inputs to the program are kept short.

To use the model properly, however, users must become familiar with the basic concepts of financial evaluation, as described in Sec. 2. For example, they should understand the implication of specifying one or another depreciation method. The model prompts the user to choose the method he wants, and this choice affects the results obtained from the analysis.

2. DESCRIPTION OF THE FIMOD MODEL

This section is intended to provide users of the FIMOD model with sufficient information to understand the conceptual basis of financial analysis and how it is adapted to evaluating advanced braking and coupling systems.

2.1 Financial Analysis Concepts

The basic issue in financial analysis is whether an investment is worthwhile. Making that determination requires comparison of the costs of the investment with the benefits it is expected to generate. This simple comparison of costs and benefits is complicated by the fact that the costs and benefits occur over time. A dollar of benefits next year does not exactly offset a dollar of costs today. Three elements cause future dollars to be worth less than today's dollars: inflation, risk, and the time preference for money, which is the natural preference for having money and its benefits sooner rather than later. The value of future dollars, whether benefits or costs, is reduced by discounting them to their "present value." Discounting future costs and benefits to their present value enables one to compare costs and benefits on a consistent basis - i.e., their value today.

Net Present Value (NPV) is the conceptual basis of the FIMOD model. NPV analysis is the method by which costs and benefits occurring over time are discounted to their present value. If the discounted value of all the benefits is greater than the discounted value of all the costs, the net present value is positive. The formula for NPV is:

NPV =
$$\sum_{t=0}^{N} \frac{B_t - C_t}{(1 + r)^t}$$
, (1)

where

NPV = the net present value of investment project, B_t = the benefits generated by the project in year "t", C_t = the costs of the project in year "t", r = the appropriate discount rate or "cost of capital."*

Consider a simple example. Assume that an investment today (t = 0) of \$1000 with annual maintenance costs of \$100 would generate annual benefits of \$600. Further assume that the discount rate is 20% and the investment life is 3 years, at which time the investment would be worthless. The NPV would be:

$$-1000 + \frac{(600 - 100)}{1.2} + \frac{(600 - 100)}{1.2^2} + \frac{(600 - 100)}{1.2^3}$$

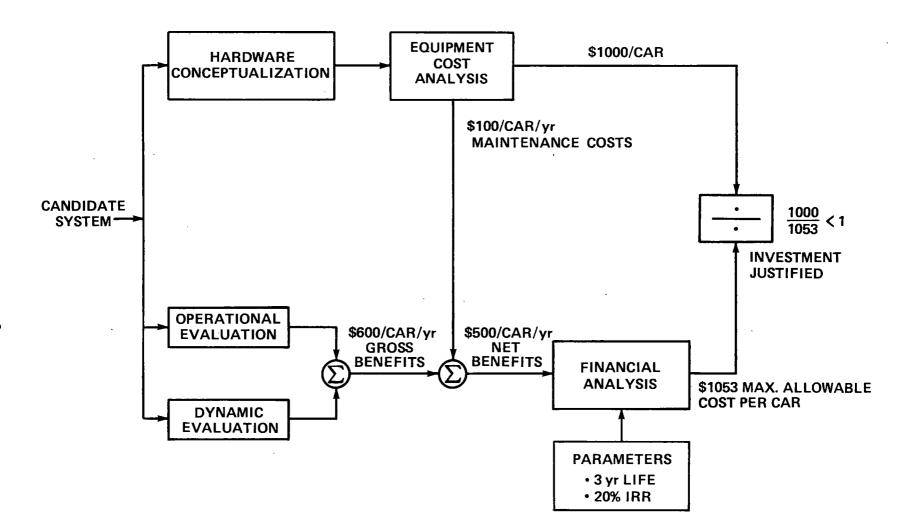
NPV = -1000 + 1053.24 = \$53.24.

The positive cash flows (benefits) more than offset the negative cash flows, and hence the net present value is positive.

A crucial consideration in this type of analysis is the rate at which future cash flows are discounted; that is, the discount rate. This discount rate is not merely the anticipated rate of inflation. Rather, it also reflects the degree of risk and the return that could be realized by a firm from other investments. Companies often deal with this decision by having an internal rate of return (IRR) that is set as a standard for project acceptance.[†] The FIMOD model allows the user to vary the

^{*}In the FIMOD model, the discount rate reflects the return a railroad must earn on a given project in order to generate funds from investors.

^TThe internal rate of return is formally defined as follows: when NPV is set equal to zero and the equation (1) is solved for r, r is called the internal rate of return. In the above example, IRR = 23.38%.


discount rate to reflect the appropriate internal rate of return. An IRR of 20% was determined to be appropriate for evaluating railroad industry investments in 1979 [2].

2.2 Elements of the Model

Given this brief overview of financial analysis, and referring to Fig. 1, the user can begin to see how the FIMOD model operates. The output of the Equipment Cost Analysis component is the initial investment cost per car of a new technology. In financial analysis terms, it is the cash flow representing initial outlay for the investment. All the subsequent costs and benefits resulting from that investment are evaluated in the Financial Analysis component. The output of the Financial Analysis component is an estimate of the maximum allowable cost per car that would be justified on the basis of the net benefits to be realized from the investment, discounted over the life of the investment. By comparing the increase in equipment costs per car to the maximum allowable cost per car, one can determine the feasibility of the investment. If maximum allowable cost is greater than the estimated equipment cost, the investment would be financially feasible, for the discounted net benefits would more than offset the initial cost of the equipment.

Figure 2 depicts the simple numerical example presented in Sec. 2.1 as it would be adapted to the overall methodology of Fig. 1. The \$1000 cost per car is less than the \$1053 net present value of the gross benefits less increased maintenance costs that would be realized over a three-year life for the investment. The investment is therefore justified.

This example is intended to convey the simple mechanics of evaluating investments using the FIMOD model. The actual process is somewhat more complicated, because additional considerations,

1 **f**

.

FIG. 2. EXAMPLE OF FINANCIAL ANALYSIS USING METHOD SHOWN IN FIG. 1.

٠. ا

 ∞

such as tax implications, labor relations, and equipment depreciation, must enter the analysis. The remainder of this section discusses all these additional factors and how they enter the FIMOD model.

There are two additional sets of inputs that must enter the financial analysis:

- . Adjustment to benefits
- Specification of structural parameters.

.The manner in which inputs enter the financial analysis is depicted in Fig. 3.

The user specifies the adjustments to be made to the costs and benefits to be realized. By doing so, the user determines <u>how</u> benefits are to be realized. For example, by specifying an accelerated depreciation schedule rather than a simple straightline method, the user can gain additional tax benefits in the early years of the equipment.

Structural parameters specified by the user determine <u>when</u> benefits are realized. These structural parameters largely determine the time dimensions of the analysis and how the investment is to be implemented over time. For example, the user must specify the number of years over which the next present value of costs and benefits are to be calculated, i.e., the maximum value of "t" in Eq. 1. The specific adjustments and structural parameters to be specified by the user are identified in Table 1. Each element and its significance are discussed in the text following the table.

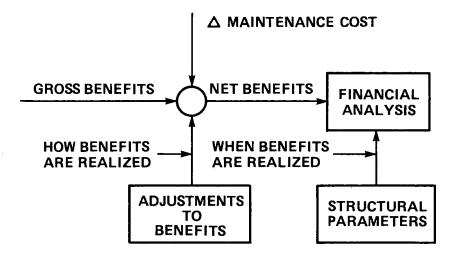


FIG. 3. DIAGRAM OF INPUT OF ADJUSTMENTS AND PARAMETERS TO FIMOD MODEL.

TABLE 1. SUMMARY OF ADJUSTMENTS AND STRUCTURAL PARAMETERS.

Adjustments to Benefits	Structural Parameters
• Inflation rates for materials, labor costs, and other savings	• Number of cars in system
• Fraction of labor savings paid to union	• Years to system compatibility
• Number of years of union payout ·	• Years cash flows to be calculated
• Depreciation method	• Depreciation lifetime of the technology
• Fraction of investment allow- able for investment tax credit	• Physical lifetime of freight cars
• Federal tax rate	• Fraction of retrofit cost required per new car production
	• Internal rate of return

Inflation rates for materials, labor costs, and other savings. If the time frame of the financial analysis is 20 years, one simply cannot assume that the wages of yard employees and the prices of the component parts will remain constant over the 20year period -- or even over a 2-year period. The user must therefore specify inflation rates for labor, materials, and other savings. "Other" savings represent benefits such as improved utilization of equipment or less frequent replacement of existing components.

Note that this specification does not offset the effect of discounting future costs and benefits, since the inflation rate specified by the user will be less than the discount rate used in the analysis. Recall that the discount rate accounts not only for inflation but also for risk and the attractiveness of other investments. Therefore, if an investment is expected to reduce

labor costs by \$100 per year, inflation is assumed to be 10% per year, and the discount rate is 25%, the net present value of that savings over 3 years would be

 $\frac{100 * 1.1}{1.25} + \frac{100 * 1.1^{2}}{1.25^{2}} + \frac{100 * 1.1^{3}}{1.25} = \233.59

Fraction of labor savings paid to union. Introduction of laborsaving devices and practices in the railroad industry has often been accompanied by compensation to unions for the loss of income by members whose jobs were eliminated. The FIMOD model explicitly permits the user to specify the amount and duration of such compensation. The amount of compensation is specified as a percentage of total labor savings attributable to the innovation. The duration is specified as the number of years over which such compensation is to be paid.

If the innovation requires several years to take effect, and no labor savings are realized until the implementation period is completed, the model does not begin to make this payout until the savings begin. For example, if the user specifies that the payoff period is 10 years, but the innovation takes 5 years to implement before any benefits are realized, the payoff is made in years 6 to 16, <u>not</u> in years 1 to 10. This is referred to as a Type I payout. However, if the innovation begins to produce benefits as soon as it is installed, and systemwide benefits increase as more and more cars have the innovation installed, the model computes the union payout starting in year 1, even though only a portion of the fleet has the new technology. This is referred to as a Type II payout.

<u>Depreciation Method</u>. The user may choose one of three depreciation methods:

- . straight line
- . double declining balance
- . sum-of-years digit.

Straight-line depreciation simply allocates equal depreciation charges over the depreciation life of assets. Hence, a \$1000 asset depreciated on a straight-line basis over 10 years would be written off at \$100/yr. The other two methods permit accelerated depreciation. These methods, which allow larger depreciation charges in the early years of the asset, yield tax advantages. The specific formulae for double-declining-balance and sum-ofdigits methods can be found in most elementary accounting textbooks. Users interested in using these methods should consult an accounting textbook for the advantages and disadvantages of each method.

1-

4-1 1021

£.

24

71

Note that once a user chooses a depreciation method, he cannot change the technique during that run. The user can choose only one method at a time and must use only that method throughout that run of the analysis. After the run is complete, when FIMOD prompts the user, he can use the CHANGE command to choose another method for another run of the analysis.

<u>Investment tax credit</u>. An investment tax credit (ITC) can be realized from investment in new equipment. The ITC is specified as a percent of the investment made. The IRS code specifies the allowable tax credit that can be taken for investments of different lifetimes. Ten percent of the initial investment outlay would be a typical rate for investments in advanced braking and coupling systems. Hence a \$1000 investment would produce a \$100 tax credit, which would be applied in the first year after the investment.

Federal tax rate. In adjusting gross benefits to net benefits, consideration of the after-tax advantages of an investment is probably the largest single factor. If an investment reduces costs while revenues stay constant, profits will increase. The tax rate applied to those profits will determine the after-tax benefit of the investment. The higher the tax rate, the lower the after-tax profits, and thus the lower the after-tax benefits. A tax rate of 46% is typical for the U.S. railroad industry [2].

<u>Example of Adjustments</u>. The following example shows in accounting fashion the types of adjustments that would be made in the FIMOD model. Note that these examples are shown in an accounting format. The FIMOD model actually uses a different computational procedure to facilitate computer calculations, but the underlying acounting logic is equivalent.

Base Case 1,000,000 700,000 Revenues (R) Operating Costs (OC) Taxes: Revenue Less Operating Costs (R-OC) 300,000 Less Depreciation 100,000 Taxable Income (TI) 200,000 Tax (50% of TI) 100,000 Net Cash Flow (R-OC-tax)200,000

Post-Investment Case

Given: An investment of \$500,000 to be depreciated on a straight-line basis for 10 years. The investment will reduce labor costs by \$100,000 per year with a zero inflation rate and have a 10% investment tax credit.

·	Year 1	Year 2 - 10
Revenues (R)	1,000,000	1,000,000
Operating Costs (OC)	600,000	600,000
Taxes:		
Revenue Less Operating Cost (R-OC) Less Depreciation Taxable Income (TI) Tax (46% of TI) Less Investment Tax Credit (ITC) (10% of Investment) Total Tax (TAX-ITC)	400,000 <u>150,000</u> 250,000 115,000 50,000	400,000 <u>150,000</u> 250,000 115,000 0 <u>115,000</u>
Net Cash Flow		
(R-OC-TOTAL TAX)	<u>335,000</u>	285,000

Annual increase in after-tax profit

year l	\$335,000 -	200,000	= \$135,000
years 2-10	\$285,000 -	200,000	= \$85,000

Note that the FIMOD model would then discount these increases in after-tax profits to obtain maximum allowable investment. Further note that a zero inflation rate is assumed in this analysis and that no union payout is made.

Structural parameters control the time dimensions of the financial analysis. Each of the parameters identified in Table 1 is discussed below.

<u>Number of cars in the system</u>. Since the analysis is on a per-car basis, the user must specify the number of cars in the U.S. rail system. The analysis in Ref. 2 is based on a fleet of 1,444,000 freight cars.

<u>Years to system compatibility</u>. Some type of advanced braking and coupling systems are compatible with existing systems. For example, knuckle-open coupler devices would be compatible with

existing couplers, and the benefits would accrue immediately. In contrast, other advanced systems, such as those requiring electrical power, would not be compatible until the entire fleet had the capacity for electrical connections. Hence 10 or more years might be required until the new advanced system was compatible and the benefits could be realized. Note that in actually using the model, the convention is that if it takes 10 years for compatibility, the system is compatible in year 10, and there were 9 years before the system was compatible.

Years cash flows to be calculated. The user must specify the number of years over which costs and benefits are to be discounted; that is, the maximum value of "t" in Eq. 1. Since some advanced systems might require 10 or even more years to implement, the user would probably want to specify at least 20 years for this parameter. Note that as the discount rate increases, the present value of net benefits in later years of analysis decreases.

Depreciation lifetime of the technology. This parameter sets the number of years over which the new system is to be depreciated for tax purposes. It is the depreciation lifetime of the technology as distinguished from its physical life. In most instances the depreciation lifetime of the technology will be the same as the physical lifetime. In those instances where there is a difference, depreciation lifetime will be shorter, in order to take advantage of the depreciation tax credits that would be realized from the rapid write-off of the asset.

<u>Physical lifetime of the technology</u>. This parameter specifies the lifetime of the technology. It is used to calculate the attrition rate of technology. The significance of this parameter is that it determines when new technology must be replaced during the life of a car. The technology lifetime will often be less than the lifetime of a freight car; therefore, there will be a

cost associated with the replacement of the technology over the life of the car.

Physical lifetime of freight cars. This parameter is used to calculate the attrition rate of freight cars, which in turn controls the flow of new cars with the advanced systems into the fleet. For example, if the user specifies that the lifetime of cars is 30 years, the model will assume that 1/30 or 3.33% of the fleet will be retired each year and replaced with new cars.

Fraction of retrofit cost required for new production. It is generally less expensive to incorporate a new system into a freight car while it is being manufactured than to retrofit the car while it is in service. The user can account for this explicitly by specifying the savings that could be realized by incorporating the new system in car production. Hence, if the user specifies the value of this parameter as 50%, the model will assume that a \$1000 retrofit cost would be only \$500 for a new car.

Internal Rate of Return. The user specifies the IRR as the rate to discount each year of cash flows. The choice of the discount rate should reflect the target rate of return for the company (i.e., the company expects to make 25%, since it is borrowing at 15%). Projects with relatively greater risk should have higher discount rates. A range of 5 to 25 percent internal rate of return is incorporated in the model, so the user does not have to specify a particular IRR.

Example: The parameters specified by the user control the timing of the analysis and, in particular, the actual introduction of the new system into the fleet through retrofitting and new cars. The following example shows how this would be accomplished.

Parameters:

•	number of cars	1000
•	years before compatibility	10
•	lifetime of the technology	10
•	lifetime of the cars	20

Implementation:

Year	New Replacements	Retrofits	Cars With	Cars Without
1	50	50	100	900
2	50	50	200	800
•				
•				
10	50	50	1000	000

Note in this example that 50 "new technology" cars per year enter the fleet, based on the attrition rate of 1/20, or 5% of 1000. Since this would only change one half of the fleet in a 10-year period, the other 500 cars must be retrofitted. The number of cars retrofitted each year is prorated at the years to compliance, 500 cars/10 years = 50 cars/year. The system is compatible in year 11.

2.3 Processing Sequence and Procedures

This section presents the actual processing sequence and procedures of the FIMOD model. It describes how the concepts of financial analysis and specific adjustments to the analysis are incorporated in the principal subroutines of the model. The purpose of this section is to inform the user of exactly how the model processes the input information specified by the user.

The FIMOD model calculates benefits and costs (positive and negative cash flows) adjusted for taxes and inflation over the

period of analysis. It then discounts those costs over a range of internal rates of return. The actual computations are not difficult, but they are complicated, because there is a great deal of information to keep track of. The advantages of using a computer to make the numerous calculations and keep track of all the information are obvious.

The actual computations made by the FIMOD model and their sequence are designed to take fullest advantage of the computer's processing and storage capabilities. The sequence, algorithms, and computer code might be awkward for hand calculations but are in fact very efficient for the computer. While using the FIMOD model, users never see the computations themselves but only the output they generate. However, it is important for users to know how the output is generated so that they can be sure that the model is actually computing what they want.

The FIMOD model organizes processing in an eight-step sequence shown in Fig. 4. The steps are:

- 1. Calculate the cost of retrofitting cars with advanced system
- 2. Calculate cost of installing advanced system on new cars
- 3. Calculate investment tax credit
- 4. Calculate depreciation tax credit
- 5. Calculate tax-adjusted labor savings
- 6. Calculate tax-adjusted other savings
- 7. Sum cash flows
- 8. Solve for maximum allowable cost.

The financial model consists of a set of equations organized in subroutines. For each year the start-up costs (if any), annual costs, investment tax credit, and depreciation tax credit

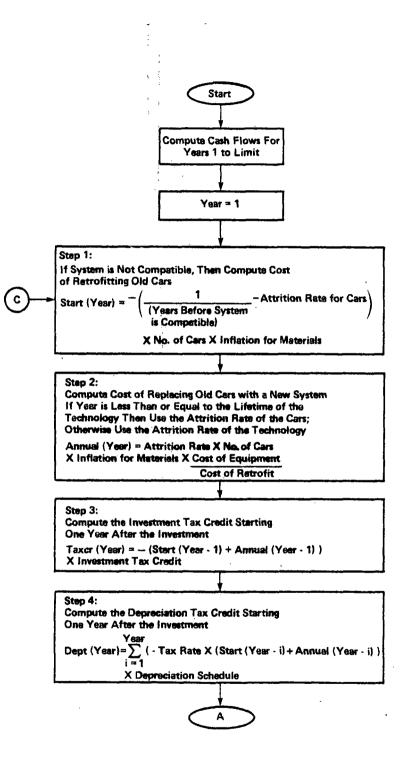


FIG. 4. PROCESSING SEQUENCE FLOWCHART.

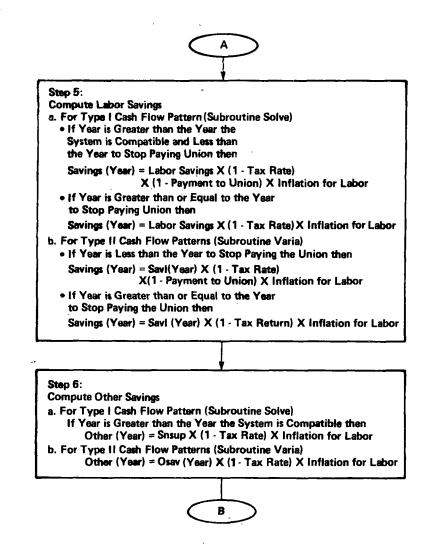


FIG. 4 (Cont.) PROCESSING SEQUENCE FLOWCHART.

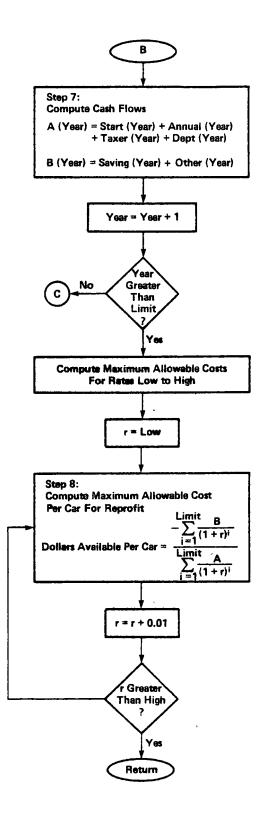


FIG. 4 (Cont.) PROCESSING SEQUENCE FLOWCHART.

are computed. Labor and other savings are also computed. All the costs are proportional to the cost of retrofitting a single car. The dollar amount available per car is obtained in the final step by dividing the sum of all the savings by the sum of all the costs. The discussion below highlights each step in this process. In reviewing these steps, the reader should keep in mind the following considerations:

- All costs are relative to the cost of retrofitting a freight car
- The attrition rate of cars is separate and distinct from the attrition rate of technology
- Many calculations embody a time lag because benefits in time "t" are the result of actions in time "t-1."

Step 1 - Calculate Costs of Retrofitting. The program calculates the cost of retrofitting cars for each year before the system is This cost is referred to as START. If it requires compatible. 10 years for the system to be compatible, the cost of retrofitting is calculated for years 1 to 10. The program automatically accounts for how many cars would be retrofitted each year on the basis of the attrition rate of cars, the number of cars in the fleet, and the number of years required for system compatibil-In this first step, the program calculates the cost of ity. retrofitting and the number of cars to be retrofitted for a given year. It is assumed that retrofit costs are only incurred from the beginning of the implementation period to the year before system compatibility.

<u>Step 2 - Calculate Costs for New Cars</u>. The marginal cost of installing advanced braking and coupling systems on new cars is calculated in this second step. The marginal cost (ANNUAL) is determined by user input specifying new car costs as a percent of retrofit. In general, the marginal cost of installing the

technology on a new car will be less than retrofitting. The number of new cars and the cost of the technology on those cars is a function of the attrition rates. Specifically, if the current year, t, is less than or equal to the lifetime of the technology, then the attrition rate of the technology is used.

In Steps 1 and 2, the program calculates the costs of the advanced system for a given year. Over the period of analysis, these are the gross negative cash flows associated with the system. In the next series of steps, the program focuses on the benefits - that is, positive cash flows generated by the system, first by reducing the effective cost through tax savings and then by accounting for other direct savings.

<u>Step 3 - Calculate Investment Tax Credit</u>. The program checks to determine if in the previous year expenditures were made on retrofitting existing cars or installing technology on new cars. The program sums these two costs (START and ANNUAL respectively) and then multiplies that sum by an investment tax credit rate specified by the user.

<u>Step 4 - Calculate Depreciation Tax Credit</u>. A firm investing in advanced systems would realize tax benefits attributable to the depreciation of the equipment. The benefits in the current year, DEPRT, are equal to the sum of investments in retrofitting old cars and installing the system on new cars times the proportion of that investment to be depreciated this year times the tax rate. Note that depreciation benefits in this year are related not solely to investments last year but also to investments in previous years and to the time schedule over which they are being written off. That schedule is determined by the depreciation method chosen and the lifetime of the asset for tax purposes, both of which are specified by the user.

At the end of this step, the program has calculated all the costs and benefits associated with the freight cars themselves. In the first two steps the program calculated the cost of implementing the system on cars, while in the third and fourth steps the program calculated offsetting tax benefits, specifically investment and depreciation tax credits, directly based on the costs calculated in Steps 1 and 2. In the following steps, the program focuses on labor savings and other benefits.

<u>Step 5 - Calculate Labor Savings</u>. To calculate labor savings there are three considerations:

. Benefits subject and not subject to union payout

- When benefits begin to be calculated
- . How benefits are actually calculated.

Benefits subject to union payout are determined by the user, who specifies the proportion of labor savings paid to the union and the number of years the payments are to be made. If the user specifies a union payout, there are two ways in which the payout can be made.

The program checks to determine if the entire system must be compatible before benefits are realized - Type I payout schedule or if benefits are realized as soon as implementation begins -Type II payout schedule. The program automatically assumes a Type I cash flow if the user does not specify either variable labor savings, or variable other savings. However if the user does enter variable savings, the program automatically assumes a Type II cash flow, and union payment will begin in year 1. In the Type I case, labor savings do not begin until the system is compatible. The union payout would begin in the first year of compatibility and continue for the number of years specified by the user. Hence, if it took 10 years for compatibility, and

union payout was for 10 years, the program would start to calculate in year 11, the first year of compatibility, and would continue for 10 years. If, on the other hand, the benefits begin immediately with implementation, the program begins to calculate in year 1. Since benefits are proportional to the number of cars that have the technology, total benefits increase over the implementation period. Returning to the example of a 10-year union payout and a 10-year period until the system was installed on the entire fleet, the model would calculate one-tenth of labor savings in year 1, two tenths in year 2, etc. Thus, the actual labor saving and the amount paid to the union would increase over the implementation period. In this example, payments would cease at the end of year 10.

The program calculates the net benefits by first determining the labor savings for current year, given the considerations described above. Those savings are then multiplied by: (1 - tax rate) times (1 - proportion to union payout) times the inflation rate for labor. The product of that calculation is the aftertax, after-payout labor saving benefits for each year of the analysis.

<u>Step 6 - Calculate Other Savings</u>. The benefits of other savings, such as reduced maintenance and accident-related costs, are calculated in this step. In effect, all savings not subject to union payout are accounted for. An adjustment is made for both taxes and inflation.

<u>Step 7 - Sum Cash Flows</u>. At this point the program has calculated as many as six cash flows for every year of the analysis. In Step 6, those cash flows are reduced to two. The sum of Steps 1, 2, 3, and 4 is calculated as A. Steps 5 and 6 total B. These sums, A and B, become inputs to Step 8.

<u>Step 8 - Calculate Maximum Cost Per Car</u>. In this final step, the present values of A and B are calculated for each year of the analysis. The yearly present values are summed to SUMA and SUMB. The negative of the total of SUMB is divided by SUMA, and the result is maximum allowable investment per freight car. This process is repeated over the range of internal rates of return specified by the user. The overall output is a series of maximum allowable expenditures for alternative rates of return.

2.4 Program Structure

Previous sections have described how the FIMOD model calculates allowable investment. That calculation is part of a much larger computer program. This section describes the other major components of the computer model of which the financial evaluation component is a part.

The FIMOD program is organized into four principal components. Each component has one or more subroutines to execute the objectives of that component. The components are:

- Program control
- Input
- Computation
- Output.

The computation component calculates allowable investment. It incorporates two subroutines, SOLVE and VARI. Section 2.3 has presented a description of computations performed by the computer model. This section, 2.4, describes how the FIMOD program executes the control, input, and output components.

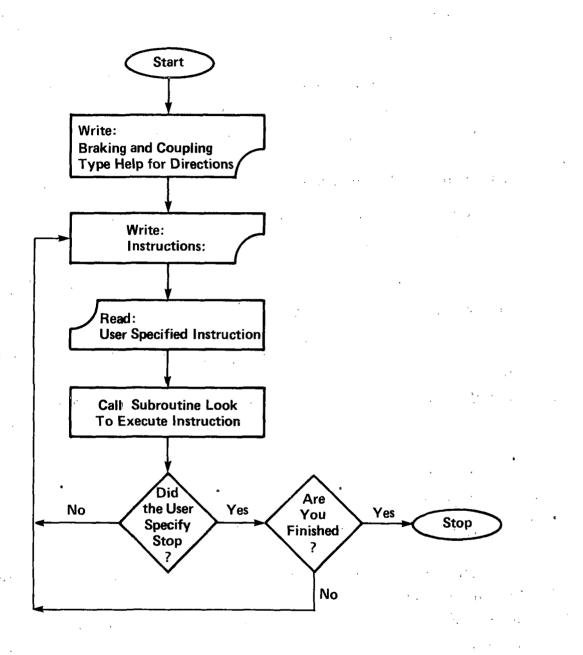


FIG. 5. FLOW CHART OF MAIN ROUTINE.

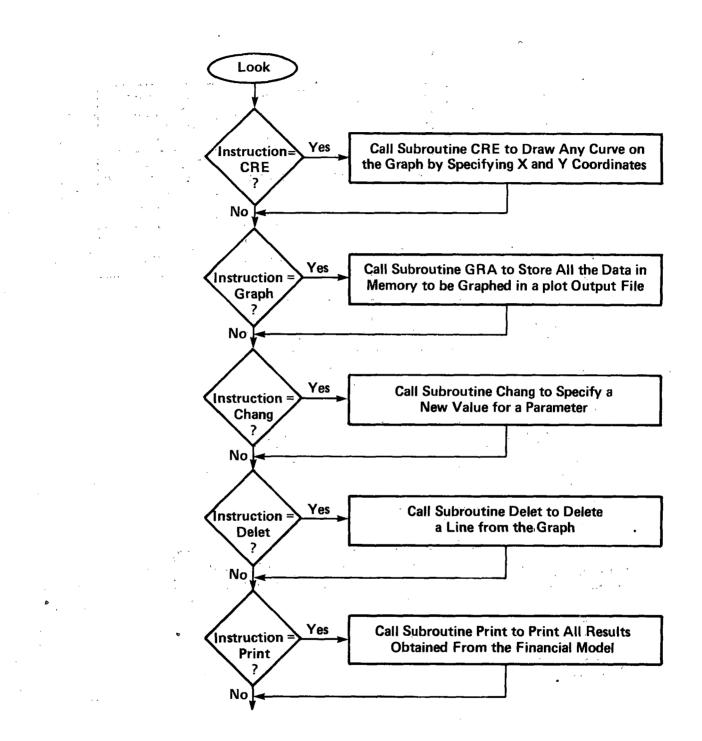


FIG. 6. FLOWCHART OF LOOK SUBROUTINE.

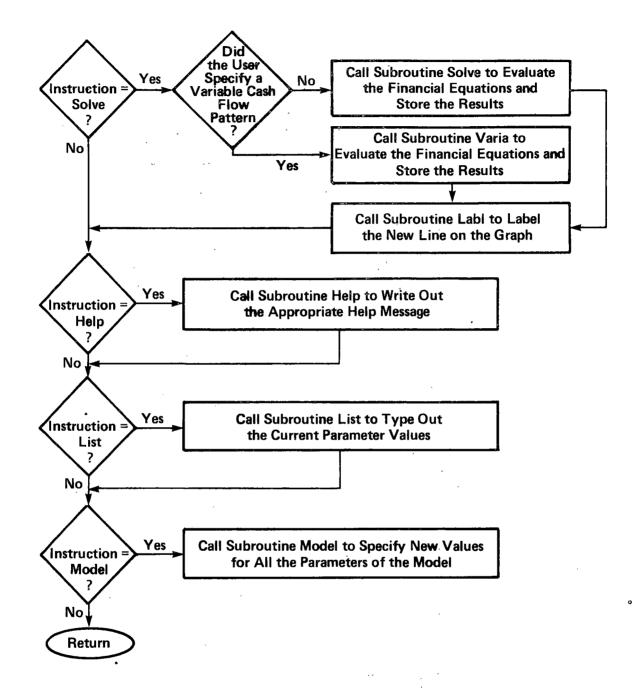


FIG. 6 (Cont.) FLOWCHART OF LOOK SUBROUTINE.

2.4.1 Program control

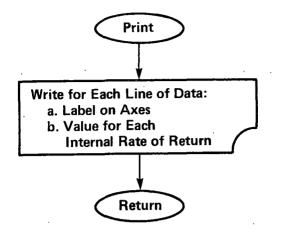
The overall control of the program is accomplished by the main program, MAIN, and by the subroutine LOOK. The main program is the primary user interface. It introduces the model, prompts for an instruction, and responds to the user's selections by calling the LOOK subroutine. The LOOK subroutine in turn calls the subroutine that performs the function specified by the user such as PRINT, SOLVE, or HELP. Flowcharts for MAIN and LOOK are presented in Figs. 5 and 6. The control component is summarized in Table 2.

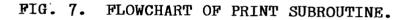
Component	Routines	Functions		
Control	MAIN	Introduces the model. Prompts for an instruction. Receives user instructions. Calls LOOK subroutine.		
	LOOK	Calls the specific subroutine that performs the function specified by the user.		

TABLE 2. SUMMARY OF PROGRAM CONTROL.

2.4.2 Input

The input component allows user to enter information and data. The subroutines in this component let users specify values for adjustments and parameters that enter and control program computations. Table 3 presents a summary of the input subroutines and their function.


TABLE 3. SUMMARY OF PROGRAM INPUT.


Component Subroutine		Functions		
INPUT	CHANG	Changes a parameter value.		
	MODEL	Specifies new values for all the parameters of the model.		
	NEW	Enters values for type II cash flow patterns.		

2.4.3 Output

The various output subroutines enable users to specify the results they want and the way the results are displayed. In addition, the users can obtain information on parameter values and access a variety of help messages. Table 4 summarizes the output subroutines and their functions. Flowcharts for the PRINT and GRAPH subroutines are presented in Figs. 7 and 8.

Component	Subroutine	Functions
OUTPUT '	CRE	Draws any curve on the graph by specifying X and Y coordinates.
	PRINT	Prints all the results obtained from the model at any point in time.
	DELET	Deletes a line from the graph.
	GRA	Takes all of the data in memory to be graphed and stores it in a plot output file.
	HELP	Prints the appropriate help message.
	LIST	Types all the parameter values.
	LABL	Labels the last line generated on the graph.

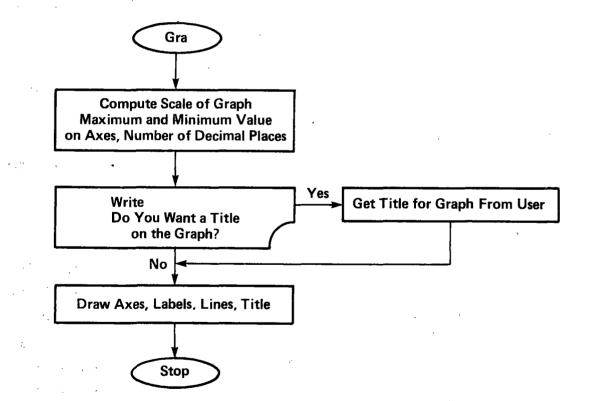


FIG. 8. FLOWCHART OF GRAPH SUBROUTINE.

3. PROGRAM OPERATION

This section introduces users to the actual operation of the model. It is meant to provide users with specific information required to operate the model. It also presents sample runs of the program.

3.1 Initiating the Program

This section presents several sample runs of the braking and coupling system financial evaluation model. The runs correspond to the type E coupler cases examined in the FRA cost/benefit study of advanced braking and coupling systems [1,2]. The sample runs evaluate Type E couplers with a shelf. A different implementation scenario is applied in each of the three sample runs presented below.

The first example includes a more detailed listing than would normally be necessary, in order to illustrate some of the information that the program provides to users. The later examples show how the program can be run more efficiently, with fewer commands, when the user requires less prompting information.

3.2 Example Cases

Since this is the first example of the FIMOD program in this manual, we will provide a fairly complete listing here; Examples 2 and 3 present a shorter version of the model for the same braking and coupling device. By comparing these examples, you can see how to run the program more efficiently once you are more familiar with it. Examples 2 and 3 also show how to use other features of the model not shown in this first example.

3.2.1 Example 1: Type E coupler with shelf - 25-year implementation

To use the program, for the first time, on the same line as the INSTRUCTION: prompt, type HELP followed by a carriage return. You will get the following response:

INSTRUCTION:HELP

THIS PROGRAM CONTAINS A NUMBER OF SUBPROGRAMS TO PERFORM SPECIFIC TASKS. To use one type the keyword for that unit.

KEYWORD	FUNCTION
HELP	INFORMATION ABOUT A PARTICULAR QUESTION
NODEL	SET PARAMETERS FOR BRAKING AND COUPLING MODEL
CHANGE	CHANGE SPECIFIC PARAMETERS IN THE MODEL
SOLVE	SOLVE FOR AVAILABLE DOLLARS PER CAR AND STORE THE RESULTS
GRAPH	PLOT THE DATA IN THE FILE
PRINT	PRINT THE DATA IN THE FILE
LIST	THE PARAMETERS AND THEIR VALUES IN THE MODEL
DELETE	REMOVE ONE OR HORE LINES FROM THE BATA FILE
CREATE	ENTER A LINE INTO THE FILE

THIS PROGRAM WILL NOW AUTOMATICALLY ENTER HODEL AND THEN LIST. YOU CAN THEN USE CHANGE TO CORRECT ANY ERRORS. THEN TYPE SOLVE FOLLOWED BY PRINT OR GRAPH. NOTE THAT PRINT AND GRAPH WILL DUTPUT ALL THE SOLUTIONS MADE UP TO THAT TIME. PARTICULAR SOLUTIONS CAN BE REMOVED WITH DELETE.

The program has responded to your request for help by listing the options available to you and telling you that at this time it is "automatically" going to MODEL, the subprogram you would want when first using the program. As is shown on the next page, the MODEL subprogram will ask you for information on the parameters you want to specify for this first run of the model. After entering all the input parameters, you would probably want to use the LIST command so that you could verify your input and check for any mistakes. As the message the computer has printed indicates, this is exactly what the program is now going to do automatically; you do not have to type in the MODEL or LIST commands. The PRINT and GRAPH subprograms are described later. Note that this is the only time the program will automatically move you to the MODEL and LIST functions. From here on you must type these commands to access these functions.

The program is now at the beginning of the MODEL subprogram. You will always know when you enter the MODEL subprogram because the computer will print the following message:

THIS IS A MODEL TO ESTIMATE THE AMOUNT THAT CAN BE SPENT PER FREIGHT CAR FOR ADVANCED BRAKING AND COUPLING.

The computer will immediately begin to type out, one by one, a list of questions to which you must respond. Each question asks you to specify the value you want for a particular adjustment or parameter discussed in Sec. 2.3. You must respond to each question by entering the correct word or numbers. Then press the carriage return key. The cariage return key tells the program that you are ready for the next question.

If you make a mistake answering a question, there are two ways you can correct your mistake. If you realize you have made a mistake but have not yet pressed the carriage return, press the DEL key as many times as required to "erase" your mistake. Each time you press the key you will delete one space at a time. For example, 24 5 changes 24 to 25; 19 20 changes 19 to 20. If you have already pressed the carriage return, proceed through the remaining questions and then use the CHANGE command to make your correction. We discuss how to use the CHANGE command in Sec. 3.2.2.

Proceeding with our specific example of a Type E coupler with a shelf, the values entered in response to the questions correspond to the scenario in Sec. 2.3.3 of Ref. 2. The example is to phase in shelves on new cars and cars that need replacement

couplers. Implementation would take 25 years. Remember to press carriage return after typing each reply; otherwise the program will not proceed to the next question.

The answers to the questions are fairly straightforward. However, following are several peculiarities of the program that you should be aware of:

- How many years before the system becomes compatible? Since you want the system fully implemented in the 25th year, there are 24 years <u>before</u> the system is compatible. Hence the answer to this question will be 1 less than the year when total compatibility is achieved. The key word is <u>before</u>.
- What fraction of retrofit cost is required for new production? The answer in this example is 1, because there is no retrofit in this example. Rather, the new technology is introduced through new production. See example 3 to see how your answer would change in that implementation scenario.
- Do you want to enter variable savings for this range? This is an example of a Type II cash flow (c.f. Section 2.3). The savings increase over the 25-year period in proportion to the number of cars that have the new couplers. The computer will print out the schedule of savings by year after you answer the question. As the next questions indicate, this example assumes that the savings remain constant (Type I) from years 25 to 50 at \$12 million.
 - Method: SUM. After you select the depreciation method, in this case sum of digits, the computer will print the schedule of the amount of depreciation taken each year.

FOR HOW MANY YEARS SHOULD THE CASH FLOWS BE CALCULATED?50 HOW MANY YEARS BEFORE THE SYSTEM BECOMES COMPATIBLE?24 HOW MANY CARS ARE IN THE SYSTEM?1444000 WHAT IS THE EXPECTED LIFETIME OF THE CARS? 30 WHAT IS THE EXPECTED LIFETINE OF THE TECHNOLGY BEING IMPLEMENTED ON THE RAILROAD SYSTEM? 30 WHAT FRACTION OF RETROFIT COST IS REQUIRED FOR NEW PRODUCTION (PER CAR)?1 FRACTION= 100.0% **IS THIS CORRECT?YES** TYPE YES IF YOU WANT TO ENTER LABOR SAVINGS THAT IS SUBJECT TO UNION PAYOFF ON A YEAR BY YEAR BASIS. TYPE NO OTHERWISE: NO WHAT IS THE LABOR SAVINGS PER YEAR THAT IS SUBJECT TO UNION PAYOUT?O FOR HOW MANY YEARS WILL SAVINGS BE PAID TO THE UNION?O WHAT FRACTION OF LABOR SAVINGS ARE PAID TO THE UNION?O TYPE YES IF YOU WANT TO ENTER SAVINGS THAT IS NOT SUBJECT TO UNION PAYOFF ON A YEAR BY YEAR BASIS. TYPE NO OTHERWISE: YES TYPE THE END YEAR FOR THE RANGE TO ENTER SAVINGS: 24 DO YOU WANT TO ENTER VARIABLE SAVINGS FOR THIS RANGE? YES YEAR SAVINGS .48E06 1 2 .96E06 3 1.44E06 4 1.92E06 2.4E06 5 2.88E06 6 7 3.36E06 8 3.84E06 9 4.32E06 10 4.8E06 5.28E06 11 5.76E06 12 13 6.24E06 14 6.72E06 15 7.2E06 16 7.68E06 17 8.16E06 18 8.64E06 9.12E06 19 20 9.6806 21 10.08E06 22 10.56E06 23 11.04E06 24 11.52E06

UHAT 15 THE DEPRECIATION LIFETINE OF THE ASSETT30 WHICH METHOD OF DEPRECIATION DO YOU WANT TO USE? STRAIGHT -STRAIGHT LINE DUUBLE -DOUBLE DECLINING BALANCE SUM -SUM OF YEARS DIGITS METHOD:SUM YEAR FRACTION WRITTEN OFF IN THAT YEAR 1 .045 2 .062 3 .040 4 .058 5 .056 6 .054 7 .052 8 .049 9 .047 10 .045 11 .043 12 .041 13 .037 14 .037 15 .034 16 .032 17 .030 18 .028 19 .026 20 .015 21 .022 22 .017 24 .015 25 .013 26 .013 27 .009 28 .006 29 <t< th=""><th></th><th>DO YO WHAT WHAT WHAT INVES WHAT</th><th>U WANT TO ENTER IS THE SAVINGS F IS THE TAX RATE FRACTION OF INVE TMENT TAX CREDIT IS THE INFLATION MATERIALS (1) LABOR (IN PE SAVINGS NOT</th><th>N RATE FOR: (N PERCENT)?10 ERCENT)?8.7 SUBJECT TO UNION PAY(</th><th>THIS RANGE? ND 50? 12E06 JSTRY?.46 .E FDR DUT (IN PERCENT)?</th><th></th></t<>		DO YO WHAT WHAT WHAT INVES WHAT	U WANT TO ENTER IS THE SAVINGS F IS THE TAX RATE FRACTION OF INVE TMENT TAX CREDIT IS THE INFLATION MATERIALS (1) LABOR (IN PE SAVINGS NOT	N RATE FOR: (N PERCENT)?10 ERCENT)?8.7 SUBJECT TO UNION PAY(THIS RANGE? ND 50? 12E06 JSTRY?.46 .E FDR DUT (IN PERCENT)?	
STRAIGHT -STRAIGHT LINE DOUBLE -DOUBLE DECLINING BALANCE SUM SUM -SUM OF YEARS DIGITS METHOD:SUM YEAR FRACTION WRITTEN OFF IN THAT YEAR 1 .065 2 .062 3 .060 4 .058 5 .056 6 .054 7 .052 8 .049 9 .047 10 .045 11 .043 12 .041 13 .039 14 .037 15 .034 16 .032 17 .030 18 .028 19 .026 20 .024 21 .022 23 .017 24 .015 25 .013 26 .006 29 .0064 30 .0062						
DOUBLE -DOUBLE DECLINING BALANCE SUM -SUM OF YEARS DIGITS METHOD2:SUM YEAR FRACTION WRITTEN OFF IN THAT YEAR 1 .065 2 .062 3 .060 4 .058 5 .056 6 .054 7 .052 8 .049 9 .047 10 .045 11 .043 12 .041 13 .037 14 .037 15 .034 16 .032 17 .030 18 .026 20 .024 21 .022 22 .017 24 .015 25 .013 26 .004 27 .009 28 .006 29 .004		WHICH			U USE!	
SUM -SUM OF YEARS DIGITS METHOD:SUM YEAR FRACTION WRITTEN OFF IN THAT YEAR 1 .065 2 .062 3 .060 4 .058 5 .056 6 .054 7 .052 8 .049 9 .047 10 .045 11 .043 12 .041 13 .037 14 .037 15 .034 16 .032 17 .030 18 .028 19 .026 20 .0244 21 .022 22 .017 24 .015 25 .013 26 .004 27 .009 28 .006 29 .004 30 .002						
METHOD:SUM YEAR FRACTION URITTEN OFF IN THAT YEAR 1 065 2 062 3 060 4 058 5 056 6 054 7 052 8 049 9 047 10 045 11 043 12 041 13 039 14 037 15 034 16 032 17 030 18 028 19 026 20 024 21 022 22 019 23 017 24 015 25 013 26 001 27 009 28 006 29 004 30 002						
YEAR FRACTION WRITTEN OFF IN THAT YEAR 1 .045 2 .062 3 .040 4 .058 5 .056 6 .054 7 .052 8 .049 9 .047 10 .045 11 .043 12 .041 13 .039 14 .037 15 .034 16 .032 17 .030 18 .428 19 .026 20 .424 21 .022 22 .019 23 .017 24 .015 25 .013 26 .011 27 .009 28 .006 29 .004 30 .002		METHO			,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				EN OFF IN THAT YEAR		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	.065			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	.062			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3			4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
9 $.047$ 10 $.045$ 11 $.043$ 12 $.041$ 13 $.039$ 14 $.037$ 15 $.034$ 16 $.032$ 17 $.030$ 18 $.028$ 19 $.026$ 20 $.024$ 21 $.022$ 22 $.017$ 24 $.015$ 25 $.013$ 26 $.006$ 27 $.009$ 28 $.006$ 29 $.004$ 30 $.002$,		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				• • •	· · ·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. '			· · ·		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,				· .	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						· · · ·
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	٠ ،	17	.030			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- 18	. 128		,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2 · ·			
22 .019 23 .017 24 .015 25 .013 26 .011 27 .009 28 .006 29 .004 30 .002				1	•	
23 .017 24 .015 25 .013 26 .011 27 .009 28 .006 29 .004 30 .002		21		,		
24 .015 25 .013 26 .011 27 .009 28 .006 29 .004 30 .002						
25 .013 26 .011 27 .009 28 .006 29 .004 30 .002						
26 .011 27 .009 28 .006 29 .004 30 .002	ť					
27 _009 28 _006 29 _004 30 _002						
28 .006 29 .004 30 .002						
29 .004 30 .002						
30 .002						
						· - ·
				a . ,		
		ж. 1				
	,					
	e	r i		r		

. t

.

32	.000	
33	-0 0 0	
34	.000	
35	.000	
36	.000	
37		
38 -	.000	
39	.000	
40	.000	
41	.000	
42	.000	
43	.000	
44	.000	
45	.000	
46	.000	
47	.000	
48	.000	
49	.000	
••		

T0TAL=1.000

Now that you have entered all the input required for the model, the program goes to the LIST subprogram and prints all the data that are now stored in the program. The output of the LIST routine is shown below. The LIST output provides a chance for you to check the data and ensure that you haven't made any mistakes. Note that this is the only time the program automatically goes to LIST. Further note that while in this example there are no savings subject to union payout, the program will still print out zero savings for those years. The output also shows you that it is going to use a range of 5-25 percent as the internal rate of return. In addition, it gives you information that you would need to use the GRAPH function.^{*}

^{*}The GRAPH function is specific to the BBN system and its use requires the user to be physically present at BBN's computer center. Therefore, we merely mention it in this manual. Interested users can contact C. Waldman at BBN for instructions on how to use GRAPH.

VARIABLE	KEYWORD	CURRENT VALUE
NUMBER OF YEARS IN ANALYSIS	LINIT	50
YEARS BEFORE SYSTEM IS COMPATIBLE		24
NUMBER OF CARS	NUMBER	1444000.000
ATTRITION RATE.	ATTRITION	0.033
NEW COST OF EQUIPHENT	FRACTION	1.000
INVESTMENT TAX CREDIT	INVESTMENT	0.100
TAX RATE	TAX	0.460
LOSS TO UNION	UNION	0.000
EXPECTED LIFETINE OF THE TECHNOLOG Labor Savings	IY TECH Savings	30.000
YEAR 1		0.000
YEAR 2		0.000
YEAR 3		0.000
YEAR 4	1	0.000
YEAR 5		0.000
YEAR 6		0.000
YEAR 7		0.000
YEAR 8		0.000
YEAR - 9		0.000
YEAR 10		0.000
		0.000
YEAR 11		0.000
YEAR 12		
YEAR 13		0.000
YEAR 14		0.000
YEAR 15		0.000
YEAR 16		0.000
YEAR 17		0.000
YEAR 18		0.000
YEAR 19		0.000
YEAR 20		0.000
YEAR 21		0.000
YEAR 22		· • • • • • • • • • • • • • • • • • • •
YEAR 23		0.000
YEAR 24		0.000
YEAR 25		0.000
YEAR 26		0.000
YEAR 27		0.000
YEAR 28		0.000
YEAR 29		0.000
		0.000
YEAR 30		
YEAR 31		0.000
YEAR 32		0.000
YEAR 33		0.000
0 YEAR 34		0.000
YEAR 35		0.000
YEAR 36		0.000
VE YEAR 37		0.000
YEAR 38		0.000
YEAR 39		0.000
		4 · · ·
• • • •		

.

.

YEAR 40	0.000
YEAR 41	0.000
YEAR 42	
	0.000
YEAR 43	. 0.000
YEAR 44	0.000
YEAR 45	0.000
YEAR 46	0.000
YEAR 47	0.000
YEAR 48	0.000
YEAR 49	0.000
YEAR 50	0.000
YEARS SAVINGS ARE LOST TO UNION LOSE	0
OTHER SAVINGS OTHER	
YEAR 1	480000.000
YEAR 2	960000.000
YEAR 3	1440000.000
YEAR 4	1920000.000
	L
YEAR 5	2400000.000
YEAR 6	2880000.000
YEAR 7	3360000.000
YEAR 8	3840000.000
YEAR 9	4320000.000
YEAR 10	4800000.000
YEAR 11	5280000.000
YEAR 12	5760000.000
YEAR 13	6240000.000
YEAR 14	6720000.000
YEAR 15	7200000.000
YEAR 16	7680000.000
YEAR 17	8160000.000
YEAR 18	8640000.000
YEAR 19	
	9120000.000
YEAR 20	9600000.000
YEAR 21	10080000.000
YEAR 22	10560000.000
YEAR 23	11040000.000
YEAR 24	11520000.000
YEAR 25	12000000.000
YEAR 26	12000000.000
YEAR 27	12000000.000
YEAR 28	12000000.000
YEAR 29	1200000.000
YEAR 30	12000000.000
YEAR 31	12000000.000
YEAR 32	1200000.000
YEAR 33	12000000.000
YEAR 34	12000000.000
YEAR 35	12000000.000
YEAR 36	1200000.000
YEAR 37	1200000.000
YEAR 38	12000000.000
YEAR 39	12000000.000
YEAR 40	1200000.000
YEAR 41	12000000.000
YEAR 42	12000000.000
YEAR 43	12000000.000
YEAR 44	1200000.000

VEAR 45		12000000.000
YEAR 46		12000000.000
YEAR 47		12000000.000
YEAR 48		12000000.000
YEAR 49		12000000.000
YEAR 50		12000000.000
INFLATION:	INFLATION	× ×
MATERIALS	·	1.100
LABOR		1.087
OTHER		s 1.100
MINIMUM INTERNAL RATE OF RETURN	RATES	5
MAXIMUM INTERNAL RATE OF RETURN	RATES	25
DEPRECIATION	DEPRECIATION	,
LIFETIME OF ASSETS		30
SUM OF YEARS DIGITS DEPRECT	LATION USED.	
THE AXES ARE LABELED AS FOLLOWS:		
X-AXIS: IRR %		
Y-AXIS: DOLLARS; AVAILABLE PER; FREI	GHT CAR; FOR RETROF	IT
KEYWORD IS AXES		

In this example, your input data, which has been printed by LIST, are correct, and you are ready to proceed. Type the command SOLVE in response to the INSTRUCTION: prompt. The program will process the input data in the manner specified in Sec. 2.3. After the computations are completed, the program will ask you for a "label." The label will identify the results for this run. In this particular example, you label the run "Case 1 ECS." This label is merely a name you use to identify the run. The sequence is shown below.

INSTRUCTION: SOLVE LABEL (NAXIMUN 10 CHARACTERS): CASE 1 ECS CASE 1 ECS IS THE LABEL CORRECT?YES THERE IS NOW 1 LINE ON THE GRAPH.

The program does not automatically print the results. You have to ask to see them. To do so, type PRINT in response to the INSTRUCTION: prompt. The PRINT routine shows the output generated by the financial evaluation model. You see that with an

43

÷.,

internal rate of return of 20 percent (line 16) the maximum allowable cost you could spend for an E coupler with a shelf would be \$58.01.

INS	TRUC	TION	PRINT	

LINE	NUMBER: 1	LADEL: CASE 1 ECS			
	IRR Z	DOLLARS; AVAILABLE	PER;FREIGHT	CAR;FOR	RETROFIT
1	5.000	163.124			
2	6.000	156.689			
3	7.000	149.493			· · · ·
4	8.000	141.660			• •
5	9.000	133.366			
6	10.000	124.817			
7 ·	11.000	116.228		• •	•
8	12.000	107.798			
9	13.000	99.698			
10	14.000	92.054		·	
11	15.000	84.950			
12	16.000	78.427			
13 -	17.000	72.496			
14	18.000	67.139			
15	19.000	62.325			
16	20.000	58.012			
17	21.000	54.153			
18	22.000	50.702			
19	23.000	47.614			
20	24.000	44.846			
21	25.000	42.360			

You have now completed your first run. If you wanted to stop at this point, you could enter the STOP instruction and then log out. However, this example assumes that you want to continue immediately with the second example, and so we proceed to Case 2. Note that to run the model, you used four principal routines: MODEL, LIST, SOLVE, and PRINT.

3.2.2 Type E coupler with shelf - 10-year implementation

2

In this example, we will evaluate the same technology but change the implementation period. The scenario for this example is for the total changeover to be accomplished in 10 years. During this period, new cars being introduced into service and cars being refitted with new couplers would be supplied with Type

44.

E couplers with shelves. Cars that are expected to be operational after the conversion period would be retrofitted with them. Cars with less than 10 years of life remaining would not be retrofitted.

Since you haven't stopped the program or logged out, you are still in the program, and it is asking you for the next instruction. Use the CHANGE command to implement this example. The CHANGE command lets you change the value of one or more input parameters. In this example, you want to change parameters that control the implementation period to shorten it from 25 to 10 years.

When you give the program the CHANGE command, the program responds by telling you that you can type LIST to see which parameters could be modified. Since you already know that you want to change years before the system becomes compatible, and "other" benefits from 25 to 10 years, you respond to the CHANGE prompt by typing OTHER. The sequence would appear as follows:

INSTRUCTION: CHANGE TYPE LIST FOR A LIST OF PARAMETERS THAT CAN BE MOBIFIED. TO CHANGE A PARAMETER TYPE ITS KEYWORD AFTER THE PROMPT. WHEN FINISHED TYPE STOP. CHANGE: OTHER

The program now asks you specific questions on "other" savings. Note that in this example you specify that the end year for savings is year 9, i.e., 1 less than year 10, when you want complete implementation. The same analysis period of 50 years is specified. Thus, the changes you have made shorten the implementation period. The CHANGE routine would appear as follows:

· . 6 . 1

New York

TYPE YES IF YOU WANT TO ENTER SAVINGS THAT IS NOT SUBJECT TO UNION PAYOFF ON A YEAR BY YEAR BASIS. TYPE ONE IF YOU WANT TO CHANGE SAVINGS FOR ONLY ONE YEAR. TYPE NO OTHERWISE: YES TYPE THE END YEAR FOR THE RANGE TO ENTER SAVINGS: 9 DO YOU WANT TO ENTER VARIABLE SAVINGS FOR THIS RANGE? YES YEAR SAVINGS 1.2E06 1 2 2.4E06 3 3.6E06 4 4.8E06 5 -6E06 7.2E06 6 7 8.4E06 8 9.6E06 10.8E06 9 TYPE THE END YEAR FOR THE RANGE TO ENTER SAVINGS: 50 DO YOU WANT TO ENTER VARIABLE SAVINGS FOR THIS RANGE? NO WHAT IS THE SAVINGS FROM YEAR 10 TO YEAR 50? 12E06 CHANGE: COMPATIBLE HOW MANY YEARS DOES THE SYSTEM TAKE TO BECOME COMPATIBLE?? CHANGE: STOP

By typing STOP at this point, you leave the CHANGE routine and return to the INSTRUCTION prompt. You could type LIST at this point, but in this example you elect to go to SOLVE. You label this example Case 2 ECS.

INSTRUCTION: SOLVE LABEL (MAXIMUM 10 CHARACTERS): CASE 2 ECS CASE 2 ECS IS THE LABEL CORRECT?YES THERE ARE NOW 2 LINES ON THE GRAPH.

Instead of going to PRINT, you elect instead to go to the third and final case.

3.2.3 Example 3 - Type E coupler, welded shelf

This third example involves implementation of Type E coupler with shelves over a 10-year period by independently welding shelves onto existing couplers, as was done recently as a safety precaution for all tank cars that carry dangerous liquids or gases. We will proceed through this example using four steps:

- CHANGE
- . LIST
- SOLVE
- · PRINT.

· 5 .

The run for this example is shown below. Note that the procedure is very similar to the previous example - revising the input with CHANGE, running the model with the SOLVE command, and then giving the run a label.

> INSTRUCTION: CHANGE TYPE LIST FOR A LIST OF PARAMETERS THAT CAN BE MODIFIED. TO CHANGE A PARAMETER TYPE ITS KEYWORD AFTER THE PROMPT. WHEN FINISHED TYPE STOP. CHANGE: FRACTION WHAT FRACTION OF RETROFIT COST IS REQUIRED FOR NEW PRODUCTION (PER CAR)?.8 FRACTION= 80.0% IS THIS CORRECT?YES CHANGE: STOP INSTRUCTION: SOLVE LABEL (MAXIMUM 10 CHARACTERS): CASE 3 ECS CASE 3 ECS IS THE LABEL CORRECT?YES THERE ARE NOW 3 LINES ON THE GRAPH.

This scenario assumes that the cost of retrofitting is \$140, of which \$112 is for a pair of coupler shelves and \$28 is for labor to weld the shelves to a set of couplers in a car. Since there is now in this example a difference between retrofit and new production costs, you change the value for FRACTION from 1 to 0.8, since \$112 (new production) is 80% of retrofit cost (\$140).

The final step in this example is to PRINT the output. When you enter the PRINT command, the program will print the results for as many cases or runs as it currently has in storage. Since you have worked three examples, the program will print the three complete sets of results. These are presented below.

INSTRUCTION : PRINT

LINE	NUMBER: 1	LABEL: CASE 1 ECS			
	IRR Z	DOLLARS; AVAILABLE	PER;FREIGHT	CAR;FOR	RETROFIT
1	5.000	163.124	•	•	
2	6.000	156.689			
3	7.000	149.493			
4	8.000	141.660			
5	9.000	133.366			
6	10.000	124.817			
7	11.000	116.228			
8	12.000	107.798			
9	13.000	99.698			
10	14.000	92.054			
11	15.000	84.950			
12	16.000	78.427	* • •		
13	17.000	72.496		•	
14	18.000	67.139			
15	19.000	62.325			
16	20.000	58.012			
17	21.000	54.153			
18	22.000	50.702			
19	23.000	47.614			
20	24.000	44.846			
21	25.000	42.360		•	
			·		
		4			,
I TNF	NUMBER: 2	LABEL: CASE 2 ECS			, ,
LINE	NUMBER: 2 IRR Z	LABEL: CASE 2 ECS	PFR:FRFIGHT	CAR:FOR	RETROFIT
	IRR X	DOLLARS;AVAILABLE	PER;FREIGHT	CAR;FOR	RETROFIT
1	IRR % 5.000	DOLLARS;AVAILABLE 164.629	PER;FREIGHT	CAR;FOR	RETROFIT
1 2	IRR X 5.000 6.000	DOLLARS;AVAILABLE 164.629 156.943	PER;FREIGHT	CAR;FOR	RETROFIT
1 2 3	IRR % 5.000 6.000 7.000	DOLLARS;AVAILABLE 164.629 156.943 148.226	PER;FREIGHT	CAR;FOR	RETROFIT
1 2 3 4	IRR % 5.000 6.000 7.000 8.000	DOLLARS;AVAILABLE 164.629 156.943 148.226 138.734	PER;FREIGHT	CAR;FOR	RETROFIT
1 2 3 4 5	IRR % 5.000 6.000 7.000 8.000 9.000	DOLLARS;AVAILABLE 164.629 156.943 148.226 138.734 128.801	PER;FREIGHT	CAR;FOR	RETROFIT
1 2 3 4 5 6	IRR % 5.000 6.000 7.000 8.000 9.000 10.000	DOLLARS;AVAILABLE 164.629 156.943 148.226 138.734 128.801 118.781	PER;FREIGHT	CAR;FOR	RETROFIT
1 2 3 4 5 6 7	IRR % 5.000 6.000 7.000 8.000 9.000 10.000 11.000	DOLLARS; AVAILABLE 164.629 156.943 148.226 138.734 128.801 118.781 109.003	PER;FREIGHT	CAR;FOR	RETROFIT
1 2 3 4 5 6	IRR % 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000	DOLLARS; AVAILABLE 164.629 156.943 148.226 138.734 128.801 118.781 109.003 99.728	PER;FREIGHT	CAR;FOR	RETROFIT
1 2 3 4 5 6 7 8 9	IRR % 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000	DOLLARS; AVAILABLE 164.629 156.943 148.226 138.734 128.801 118.781 109.003 99.728 91.130	PER;FREIGHT	CAR;FOR	RETROFIT
1 2 3 4 5 6 7 8	IRR 2 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000	DOLLARS; AVAILABLE 164.629 156.943 148.226 138.734 128.801 118.781 109.003 99.728 91.130 83.304	PER;FREIGHT	CAR;FOR	RETROFIT
1 2 3 4 5 6 7 8 9 10 11	IRR 2 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000	DOLLARS; AVAILABLE 164.629 156.943 148.226 138.734 128.801 118.781 109.003 99.728 91.130 83.304 76.275	PER;FREIGHT	CAR;FOR	RETROFIT
1 2 3 4 5 6 7 8 9 10	IRR % 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000	DOLLARS; AVAILABLE 164.629 156.943 148.226 138.734 128.801 118.781 109.003 99.728 91.130 83.304 76.275 70.022	PER;FREIGHT	CAR;FOR	RETROFIT
1 2 3 4 5 6 7 8 9 10 11 12	IRR 2 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000	DOLLARS; AVAILABLE 164.629 156.943 148.226 138.734 128.801 118.781 109.003 99.728 91.130 83.304 76.275	PER;FREIGHT	CAR;FOR	RETROFIT
1 2 3 4 5 6 7 8 9 10 11 12 13	IRR % 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000 17.000	DOLLARS; AVAILABLE 164.629 156.943 148.226 138.734 128.801 118.781 109.003 99.728 91.130 83.304 76.275 70.022 64.489	PER;FREIGHT	CAR;FOR	RETROFIT
1 2 3 4 5 6 7 8 9 10 11 12 13 14	IRR 2 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000 17.000 18.000	DOLLARS; AVAILABLE 164.629 156.943 148.226 138.734 128.801 118.781 109.003 99.728 91.130 83.304 76.275 70.022 64.489 59.610	PER;FREIGHT	CAR;FOR	RETROFIT
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	IRR 2 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000 17.000 18.000 19.000	DOLLARS; AVAILABLE 164.629 156.943 148.226 138.734 128.801 118.781 109.003 99.728 91.130 83.304 76.275 70.022 64.489 59.610 55.311	PER;FREIGHT	CAR;FOR	RETROFIT
1 2 3 4 5 6 7 8 9 11 12 3 4 5 6 7 11 12 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 10 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 11	IRR 2 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000 17.000 18.000 19.000 20.000	DOLLARS; AVAILABLE 164.629 156.943 148.226 138.734 128.801 118.781 109.003 99.728 91.130 83.304 76.275 70.022 64.489 59.610 55.311 51.520	PER;FREIGHT	CAR;FOR	RETROFIT
1 2 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 11 2 11 2 1 1 5 6 7 8 9 0 11 11 2 11 2 1 1 5 6 7 8 9 11 11 11 11 11 11 11 11 11 11 11 11 1	IRR 2 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000 17.000 18.000 19.000 20.000 21.000 22.000 23.000	DOLLARS; AVAILABLE 164.629 156.943 148.226 138.734 128.801 118.781 109.003 99.728 91.130 83.304 76.275 70.022 64.489 59.610 55.311 51.520 48.169	PER;FREIGHT	CAR;FOR	RETROFIT
1 2 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 11 2 11 2 1 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 11 12 1 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 11	IRR 2 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000 17.000 18.000 19.000 20.000 21.000 22.000 23.000 24.000	DOLLARS; AVAILABLE 164.629 156.943 148.226 138.734 128.801 118.781 109.003 99.728 91.130 83.304 76.275 70.022 64.489 59.610 55.311 51.520 48.169 45.200 42.360 40.203	PER;FREIGHT	CAR;FOR	RETROFIT
1 2 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 11 2 11 2 1 1 5 6 7 8 9 0 11 11 2 11 2 1 1 5 6 7 8 9 11 11 11 11 11 11 11 11 11 11 11 11 1	IRR 2 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000 17.000 18.000 19.000 20.000 21.000 22.000 23.000	DOLLARS; AVAILABLE 164.629 156.943 148.226 138.734 128.801 118.781 109.003 99.728 91.130 83.304 76.275 70.022 64.489 59.610 55.311 51.520 48.169 45.200 42.560	PER;FREIGHT	CAR;FOR	RETROFIT

LINE	NUMBER: 3	LABEL: CASE 3 ECS	
	IRR %	DOLLARS;AVAILABLE PER;FR	EIGHT CAR;FOR RETROFIT
<u> </u>	5.000	200.692	
2	6.000	189.892	
3	7.000	177.830	
4	8.000	164.920	
5	9.000	151.655	
6	10.000	138.526	
. 7	11.000	125.950	
.8	12.000	114.232	
9	13.000	103.549	
10	14.000	93.973	
11	15.000	85.490	
12	16.000	78.034	
13	17.000	21.509	`
14	18.000	65.809	
15	19.000	60.829	•
16	20.000	56.469	·
, 17	21.000	52.642	
18	22.000	49.269	
19	23.000	46.286	
20	24.000	43.635	
21	25.000	41.269	

You have now finished using the FIMOD model. To terminate the session, first type STOP to leave the program.

INSTRUCTION: STOP ARE YOU FINISHED WITH THE PROGRAM?YES

Next, log out of the system using the standard LOGO command. The system will tell you the resources you used.

STOP

END OF EXECUTION CPU TIME: 0.71 ELAPSED TIME: 24.56 EXIT. C QLOGO

3.3 The DELETE Command

As the examples in Sec. 3.2 show, the FIMOD model generates solutions for each run you make. The output of each run is identified by a label that you give each run. The program assigns a "line number" to each run as well. Thus the output of the third example was labeled "Case 3 ECS" and identified as line number 3.

The DELETE command allows you to erase (i.e., delete) the output of a given run. Let's assume that you decide a 25-year implementation period is unacceptable and you therefore no longer need the results for Case 1 ECS. You use the DELETE command to get rid of results for this case. When you type DELETE, the program tells you how many "lines" of output it has and asks you which line you want to delete. Note that you can only delete one line at a time. You can't specify more than one line in response to each LINE prompt.

In this example, you delete Case 1 ECS, which is line 1. The model tells you that you have two lines left and asks you if you:

- . want to delete another line?
- see the remaining lines?
- stop the delete routine?

INSTRUCTION: DELETE THERE ARE NOW 3 LINES. WHICH ONE DO YOU WANT TO DELETE? TYPE PRINT TO SEE THE REMAINING DATA. TYPE STOP WHEN FINISHED. LINE: HELP ENTER THE LINE NUMBER (AS LISTED AFTER TYPING PRINT) CORRESPONDING TO THE LINE YOU WISH TO DELETE. TYPE STOP WHEN FINISHED. THERE ARE NOW 3 LINES. WHICH ONE DO YOU WANT TO DELETE? TYPE PRINT TO SEE THE REMAINING DATA. TYPE STOP WHEN FINISHED. LINE: 1 THERE ARE NOW 2 LINES. WHICH ONE DO YOU WANT TO DELETE? TYPE PRINT TO SEE THE REMAINING DATA. TYPE STOP WHEN FINISHED. LINE: 1 THERE ARE NOW 2 LINES. WHICH ONE DO YOU WANT TO DELETE? TYPE PRINT TO SEE THE REMAINING DATA. TYPE STOP WHEN FINISHED. LINE:STOP In this example, you ask to see the remaining lines by typing PRINT. The sequence is shown below.

INSTRUCTION: PRINT

LINE	NUMBER: 1	LABEL: CASE 2 EC\$	•		
	IRR Z	DOLLARS; AVAILABLE	PER;FREIGHT	CAR;FOR	RETROFIT
1	5.000	164.629			
2 3	6.000	156.943			
	7.000	148.226			
4 5 6	8.000	138.734			
5	9.000	128.801			
	10.000	118.781			
7	11.000	109.003			
8	12.000	99 .728		,	
9	13.000	91.130			
10	14.000	83.304			
11 -	15.000	76.275			
12	16.000	70.022			
13	17.000	64.489	* .		
14	18.000	59.610			
15	19.000	55.311			
16	20.000	51.520			
17	21.000	48.169			
18	22.000	45.200			
19	23.000	42.560			
20	24.000	40.203			
21	25.000	38.091			

LINE NUMBER: 2 LABEL: CASE 3 ECS

LABEL: CASE 3 ECS DOLLARS;AVAILABLE PER;FREIGHT CAR;FOR RETROFIT

	IRR %	DOLLARS;AVAILABLE	P
1	5.000	200.692	
2	6.000	189.892	
3	7.000	177.830	
4	8.000	164.920	
5	9.000	151.655	
6	10.000	138.526	
7	11.000	125.950	
8	12.000	114.232	
9	13.000	103.549	
10	14.000	93.973	
11	15.000	85.490	
12	16.000	78.034	
13	17.000	71.509	
14	18.000	65.809	
15	19.000	60.829	
16	20.000	56.469	
17	21.000	52.642	
18	22.000	49.269	
19	23.000	46.286	
20	24.000	43.635	
21	25.000	41.269	

STOP

END OF EXECUTION CPU TIME: 44.75 ELAPSED TIME: 27:3.50 EXIT.

Note that the line number assigned to each case has changed. Line 2 has become line 1, and line 3 has become line 2. Each line is still identified by its label as well. It is best for you to make sure you know the label for each run, because this is how you can identify the output. The line number is the mechanism by which the computer keeps track of the output.

REFERENCES

- E.K. Bender, A.J. Berger, J.W. Ernest, and L.E. Wittig, "Methodology for Evaluating the Cost and Benefit of Advanced Braking and Coupling Systems," U.S. Department of Transportation, Federal Railroad Administration, Report No. FRA/ORD-79-57, November 1979.
- E.K. Bender, L.E. Wittig, and H.A. Wright, "Evaluation of the Costs and Benefits of Advanced Braking and Coupling Systems," U.S. Department of Transportation, Federal Railroad Administration, Report No. FRA/ORD-80/49, October 1980.
- 3. E.K. Bender, L.E. Wittig, and H.A. Wright, "Recommendations for Research and Development on Advanced Braking and Coupling Systems," U.S. Department of Transportation, Federal Railroad Administration, FRA/ORD-81/24, January 1981.
- 4. L.E. Wittig, C.E. Waldman, and E.K. Bender, "Railroad Yard Simulation Model: Description and Computer Program Users' Manual," U.S. Department of Transportation, Federal Railroad Administration, FRA/ORD-81/25.1, February 1981.

APPENDIX A: LISTING OF FORTRAN PROGRAM

```
PROGRAM FINOD
        COMMON LINES, DATA(26,2,10), POINT(10), LABEL(10,2), WIDTH(2)
        1, YLABEL(46), XLABEL(2), LIMIT, ICOMP, X, NCAR, ATTRAT, MATINF
        2.LABINF.LABORS.LOW.HIGH.PAYSTP.FRAC.FRIDT.TAXRAT.UPAYRT
        3, SCHED(49), SNSUP, DINF, METHOD, LIFE, TECH, SAVL(50), OSAV(50)
        4.IDEX1.IDEX2
        REAL NCAR, NATINF, LABINF, LABORS
        INTEGER POINT, YEAR, HIGH, LOW, PAYSTP
        LEVEL=1
        CALL PLOTS('GRF')
        TYPE 10
        FORMAT(" BRAKING AND COUPLING",/, TYPE HELP FOR DIRECTIONS.")
10
20
        TYPE 30
        FORMAT(
INSTRUCTION:
30
        ACCEPT 40.ANS
40
        FORMAT(A5)
        INATCH=0
        IF(LEVEL.GT.2) LEVEL=2
        CALL LOOK(INATCH, ANS, LEVEL).
        IF(ANS.EQ.'STOP') GO TO 50
        IF(INATCH.EQ.0) GO TO 70
                                                  GO TO 20
50
        TYPE 51
51
        FORMAT(' ARE YOU FINISHED WITH THE PROGRAM?",$)
        ACCEPT 40,ANS
        IF(ANS.NE. YES') GO TO 20
        TYPE 60
        FORMAT(' FINISHED. TURN ON PLOTTER AND TYPE THE FOLLOWING.'/
60
        2, ' ASS PLT: (RETURN)',/
        2, COP GRF (ESCAPE) ... (TO) PLT: (RETURN) (RETURN)',/
        3.' DEA PLT: (RETURN)')
        CALL PLTEND
        STOP
70
        TYPE 80
        FORMAT( ' PLEASE CHECK THE COMMAND YOU USED. TO CHANGE A',/
80
        1. PARAMETER YOU MUST FIRST TYPE CHANGE. TYPE HELP FOR',/
        2, ' MORE INSTRUCTIONS.')
        GO TO 20
        STOP
        END
C
С
С
C
        MODIFY PARAMETERS
        SUBROUTINE CHANG($,MATCH)
        COMMON LINES, DATA(26,2,10), POINT(10), LABEL(10,2), WIDTH(2)
        1, YLABEL(46), XLABEL(2), LIMIT, ICONP, X, NCAR, ATTRAT, MATINF
        2, LABINF, LABORS, LOW, HIGH, PAYSTP, FRAC, FRIDT, TAXRAT, UPAYRT,
        3SCHED(49), SNSUP, 0INF, METHOD, LIFE, TECH, SAVL(50), 0SAV(50)
        4, IDEX1, IDEX2
        REAL NCAR, MATINF, LABINF, LABORS
        INTEGER POINT, YEAR, HIGH, LOW, PAYSTP
        MATCH=1
```

A-2

C	
С	TYPE HEADING
10	TYPE 20
20	FORMAT(' TYPE LIST FOR A LIST OF PARAMETERS THAT CAN BE ',/
	2, MODIFIED. TO CHANGE A PARAMETER TYPE ITS KEYWORD ',/
	3, AFTER THE PROMPT. WHEN FINISHED TYPE STOP. ()
30	TYPE 40
	LEVEL=17
40	FORMAT(' CHANGE:',\$)
	ACCEPT 50,ANS
50	FORMAT(A5)
	IF(ANS.EQ. DEPRET) GO TO 100
	IF(ANS.EQ.'LIWIT') GO TO 400
	IF(ANS.EQ.'COMPA') 60 TO 430
	IF(ANS.EQ.'NUMBE') 60 TO 480
	IF(ANS.EQ.'ATTRI') GO TO 520
	IF(ANS.EQ.'FRACT') GO TO 550
,	IF(ANS.EQ.'INVES') 60 TO 580
	IF(ANS.EQ.'TAX') 60 TO 610
	IF(ANS.EQ. UNION) 60 TO 630
	IF(ANS.EQ.'SAVIN') GO TO 650
	IF(ANS.EQ. OTHER') GD TO 670
	IF(ANS.EQ.'LOSE') GO TO 690
	IF(ANS.EQ.'INFLA') 60 TO 720
	IF(ANS.EQ.'RATES') GO TO 760
	IF(ANS.EQ.'AXES') 60 TO 840
	IF(ANS.EQ.'TECH') 60 TO 900
	IF(ANS.EQ.'STOP') RETURN 1
55	INATCH=0
	CALL LOOK (IMATCH, ANS, LEVEL)
	IF(INATCH.EQ.O) TYPE 60
60	FORMAT(/ PLEASE CHECK THE NAME YOU ENTERED. IT IS NOT /,/
	1, ' ON THE LIST. YOU MUST REENTER OR TYPE STOP.')
	GO TO 30
70	REREAD 80,ANS
, •	INATCH=0
	CALL'LOOK(IMATCH,ANS;LEVEL)
80	FORMAT(A5)
QV	IF(INATCH_EQ.0) TYPE 90
90	FORMAT(' TYPE HELP FOR MORE INFORMATION')
70	GO TO (400,430,480,520,550,650,690,630,670
	1,610,580,720,100,760) (LEVEL-2)
05	TYPE 95,LEVEL
. 95	FORMAT(' THERE HAS BEEN AN ERROR. LEVEL=',12)
0	RETURN 1
C	
C	COMPUTE DEPRECIATION SCHEDULE
100	TYPE 110
110	FORMAT(' WHAT IS THE DEPRECIATION LIFETIME OF THE ASSET?',\$
•	LEVEL=15
	READ(5,120,ERR=70) LIFE

÷

-

Ă-3

.

120	FORMAT(13) IF(LIFE.GE.1) GO T0 140
	TYPE 130
1 30	FORMAT(' THE LIFETIME MUST BE ONE OR MORE. PLEASE REENTER.') GO TO 100
140	TYPE 150
1 50	FORMAT(' WHICH HETHOD OF DEPRECIATION DO YOU WANT TO USE?',/
	1,T10, STRAIGHT',T25, STRAIGHT LINE
	2,/,T10, DOUBLE, T25, -DOUBLE DECLINING BALANCE
	3,/,T10, SUNY,T25, -SUN OF YEARS DIGITS /,/, METHOD: /,\$)
	ACCEPT 50,ANS
	IF(ANS.EQ.'STRAI') GO TO 170
	IF(ANS.EQ.'DOUBL') GO TO 190
	IF(ANS.EQ.'SUN') GD TO 240
	IF(ANS.EQ. STOP') 6D TO 165
	INATCH=0
	CALL LODK(INATCH,ANS,LEVEL)
	IF(INATCH.EQ.1) GO TO 140
С	
С	PRINT ERROR MESSAGE SINCE ENTRY COULD NOT BE IDENTIFIED
	TYPE 160
160	FORMAT(' PLEASE TYPE STRAIGHT, DOUBLE, OR SUM. ()
	GO TO 140
165	TYPE 166
166	FORMAT(" THE DEPRECIATION SCHEDULE HAS NOT BEEN CHANGED.")
C	
C	STRAIGHT LINE METHOD
170	NETHOD=1
	DO 180 $I=1,49$
	SCHED(I)=1.0/FLDAT(LIFE) IF(I.GT.LIFE) SCHED(I)=0.0
4 0 0	
180	CONTINUE Go to 300
C	
C	DOUBLE DECLINING BALANCE WETHOD
č	
č	RATE OF DEPRECIATION IS TWICE THAT OF STRAIGHT LINE METHOD
190	NETHOD=2
174	PERC=2.0/FLOAT(LIFE)
	BALANC=1.0
	DO 220 I=1,48
	SCHED(1)=BALANC*PERC
220	BALANC=BALANC-SCHED(I)
	SCHED(49)=BALANC
	60 TO 300
С	-
Ĉ	SUM OF YEARS DIGITS HETHOD
240	METHOD=3
	SUM=(LIFE*+2+LIFE)/2
	DO 250 I=1,49
	SCHED(I)=FLOAT(LIFE-I+1)/SUM
	IF(I.GT.LIFE) \$CHED(I)=0.0

250	CONTINUE Go to 300
С	
Ĉ	SHOW SCHEDULE
300	SUM=0.0
www.	TYPE 310
740	FORMAT(" YEAR FRACTION WRITTEN OFF IN THAT YEAR")
310	
	DO 330 I=1,49
	TYPE 320, I, SCHED(I)
320	FORMAT(2X,12,5X,F5.3)
330	SUN=SUN+SCHED(I)
	TYPE 340,SUM
340	FORMAT(/, / TOTAL=/,F5.3,//)
	GO TO 30
С	· .
Ĉ	CHANGE TIME HORIZON
400	TYPE 410
410	FORMAT(" FOR HOW MANY YEARS SHOULD THE CASH FLOWS",
717	1' BE CALCULATED?',\$)
	LEVEL=3
	READ (5,420,ERR=70) LINIT
420	FORMAT(13)
	IF(LINIT.LT.1) GO TO 450
	IF(LINIT.GT.50) G0 T0 450
	GO TO 30
C	
C	CHANGE THE YEAR FLEET BECOMES COMPATIBLE
430	TYPE 440
440	FORMAT(" HOW MANY YEARS DOES THE SYSTEM TAKE TO BECOME"
	1, COMPATIBLE?',\$)
	LEVEL=4
	READ (5,420,ERR=70) ICOMP
	IF(ICOMP.LE.0) 60 TO 470
	IF(ICONP.GE.50) GO TO 470
	GO TO 30
450	TYPE 460
460	FORMAT(' YEAR MUST BE BETWEEN 1 AND 50, PLEASE REENTER.()
	GO TO 400
470	TYPE 460
-1/V	GO TO 430
С	80 TO 43V
	NUMBER OF CARE IN THE SYSTEM
С	NUMBER OF CARS IN THE SYSTEM
480	TYPE 490
490	FORMAT(" HOW MANY CARS ARE IN THE SYSTEM?",\$)
	LEVEL=5
	READ (5,500,ERR=70) NCAR
500	FORMAT(E10.0)
	IF(NCAR.GT.0.0) GO TO 30
	TYPE 510
510	FORMAT(' THERE HAS TO BE NORE THAN ZERO CARS.")
	60 TO 480

•

0	
С С	ATTRITION RATE
	TYPE 530
530	
774	LEVEL=6
	READ (5,500,ERR=70) ATTRAT
	IF (ATTRAT .NE. 0.0) ATTRAT = $1.0/ATTRAT$
	IF(ATTRAT.GE.O.O.AND.ATTRAT.LE.1.0) 60 TO 30
	TYPE 540
540	FORMAT(' THE EXPECTED LIFETIME OF THE CARS MUST BE',/,
UTV .	1 ' GREATER THAN OR EQUAL TO ZERD. ()
	GO TO 520
C	50 TO 32V
C	ORIGINAL COST AS FRACTION OF NEW COST
550	TYPE 560
560	FORMAT(' WHAT FRACTION OF RETROFIT COST IS REQUIRED FOR',/
'70V	1, NEW PRODUCTION (PER CAR)?',\$)
	LEVEL=7
	READ (5,500,ERR=70) FRAC
	XFRAC=FRAC*100.0
	TYPE 570, XFRAC
570	FORMAT(' FRACTION=',F6.1, '%')
	TYPE 571
571	FORMAT(" IS THIS CORRECT?",\$)
U/1	ACCEPT 50,XFRAC
	IF(XFRAC.NE. YES') GD TO 550
	60 TO 30
С	
Ĉ	FRACTION DEDUCTIBLE FOR INVESTMENT TAX CREDIT
580	TYPE 590
590	FORMAT(' WHAT FRACTION OF INVESTMENTS ARE DEDUCTIBLE FOR',/
	1, ' INVESTMENT TAX CREDIT?',\$)
	LEVEL=13
	READ (5,500, ERR=70) FRIDT
	IF(FRIDT.GE.O.0) 60 TO 30
	TYPE 600
600	FORMAT(' FRACTION CANNOT BE LESS THAN ZERO.')
	GO TO 580
С	
C	TAX RATE
610	TYPE 620
620	FORMAT(" WHAT IS THE TAX RATE FOR THE RAILROAD INDUSTRY?",\$)
	LEVEL=12
	READ (5,500,ERR=70) TAXRAT
	IF(TAXRAT.GT.1) TAXRAT=TAXRAT/100.
	GO TO 30
C	
C	UNION PAYOFF RATE
630	TYPE 640

A-6

640	FORMAT(' WHAT FRACTION OF LABOR 1,' TO THE UNION?',\$)	SAVINGS ARE PAID	•
	LEVEL=10		
	READ (5,500,ERR=70) UPAYRT	· · ·	
	IF(UPAYRT.GT.1.) UPAYRT=UPAYRT/	100.	
	GO TO 30		
C		the second se	• • •
C	SAVINGS SUBJECT TO UNION	21	
650	TYPE 655		
65 5	FORMAT(" TYPE YES IF YOU WANT T	•	
	1, 1 THAT IS SUBJECT TO UNION P		
	2, YEAR BASIS. TYPE ONE IF YO		•.
	1, SAVINGS FOR DALY DAE YEAR.	1. San the second se	
	1, TYPE NO OTHERWISE: (\$)		
	LEVEL=8 ACCEPT 656,ANS		
	ACCEPT 656,ANS		
656	FORMAT(A5)		
	IF (ANS .EQ. 'ND') GO TO 657	· · · · · · · · · · · · · · · · · · ·	
	IF(ANS.EQ.'ONE') GOTO 664	f	
	IF (ANS .NE. YES') GO TO 650		
	CALL NEW(SAVL, LIMIT, IDEX1)		
	IF(IDEX2.EQ.1) GO TO 30		
	IDEX2=1		
	DO 651 I=1,ICOMP		
651	OSAV(I)=0.0		
	J=1+ICOMP	, · · · ·	
	DO 652 I=J,LINIT		
652	OSAV(I)=SNSUP		
	GO TO 30		
657	TYPE 660		
660	FORMAT(" WHAT IS THE LABOR SAVI	NGS PER YEAR THAT IS'./	•
	1, SUBJECT TO UNION PAYOUT?		
	READ (5,500,ERR=10) LABORS		
	IF (IDEX2.EQ.0)60 TO 30		
	IDEX1=1		
	DO 662 I=1, ICOMP	۲. ۲. ۲. ۲. ۲. ۲.	
662	SAVL(I)=0.0		
	J=ICONP+1	* * *	• •
	DO 663 I=J,LINIT	•	
663	SAVL(I)=LABORS		
	GO TO 30		•
664	IF(IDEX2.E0.1) GOTO 668		
	IDEX1=1		
	IDEX2=2		2.
	DO 665 I=1,ICONP		
	SAVL(I)=0.0		
665	OSAV(I)=0.0		
	J=1C0MP+1	-	
	DO 666 I=J,LIMIT	· · · · · · · · · · · · · · · · · · ·	
	SAVL(I)=LABORS	the second s	
666	OSAV(I)=SNSUP		
~~~~	ARILA / F LAILADI		

.:.

് 68	TYPE 687
	READ(5,420,ERR=10) K
	IF(K.LT.1 .OR. K .GT. LINIT) GO TO 667
	TYPE 660
	READ(5,500,ERR=10) SAVL(K)
	GOTO 30
667	
667	
	GOTO 668
C	
C	SAVINGS NOT SUBJECT TO UNION PAYOFF
670	
680	FORMAT(' TYPE YES IF YOU WANT TO ENTER SAVINGS',/
	1, THAT IS NOT SUBJECT TO UNION PAYOFF ON A YEAR BY ',/
	2,' YEAR BASIS. TYPE ONE IF YOU WANT TO CHANGE',/
	1,' SAVINGS FOR ONLY ONE YEAR.',/
	1, TYPE NO OTHERWISE: ",\$)
	LEVEL=11
	ACCEPT 656,ANS
	IF(ANS .EQ. 'ND') GO TO 673
	IF(ANS .EQ. 'ONE') 60 TO 684
	IF(ANS .NE. TYEST) GO TO 670
	CALL NEW(OSAV,LIMIT,IDEX2)
	IF(IDEX1.EQ.1)GOTO 30
	IDEX1=1
	DO 671 I=1,ICOMP
671	SAVL(I)=0.0
	J=1+ICOMP
	DO 672 I=J,LINIT
672	SAVL(I)=LABORS
	GOTO 30
673	TYPE 681
681	FORMATI' WHAT IS THE ANNUAL SAVINGS NOT SUBJECT TO UNION',/
12 0 1	1, 1 PAYOUT? 1,\$)
	READ (5,500,ERR=10) SNSUP
	IF(IDEX1.EQ.0)G0 TO 30
	IDEX2=1
	DO 682 I=1,ICOMP
2.00	OSAV(I)=0.0
682	
	J=ICOMP+1
/ 07	DO 683 I=J,LIMIT
683	DSAV(I)=SNSUP
	GOTO 30
<b>684</b>	IF(IDEX1.EQ.1)60T0 688
	IDEX1=1
	IDEX2=1
	DO 685 I=1,ICOMP
	SAVL(I)=0.0
685	DSAV(I)=0.0
	J=ICOMP+1
	DO 686 I=J,LIMIT
	SAVL(I)=LABORS

A-8

686 OSAV(I)=SNSUP 688 TYPE 687 687 · FORMAT(' FOR WHAT YEAR SHOULD ANNUAL SAVINGS BE CHANGED? ',\$) READ(5.420.ERR=10) K IF(K.LT.1 .OR. K .GT. LINIT) GO TO 674 TYPE 681 READ(5,500,ERR=10) DSAV(K) GOTO 30 674 TYPE 669,LIMIT GOTO 688 С С STOP PAYING OFF UNION TYPE 700 States and the second states are second states and the second states are second are second states are second states are second states are second are s 690 FORMAT(" FOR HOW MANY YEARS WILL SAVINGS BE PAID TO THE UNION?" 700 1,\$) LÉVEL=9 READ (5,420,ERR=70) PAYSTP I=LINIT-ICOMP IF(PAYSTP.GE.O.O.AND.PAYSTP.LE.I) 60 T0 30 TYPE 710.LIMIT F FORMAT(" THERE MUST BE BETWEEN ZERO AND ",12," YEARS.") GO TO 690 710 С . ··· . C INFLATION RATES 720 **TYPE 730** FORMAT(' WHAT IS THE INFLATION RATE FOR: './ 230 1,T10, ' MATERIALS (IN PERCENT)?',\$) LEVEL=14 . w 1 READ (5,500,ERR=70) MATINF MATINF=1+(MATINF/100.) **TYPE 740** FORMAT((+*,T10,* LABOR (IN PERCENT)?*,\$) / Content 740 READ (5,500,ERR=70) LABINF LABINF=1.+(LABINF/100.) **TYPE 750** FORMAT("+", TIO, " SAVINGS NOT SUBJECT TO UNION PAYOUT" 750 . • 1.1 (IN PERCENT)?1.\$) READ (5,500,ERR=70) OINF DINF=1.+(DINF/100.) GO TO 30 Alex the other the first of the second s С RANGE OF INTERNAL RATES OF RETURN TO BE USED С 260 **TYPE** 770 770 FORMAT(" WHAT IS THE MINIMUM INTERNAL RATE OF RETURN ,/ .... 1. (IN PERCENT)?',\$) . . . LEVEL=16 READ (5,420,ERR=70) LOW ÷., , TYPE 780 280 FORMAT(" WHAT IS THE MAXIMUM INTERNAL RATE OF RETURN ./ 1, (IN PERCENT)?',\$) READ (5,420,ERR=70) HIGH

-	
290	I=HIGH-LOW
	IF(I.EQ.0) GO TO 800
	IF(I.GT.0.AND.I.LT.25) GO TO 30
	IF(I.GE.25) GO TO 820
	I=HIGH
	HIGH=LOW
	LOW=I
	GO TO 790
800	TYPE 810
810	FORMAT( ' PLEASE SPECIFY A VIDER RANGE. ')
	GO TO 760 TO 760
820	TYPE 830
830	FORMAT(" PLEASE SPECIFY A WARROWER RANGE (LESS THAN"
	1, 25 PERCENTAGE POINTS). ()
	GO TO 760
C	
С	LABELS ON AXES
840	TYPE 850
850	FORMAT(' WHAT IS THE NEW LABEL FOR THE X-AXIS?',/
	1, MAXIMUN 10 CHARACTERS: (,\$)
	ACCEPT 860,XLABEL(1),XLABEL(2)
860	FORMAT(2A5)
	TYPE 870
870	FORMATIC WHAT IS THE NEW LABEL FOR THE Y-AXIS?',/
	1, USE ; INSTEAD OF A CARRAIGE RETURN.
	1, MAXIMUM 46 CHARACTERS: ,\$>
	ACCEPT 861, (YLABEL(I), I=1, 46)
861	FORMAT(46A1)
	TYPE 880,XLABEL(1),XLABEL(2),(YLABEL(1),I=1,46)
880	FORMAT(" THE NEW LABELS ARE",/," X-AXIS: ",245
	1,/, Y-AXIS: ',40A1,/, ARE THESE CORRECT?',\$)
	ACCEPT 50,ANS
	IF(ANS.NE.TYEST) GO TO 840
•	GO TO 30
C	
С	THE EXPECTED LIFETINE OF THE TECHNOLOGY
900	TYPE 910
910	FORMAT(' WHAT IS THE EXPECTED LIFETIME OF THE TECHNOLGY',/
	1, ' BEING IMPLEMENTED ON THE RAILROAD SYSTEM? (,\$)
	LEVEL=6
	READ (5,500,ERR=70) TECH
	IF(TECH.GT.0.0) GO TO 30
	TYPE 930
930	FORMAT(" THE EXPECTED LIFETINE OF THE TECHNOLOGY MUST BE",/
	1 ' GREATER THAN ZERO.')
	GO TO 900
	END

,

C	GENERATE A LINE OF DATA
	DIHENSION X(26,2)
	CONMON LINES, DATA(26,2,10), POINT(10), LABEL(10,2), WIDTH(2)
	1,YLABEL(46),XLABEL(2)
	INTEGER POINT
	NATCH=1
	TYPE 10
10	FORMAT(' TYPE STOP TO TERNINATE ENTRY',/
	1, TYPE ERROR TO REENTER A NUMBER',/)
	I=0
20	I=I+1
25	IF(I.LT.10) TYPE 30,I
	IF(I.GE.10) TYPE 40, I
30	FORMAT('+X',I1,':'\$)
40	FORMAT('+X',I2,':',\$)
1.4	READ (5,50,ERR=100),X(I,1)
50	FORMAT(F10.0)
' <b>)</b> V	IF(I.LT.10) TYPE 60,I
	IF(I.GE.10) TYPE 70,I
60	FORMAT( '+Y', I1, ':',\$)
20	FORMAT('+Y',12,':',\$)
	READ (5,50,ERR=100),X(I,2)
	TYPE 80,X(I,1),X(I,2)
80	FORMAT('+X=',F10.3,2X,'Y=',F10.3,//)
	IF(I.LT.26) GO TO 20
	TYPE 90
90	FORMAT(" DATA VECTOR IS FULL",/
	1, ' NO MORE POINTS CAN BE PLOTTED ON THIS LINE')
	GO TO 190
100	REREAD 110,ANS
110	FORMAT(A5)
• • •	I=I-1
	IF(ANS.EQ.'STOP') GD TO 190
	CALL LOOK(IMATCH, ANS, LEVEL)
С	ASSUME ERROR NEEDS TO BE CORRECTED
	TYPE 120
115	
120	FORMAT( TYPE STOP TO TERMINATE ENTRY ,/
	1, ' X TD CORRECT AN X VALUE',/
	1, Y TO CORRECT A Y VALUE',/
	3, 7 R TO RESUME NORMAL ENTRY )
125	TYPE 130
1 30	FORMAT(' X,Y,R OR STOP:',\$)
	ACCEPT 110,ANS
	j=0
	IF(ANS.EQ. (R') GO TO 20
	IF(ANS.EQ.'STOP') 60 TO 190
	IF(ANS.EQ.'X') J=1
	IF(ANS.EQ.(Y)) J=2
	IF(J.EQ.0) = 60 TO = 115
135	TYPE 140, ANS
140	FORMAT('WHICH ',A1,' DO YOU WANT TO CORRECT?',\$)
ער ו	
	READ (5,150,ERR=115) K

A-11

150	FORMAT(12)
	IF(K.LE.0) GO TO 170
	IF(K.GT.I+1) GO TO 170
	IF(K.EQ.I+1) GO TO 25
	TYPE 160,ANS,K
160	FORMAT(1X,A1,12,'=',\$)
	READ (5,50,ERR=115) X(K,J)
	GO TO 125
170	TYPE 180,1
180	FORMAT( ' NUST BE BETWEEN 1 AND ',12,', PLEASE REENTER')
	GD TO 135
С	CLOSE ENTRY
190	TYPE 200
200	FORMAT(10X,'X',10X,'Y')
	DO 210 K=1,I
210	TYPE 220,K,X(K,1),X(K,2)
220	FORMAT(1X,12,F10.3,5X,F10.3)
230	TYPE 240
240	FORMAT(' IS THIS CORRECT (YES OR NO)?",\$)
	ACCEPT 110,ANS
	IF(ANS.EQ.'NO') 60 TO 115
	IF(ANS.NE.'YES') GO.TO 230
C	FILE DATA
	LINES=LINES+1
	POINT(LINES)=I
	DO 250 J=1,2
	DO 250 M=1,I Angla A
250	DATA(M,J,LINES)=X(M,J)
	CALL LABL(\$260,IMATCH)
260	RETURN 1
•	END
С	
6	· · · · ·
C	
C	PROVIDE INITIAL VALUES FOR PARAMETERS
	BLOCK DATA
	COMMON LINES, DATA(26,2,10), POINT(10), LABEL(10,2), WIDTH(2)
	1,YLABEL(46),XLABEL(2),LIMIT,ICOMP,X,NCAR,ATTRAT,MATINF
	2,LABINF,LABORS,LOW,HIGH,PAYSTP,FRAC,FRIDT,TAXRAT,UPAYRT
	3, SCHED(49), SNSUP, DINF, KETHOD, LIFE, TECH, SAVL(50), OSAV(50)
	4, IDEX1, IDEX2
	REAL NCAR, NATINF, LABINF, LABORS
	INTEGER POINT, YEAR, HIGH, LOW, PAYSTP
	DATA LINES/0/
	DATA DATA/520*0.0/
	DATA POINT/10+0/
	DATA LABEL/20+1 1/
	DATA WIDTH/5.5,9./ DATA YLABEL//D', 'D','L','L','A','R','S',';','A','V','A','I','L'
	1, YAY, YBY, YLY, YÊY, YÎY, YÊY, YÊY, YÊY, YÊY, YÊY, YÊ

.

	3'0', F', I', T'/	
	DATA XLABEL/'IRR %',	1
	DATA LIMIT/21/	
	DATA ICOMP/5/	
	DATA NCAR/1.7E06/	
	DATA ATTRAT/0.037/	
	DATA NATINF/1.1/	
	DATA LABINE/1.087/	
	DATA LABORS/220E06/	
	DATA LOW/5/	
	DATA HIGH/25/	
	DATA PAYSTP/10/	
	DATA FRAC/0.5/	
	DATA FRIDT/0.1/	
	DATA TAXRAT/0.46/	
	DATA UPAYRT/.25/	
	DATA SNSUP/0.0/	
	DATA DINF/1.1/	
	DATA NETHOD/3/	
	DATA LIFE/16/	
	DATA SCHED/.118,.110,.103,	.096 088 081 074 046
	1,.059,.051,.044,.037,.029	
	DATA SAVL/30E06,60E06,90E0	
	1,15*537E06,25*0./	0,1242.00,1042.00,0+1002.00
		0 74450 7 7544 /
	DATA 0SAV/1.,2.2,3.4,4.6,5	***************************************
	DATA IDEX1/0/	
	DATA IDEX2/0/	
	DATA TECH/0.037/	
	END	
C		
С		
С		
C	DELETE A LINE FROM DATA AN	D CONPRESS
	SUBROUTINE DELET(\$,MATCH)	
	CONMON LINES, DATA (26,2,10)	-POINT(10)_LARFI(10.2)
	INTEGER POINT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	MATCH=1	
4	IF(LINES.6T.0) GD TO 5	
1		
~	TYPE 2	
2	FORMAT( THERE ARE NO NORE	LINES IU DELEIE, )
	RETURN 1	
5	TYPE 10,LINES	
10	FORMAT( THERE ARE NOW T, I	2, LINES. WHICH ONE DO YOU ,/
	1," WANT TO DELETE? TYPE P	RINT TO SEE THE REMAINING DATA. ,/
	2, ' TYPE STOP WHEN FINISHE	D.',/
	3, ' LINE:',\$)	• •
	LEVEL=19	
	READ (5,20,ERR=45) LINE	· · · ·
20	FORMAT(I3)	
x: <b>∀</b>		
	IF(LINE.LT.1) GD TO 30	
	IF(LINE_GT_LINES) GO TO 30	
	IF(LINE.NE.LINES) GD T0 60	
	LINES=LINES-1	
	GO TO 1	

C	
Ç	ERROR MESSAGE
30	TYPE 40, LINES
40	FORMAT(' LINE NUMBER MUST BE BETWEEN 1 AND ', 12,/
~t V	
	2, ' PLEASE REENTER OR TYPE STOP.')
	GO TO 1
45	REREAD 50, ANS
50	FORMAT(A5)
12 4	IF(ANS.EQ. STOP) RETURN 1
	CALL LOOK(INATCH,ANS,LEVEL)
	GO TO 1
С	
ē	COMPRESS DATA
60	DO 90 I=LINE,LINES-1
	J=I+1
	ENCODE(5,70,LABEL(1,1)) LABEL(J,1)
	ENCODE(5,70,LABEL(I,2)) LABEL(J,2)
••• A	
20	FORMAT(A5)
	DO 80 K=1,POINT(J)
	DATA(K,1,I)=DATA(K,1,J)
	NATA(K.2.I)=NATA(K.2.1)
80	BATA(K,2,I)=BATA(K,2,J) CONTINUE
	GUNITADE
90	POINT(I)=POINT(J)
	LINES=LINES-1
	GO TO 1
	END
~	LITU
C	· · · · · · · · · · · · · · · · · · ·
C	
C	
Ĉ	
	CUDDOUTTNE CDA/# MATCUS
~	SUBROUTINE GRA(\$, MATCH)
C	
C	PLOT AXES, PLOT EACH LINE IN THE NATRIX
C	DATA, LABEL EACH LINE, PLACE TITLE UNDER GRAPH
	DIMENSION HIN(2), HAX(2), DIFF(2), TITLE(50), ISORT(10),
	1HAG(2), ITICK(2), IDEL(2), XINC(2), IDEC(2), \$CALE(2), ISIG(2)
	CONMON LINES, DATA(26,2,10), POINT(10), LABEL(10,2), WIDTH(2)
	1,YLABEL(46),XLABEL(2)
•	INTEGER POINT, IEND(10)
	REAL MIN,MAX,MAG
	DATA TITLEX/4.0/
	DATA TTTIEVOO AAZO TATA
	DATA TITLE/50*
	DNIM TITLE/OV* /
	MATCH=1
C	
Ĉ	DETERMINE IF THERE IS PLOTTING TO BE DONE
Lef.	
	IF(LINES.LT.1) GO TO 170
C	

¢

,

С	FIND MINIMUM AND MAXIMUM VALUES FOR EACH AXIS DO 50 J=1,2
	`MAX(J)=DATA(1,J,1)
	HIN(J)=DATA(1,J,1)
	DO 10 K=1,LINES DO 10 I=1,POINT(K)
	IF(MIN(J).6T.DATA(I,J,K)) MIN(J)=DATA(I,J,K)
10	IF(MAX(J).LT.DATA(I,J,K)) MAX(J)=DATA(I,J,K)
C	
Ĉ	FIND RANGE FOR EACH AXIS AND CHOOSE UPPER AND LOWER
C	BOUNDS SO THAT BOUNDARIES WILL BE ROUND NUMBERS
	DIFF(J)=MAX(J)-MIN(J)
	A=DIFF(J)
•	IF(A.EQ.0.0) 60 TO 170
	IEXP=0
	PTEN=1.0
11	IF(A.GE.1.0) GO TO 12
	A=A+10.0
	IEXP=IEXP-1 PTEN=PTEN/10.0
	GO TO 11
12	IF(A.LT.10.0) G0 IO 13
1 2	A=A/10.0
	IEXP=IEXP+1
	PTEN=PTEN*10
	GO TO 12
13	MAG(J)=AINT(A)
C	
C	XINC IS THE INTERVAL BETWEEN SLASHES ON THE AXES
	XINC(J)=.25
	IF(MAG(J).GE.2.0) XINC(J)=.5
	$IF(HAG(J).GE.4.0) \times INC(J) = 1.0$
	IF(MAG(J).GE.B.O) XINC(J)=2.0 XINC(J)=XINC(J)*PTEN
	HIX=IFIX(MIN(J)/XINC(J)+.01)
	HAN=IFIX(HAX(J)/XINC(J)01)
	IF(MIN(J).LE.O.O) MIX=MIX-1
	IF(MAX(J).GT.O.O) MAN=MAN+1
C	
C	CHOOSE UPPER BOUND AS THE LOWEST ROUND NUMBER ABOVE
С	THE MAXIMUM VALUE TO BE PLOTTED
	HAX(J)=XINC(J)*MAN
	MIN(J)=XINC(J)*HIX
С	
С	ITICK IS THE NUMBER OF SLASHES TO BE DRAWN ON THE AXIS
	ITICK(J)=1+HAN-HIX
~	DIFF(J)=MAX(J)-MIN(J)
C	
C C	IDEC IS THE NUMBER OF FIGURES TO THE RIGHT OF THE DECIMAL Point to be written next to the ticks on the axes
ι.	IDEC(J)=0-IEXP

EU(U/=V IEA)

C	$\phi_{ij}(\eta_{ij}) = \phi_{ij}(\eta_{ij}) \left( \hat{\boldsymbol{x}}_{ij} + \phi_{ij} \right) \left( \hat{\boldsymbol{x}}_{ij} + \phi_{ij}$
Č -	ISIG IS THE NUMBER OF DIGITS PLOTTED NEXT TO THE TICKS X=AMAX1(ABS(MIN(J)),ABS(MAX(J)))
	ISIG(J)=2+HAXO(O,INT(ALOG1O(X)))+MAXO(O,IDEC(J))
С	
C	COMPUTE SCALE FACTOR BASED ON THE GRAPH DIMENSIONS
45	IF(WIDTH(J).LT.1.0) GO TO 190 SCALE(J)=DIFF(J)/WIDTH(J)
50	CONTINUE
C	2. State of the second seco
C	FIND TITLE FOR GRAPH
51	TYPE 52
52	FORMAT(' DO YOU WART A TITLE ON THIS GRAPH?',\$)
	LEVEL=20
	ACCEPT 55, ANS
55	FORMAT(A5) IF(ANS.EQ.'NO') G0 TO 54
	IF(ANS.EQ. YES') 60 TO 345
	CALL LOOK(INATCH,ANS,LEVEL)
	60 TO 51
300	TYPE 310
310	FORMAT(" HOW FAR ABOVE THE X-AXIS DO YOU WANT THE"/
	1,' TOP OF THE FIRST LINE TO BE (IN INCHES,BETWEEN -1 AND 10)?'
	2,\$)
	READ (5,330,ERR=400) TITLEY
330	FORMAT(E10.0)
340	TYPE 340 Format(" How Far to the right of the Y-Axis do you want"
<b>W I V</b>	1,/, THE LEFT HAND EDGE OF THE TITLE (BETWEEN O AND 6)?(,\$)
	PEAN (5 770 EPP-400) TITLEY
345	TYPE 350, TITLEY, TITLEX
350	FORMAT(" THE TITLE WILL BE ",F4.1, "INCHES ABOVE THE X-AXIS",/
	1, AND ', F4.1, ' INCHES TO THE RIGHT OF THE Y-AXIS. ', /
	2,' IS THIS CORRECT?',\$)
	ACCEPT 55,ANS IF(Ans.ne.'yes') G0 T0 300
355	TYPE 360
360	FORMAT(' WHAT IS THE TITLE? USE ; INSTEAD OF CARRIAGE RETURN',/
	1. ( MÁXIMUM 50 CHARACTERS:(.\$)
	ACCEPT 370, (TITLE(I), I=1, 50)
370	FÓRMAT(50A1)
	TYPE 380,(TITLE(I),I=1,50)
380	FORMAT(' IS THIS CORRECT: ',50A1,/," (YES OR NO):",\$)
	ACCEPT 55,ANS IF(ANS.NE. YES') 60 TO 355
	GO TO 54
400	REREAD 55,ANS
	CALL LOOK (THATCH AND LEVEL)
	GO TO 300
C	
C	HOVE PAPER AND CHOOSE ORIGIN

25

54	CALL PLOT(0.0,0.0,-3) CALL PLOT(3.0,0.0,-2) CALL PLOT(10.0,-12.0,-3) CALL PLOT(0.0,1.0,-1)
C C	DRAW X-AXIS X=WIDTH(1) CALL PLOT(X,0.0,2)
С	CHEL I LOI (Kyvivyt)
Ċ	LABEL THE X-AXIS X=WIDTH(1)+.3
	DO 56 J=1,2
	IF(XLABEL(J).EQ. ( ) GO TO 57
	CALL SYMBOL(X,-0.25,.15,XLABEL(J),0.0,5)
	X=X+.75
56	CONTINUE
C	
0	DRAW TICKS ON THE X-AXIS
57	DO 60 I=ITICK(1),1,-1
	XPOINT=MIN(1)+XINC(1)*(I-1) XLOC=XINC(1)*(I-1)/SCALE(1)
	CALL PLOT(XLOC,0.0,3)
	CALL PLOT(XLOC,1,2)
	X=XLOC-(ISIG(1)*0.075)
	CALL NUMBER(X, 25, .15, XPDINT, 0.0, IDEC(1)
60	CONTINUE
C	
C	DRAW Y-AXIS
	Y=WIDTH(2)
	CALL PLDT (0.0,0.0,3)
~	CALL PLOT(0.0,Y,2)
C	
С	LABEL THE Y-AXIS Y=WIDTH(2)+0.3
	X=.1
	D0 64 I=1,46
	IF(YLABEL(I).NE.';') GO TO 61
	Y=Y2
	X=.1
	GO TO 64
61	CALL SYMBOL(X,Y,0.15,YLABEL(I),0.0,1)
	X=X+0.15
64	CONTINUE
C	
C	DRAW TICKS ON THE Y-AXIS
65	DO 70 I=ITICK(2),1,-1 YPOINT=MIN(2)+XINC(2)*(I-1)
	YLOC=XINC(2)*(I-1)/SCALE(2)
	CALL PLOT(0.0, YLDC, 3)
	CALL PLOT(1,YLOC,2)
	Y=YL0C05
	X=ISIG(2)+-0.15-0.1
	CALL NUMBER(X,Y,.15,YPOINT,0.0,IDEC(2))

)

20 C	CONTINUE		• • • •	-	
С	CALCULATE BASELINE; POINT WHERE XZERO=MIN(1)/SCALE(1) YZERO=MIN(2)/SCALE(2)	(0,0) WOULD	PLOT		
C					
C	HOVE PEN TO START OF LINE			•	
	DO 90 LINE=1,LINES				
	X=DATA(1,1,LINE)/SCALE(1)-XZERO		•	· .	
	Y=DATA(1,2,LINE)/SCALE(2)-YZERO			-	
	CALL PLOT(X,Y,3) IF(POINT(LINE).LE.1) GO TO 80.				
С					
C	DRAW A LINE		• *		
<b>S.</b> 2	DO BO I=2,POINT(LINE)				
	X=DATA(I,1,LINE)/SCALE(1)-XZERO				
	Y=DATA(I,2,LINE)/SCALE(2)-YZERO				
	CALL PLOT(X,Y,2)		• `•		
80	CONTINUE	· · · · ·			
90	CONTINUE	· · ·	•		
С				·	
C	PUT LABEL TO THE RIGHT OF EACH I	LINE			
С		•			
C	FIND ENDPOINTS OF LINES			· ·	
	IF(LINES.EQ.1) GO TO 140				
,	DO 100 LINE=1,LINES				
	IEND(LINE)=1			, .	
	ISORT(LINE)=LINE				
	IF(POINT(LINE).LT.2) 60 TO 135		•		
	DO 100 IBUBLE=2, POINT(LINE)		1 7110 1		
	IF(DATA(IBUBLE, 1, LINE).GT.DATA(	TEND(LINE), (	LINE	)	
1.00	1 IEND(LINE)=IBUBLE		•	•	
100 C	CONTINUE		,		
C	SORT ENDPOINTS OF LINES SO LABE	IS UTLI APPE	AR TN	THE RIGHT (	RNFR
110	TRUBLE A				
110	IDONE=1		,		
120	IBUBLE=IBUBLE+1				
	JBUBLE=IBUBLE+1			•	
	ILINE=ISORT(IBUBLE)	2002	۰.		
	JLINE=ISORT(JBUBLE)				
	YI=DATA(IEND(ILINE),2,ILINE)				
	YJ=DATA(IEND(JLINE),2,JLINE)				
	IF(YI.LE.YJ) 60 TO 130	the second second	1		
С		· . ·	· · ·		
C	SWITCH POINTERS (USE JPDINT AS			. *	
	JPOINT=ISORT(IBUBLE)			· .	
	ISORT(IBUBLE)=ISORT(JBUBLE)	: ,	·.		
	ISORT(JBUBLE)=JPOINT				
130	IDONE=0 IF(JBUBLE.LT.LINES) GO TO 120				
1.20	TRUBUBLE.LI.LINES/ OU TO 120	· · · · · ·		• •	

9

С	
С	IF STILL OUT OF ORDER RETURN FOR ANOTHER PASS
	IF(IDONE.EQ.0) GO TO 110
135	X=WIDTH(1)+.75
	YJ=0.0
	DO 150 IBUBLE=1,LINES
	LINE=ISORT(IBUBLE)
0	Y=DATA(IEND(LINE),2,LINE)/SCALE(2)-YZER0-0.1
C	
C	CHECK FOR OVERWRITE
	IF(IBUBLE_EQ.1) 60 TO 140
	JBUBLE=IBUBLE-1
	JLINE=ISORT(JBUBLE)
С	
С	MOVE LABEL UP IF IT WILL DVERWRITE PREVIOUS LABEL
	YJ=Y-YJ
	IF(YJ.GT.0.2) GO TO 140
	Y=Y+0,2-YJ
С	
č	PUT LABEL NEXT TO ENDPOINT
140	IF(LABEL(LINE,1).EQ. () G0 TO 145
1 10	
	CALL SYMBOL(WIDTH(1),Y,0.15,LABEL(LINE,1),0.0,5)
	IF(LABEL(LINE,2).EQ. ') GO TO 145
	CALL SYMBOL(X,Y,O.15,LABEL(LINE,2),0.0,5)
145	YJ=Y
1 50	CONTINUE
C	
С	PUT TITLE UNDER GRAPH
	Y=TITLEY-0.2
	X=TITLEX
	D0 155 I=1,50
	IF(TITLE(I).NE. ; ') GO TO 152
· .	X=TITLEX
,	Y=Y-0.25
	GO TO 155
152	CALL SYMBOL(X,Y,0.2,TITLE(I),0.0,1)
1.02	X=X+0.2
155	CONTINUE
160	TYPE 161
161 ,	FORMATC TYPE YES IF YOU ARE FINISHED WITH THE ,/
	1, DATA JUST GRAPHED. TYPE NO IF YOU WISH TO',/
	2, ' USE IT AGAIN. CLEAR DATA?',\$)
	ACCEPT 162,ANS
162	FORNAT(A3)
	IF(ANS_EQ_'NO') 60 TO 165
	IF(ANS.NE.'YES') GO TO 160
	LINES=0
165	RETURN 1
170	TYPE 180
180	FORMAT( ' THERE ARE NO LINES TO PLOT')
-	RETURN 1

190 200	TYPE 200 FORMAT(' WIDTH IS TOD SMALL. PLEASE CORRECT')
	RETURN 1 END
С С	
Č	PROVIDE USER INSTRUCTIONS AT VARIOUS POINTS OF THE PROGRAM Subroutine Help(\$,Match,level) Match=1
<i>t</i> ``	GO TO (20,40,80,100,110,120,130,140,150,160,170,180,190 1,200,60,210,230,250,270,290) LEVEL
С С	IF LEVEL = 0, NO MORE INFORMATION IS AVAILABLE Type 10
10	FORMAT(' THERE IS NO MORE INFORMATION AVAILABLE' 1,' FOR THIS SECTION.' ) RETURN 1
C C	HODEL HAS NOT YET BEEN CALLED
20	TYPE 30
30	FORMAT( THIS PROGRAM CONTAINS A NUMBER OF SUBPROGRAMS' 1, TO PERFORM SPECIFIC TASKS. ,/, TO USE ONE '
	2, TYPE THE KEYWORD FOR THAT UNIT.
	3,//, KEYWORD', T20, FUNCTION'
	4,/,' HELP",T14,'INFORMATION ABOUT A PARTICULAR QUESTION' 5,/,' Nodel',T14,'SET parameters for braking'
	5, AND COUPLING HODEL
	6,/,' CHANGE',T14,'CHANGE SPECIFIC PARAMETERS IN THE MODEL' 7,/,' SOLVE',T14,'SOLVE FOR AVAILABLE DOLLARS PER CAR' 8,' AND STORE THE RESULTS'
	9,/,' GRAPH',T14,'PLOT THE DATA IN THE FILE'
	1,/,' PRINT', T14, 'PRINT THE DATA IN THE FILE'
	2,/, LIST',T14,'THE PARAMETERS AND THEIR VALUES IN THE MODEL' 3,/, DELETE',T14,'REMOVE ONE OR MORE LINES FROM THE DATA FILE'
	4,/,' CREATE',T14,'ENTER A LINE INTO THE FILE',//>
35	TYPE 35 Format(/, This program Will Now Automatically Enter Model"
	6, AND THEN LIST. ', /, ' YOU CAN THEN USE CHANGE TO CORRECT',
	7' ANY ERRORS. THEN TYPE SOLVE FOLLOWED',/, BY PRINT OR GRAPH. 8,/, NOTE THAT. PRINT. AND GRAPH WILL OUTPUT ALL THE SOLUTIONS'
	9,/, HADE UP TO THAT TIME. PARTICULAR SOLUTIONS CAN BE REMOVED
	t, WITH DELETE. (77)
36	CALL NODEL(\$36,IMATCH,LEVEL) LEVEL=2
(50	RETURN 1
C	7407010770N-UCI D
C 40	INSTRUCTION:HELP Type 30
	TYPE 50

50 C	FORMAT(' IF THERE ARE ANY PARAMETERS THAT NEED TO' 1,' BE CHANGED TYPE CHANGE,',',' OTHERWISE TYPE SOLVE.' 2,',' YOU WILL BE ASKED FOR A LABEL THAT WILL' 3,' BE PRINTED NEXT TO THE DATA JUST',',' OBTAINED.' 4,' THEN YOU MAY CHANGE THE PARAMETERS TO CONSTRUCT A NEW' 5,',' NODEL. THERE MAY BE UP' 6,' TO TEN LINES ON THE GRAPH.') LEVEL=0 RETURN 1
C 60 20	LIFETIME OF THE ASSET (MODEL,CHANGE) TYPE 70 Format(' The Depreciation Schedule is Based On'
	1, THE LIFETIME ASSIGNED TO THE ',/,' EQUIPMENT.' 2,' Your Answer Should be an integer between 1 and 99.') Return 1
C C	TINE HORIZON
80	TYPE 90
90	FORMAT(' THE FIRST CASH FLOW WILL BE ASSUNED TO BE'
	1, ' IN YEAR ONE. YOUR', /, ' RESPONSE SHOULD BE BETWEEN 1 AND 26.
	2, CASH FLOWS OCCURING AFTER THIS C
	1,/,' LINIT WILL BE IGNORED.')
-	RETURN 1
C	
C 100	COMPATIBLE Type 10
100	RETURN 1
110	TYPE 10
110	RETURN 1
120	TYPE 10
	RETURN 1
130	TYPE 10
	RETURN 1
140	TYPE 10
	RETURN 1
150	TYPE 10
	RETURN 1
160	TYPE 10
170	RETURN 1 TYPE 10
170	RETURN 1
180	TYPE 10
	RETURN 1
190	TYPE 10
	RETURN 1
200	TYPE 10
	RETURN 1
210	TYPE 220
220	FORMAT( THESE RATES REFER TO THE MAXIMUM AND MINIMUM
	1, TRATES TO BE USED IN', /, TPLOTTING DOLLARS VERSUST
	2, 'DISCOUNT RATE.')
	RETURN 1

Ð

230	
240	FORMAT(' TYPE LIST FOR A LIST OF PARAMETERS. THEN'
	1, TYPE THE KEYWORD OF THE , , PARAMETER YOU WISH
	2, TO CHANGE. WHEN YOU ARE FINISHED CHANGING, TYPE STOP. ")
	RETURN 1
250	TYPE 260
260	FORMAT(" AFTER X TYPE THE VALUE YOU WISH TO REFER TO THE"
A UF V	1, X-COORDINATE OF A POINT',/, ON THE LINE. HOTE THAT THE'
	2, POINTS WILL BE CONNECTED IN THE ORDER
	1,/, YOU ENTER THEM. ()
	RETURN 1
270	TYPE 280
280	FORMATI STATE THE LINE NUMBER (AS LISTED AFTER TYPING
	1, ' PRINT) CORRESPONDING TO ',/, ' THE LINE YOU WISH TO DELETE
	2, ". TYPE STOP WHEN FINISHED.")
	RETURN 1
290	TYPE 300
-	
300	FORMAT(" THE TITLE WILL APPEAR ON THE GRAPH. YOU CAN SELECT"
	1, SELECT THE LOCATION', 7, RELATIVE TO THE AXES AND
	2, MORE THAN ONE LINE MAY BE USED. ()
	RETURN 1
	END
С	
С	
С	
č	LABEL THE LAST LINE GENERATED
147	SUBROUTINE LABL(\$, MATCH)
	CONHON LINES, DATA(26,2,10), POINT(10), LABEL(10,2)
	INTEGER POINT
	NATCH=1
10	TYPE 20
20	FORMAT(" LABEL (NAXIMUM 10 CHARACTERS):",\$)
	ACCEPT 30,LABEL(LINES,1),LABEL(LINES,2)
30	FORNAT(2A5)
40	TYPE 50,LABEL(LINES,1),LABEL(LINES,2)
50	FORMAT(1X,2A5,5X,'IS THE LABEL CORRECT?',\$)
(JV	
	ACCEPT 60,ANS
60	FORMAT(A5)
	IF(ANS.EQ. NOT) GO TO 10
	IF(ANS.NE. YES') 60 TO 40
	IF(LINES.NE.1) TYPE 70,LINES
20	FORMAT( THERE ARE NOW , 12, LINES ON THE GRAPH. )
	IF(LINES.EQ.1) TYPE 80
80	FORNAT(' THERE IS NOW 1 LINE ON THE GRAPH.')
<b>W W</b>	RETURN 1
c	END
0	
C	
C	

;

Ú,

A-22

2

C	LIST THE PARAMETERS AND THE CURRENT VALUE OF EACH
	SUBROUTINE LIST(\$,MATCH)
	CONMON LINES, DATA(26,2,10), POINT(10), LABEL(10,2), WIDTH(2)
	1, YLABEL(46), XLABEL(2), LINIT, ICOMP, X, NCAR, ATTRAT, MATINF
	2,LABINF,LABORS,LOW,HIGH,PAYSTP,FRAC,FRIDT,TAXRAT,UPAYRT
-	3, SCHED(49), SNSUP, DINF, METHOD, LIFE, TECH, SAVL(50), DSAV(50)
	4, IDEX1, IDEX2
	REAL NCAR, MATINF, LABINF, LABORS
	INTEGER POINT, YEAR, HIGH, LOW, PAYSTP
	MATCH=1
4.0	TYPE 10 CODMATIZ NARIARIES 177 SVENURRAS ISE SCURRENT HALVES)
10	FORMAT(* VARIABLE*,T37,*KEYWORD*,T55,*CURRENT VALUE*) TYPE 20,LINIT,ICONP,NCAR,ATTRAT,FRAC,FRIDT,TAXRAT,UPAYRT,TECH
/ <b>3</b> .A	FORMAT(' NUMBER OF YEARS IN ANALYSIS', T38, 'LIMIT', T63, I2,/
20	1, YEARS BEFORE SYSTEM IS COMPATIBLE , T38, COMPATIBLE , T63, 12, /
	2, NUMBER OF CARS', T38, NUMBER', T55, F14.3,/
	3, ATTRITION RATE', T38, ATTRITION', T55, F14.3,/
	4, NEW COST OF EQUIPHENT , T38, FRACTION , T55, F14.3,/
	5, INVESTMENT TAX CREDIT ,T38, INVESTMENT ,T55,F14.3,/
	6, TAX RATE', T38, TAX', T55, F14.3,/
	7, LOSS TO UNION', T38, 'UNION', T55, F14.3,/
	8, EXPECTED LIFETINE OF THE TECHNOLOGY, T38, TECH, T55, F14.3)
	IF(IDEX1 .EQ. 0) GO TO $27$
	TYPE 21
21	FORMAT(' LABOR SAVINGS', T38, 'SAVINGS')
	DO 22 I=1,LINIT
	TYPE 23, I, SAVL(I)
22	CONTINUE
23	FORMAT(F8, ' YEAR', 13, 755, F14.3)
	TYPE 24, PAYSTP
24	FORMATIC YEARS SAVINGS ARE LOST TO UNION', T38, 'LOSE', T63, I2, /
	1, OTHER SAVINGS', T38, OTHER')
	DO 25 I=1,LIMIT
	TYPE 26, I, OSAV(I)
25	CONTINUE
26	FORMAT(T8, YEAR', 13, T55, F14.3)
( <b>) 7</b>	GO TO 29
27	TYPE 28, LABORS, PAYSTP, SNSUP
28	FORMAT(' LABOR SAVINGS',T38,'SAVINGS',T55,F14.3,/ 2,' YEARS SAVINGS ARE LOST TO UNION',T38,'LOSE',T63,I2,/
	7, OTHER SAVINGS ARE LOST TO UNION , 136, LOSE , 103,12,7 7, OTHER SAVINGS', T38, OTHER", T55, F14.3)
29	TYPE 30,MATINF,LABINF,DINF
30	FORMAT(' INFLATION:',T38, 'INFLATION',/
ωv.	4,T8, 'MATERIALS', T55,F14.3,/
	5,T8, 'LABOR', T55,F14.3,/
	6,T8, 'OTHER', T55,F14.3)
	TYPE 40,LOW,HIGH,LIFE
40	FORMAT( ' MININUM INTERNAL RATE OF RETURN', T38, 'RATES', T63, I2,/
	1, MAXIMUM INTERNAL RATE OF RETURN , T38, RATES , T63, 12,/
	2, DEPRECIATION', T38, DEPRECIATION',/
	3, T8, ' LIFETIME OF ASSETS', T63, 12, /, 8X, \$)
	IF(METHOD.EQ.1) TYPE 50
	IF(NETHOD.EQ.2) TYPE 60
	IF(METHOD.E0.3) TYPE 70
50	ENDMAT(/ CTDAYCHT   THE/ 4)

```
- 60
        FORMAT( DOUBLE DECLINING BALANCE ,$)
20
        FORMAT(' SUN OF YEARS DIGITS',$)
         TYPE 80
                   FORMAT( See DEPRECIATION USED. ()
80
         TYPE 90,XLABEL(1),XLABEL(2),(YLABEL(1),I=1,46)
90
        FORMAT( ' THE AXES ARE LABELED AS FOLLOWS: ", /
         1, X-AXIS: (,2A5,/, Y-AXIS: (,46A1,/,20X, KEYWORD IS AXES)
        RETURN 1
        END
С
                       e nage e tra
         SUBROUTINE LOOK("IMATCH, ANS, LEVEL)
         COMMON LINES, DATA(26,2,10), POINT(10), LABEL(10,2), WIDTH(2)
         1, YLABEL(46), XLABEL(2), LINIT, ICOMP, X, NCAR, ATTRAT, NATINF
         2,LABINF,LABORS,LOW,HIGH,PAYSTP,FRAC,FRIDT,TAXRAT,UPAYRT,
         3SCHED(49), SNSUP, OINF, METHOD, LIFE, TECH, SAVL(50), OSAV(50)
         4, IDEX1, IDEX2
         REAL NCAR, NATINF, LABINF, LABORS
         INTEGER POINT, YEAR, HIGH, LOW, PAYSTP
         MATCH=1
         IF(ANS.EQ. CREAT ) CALL CRE($10, INATCH)
         IF(ANS.EQ.'GRAPH') CALL GRA($10,INATCH)
         IF(ANS.EQ. 'CHANG') CALL CHANG($10, IMATCH)
         IF(ANS.EQ. 'DELET') CALL DELET($10, IMATCH)
         IF(ANS.EQ. 'PRINT') CALL PRINT($10, IMATCH)
         IF(ANS.EQ.'SOLVE'.AND. IDEX1 .EQ. 0) CALL SOLVE($10, IMATCH)
         IF(ANS.EQ.'SOLVE'.AND. IDEX1 .EQ. 1) CALL VARIA($10,IWATCH)
         IF(ANS.EQ.'SOLVE') CALL LABL($10, IMATCH)
         IF(ANS.EQ. 'HELP') CALL HELP($10, IMATCH, LEVEL)
         IF(ANS.EQ.'LIST') CALL LIST($10, INATCH)
         IF(ANS.EQ.'TRACE') CALL TRACE
         IF(ANS.EQ.'NULL') IMATCH=1
         IF(ANS.EQ.'MODEL') CALL MODEL($10,IMATCH,LEVEL)
         RETURN
10
         ANS='NULL'
         INATCH=1
        RETURN
         END
                          All All All All
                      С
C
C
С
         CONSTRUCT A SET OF PARAMETERS FROM SCRATCH
        SUBROUTINE NODEL($, MATCH, LEVEL)
        CONMON LINES, DATA(26,2,10), POINT(10), LABEL(10,2), WIDTH(2)
         1, YLABEL(46), XLABEL(2), LIMIT, ICOMP, X, NCAR, ATTRAT, MATINF
         2, LABINF, LABORS, LOW, HIGH, PAYSTP, FRAC, FRIDT, TAXRAT, UPAYRT,
         3SCHED(49), SNSUP, DINF, METHOD, LIFE, TECH, SAVL(50), OSAV(50)
         4, IDEX1, IDEX2
         REAL NCAR, MATINF, LABINF, LABORS
         INTEGER POINT, YEAR, HIGH, LOW, PAYSTP
         MATCH=1
```

1 (1) (1) (1)

C	TYPE HEADING
	TYPE 1
1	FORMAT(" THIS IS A MODEL TO ESTIMATE THE ANOUNT THAT CAN",/
	1, ' BE SPENT PER FREIGHT CAR FOR ADVANCED BRAKING',/
	2, AND COUPLING. ()
	GO TO 21
C	
C	ERROR PROCEDURE
10	REREAD 12, ANS
	INATCH=0
	CALL LOOK(IMATCH, ANS, LEVEL)
12	FORMAT(A5)
	IF(IMATCH.EQ.0) TYPE 11
11	FORMAT(' PLEASE USE ONLY 1 TO 9,0,+,-,. IN YOUR RESPONSE.',/
	1, TYPE HELP FOR NORE INFORMATION. )
	60 TO (21,21,21,21,22,23,24,25,26,27,28,29,30,31,32,33)
	1,(LEVEL+1)
<b>8</b> 77	TYPE 5,LEVEL
5	FORMAT(' THERE HAS BEEN AN ERROR. LEVEL=',12)
0	RETURN 1
C	
C	GO TO THE NEXT QUESTION
21 22	GO TO 400 Go TO 430
23	GD TO 480
23	GO TO 520
25	60 TO 550
26	GO TO 650
27	GO TO 690
28	GD TD 630
29	GO TO 670
30	GO TO 610
31	GO TO 580
32	60 TO 720
33	GO TO 100
34	CALL LIST(\$35,IWATCH)
35	RETURN 1
С	
C	COMPUTE DEPRECIATION SCHEDULE
100	TYPE 110
110	FORMAT(" WHAT IS THE DEPRECIATION LIFETIME OF THE ASSET?",\$)
	LEVEL=15
	READ(5,120,ERR=10) LIFE
120	FORMAT(13)
	IF(LIFE.GE.1) GO TO 140
	TYPE 130
1 30	FORMAT(" THE LIFETINE MUST BE ONE OR MORE. PLEASE REENTER.")
	GO TO 100
140	TYPE 150
150	FORMAT( / WHICH HETHOD OF DEPRECIATION DO YOU WANT TO USE? ,/
	1,T10, STRAIGHT',T25, -STRAIGHT LINE'
	2,/,T10, DOUBLE T25, -DOUBLE DECLINING BALANCE
	3,/,T10,' SUN',T25,'-SUM OF YEARS DIGITS',/,' METHOD:',\$)
4 6 4	ACCEPT 151, ANS
151	FORMAT(A5)
	IF(ANS.EQ. STRAL') GO TO 170
	IF(ANS.EQ.'DOUBL') GO TO 190 IF(ANS.EQ.'SUN') GO TO 240
С	
1.2	A-25
	,

£.

C	PRINT ERROR MESSAGE SINCE ENTRY COULD NOT BE IDENTIFIED Type 160
160	FORMAT(' PLEASE TYPE STRAIGHT,DOUBLE, OR SUM') GO TO 140
С	
C	STRAIGHT LINE NETHOD
170	KETHOD=1
174	DO 180 I=1,49
	SCHED(I)=1.0/FLOAT(LIFE)
	IF(I.GT.LIFE) SCHED(I)=0.0
180	CONTINUE
	GO TO 300
C	·
C	DOUBLE DECLINING BALANCE METHOD
С	·
С	RATE OF DEPRECIATION IS TWICE THAT OF STRAIGHT LINE METHOD
190	NETHOD=2
	PERC=2.0/FLOAT(LIFE)
	BALANC=1.0
	DO 220 I=1,48
	SCHED(I)=BALANC*PERC
220	BALANC=BALANC-SCHED(I)
~2V	SCHED(49)=BALANC
~	60 TO 300
C	
C	SUN OF YEARS DIGITS METHOD
240	METHOD=3
	SUM=(LIFE+*2+LIFE)/2
	DO 250 I=1,49
	SCHED(I)=FLOAT(LIFE-I+1)/SUM
	IF(I.GT.LIFE) SCHED(I)=0.0
250	CONTINUE
	GO TO 300
C	
С	SHOW SCHEDULE
300	SUM=0.0
	TYPE 310
310	FORMAT(" YEAR FRACTION WRITTEN OFF IN THAT YEAR")
	DQ 330 I=1,49
	TYPE 320, I, SCHED(I)
320	FORMAT(2X,12,5X,F5.3)
330	SUM=SUM+SCHED(I)
······ .	TYPE 340,SUM
340	FORMAT(/, TOTAL=',F5.3,//)
<b>W</b>	GO TO 34
C	
č	CHANGE TIME HORIZON
400	TYPE 410
410	FORMAT("'FOR HOW MANY YEARS SHOULD THE CASH FLOWS",
עוד	•
	1' BE CALCULATED?',\$)
	LEVEL=3
4.9.4	READ (5,420,ERR=10) LIMIT
420	FORMAT(13)
	IF(LIMIT.LT.1) GO TO 450
	IF(LIMIT.GT.50) GO TO 450
	GO TO 22
1.	

С CHANGE THE YEAR FLEET BECOMES COMPATIBLE 430 **TYPE 440** FORMAT(" HOW MANY YEARS BEFORE THE SYSTEM BECOMES" 440 1.1 COMPATIBLE?1.\$) LEVEL=4 READ (5,420,ERR=10) ICOMP IF(ICOMP.LE.O) GO TO 470 IF(ICOMP.GE.50) G0 T0 470 GO TO 23 . ¹. - . TYPE 460 450 FORMAT(" YEAR MUST BE BETWEEN 1 AND 50, PLEASE REENTER.") 460 GO TO 400 470 **TYPE 460** GO TO 430 С NUMBER OF CARS IN THE SYSTEM С 480 **TYPE 490** FORMAT(" HOW MANY CARS ARE IN THE SYSTEM?",\$) 490 LEVEL=5 READ (5,500,ERR=10) NCAR 500 FORMAT(E10.0) IF(NCAR.GT.0.0) GO TO 24 **TYPE 510** FORMAT( THERE HAS TO BE MORE THAN ZERO CARS. () 510 GO TO 480 С С ATTRITION RATE 520 TYPE 530 FORMAT(" WHAT IS THE EXPECTED LIFETIME OF THE CARS? ",\$) 530 LEVEL=6 READ (5.500.ERR=10) ATTRAT IF (ATTRAT _NE. 0.0) ATTRAT=1.0/ATTRAT IF(ATTRAT.GE.O.O.AND.ATTRAT.LE.1.0) GO TO 900 TYPE 540 540 FORMAT(' THE EXPECTED LIFETIME OF THE CARS MUST BE',/, 1 ' GREATER THAN OR EQUAL TO ZERO. ') GD TO 520 С С ORIGINAL COST AS FRACTION OF NEW COST 550 **TYPE 560** 560 FORMAT(' WHAT FRACTION OF RETROFIT COST IS REQUIRED FOR',/ 1, NEW PRODUCTION (PER CAR)?',\$) LEVEL=7 READ (5,500,ERR=10) FRAC XFRAC=FRAC*100.0 TYPE 570,XFRAC FORMAT( FRACTION= ', F6.1, '%') 570 **TYPE 571** 571 FORMAT( ' IS THIS CORRECT? '. \$) ACCEPT 151.XFRAC IF(XFRAC.NE. YES') 60 TO 550 60 TO 26 С

С	FRACTION DEDUCTIBLE FOR INVESTMENT TAX CREDIT
580	TYPE 590
590	
	1,' INVESTMENT TAX CREDIT?',\$)
	LEVEL=13
	READ (5,500,ERR=10) FRIDT
	IF(FRIDT.GE.0.0) 60 TO 32
	TYPE 600
600	FORMAT(' FRACTION CANNOT BE LESS THAN ZERO.')
	GO TO 580
С	
č	TAX RATE
	TYPE 620
620	FORMAT(' WHAT IS THE TAX RATE FOR THE RAILROAD INDUSTRY?',\$)
	LEVEL=12
	READ (5,500,ERR=10) TAXRAT
	IF(TAXRAT.GT.1) TAXRAT=TAXRAT/100.
	GO TO 31
С	
C	UNION PAYOFF RATE
	TYPE 640
640	FORMAT(" WHAT FRACTION OF LABOR SAVINGS ARE PAID"
040	
	1, TO THE UNION?',\$)
	LEVEL=10
	READ (5,500,ERR=10) UPAYRT
	IF(UPAYRT.GT.I.) UPAYRT=UPAYRT/100.
	GO TO 29
C	
С	SAVINGS SUBJECT TO UNION
გ20	TYPE 655
655	FORMAT(" TYPE YES IF YOU WANT TO ENTER LABOR SAVINGS",/
	1, ' THAT IS SUBJECT TO UNION PAYOFF ON A YEAR BY ",/
	2, ' YEAR BASIS. TYPE NO OTHERWISE: ',\$)
	LEVEL=8
	ACCEPT 656,ANS
656	FORMAT(A5)
	IDEX1=0
	IF (ANS .EQ. 'ND') GD TO 657
	IF (ANS .NE. YES') GO TO 650
	CALL NEW(SAVL,LIMIT,IDEX1)
	GO TO 27
657	TYPE 660
660	FORMAT(" WHAT IS THE LABOR SAVINGS PER YEAR THAT IS',/
	1, SUBJECT TO UNION PAYOUT? (,\$)
	READ (5,500,ERR=10) LABORS
	GO TO 27
C	

C

С	SAVINGS NOT SUBJECT TO UNION PAYOFF
670	TYPE 680
680	FORMAT(' TYPE YES IF YOU WANT TO ENTER SAVINGS',/
	1, THAT IS NOT SUBJECT TO UNION PAYOFF ON A YEAR BY ",/
	2, YEAR BASIS. ',/
	1, TYPE NO OTHERWISE: (,\$)
	LEVEL=11
	ACCEPT 656, ANS
	IF(ANS .EQ. (NO') 60 TO 673
	IF(ANS .NE. YES') 60 TO 670
	CALL NEW(OSAV,LIMIT,IDEX2)
	IF(IDEX1.EQ.1)60T0 30
	IDEX1=1
	DO 671 I=1,ICOMP
671	SAVL(I)=0.0
	J=1+ICOMP DD 470 T= LITXIT
/ 70	DD 672 I=J,LINIT
672	SAVL(I)=LABORS Goto 30
673	TYPE 681
681	FORMAT(" WHAT IS THE ANNUAL SAVINGS NOT SUBJECT TO UNION",/
001	1, ' PAYOUT? ',\$)
	READ (5,500,ERR=10) SNSUP
	IF(IDEX1.EQ.0)G0 TO 30
	IDEX2=1
	DO 682 I=1,ICONP
682	DSAV(I)=0.0
	J=ICOMP+1
	DO 683 I=J,LIMIT
683	OSAV(I)=SNSUP
	GOTO 30
C	
C	STOP PAYING OFF UNION
690	TYPE 700
700	FORMAT(" FOR HOW MANY TEARS WILL SAVINGS BE PAID TO THE UNION?"
	<b>1,\$</b> )
	LEVEL=9
	READ (5,420,ERR=10) PAYSTP
	I=LINIT-ICOMP
	IF(PAYSTP.6E.0.0.AND.PAYSTP.LE.I) 60 TO 28
	TYPE 710,LIHIT
210	FORMAT(' THERE MUST BE BETWEEN ZERO AND ',12,' YEARS.')
0	GO TO 690
С	

١

С

С	INFLATION RATES
720	TYPE 730
230	FORMAT(' WHAT IS THE INFLATION RATE FOR:',/
	1,T10, ' MATERIALS (IN PERCENT)?',\$)
	LEVEL=14
	READ (5,500,ERR=10) MATINF
	HATINF=1+(MATINF/100.)
	TYPE 740
240	FORMAT("+",T10," LABOR (IN PERCENT)?",\$)
	READ (5,500,ERR=10) LABINF
	LABINF=1.+(LABINF/100.)
	TYPE, 750
750	FORMAT('+',TIO,' SAVINGS NOT SUBJECT TO UNION PAYOUT'
	1, (IN PERCENT)?',\$)
	READ (5,500,ERR=100) DINF
	DINF=1,+(DINF/100,)
	GO TO 33
С	
č	THE EXPECTED LIFETINE OF THE TECHNOLOGY
900	TYPE 910
910	
710	FORMAT(' WHAT IS THE EXPECTED LIFETINE OF THE TECHNOLGY',/
	1, 'BEING IMPLEMENTED ON THE RAILROAD SYSTEM? ',\$)
	LEVEL=6
	READ (5,500,ERR=10) TECH
	IF(TECH.GT.0.0) GO TO 25
	TYPE 930
930	FORMAT(' THE EXPECTED LIFETIME OF THE TECHNOLOGY MUST BE',/,
	1 ' GREATER THAN ZERO.')
	GO TO 900
C	
	END
C	,
С	
Ĉ	
Č	PRINT THE CONTENTS OF DATA
s.7	SUBROUTINE PRINT(\$,MATCH)
	CONMON LINES, DATA(26,2,10), POINT(10), LABEL(10,2), WIDTH(2)
	1, YLABEL(46), XLABEL(2), LINIT, ICOMP, X, NCAR, ATTRAT, HATINF
	2,LABINF,LABORS,LOW,HIGH,PAYSTP,FRAC,FRIDT,TAXRAT,UPAYRT
	3,SCHED(49),SNSUP,OINF,METHOD,LIFE
	REAL NCAR, MATINF, LABINF, LABORS
	INTEGER POINT, YEAR, HIGH, LOW, PAYSTP
	MATCH=1
	DD 30 LINE=1,LINES
	TYPE 10,LINE,LABEL(LINE,1),LABEL(LINE,2)
	1,XLABEL(1),XLABEL(2),(YLABEL(1),I=1,46)
10	FÓRMAT(//, LINE NUMBÉR: 1,12,T20,1LÁBEL: 1,245
	1,/,8X,2A5,2X,46A1)
	DO 30 I=1,POINT(LINE)
	TYPE 20, I, DATA(I, 1, LINE), DATA(I, 2, LINE)
20	FORMAT(1X, I2, 5X, F10. 3, 2X, F10. 3)
30	
	LUN / 1 WOL
	CONTINUE Return 1
	RETURN 1
С	

С С C GIVEN PARAMETERS FIND THE AMOUNT WHICH CAN BE SPENT PER С CAR FOR A VARIETY OF DISCOUNT RATES. STORE THE RESULTS SUBROUTINE SOLVE(\$,MATCH) DIMENSION A(50), B(50), START(50), ANNUAL(50), TAXCR(50) 1, DEPRT(50), OTHER(50), SAVING(50) COMMON LINES, DATA(26,2,10), POINT(10), LABEL(10,2), WIDTH(2) 1, YLABEL(46), XLABEL(2), LIMIT, ICONP, X, NCAR, ATTRAT, MATINF 2, LABINF, LABORS, LOW, HIGH, PAYSTP, FRAC, FRIDT, TAXRAT, UPAYRT 1.SCHED(49), SNSUP.OINF. METHOD.LIFE.TECH.SAVL(50), OSAV(50) 4.IDEX1.IDEX2 REAL NCAR, MATINF, LABINF, LABORS INTEGER POINT, YEAR, HIGH, LOW, PAYSTP MATCH=1 С C COMPUTE CASH FLOWS FOR EACH YEAR. PER DOLLAR OF RETROFIT COST ISTP=PAYSTP+ICOMP TAXCR(1)=0.0 IF(LINES.GE.10) GO TO 310 LINES=LINES+1 DO 100 YEAR=1,LIMIT С С IF SYSTEM NOT COMPATABLE THERE IS A START-UP COST START(YEAR)=0.0 IF(YEAR.LE.ICOMP) START(YEAR)=(1/FLOAT(ICOMP)-ATTRAT)*NCAR* 1(MATINF**(YEAR-1))*-1 С C ANNUAL EXTRA COST OF ADV. BRAKING & COUPLING IF(YEAR.LE.TECH)ANNUAL(YEAR)=FRAC+ATTRAT*NCAR* 1(MATINF**(YEAR-1))*-1 IF(YEAR.GT.TECH)ANNUAL(YEAR)=FRAC*(1/TECH)*NCAR* 1(MATINF**(YEAR-1))*-1 С C TAX CREDIT ONE YEAR AFTER INVESTMENT IF(YEAR.EQ.1) GO TO 40 TAXCR(YEAR)=(START(YEAR-1)+ANNUAL(YEAR-1))+FRIDT*-1 С DEPRECIATION TAX CREDIT С DEPRT(YEAR)=0.0 40 IF(YEAR.LT.2) 60 TO 55 DO 50 I=1,YEAR-1 DEPRT(YEAR)=DEPRT(YEAR)-TAXRAT*(START(YEAR-I)+ANNUAL(YEAR-I)) 50 1*SCHED(I) С С LABOR SAVINGS 55 SAVING(YEAR)=0.0 UNION=1.0 IF(YEAR.LE.ISTP) UNION=1.0-UPAYRT IF(YEAR.GT.ICOMP) SAVING(YEAR)=LABORS*(1.O-TAXRAT)*UNION 1*(LABINF**(YEAR-1)) C

C SAVINGS NOT SUBJECT TO UNION PAYOFF OTHER (YEAR)=0.0 IF(YEAR.GT_ICOMP) OTHER(YEAR)=SNSUP*(1.-TAXRAT)*(0INF**(YEAR-1)) С С FIND SUM OF PER COST CASH FLOWS A(YEAR)=START(YEAR)+ANNUAL(YEAR)+TAXCR(YEAR)+DEPRT(YEAR) C C FIND SUM OF FIXED FLOWS B(YEAR)=SAVING(YEAR)+DTHER(YEAR) C С CASH FLOWS IN YEAR = AX+B WHERE X=COST OF RETROFITTING ONE CAR 100 CONTINUE С С FIND PRESENT VALUE OF A AND B FOR ALL DISCOUNT RATES DO 300 I=LOW.HIGH SUNA=0.0 SUMB=0.0 R=1.07FL0AT(I)/100.0 DO 200 YEAR=1,LINIT FACTOR=R**(YEAR-1) SUNA=SUNA+A(YEAR)/FACTOR SUMB=SUMB+B(YEAR)/FACTOR 200 CONTINUE С C FILE RESULTS ROW=I-LOW+1 BATA(ROW,1,LINES)=I XX=0.0-SUMB/SUMA DATA(ROW,2,LINES)=XX IF(I.EQ.12) XY=XX 300 CONTINUE . . POINT(LINES)=HIGH-LOW+1 С С COMPUTE PAYBACK PERIOD CUME=0.0 DO 400 I=1,LIMIT CUNE=CUME+XY*A(I)+B(I) IF(CUME_GE_0.0) 60 TO 410 400 CONTINUE **TYPE 405** 405 FORMAT(' PAYBACK NOT REACHED.') RETURN . . . . 410 TYPE 420,1 420 FORMAT( ' PAYBACK REACHED ', 12, ' YEARS AFTER START-UP. ') RETURN RETURN 310 **TYPE 320** 320 FORMAT(" DATA FILE IS FULL.") RETURN 1 · · · · · · END С С

С	
C	SOLVE WITH VARIABLE CASH FLOWS
	SUBROUTINE VARIA(\$,MATCH)
	DIMENSION A(50),B(50),START(50),ANNUAL(50),TAXCR(50)
	1,DEPRT(50),SAVING(50),OTHER(50)
	COMMON LINES, DATA(26,2,10), POINT(10), LABEL(10,2), WIDTH(2)
	1, YLABEL(46), XLABEL(2), LINIT, ICOMP, X, NCAR, ATTRAT, NATINF
	2,LABINF,LABORS,LOW,HIGH,PAYSTP,FRAC,FRIDT,TAXRAT,UPAYRT
	1,SCHED(49),SNSUP,OINF,HETHOD,LIFE,TECH,SAVL(50),OSAV(50)
	4,IDEX1,IDEX2
	REAL NCAR, MATINF, LABINF, LABORS
	INTEGER POINT, YEAR, HIGH, LOW, PAYSTP
	NATCH=1
С	
C	
L.	COMPUTE CASH FLOWS FOR EACH YEAR, PER DOLLAR OF RETROFIT COST
	TAXCR(1)=0.0
	IF(LINES.GE.10) GO TO 310
	LINES=LINES+1
	DO 100 YEAR=1,LINIT
С	
С	IF SYSTEM NOT COMPATABLE THERE IS A START-UP COST
	START(YEAR)=0.0
	IF(YEAR.LE.ICOMP) START(YEAR)=(1/FLOAT(ICOMP)-ATTRAT)*NCAR*
	1(NATINF**(YEAR-1))*-1
C	
ĉ	ANNUAL EXTRA COST OF ADV. BRAKING & COUPLING
( <i>J</i>	
	IF(YEAR.LE.TECH)ANNUAL(YEAR)=FRAC*ATTRAT*NCAR*
	1(MATINF**(YEAR-1))*-1
	IF(YEAR.GT.TECH)ANNUAL(YEAR)=FRAC*(1/TECH)*NCAR*
	1(MATINF**(YEAR-1))*-1
c	
С	
C	TAX CREDIT ONE YEAR AFTER INVESTMENT
	IF(YEAR.EQ.1) GO TO 40
	TAXCR(YEAR)=(START(YEAR-1)+ANNUAL(YEAR-1))*FRIDT*-1
(3	
C	
C	DEPRECIATION TAX CREDIT
40	DEPRT(YEAR)=0.0
	IF(YEAR.LT.2) 60 TO 55
	DO 50 I=1,YEAR-1
50	DEPRT(YEAR)=DEPRT(YEAR)-TAXRAT*(START(YEAR-I)+ANNUAL(YEAR-I))
	1*SCHED(I)
С	
С	LABOR SAVINGS
55	UNIDN=1.0
	IF(YEAR.LE.PAYSTP) UNION=1.0-UPAYRT
	SAVING(YEAR)=SAVL(YEAR)*(1.0-TAXRAT)*UNION
	1*(LABINF**(YEAR-1))
C	
С	SAVINGS NOT SUBJECT TO UNION PAYOFF
	OTHER(YEAR)=OSAV(YEAR)*(1.0-TAXRAT)
	1*(DINF**(YEAR-1))
c	(T)VIRETT\FCHRT1//
C	

```
С
       FIND SUM OF PER COST CASH FLOWS
       A(YEAR)=START(YEAR)+ANNUAL(YEAR)+TAXCR(YEAR)+DEPRT(YEAR)
С
                                     C
       FIND SUM OF FIXED FLOWS
       B(YEAR)=SAVING(YEAR)+OTHER(YEAR)
С
C
       CASH FLOWS IN YEAR = AX+B WHERE X=COST OF RETROFITTING ONE CAR
       CONTINUE
100
                            .
С
С
       FIND PRESENT VALUE OF A AND B FOR ALL DISCOUNT RATES
       DO 300 I=LOW,HIGH
       SUMA=0.0
       SUMB=0.0
       R=1.0+FLOAT(I)/100.0
       DO 200 YEAR=1.LINIT
       FACTOR=R**(YEAR-1)
       SUMA=SUMA+A(YEAR)/FACTOR
       SUMB=SUMB+B(YEAR)/FACTOR
200
       CONTINUE
С
C
       FILE RESULTS
       ROV=I-LOW+1
       DATA(ROW, 1, LINES)=I
       DATA(ROW,2,LINES)=-1+SUMB/SUMA
300
       CONTINUE
       POINT(LINES)=HI6H-LOU+1
       RETURN
       TYPE 320
310
320
       FORMAT(' DATA FILE IS FULL.')
                  RETURN 1
       END
С
С
C
С
C
       THIS SUBROUTINE ALLOWS THE USER TO INPUT
C
       VARIABLE SAVINGS INFORMATION.
С
£
       SUBROUTINE NEW(SAV, YREND, IDEX)
       DIMENSION SAV(50)
       INTEGER YREND
       REAL LABORS
       IDEX=1
       J=1
С
С
10
       TYPE 20
20
       FORMAT( TYPE THE END YEAR FOR THE RANGE TO ENTER SAVINGS: (.$)
       READ(5,30,ERR=200) K
30
       FORMAT(12)
       IF((K.GT.YREND).OR.(K.LT.J)) GOTO 200
С
```

Ľ

C	
40	TYPE 50
50	FORMAT(" DO YOU WANT TO ENTER VARIABLE SAVINGS FOR THIS RANGE? "
	1, \$)
	READ(5,60) ANS
60	FORMAT(A5)
	IF(ANS.EQ.'YES') GOTO 100
	IF(ANS.NE.'NO') GOTO 40
C	·
C	
65	IFLG=1
	TYPE 70, J,K
20	FORMAT(' WHAT IS THE SAVINGS FROM YEAR ',12,' TO YEAR ',
	1 I2, <, \$)</td
	READ(5,80,ERR=300) LABORS
80	FORMAT(E10.0)
ωv	DO 90 I=J,K
90	SAV(I)=LABORS
/ V	J=K+1
	IF(K.LT. YREND) 60T0 10
	RETURN
C	AC IONA
C	· ·
100	IFLG=2
1.66	TYPE 110
110	FORMAT(T3, YEAR', T20, SAVINGS')
110	I=J
120	TYPE 130,I
1 30	FORMAT(2X,12,T20,\$)
130	READ(5,80,ERR=300)SAV(I)
	I=I+1
	IF(I.LE. K) 6010 120
	J=K+1
	IF(K.LT. YREND) GOTO 10
	RETURN
C	VEINKK
	CD0000
C	ERRORS
C ·	
200	
205	
	TYPE 210, J, YREND
210	FORMAT(' THE END YEAR FOR THE SAVINGS RANGE MUST BE BETWEEN'
	1 ,12,'AND',12)
	GOTO 10
С	
C	
300	REREAD 205, AND
	TYPE 310
310	FORMAT(" PLEASE USE ONLY 1 TO 9,0,+,-,. IN YOUR RESPONSE")
~	GOTO (65,120) IFLG
С	P.10
	END
* (	
	,

Ľ

