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1. INTRODUCTION

The subject of this report is the analysis of elastic and residual stresses in railroad rails working
in service conditions. The report consists of two parts.

The first part (section 2) covers the development of an elastic model for the analysis of contact
stresses in railroad rails. The main goal of the work was to develop a reliable method of analysis
of such stresses in rails subject to both normal and tangent surface tractions. It has been assumed
that both the stress-strain and strain-displacement relations are linear, and consequently, the
minimum total potential energy principle has been chosen as the mechanical model for the
problem under consideration. Such assumptions, usually considered to be very restrictive in
analysis of contact stresses, are consistent with the assumptions underlying the model for analysis
of residual stresses where the elastic stresses constitute the main input data. The numerical
model applied to the analysis of elastic stresses is the displacement model of the finite element
method. It has been assumed that the external loads can be described by means of Fourier series,
and the analysis can be performed by superimposing the responses due to symmetric and
antisymmetric load contributions. This way the problem can be reduced to a selected cross
section of the rail. An appropriate two-dimensional finite element has been derived and applied
to the analysis. Both the mechanical and numerical models have been implemented in two
computer programs. These programs have verified using an example problem formulated for a
simply supported beam subject to contact loading varying along the longitudinal axis and
constant along the width of the beam. Finally, the approach has been applied to analysis of
contact stresses in a real railroad rail working in service conditions.

The second part of the report deals with the modification of the existing software for the
evaluation of residual stresses in railroad rails subject to cyclic loads. Significant changes have
been made with regard to the types of loads that can be considered. A new finite element has
been formulated and the program flow logic has been expanded so that not only normal but also
tangent surface traction can be considered. Additionally, a new algorithm that allows the
inclusion of thermal loads has been implemented in the computer programs. The mechanical and
numerical models, the computer programs, and their validation are described in section 3 of this
report.

1-1/1-2



2. ELASTIC MODEL FOR ANALYSIS OF CONTACT STRESSES

This section covers all the matters associated with the development of an elastic model for
analysis of contact stresses in railroad rails. Section 2.1 contains some introductory remarks
dealing with possible approaches to such analyses. Sections 2.2 and 2.3 describe the mechanical
and numerical models, respectively. The above models have been implemented in two computer
programs described in section 2.4. The approach has been validated by means of test problems
formulated for a simply supported beam subject to contact loads. The results and discussion of
these tests are presented in section 2.5. Finally, the model has been applied to the evaluation of
elastic contact stresses in a railroad rail subject to both normal and tangent tractions (section 2.6).

2.1 INTRODUCTION

The subject of this section is the analysis of elastic stresses in a selected class of prismatic bodies
subject to contact loading. The purpose of the work is to formulate a reliable method of analysis
of such stresses in railroad rails under normal and tangent tractions.

In general, there are two approaches to the problem of analysis of elastic contact stresses. The
first one is mainly based on analytical formulae and-certain experimental observations. The
second approach takes advantage of numerical methods, especially of the finite element method.

As far as the first approach is concerned, the engineering design of rail and wheel profiles is
traditionally based on the simplified application of the Hertz contact theory [7]. Both the rail and
the wheel are modeled as circular cylinders crossing at right angles. The cylinder radii are
defined as the design crown radius of the rail and the design nominal rolling radius of the wheel,
respectively. ' The normal load pressing the cylinders together is defined as equal to the design
static load supported by the wheel. The contact area is an ellipse with semi-major axis A and.
semi-minor axis B computed by means of the Hertz formulae. The normal pressure distribution
over the contact zone is given by

XY (YY
p(X,Y)—po\/l—(Z) —(—5] , (2.1)

with respect to tangent-plane coordinates (X,Y) and with the origin at the center of the contact
zone. The peak pressure p, is also computed using the Hertz formulac. The main task in the

next step of this approach is to compute the corresponding stresses. This is usually done by
means of integration of the classical Boussinesq influence functions [7] for stresses due to a unit
normal force acting at a surface point on an unbounded half space. In this case, the pressure
distribution determined from the Hertz formulae plays the role of a weighting function.
A similar approach may be applied in case of a tangent load using the classical Cerruti influence
functions [7] for stresses due to a unit tangent force acting at a surface point on an unbounded
half space.

The main disadvantages of this approach are the quite restrictive assumptions concerning the
shape of the surfaces in contact. As for the shape of the contact zone and the distribution of the
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surface tractions, they can be modified quite easily to take into account real conditions, e.g., to
deal with offset contacts (by introducing local radii, including the third radius representing the
wheel profile curvature) or to comply with experimental observations. On the contrary, the
application of simplified formulae for stress distributions may result in significant violation of
the equilibrium equations and the static boundary conditions.

Regarding the second approach, numerical methods seem to be the most powerful mehtods for

analysis of contact problems. They not only allow taking into account the real geometry of the

bodies in contact and their material properties but also modeling the contact phenomenon

including all accompanying effects. The problem could be solved using one of the commercial

finite element analysis programs. However, their practical application in the case under

consideration is limited, especially when one takes into account the fact that the problem is fully

three-dimensional, the shapes of the wheel and rail are quite complex, and the size of the contact

zone is very small. It implies application of meshes that consist of a huge number of finite
elements. The analysis becomes extremely memory- and time-consuming, not to, mcntlon all the

problems connected with mesh generatlon

In this work, the main purpose of the elastic analysis of contact stresses is to provide essential
input data for the elastic-plastic analysis of residual stresses. The elastic analysis usually has to
. be performed repeatedly, especially when multiple loading paths are considered. For this reason
it has been decided to apply a simplified approach to the problem. Both the shape and size of the
contact zone, -as well as the surface tractions, are treated as known data, usually. but not
necessarily obtained by means of the Hertz formulae. The approach also allows one to eliminate
the wheel from the analysis and to take advantage of the prismatic shape of the rail.” The key
point in this approach is that the external loads can be expanded in the Fourier series and the
s complete analysis can be performed by superimposing the response due to the symmetric and
antisymmetric load contributions. The problem is still three—dlmensxonal but only a selected
cross section has to be discretized. - This allows one to reduce significantly the total number of
unknown variables and consequently the required amount of computer memory, unfortunately at
the expense of central processor time. This approach is described in section 2.3.

2.2 MECHANICAL MODEL

Let a body be in a state of static equilibrium under the action of body forces F(x) in V, surface

tractions T(x) on 9V, _, and displacements #%(x) -on dV,, where V is the volume occupied by the
“body, 9V, and 0V, are parts of the boundary surface av X represents a point of the body, and
z—l 2,3.

It has been assumed that both the stress-strain and strain-displacement relations are linear. These
assumptions, usually considered to be very restrictive in the analysis of contact stresses, are
consistent with the assumptions underlying the model for analysis of residual stresses (section 3)
where elastic stresses are used as input data.

Thus, the analysi$ of the elastic stresses is the classical boundary value problem of linear
elasticity and may be solved using the minimum total potential energy principle [8]. This
principle may be stated in the form of the following optimization problem:
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Find the minimum of the total potential energy functional

m=| %SUEWSH av - [uFdv - [uTds (2.2)

v % v,

with respect to the displacement field u,(X) satisfying the kinematical boundary

conditions

(2.3)

where €(x) is the strain field related to the displacement field »,(x) by

1 au auj '
== —+=— 2.4
%3 (axj * ox, J @4

and E,, is the tensor of elasticity coefficients that relates the stress field 0 ;(x) to the strain field 3

ijk
€ ,.,.(x) in generalized Hooke’s law

0, =Eyty- (2.5)

ij
For proof of the minimum total potential energy principle, the reader is referred to [8].

2.3 NUMERICAL MODEL

This section describes the numerical model applied to the analysis of elastic stresses. It has been
divided into three parts. The first part presents some basics of the finite element method, its
concepts and notation. The second and third parts deal with the detailed description of the finite
element that has been implemented in the computer programs developed for the problem under
consideration.

2.3.1 Finite-Element Formulation

The numerical model applied to the analysis of elastic stresses is the displacement model of the
finite element method. It may be derived from the minimum total potential energy principle (see
the previous section). The region of the body V is divided into a finite number N, of disjoint
subregions V, (finite elements) and the functional (2.2) is written (using matrix notation) in the
form

= fnn 2.6)

n=1
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in which

T, = jleTEearV— [u'Fav- [uTds, Q2.7)
v,,2 v, (95 )y

where (9V, ) denotes the part of dV,, that belongs to the nth element.
For each finite element, the displacements u are represented in the following form
u=Nq, (2.8)

where N =N(x) is the displacement interpolation matrix and q, is the vector of generalized

displacements defined at a finite number of nodal points of the element. The corresponding
strains €, related to the displacements u by (2.4), and stresses o, related to the strains € by
(2.5), can also be expressed in terms of the generalized displacements q,, , that is

e=Lu=LNgq,=Bq,, (2.9)
o =Ee =EBq, (2.10)

where L is the matrix of differential operators and B is the strain interpolation matrix.

The substitution of (2.8) and (2.9) into (2.7) results in

n, =2 ark,g,-q7Q, @11)
in which
k, = [B'EBAV (2.12)
Va
and
Q,=[N'Fav+ [N'Tds (2.13)
V, (Vs )

are, respectively, the element stiffness matrix and the vector of generalized forces due to loads
acting on the element.
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Finally, the substitution of (2.11) into (2.6) yields

= Z( k.4, - q,fQ,,) - (2.14)

n=1

which may be written in the following short form
1 | i
n=-q'Kq-q'Q, | (2.15)

where K is the stiffness matrix of the whole domam q is the vector of total generalized
dlsplacements and Q is the vector of total generalized forces. The total generalized
displacements q .can be found as such values that satisfy the kinematical boundary conditions
(2.3) and minimized the total potential energy of the body (2.15). After they have been
determined, the corresponding strains € and stresses ¢ can be evaluated using formulae (2.9)
and (2.10). For a more extensive description of the finite element method and its techniques, the
reader is referred to [91,[10}, [11]. : :

23,2 Prismatic Finite Elel'nent); ;

The subject of the analysis is a prismatic body subject to external loads that can be represented by
means of Fourier series. . Taking into account the well-known orthogonality properties of these
series and assuming that the material of the body is linear elastic, uncoupling of the Founer
modes occurs and the analysis can be performed by superimposing the response of the’ body due
to the symmetric and antisymmetric load contributions. Thus, the description of the finite
element can be 31mp11ﬁed s1gn1ﬁcant1y [9] [11].

In the case under con51derat10n it is convenient to describe the problem in a system of
rectangular cartesian coordinates (x, y, 7). Some of the relations just presented can be rewritten
almost automatically and will be done without any extensive comment. The other relations,
especially those connected with the strain interpolation matrix and element stiffness matrix, will
be discussed in detail to provide assistance in case the computer programs have to be modified.

The first goal of the analysis is to describe the external loads and their Fourier representation.
The vector of surface tractions T can be written in the following form

TT(z,l)={i(z,l) T, (z1) T_Z(z,l)} . .(2_.16)

in which

(1) = 3 [T Wsin B,z + To(@)eosB ]

n=0



Ty(z,l)=zN:[]_"yf,(l)sin an+7—;ﬁ(1)coanz], (2.17)

T.(z,1)= EN:[TI; ()cosB,z+ T2 (I)sin B,,z]

i where the indices s and a denote the symmetric and antisymmetric load contributions,
respectively. Almost identical expansions can also be written for body forces, boundary
. conditions, etc. The parameter B, =nIl/L, where L denotes the length of the body, has been

introduced in order to simplify further notation. The coordinate z is defined in the longitudinal
- direction of the body. The coordinate’ [ represents any local coordinate that allows one to
describe the surface tractions uniquely for all points of the boundary surface. Usually, it is
identified with' the vertical coordinate y except for flat parts of the boundary surface where the

horlzontal coordlnate X is used instead.

In order to simplify the notation, further considerations will be restricted to the symmetric load
contributions and only the nth Fourier mode will be taken into account (consequently, the indices
s, a, and n will be omitted). For the antisymmetric loading, the sine function should be
replaced by the cosine function and vice versa. When derivatives are calculated (matnx B), such
replacement is sometimes accompamed bya change in sign. :

The vector of dlsplacements u,  the vector of ‘generalized dlsplacements Q. ‘and the

dlsplacement interpolation matrfix N defined i in (2. 9) can be written in the system of rectangular
cartesian coordlnates as follows

T(x y,z) {u (x,3.2) u,(x, y,z) u,(x, y,z)} 4 (2.18)
r={qf .. q(}, o @19
N.(x,y,z)——-‘-[Nl(x,y,z) Nk(x,y,z)] ' | (2.20)
in which

o ={g; 4y 9.) i=1,...,k, T(221)

Ni (x’ y)Sin an 0 ’ 0
N;(x,y,2)= 0 N,(x,y)sinB z 0 (2.22)

0 0 N,(x,y)cosB,z

where k is equal to the number of nodal points of the element, q; is the vector of generalized
nodal displacements at the ith node of the element, and N, is the shape function associated with
this node. The assemblage of different parameters associated with nodal points of finite elements

26



will be used quite frequently, since it corresponds to the structure of the computer programs.
There also exists an opposite approach where the information of the same type is grouped for the
whole element or even for the whole structure. In spite of the fact that this usually allows one to
describe the problem much more concisely, it is rarely implemented in computer codes.

Further analysis requires the relations (2.9) and (2.10) also to be specified in the system of
rectangular cartesian coordinates. The stress ¢ and strain € vectors, and the matrix of
differential operators L can be written as follows

e ={ex €, €4 Vo Ve Vo) (2.23)
6"={0, 0, 0, T, T, Tu} (2.24)
- -
= 0 0
ox 5
0 — 0
dy
0 0 2
L= oz (2.25)
9 9
dy ox
0 d
0 — —
dz ody
9 )
- 0 —
| 9z ox |

The form of the matrix of elasticity coefficients E does not depend on the system of coordinates,
that is

S © O O
S O O O

E E 1-2v
C(1+v)(1-2v) 2
Ssym

(2.26)

where E is Young’s modulus and v is Poisson’s ratio.

Before the strain interpolation matrix B is derived, it is convenient, as it was done in (2.19) and
(2.20), to divide it into submatrices that are associated with the nodal points of the element

B=[B, ... B,] (2.27)
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The substitution of (2.27), (2.25), (2.20), and (2.22) into (2.9) results in

—-]&sin B,z 0 0
ox
0 ﬂsm'B"z 0
dy -
0 0. ~NpB, sinB,z ,
B=| MNiingz YNiinp 0 (228)
dy )
0 NB,cosB,z alcosB Z
dy
NB,cosB,z - 0 alcosB,,z
i o . ox i

Consequently, before the element stiffness matrix Kk, is computéd, the integrand in (2.12) should

be decomposed, to yield

o BlT ' B1TEB1 B{EBk ,
B’EB=| : | E[B, B, ]= o (229
B; sym - B{EB, -
in which
E ku, ) k12- kxs -
"B'EB,=—— 1. (2.30)
t J (1 + V)(l _ 2V) _ ‘ k22 . k23 ( )
A %k Sym *® K _ ]%3

It should be stressed that the matrix in (2.30) is not symmetric. The abbreviation **sym** is
used to point out that the’ componenets of the lower triangular part of the matrix may be
computed using the expressions for the corresponding symmetric components of the upper part,
~ but at the same time the indices i and j have to be exchanged, 1 e.,

kmn(l’j)zknm (J’l)' (2.31)

The substitution of (2.28) with the appropriate indices and (2.26) into the left-hand side of (2.30)
results in the following expressions for the components of the matrix on the right-hand side of
(2.30) '

1— 2v oN, ON;

S 3 NNBzcos B.z,

ZB +

N, oN,
—Lsin’B,z+

kll _(1 V) a a

(2.32a)



oN, oN 1-2v N, oN,

k,=v a— a_yj sin’B,z+ > 3 3 sin’ Bz, - (2.32b)
k,=-v %NJB,l sin’ B, z+ 1—22v N, aa]jcj [;,, cos’B,z, N - (2.320)
ke = (1-v) -aa% aa% si.n2 B,z+ 1~22V aaZ' aalij sin’ B, z+ 1—22v NN Bicos’B,z, (2.32d)
k= %—"Nﬁn sin” B,z + 1‘22" N, aa_]\yljﬁ"r cos’B,z, . (2320
ky, =(1—v)N,NB2sin’ B,z + 1_22v aa];’r' ag L cos’B,z+ 1—22_v aaZ' " agc Lcos’B,z. (2.320)

Finally, the integrand in the second term of (2.13) should be found (in the caée of body forces the
procedure is identical). Using the same approach as above, it can be written as follows

. [Nl [NTT |
NT=| i |[T=| _ | (2.33)
- |NT N'T ' '
in which
NTsin’B,z |
N/T={NTsin’B,z ;. (2.34)
NT, cos’B,z

At this point, the most important formulae that allow one to compute the element stiffness
- matrix k, and the vector of the generalized forces Q, , defined respectively in (2.12) and (2.13),
have been derived. After the displacement interpolation matrix N has been assumed, the
appropriate integration (usually numerical) can be performed and both matrices can be
assembled. The integration should be carried out in the system of rectangular cartesian
coordinates, that is ' ’

[£Goy.2)av =] [ f(x.y.2)dx dy dz, | 2.350)
| fGy.2)ds= j [ £y2)ds dz C @ash)
(v, ), : 0s,
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where A, is the area of the nth element, and s, denotes the side of the element that belongs to
(avo )n. In the above finite element formulae, the only functions that depend on z are the

trigonometric functions, so the integration along the longitudinal direction may be carried out
separately. Additionally, taking into account the following integrals,

L .

, nll L, ifn=0

rdr= 4 , 2.36
!:cos L % {L/Z, ifn=1,2,... (2.36a)
L i L , .

. o nll 0, ifn=0 ‘

B rdz= - 2.36b

{S“‘ L% {L/Z, ifn=12,... (2-360)

the formulae can be simplified significantly.
233 Quadrilateral Finite Element

The finite element applied to the analysis of elastic stresses is the isopafametric four-node
element with bilinear interpolation of the displacement field. It corresponds to the element that is
used for the analysis of residual stresses in order to simplify the process of data preparation.

The eleme,nts>are described in the global coordinate system (x,y) defined on a selected cross ‘

section. In general, they are irregular quadrilateral elements (figure 2.1a) and that is why it is

convenient first to map them isoparametrically into squares (figure 2.1b) and then to construct

~ the interpolation functions for one typical element. For the case under consideration, the
transformation can be written as follows. . ’ ‘

xﬁZﬁ(E,ﬂ)xi, :
=l : (2.37)

| | 'y=if,-(§ﬂ1))’.-
in which
| ﬁ(%,n)=%(1+§§i)(1+nni) | o (238)

where (x,.,y,.) and (E:,,.,ni) are the coordinates of the nodes in the systems of global and local

coordinates, respectively.
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cl)v- y b) .

3(xs,y3) . 7 '
4(=1,1) 3(1,1)
4(x4,Y4) ‘ ‘ r —®
X 3
1(xq,y1) — < ‘
1(~1,~1) 2(1,-1)
"2(x24y2) '

Figure 2.1 Quadrilateral Finite Element

The computation of the basic finite-element matrices requires the differentiation and integration
- in the system of global coordinates (x, ). However both these operations can also be camed ’

out in the system of local coordinates (E,‘n) using the following relations

9] 2]
ox _ ;1 ag l R . ‘ .
dy on
fsy)dsay=| [sEm)detsldean - @40
where
on om .

is the Jacobian matrix (operator) relating the global coordinate denvatlves to the local coordmate
derivatives and ‘

dCtJ—-a-g'a—n—gi : 4 (2.42)
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is the determinant of the Jacobian matrix. The substitution of (2.37) and (2.38) into (2.41) and
(2.42) results in ,

a, +a b +b
_| % N o, +05N , (2.43)
a2+a3§ b, +bE
dety =a,b, —a,b, +(a1b3 _asbx)g'*'(azbz _azbs)n : (2-44)7
 where
e 1 l r 1 .
al=—4—(—xl.+x2+x3—x4) S bx=z(—}’1+}’2+}’3—}’4)
1 - 1 '
ﬁa2=z(-—x1—x2+x3+x4) , <b2=z(—yl—_y2+y3+y4). (2.45)
aazz( xl—xztj-x3—x4) o " b3=z( yl_y2‘+<y3_y4)v _

The shape functions N, are assumed to have exactly the same form as the transformation
functions (2.38), that is- ' .

NEM)=£EN). o | | (2.46)
B 2‘.4' COMPUTER PROGRAMS

The mechanical and numerical models described in the previous sections have been implemented
.in two computer programs called RAILE and FOURIER. Taking into account the goal of the
work, both programs have been especially tailored for the analysis of elastic stresses in railroad
rails subject to contact loads. However, their structures have been chosen so that they can be
modified quite easily to include other types of loading. This section contains some basic
information about the programs.

~ The program RAILE is a finite element code that allows one to analyze elastic stresses in.a
prismatic body subject to external loads represented by means of Fourier series. It is executed in
batch mode, i.e., both the input and output data exist as external files and no interaction between
the program and its user is required. The input data consist of six ASCII files, which contain the
information about the topology of the finite element mesh, material properties, and loading. The
loading information is prepared by means of the program FOURIER. The output data consist of
three ASCII files that contain the solution to the problem, i.e., the stresses and displacements for
the earlier user-specified cross sections.

. The program FOURIER is an auxiliary program that computes the coefficients of the Fourier
series for external loads. It has been assumed that a rail may be subject to any number of loads of
contact type. In order to define each of the loads, the systems of global (x,y,z) and local

(X,Y, Z) coordinates have to be established (figure 2.2). The system of global coordinates is a
2-12



rectangular cartesian system. The way the system of local coordinates is defined is very flexible.
In the simplest case (figure 2.2), the origin C of the system coincides with the center of the
contact zone, the X axis is normal to the plane (x,y) in the direction of the z axis, the ¥ axis

directed along the x axis, and the Z axis is defined so that the system (X,Y,Z) is a
right-handed, rectangular cartesian system. In the most general case (figure 2.3), the location of

the origin does not have to coincide with the center of the contact zone and, additionally, the
slope of the (X, Y) plane may be specified by giving the value of the angle o . In this case, the

center of the contact zone C’ is defined as the projection of the point C onto the rail surface in
the Z direction.

The dimensions of the contact zone and the surface tractions are defined in the system of local
coordinates. According to experimental observations, it has been assumed that the contact zone
can be approximated by a rectangle with sides 2a and 2b, which are parallel to the X and Y
axes, respectively (figure 2.4), and the surface tractions can be described by means of
bi-parabolic functions

1(X,Y)=1, [1 - g—ﬂ [1 - (%ﬂ ,  i=X,Y,Z (2.47)

in which

ty ==L, a=A‘/3—n, b:B‘F—“ (2.48)
16 ab 8 8

where #; denotes the surface tractions caused by the force 7; acting in the ith local direction; the

parameters A and B are the semi-major and semi-minor axes of the ellipse computed using the
Hertz formulae. It should be stressed that such a definition does not correspond to the definition
of the surface tractions in (2.16), where the system of global coordinates was used, but the
appropriate transformation has been included in the program.

2.5 NUMERICAL TESTS

A wide variety of numerical tests has been carried out to validate the approach applied to the
analysis of elastic stresses, as well as the computer programs described in the previous section.
All of the tests performed can be divided into two groups.

The first one consists of relatively simple benchmark problems with known analytical solutions.
Unfortunately, these tests are one-dimensional and they did not permit the drawing of
conclusions that could be useful for real three-dimensional problems. These tests were
performed in the initial stage of testing and their results are not presented here. There also exist
more combined two- and three-dimensional problems with known analytical solutions, but the
simplifying assumptions made to formulate them are so restrictive that their usefulness is also
questionable.
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Figure 2.2 Conventions for the Global and Local Systems of Coordinates
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Figure 2.4 Conventions for a Rectangular Contact Zone with Bi-
Parabolic Distribution of Surface Tractions
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The second group of tests consists of more complex problems with unknown analytical solutions.
The most important examples are those formulated for a simply supported beam subject to
contact loading, varying along the longitudinal axis and constant along the width of the beam
(figure 2.5). The solutions to these problems have been compared with solutions obtained by
means of ABAQUS, v. 5.3-2[12]. It should be stressed that such comparisons were possible
because the problems were two-dimensional. If they had been formulated as three-dimensional
problems, a special approach would have had to be applied while using ABAQUS. It could also
have turned out that much more powerful computer equipment would have been necessary.

2a
Y Y
t(X)
- h e
- w
| 2b

Flgure 2.5 Simply Supported Beam . under Concentrated Surface
Tractions .

Two cases of loading were considered, in which a simply supported beam of length /, height A,
and width w was subject to concentrated vertical #,(X) and horizontal ¢,(X) surface tractions of

parabolic distribution (figure 2.6). The conrespondmg Fourier series mcluded only symmetric
and antisymmetric modes. :

Some selected results are shown in figures 2.7 through 2.18. They were obtained assuming the
following non-dimensional data: length [ = 10, height 4= 1, width w = 0.5, Young’s modulus
E =1, and Poisson’s ratio v=0.3. The intensity of the surface tractions (peak value) was equal
to 1.0 and the width of the contact zone 2a = 0.5 corresponded to the width of the beam. The
number of Fourier modes (harmonics) was equal to 400 modes.

The problem was solved using three finite eleiment meshes of square elements that consisted of
16, 32, and 64 elements in the vertical direction, and 8, 16, and 32 elements in the horizontal
direction, respectively. For comparison, the problem was also solved using ABAQUS. In this
case, it was treated as a two-dimensional plane stress problem.
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/] \ t; (X) tx (X)

\-a j '.qv'o

Figure 2.6 Vertical and Horizontal Surface Tractlons in the Simply
~ Supported Beam Problem :

The convergence of the solution for the case of vertical loading is presented in figures 2.7
through 2.9. The vertical o , and horizontal o, normal stresses are plotted along the y axis for

two selected cross sections that contain the center (z =5) and the end (z = 4.75) of the contact
zone, respectively. The shear stresses o, are also plotted for two cross sections, but instead of

the cross section z =35, where these stresses are equal to zero, an additional cross section z = 4.5
was chosen. In figures 2.10 through 2.15, some selected stress tensor components are presented
in the form of contour line plots

The results for the case of. horizontal loading are shown in figures 2.16 through 2.18. The stress
tensor components are plotted for the same cross sections as before, i.e., containing the center of
the contact zone and either the end point of the zone or the point of the coordinate z=4.5,
. depending on where non-zero values exist.

In both cases of vertical and horizontal loads, high quality solutions have been obtained. The
largest errors occur on both the top and bottom surfaces (a consequence of the bilinear
interpolation of the displacement field). However, the values at the centroids of the elements,
which are used in the analysis of residual stresses, are subject to much smaller errors, even in the
vicinity of the contact zone. These results validate both of the programs developed for the
analysis of elastic stresses. | ' ’
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2.6 EXAMPLE ANALYSES FOR A RAILROAD RAIL

After the computer programs had been successfully validated using the test problems described
in the previous section, they were applied to the evaluation of elastic stresses in a 132 RE rail
section subject to contact loading.

Two cases of loading were considered. In the first one, the rail was subject only to the vertical
surface tractions t,(X,Y) of intensity ¢,, =1239.98 MPa acting over the rectangular contact area

of dimensions g = 6.947mm and b =5.083mm , with the center C of coordinates x =0 m and
y=0.180086 m and the slope & =0° (for the notation and conventions see section 2.4). The
parameters f,,, a, and b were calculated using the formulae (2.48) where the vertical force T,
was equal to 77.84kN and the dimensions of the elliptical contact area, A=6.4mm and
B=4.683mm, were obtained by means of the Hertz formulae assuming the following data:
radius of the wheel R, =0. 4064m , radius of the wheel profile R} =0, and radius of the rail
profile R, =0.254m; the rail was assumed to be flat i in the longitudinal dlrectlon ie., R/ =co.

In the.second case of loading; the rail was subject to the horizontal surface tractions #,(X, Y) of
intensity #,y = 0.3f,, =371.994MPa. For simplicity, the other data, including the dimensions of
the contact zone, were assumed exactly the same as in the first case of loading.

The problem Was solved for a rail section of length /=5.08m loaded in the middle of its span.

"The number of the Fourier modes (harmomcs) was assumed to be equal to 1000 modes for both.
of the cases considered. » : S

As far as the material properties are concerned, Young’s modulus E and Poisson’s ratio v were
assumed to be temperature-independent and equal to 206.832GPa and 0.3, respectively.

Additionally, the dimensions of the Hertz ellipse were calculated assuming that both the rail and
the wheel were made of material with the same elastic constants

The problem was solved using three finite element meshes that consisted of 340, 466, and 682 -
elements, respectively. The first mesh, shown in figures 2.19 and 2.20, is based on one. of the
meshes supplied by the Volpe National Transportation Systems Center. The original mesh was
slightly modified, so that the generation of denser meshes could be performed partly
automatically. The mesh refinement was restricted to the head where the highest concentration
of stresses was expected, particularly to the area below the contact surface (figures 2.21
and 2.22).

The results for the case of vertical loading are shown in figures 2.23 through 2.36. The
convergence of the solution with respect to the mesh density is presented in figures 2.23

through 2.28, where the stress tensor components are plotted along the lines oo —¢¢ and B -
shown in figures 2.20 through 2.22. The normal stresses 0,:0,,0 ., and shear stresses O,

are plotted for two selected cross sections, z=2.540m and z=2.547m, that contain the center
and the end point of the contact zone, respectively. The shear stresses 6, and o, are also
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plotted for two cross sections, but instead of the cross section z =2.540m, where these stresses
are equal to zero, an additional cross section, z=2.554m, was chosen. These results indicate

that the mesh #1 is definitely too coarse for the problem under ‘consideration. It seems to be
obvious when one takes into account the fact that the number of finite elements along the contact
zone was equal to 4. The results obtained for the mesh #2 are good but the mesh is still too
coarse to reflect the variation of stresses correctly. The mesh #3 may be recognized as
appropriate for the problem considered.

The convergence of the solution with respect to the number of harmonics is presented in
figures 2.29 and 2.30. Only one point of the rail — the center of the contact zone — was chosen
to investigate this problem and that is ‘why the shear stresses, which are equal to zero at this
point, are not shown. The assumed number of harmonics seems to be appropriate for the
problem ‘under consideration. However, in real analyses some excess in this number is
recommended, especially when the elastic stresses are used as input data for the analysis of
residual stresses in which even small variations in the elastic stresses may result in different
solutions.

Finally, in figures 2.31 through 2.36, the stress tensor components are shown in the form of
contour line plots. Only the solutions obtained for the cross section z=2.540m are presented.

The results for the case of horizontal loading are shown in figures 2.37 through 2.45. The
convergence of the solution with respect to the mesh density is presented in figures 2.37 .
through2.42. In figures 2.43 through 2.45, the stress tensor components are shown in the form
of contour line plots. Only the plots for the shear stresses 6,, and o, are presented because’

these are the only stress tensor componenté strongly influenced by the horizontal loading.
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3. MODEL FOR ANALYSIS OF RESIDUAL STRESSES

This chapter covers all the matters associated with the modification of the existing [17]
elastic-plastic model and corresponding computer programs for the analysis of residual stresses
in railroad rails. Section 3.1 contains some introductory remarks dealing with possible
approaches to residual stress analysis. Sections 3.2 and 3.3 describe the mechanical and
numerical models, respectively. The above models have been implemented in a package of
computer programs described in section 3.4. Finally, the modified model and computer
programs have been extensively validated by means of test problems formulated for a railroad
rail subject to contact loading. Some selected results of these tests and their discussion are
presented in section 3.5. :

3.1 INTRODUCTION

The subject of this chapter is analysis of residual stresses in a selected class of prismatic bodies
made of an elastic-perfectly plastic material and subject to both mechanical and thermal cyclic
loads. The purpose of the work is to improve the existing model and computer programs for
analysis of residual stresses in railroad rails working in service conditions.

In general, there are two methods for analysis of residual stresses in a body under a cyclic load.
The first one is the classical incremental analysis [10], [11], oriented towards tracing the full
process of loading of the body. It permits the determination of the behavior of the body at each
moment of the loading process and the information obtained this way is complete, i.e., both the
statical and kinematical quantities are known. The main disadvantage of the incremental analysis
is the fact that in case of cyclic loads it is extremely time-consuming. An attempt to trace only
one cycle of loading for a real railroad rail would probably require hundreds or thousands of
increments. The number of cycles that should be taken into account to reach a state of
shakedown may also be quite large. Moreover, the service load-time history required as input
data is not known, so, such an analysis should be performed several times assuming the most
representative loading paths. Finally, the dimension of a problem that is solved using
incremental analysis is determined by the total number of stress or strain states and for a railroad
rail must be at least equal to three. Thus, practical applications of this approach to the problem
under consideration seem to be out of the question unless very powerful computer equipment is
available. x

The second method of analysis of residual stresses is the shakedown analysis. It allows one to
determine whether the body under consideration is able to adapt to current cyclic loads. If the
body shakes down, some additional information of either stress or displacement type may be
obtained depending on the method used (either the classical statical Melan theorem or the
kinematical Koiter theorem [13]). The main advantage of this approach is the fact that only the
final state of the body after adaptation is considered without tracing the whole service load-time
history. The analysis requires only the enveloping load states to be known and they can usually
be found quite easily. Moreover, the dimension of a problem that is solved using shakedown
analysis is determined by the number of residual stress or strain states. For railroad rails, these
states can be assumed to be two-dimensional, simplifying the analysis significantly. The main
disadvantage of this approach in the classical sense is the fact that only some selected
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information may be obtained, and it corresponds to the maximal magnitude of the load for which
shakedown is possible.

A novel approach to the problem of evaluation of residual stresses, the constrained energy
minimization method [2], [14], [16], has been applied in this work. In contrast to the classical
shakedown analysis, it allows one to compute residual stresses not only for the load of maximal
magnitude but also for a load of any magnitude.for which shakedown is possible (the so-called
actual stresses). This approach has been successfully. applied to the evaluation of residual
stresses in railroad rails [4], [17], [18], and wheels (report 7). It has proven to be powerful and
reliable and gives esimates of rail residual stress fields that seem to be in reasonable agreement
. with available experimental measurements. In this work, significant changes have been made
regarding the types of loads. They can be divided into two groups. The first one deals with
traction loads. In the rail analyses to date, only normal tractions due to wheel/rail contact have
been modelled because this appears to be a reasonable approximation for the unpowered wheels
of freight cars, which constitute the major source of rail mechanical loading. In this case, some
residual stress tensor components can be assumed to be equal to zero. Additionally, external
loads can be represented by only one enveloping elastic stress state that corresponds to the cross
section containing the center of the contact. zone. However,.in some cases such simplifying
assumptions seem to be unjustified and not only normal but also tangent surface tractions should .
be taken into consideration. . Consequently, all the. residual stress tensor components have to. be
included in the analysis, and several enveloping elastic stress states should be considered to
represent external loads properly (the selection of one enveloping stress state is straightforward
only in case of normal loads). The above issues have been taken into account while formulating
a new finite element and expanding the constraint flow logic in the computer programs (many

enveloping stress states can be defined). The second group  of modifications is connected with . -

" thermal loads. These loads .are usually accompanied by substantial variations in material
properties, requiring the application of an appropriate algorithm for the evaluation of residual
stresses. Such an algorithm has been proposed in [4] and implemented in the computer programs - -
described in section 3.4. :

32 MECHANICAL MODEL
- The mechanical rhodel applied to the analysis of residual stresses in railroad rails is based on the
classical Melan theorem and the Haar-Karman principle [13]. It has been formulated for an

elastic-perfectly plastic body that is subject to cyclic loading

— body forces : :
F(x,t)=F(x,t+nt,) inv,

— surface tractions _ . _
T,(x,t)=T,(x,t +nt,) ~ondV,, 3.1)

— and displacements

u?

(x,t)=1(x,t+nt,) in oV,
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where V' is the volume occupied by the body, 9V, and dV, are parts of the boundary surface
dV, x represents a point of the body, t the time, ¢z, the period of one cycle n the number of
cycles,and i =1,2,3.

The evaluation of residual ‘stresses takes the form of the following optimization problem:

Find the minimum of the total complementary energy functional

HC:J‘%(G;J'_G;; )Cukl’(o- le)dV, L | .. (32)

v
 with respect to the residual stress field o7(x) satisying ’

— the equilibrinm equations _
c;.=0 inV, I ‘ (3.3)

Y,J

— the statical boundary conditions , ‘ S o

 voL=0" - ondV,, | N
— and the yield conditions -
®(o;+05)<0  inV UV, | (3.5)
where o= (x) 1s an initial residual stress field, G, =0,(x,1) 1s an elastic stress ﬁeld

(I)(O' ) is a function that represents the y1e1d conditions, v; is a un1t normal vector to the surface
oV, ,and C, ' '

s 18 the tensor of elastic compliances.

The solution ¢;; obtained this way is either the exact solution o or an upper bound in sense of

'the total complementary energy of the body, i..,
M (of -o%)< (0] ~ok). G

In this work, the above mechanical model has been applied to a selected class of prismatic-bodies
made of an elastic-perfectly plastic material with temperature-dependent properties. It has been
assumed that the residual stress state does not depend- on the longitudinal direction.
Consequently, the problem may be considered as a two-dimensional one. However, the total
stress state is still three-dimensional and the yield conditions should be imposed on enveloping
stress states that correspond to different cross sections. The number of such states depends on
the type of loading applied to the body and cannot usually be determined in advance.

The elastic stress field 6 (x,¢) is the solution to the given boundary value problem under the

assumptions of the linear theory of elasticity. It represents both the stresses due to rail-wheel
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contact and the stresses associated with thermal effects. The latter stresses are accompanied by
substantial variation in material properties, and the optimization problem (3.2-3.5) has to be
replaced by a sequence of subproblems corresponding to subsequent time parameter values
t=1y,1%,....,t,. The ith subproblem is solved by applying the relevant thermal stresses and

material properties and assuming that there exist initial residual stresses equal to the residual
stresses obtained in the (i —1)th step, i.e., 6.2 (4)=0(z,)-

3.3 NUMERICAL MODEL

This section describes the numerical model applied to the analysis of residual stresses in railroad
rails. It has been divided into two parts. The first one presents the general formulation of the
model, its concepts, and notation. The second part deals with a detailed description of the finite
element that has been implemented in the computer programs developed for the problem under
consideration.

3.3.1 Finite-Element Formulation

The numerical model applied to the analysis of residual stresses has been derived from the
mechanical model presented in the previous section using the assumed stress model of the finite
element method [9]. The region of the body V is divided into a finite number N, of disjoint

subregions V, (finite elements). For each finite element, the following fields are assumed:
(1) aself-equilibrated residual stress field o,

(2) adisplacement field u; that has to be continuous along the common boundary of two
adjacent elements, and

(3) the corresponding strain field €; related to the displacement field u; by (2.4).

The stress field approximation in the assumed stress model is discontinuous along the
interelement boundaries. In general, this is allowed in solid continuum mechanics provided that
the corresponding surface tractions are in equilibrium. To satisfy this requirement, the total
complementary energy functional (3.2) has to be modified by an additional term with the strain
field playing the role of Lagrange multipliers. Taking into account the division of the region into
finite elements, the mechanical model (3.2-3.5) may be written as follows:

Find the minimum of the total complementary energy functional

I, z[j G ,Cu0x dV — jo €, dV] (3.7)

n=1

with respect to the self-equilibrated residual stress field o (x) satisfying the yield

conditions
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DG, +oR +0E)<0  inV,U@EV),, (3.8)
where
G,=0,-02. (3.9)

It should be stressed that the statical boundary conditions (3.4) are satisfied automatlcally when
the modified form (3.7) of the total complementary energy functional is used.

For each finite element, the stresses G,; and the- d1splacements u, are rcpresented (using matrix

notation) as follows

o=0QB,, (3.10) -
u=Ng, ‘ , (3.11)

where Q is a stress interpolation matrix, B, .is a vector of stress parameters, N is a

displacement interpolation matrix, and q, is a vector of generalized displacements defined ata -

finite number of nodal points of the .element. The corresponding strains €, related to the .
, dlsplacements u by (2.4), can also be expressed-in terms of the generalized displacements q,,,

that is
e =Lu=LNq,=Bq, | (3.12)
' where L is the matrix of dlfferentlal operators and B is a strain interpolation matrix.

The substltutlon of (3. 10) and (3.12) into (3.7) and (3 8) results in the following numerical model *
for the evaluation of res1dua1 strésses:

. Find the minimum of the total complementary energy functional

. 2 (38788, -B16,a,) B CEE)
with respect to the generalized di:splacements q, a@ the stress parameters B, satisﬁmg
the yield conditions

%BmeBn +B,Y,, +Y, <0 inV,u(@V),, (3-14)
in which
H, = jQTCQ av, | (3.15)
v,
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G,=[QBav, (3.16)

Va

Y.=1 +vQTCdQ, (3.17)
Y2n=l+vQTCd(cR°+cE), | (3.18)
3E T ' '

Y,, = 2(l+v)( o™ +0%)C/l06% +0")-02, (3.19)

where E is Young’s modulus, v is Poisson’s ratio, C 4 1s the deviatoric part of the matrix of
elastic compliances, and o, is a flow stress, usually assumed to be 5 or 10% above the specified

average 0.2% offset yield strength. The forms of the yield conditions (3.14) and matrices (3 17-

3.19) have been derived assuming the Mises- Hencky y1e1d criterion.

The above description of the numerical model applied to the analysis of residual stresses is very
concise. Its goal was to present the basics of the model, particularly the notation that is necessary
-to understand the detailed information-about the finite element used in case of railroad rails: - For
more extensive description of the model and the technlques that are used in real implementations,

* the reader is referred to [16], [18].

3.3.2 Quadrilateral Flmte Element‘

The finite ‘element applied to the analysis of residual stresses-in railroad rails is a four-node
" element with linear approximation of the stress field and bilinear approximation' of the
displacement field. In the present case, all elements are described in the.global system of
rectangular cartesian coordinates (x y) defined on a selected cross section. In general they are

irregular quadrilateral elements (figure 2.1a) ‘and that is why it is usually convenient first to
transform them into squares (figure 2.1b) and then to construct the interpolation functions and
basic finite element matrices only for one typical element defined in the local system of

rectangular cartesian coordinates (E,n). "The transformation and the relations between
integration and differentiation in both the systems of coordinates are described in section 2.3.3.

The vector of stresses & , the vector of stress parameters B, , and the stress interpolation matrix
Q defined in (3.10) can be written in the global system of rectangular cartesian coordinates as
follows:

<] ={oxx ny 0-zz ‘ny Tyz sz}’ (320)

B::{Bl BIS}’ ‘ : (3.21)
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Q=[Q, Q] (3.22)

in which
1 x y 00 0 00 0 0]
0 0 01 x y O0O0O0DO
00000 0 1 x1y0
Q=0 5, 000 -x00 0 1| (3:23)
00000 0 O0O0O0 O
0 0 000 0 00 0 0]
0 0 0 0 0]
00 0 00
00 0 00
=g 0 0 0 o (3.24)
1 x y 00 -
(0 0 —x 1 y]

where the matrix Q has been derived assuming the linear approximation of the stress tensor

components and then satisfying the equilibrium equations. Additionally, it has been divided into
submatrices Q, and Q, to simplify the derivation of the matrix H, .

Before the matrix H,, defined in (3.15), is derived, it is convenient to divide it into two parts that
correspond to the deviatoric C, and volumetric C, parts of the matrix of elastic compliances C, B
that is
H =H,+H, (3.25)
in which
H, =[Q'C,Qav, (3.26)
Vll
H,, = [Q'C,QaV, (3.27)
v
where
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2 -1 -100 0

2 -100 0

| 1+v 2 000
C,=— . 3.28
‘¢ 3E 6 0 0 (3.28)

sym 6 0

. 6_.

1 1 1 0 0 0]

_ 1 1.0 00

_ 1000
c,=1=% . (3.29)

3E 000

sym 00

- . . 0._

The substltutlon of (3.22-3.24), (3.28), and (3.29) 1nto (3.26) and (3.27) results in the following
form of both the integrands:

QT ‘ ' TC Q 0 - . .
CQ=| '|C =f T . 3.30
@ [Q: Ao el QiCsz o O
' o~ |Q QTCQ -
C ', 1w ' 3.31
Q'C,Q= {Qz [Ql QZ] o o | (33D
where
T 1+v
Q,CQ, = E
2 2x 2y -1 -x . -y. -1 —x -y 0]
222 +6y* 2xy —x —x° 5xy ~-x —-x* -xy -6y
2y’ -y —-xy -y -y -xy -y 0
2 2x 2y -1 —x -y 0
2x° 2xy . —x —-x* -xy 0 [ (3:32)
2y’ +6x> -y -—xy -y —6x
2 2x 2y O
2x* 2xy O
sym ‘ 2y* 0
6
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[6 6x 6y 0 0 |
6x° 6xy 0 0
Q§C,,Q2=1—+—v— 6y* +6x> —6x —6xy | (3.33)
oE sym 6 6y
i 6y |
1 x y 1 x y 1 x y O]
2 xox XX xy ox x* x 0
Y oy mw ¥y oy »w ¥y 0]
I x y 1 Xy 0
QITCVQ1=1—2V ) % x)zl x x xz 0 . (334)
K - 3E oy mw y 0
' 1 x y O
¥ xy 0
sym y' 0
! - 0o

Finally, to ‘compute tile matrices H,, and H , appropriate integration should be performed.

vn?
Taking into account the fact that the residual stress state does not depend on the longitudinal
direction, such integration can be carried out over the area A, of the nth element, that is

[fey)av=L{f(xy)axdy (3.35)
v, 4, ' .

where L is the length of the element (any non{zero value). Usually, it is much more convenient
to use the local system of coordinates @,11) instead of the global system (x, y), thus the formula
(2.40) should be additionally applied.

The vector of displacements u, the. vector of generalized displacements q_, and the

displacement interpolation matrix N defined in (3.11) can be written in the local system of
coordinates as follows: '

wEn)={nEn) ©En) wEn)} - (3.36)
q ={a - 4} (33

NEn)=[N,En) ... N,En)] | (3.38)

in which
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@ ={q 9 4}  i=1...4, | (3.39)

. N; (Eﬂ'l) 0 | 0
NEn)=| 0 NEm) o |, (3.40)
0 0 N;(Emn) “

where q; is the vector of generalized nodal d1sp1acements at the ith node of the element, and N,
is the shape function associated with this node, that is -

’ Ni(§7“)=z(1+§§.-)(1+1111,-)- . 7 (3.41)

Further analysis requires the - relation - (3.12) also to be specified in the local éystém of :
coordinates. The stram vector € and the matrix of differential operators L can be written as
follows: '

'£T={8x" 8)’)" 822 'ny lez 'sz ’ . ) (3.42)
5 s
— 0 0
ox |
d .
0 = 0
dy
{o o o
L=13 a (3.43)
dy Ox
d
0 0 —
dy
d
0 0 —
L. ax_

Before the strain interpolation matrix B is derived, it is convenient, as was done in (3.37) and:
(3.38), to divide it into submatrices that are associated with the nodal points of the element

B=[B, ... B,] (3.44)

The substitution of (3.44), (3.43), (3.38), and (3.40) into (3.12) results in
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DN. T
ox
oN.
o — 0
dy
0 0 0
B, = QIL_ 9_]\15— . (3.45)
dy oOx
0 0 %
dy
oN.
0 0o —
- ax -

Consequently, before the matrix G, is computed, the integrand in (3.16) should be decomposed,

which yields

Q'B=[Q"B, ... Q'B,] (3.46)
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in which

oN,
2l 0 0
ox '
N, o, 0
ox dy Y ax
oN,
Zli 0 0
ox Y
oN,
0 — 0
dy
oN,
0 Tt 0
dy *
aN, aN, N,
——+x —y-— 0
dy -dy. ox
0 0 0
Tp _
Q'B, = 0 0 0 (3.47)
0 0 0
w, 0
9y - ox
oN;
0 .0 —
dy
oN,
0 0 —+
dy *
‘ON, ON,
0 0 IRt Bl &
dy Y ox
oN,
0 0 —+
ox
oN., -
0 0 —+

The integration necessary to compute the matrix G, should be carried out using the same
technique as in the cases of the matrices H,, and H,,.

With regard to the matrices (3.17-3.19), they can be computed quite easily. The form of the
matrix Y, has already been derived and can be recognized in (3.30), (3.32), and (3.33). The

substitution of (3.22-3.24) and (3.28) into (3.18) and (3.19) results in the following forms of the
vector Y,, and scalar ¥, : -
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26,-0,-0,
(ZGn—oyy—qu)x—é'cxyy
(Zon—oyy—ou)y
—(on—20w+ozz)
—(o,q—2oyy+oa)‘x
~(0.-20,,+0,)y—61 x

' —(on+oyy—2ozz)
Y, ={ —Ho.+0,-20,)x ¢ | (348
—(cxx+_0yy—20a)y : '
61,
".6Tyz

6T . x

6(‘t Y= xzx)
67

Xz

, o Y J

n

Y, =%[(oxx_—vcyy)i+(oyy—ou)%{r(cfxx—b%’)z+6(':ciy'+"cv2y'z-|‘—'ciz)]—tqf, ‘ (3.49) .

“where-the vector ¢ represents the sum 6 +6*.
3.4 COMPUTER PROGRAMS

The mechanical and numerical models described in the previous sections have been implemented
in a package of computer ‘programs. The package consists of six programs that can be divided
into two groups

The first group contains four programs called STRATEGY, STATCOND, OPTIM, and
ELASTZON. These programs constitute the most important part of the package.. They permit .
the solution of the problem of the evaluation of residual stresses not only for railroad rails but
also for car wheels. Virtually any assumed stress finite element can be used. The second group
“consists of two auxiliary programs called MATRIX and RESIDUAL. These relatively simple
programs are strictly connected with the problem to be solved (rail, wheel), with the type of finite
elements (quadrilateral, triangular), and finally with the approximations of the stress and
displacement fields. :

The structure of the programs and the program flow logic are relatively straightforward, except
that the user should be prepared to monitor the progress of the optimization and, if necessary, to
adjust certain control parameters. The first program to be executed is MATRIX, which computes
the finite-element matrices defined in (3.15-3.19) for given input data. Based on this
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information and the current state of residual stresses, the control program STRATEGY examines
the yield conditions (3.14) for all enveloping stress states and divides the whole body into two
parts — elastic and plastic zones. If all the yield conditions are satisfied, the current residual
stress state is the final one and the post-processing program RESIDUAL is executed. If this is
not the case, a new residual stress state has to be found and the program STATCOND is called.
This program allows one to formulate the optimization problem (3.13-3.14) in terms of the
unknown stress parameters associated only with the plastic zone. The influence of the elastic
zone on the form of the total complementary functional (3.13) is found using static condensation.
The optimization problem is solved by means of the program OPTIM, using the method of
feasible directions [19]. It should be stressed that OPTIM is the only program that has to be run
interactively. In spite of the fact that a special procedure of automated optimization has been
developed, user involvement is usually required, especially in the case of very large optimization '
problems. After the optimization problem has been solved and the stress parameters in the
plastic zone have been found, the program ELASTZON is executed and the solution in the elastic
zone is computed. The latter program terminates the basic loop in the program flow logic and
STRATEGY is called again. ‘ ‘

The input data for the programs consist of seven files of ASCII type. Four of them containthe
information about the topology of the- finite element mesh and material properties. . They have
exactly the same format as the ‘input files used in the program RAILE described in section 2.4.
The other three files contain the information about elastic, thermal, and initial residual stresses.

As for the elastic stresses, the number of enveloping stress states is defined by the user and is .

- limited only by available computer equipment. The thermal stresses have been assumed to be
* constant in the longitudinal direction. In fact, these stresses are elastic stresses and an additional
file has been created for the user’s convenience. “Finally, the initial residual stresses have also
been assumed to be constant in the longitudinal direction (a basic assumption in the numerical :-

model) and self-equilibrated. It should be stressed that, if the initial residual stresses come from .

experimental data, the latter requirement is usually not satisfied unless the measurements are -
post-processed. '

The output data consist of five ASCII files. Four of them contain the solution to the problem,
i.e., the residual and total stresses computed at the centroids and nodes of the finite elements.
The fifth file contains some information about the optimization problems, elements in the plastic
zone, and active constraints (yield conditions) for all enveloping stress states.

3.5 EXAMPLE ANALYSES FOR A RAILROAD RAIL

The approach applied to the analysis of residual stresses in railroad rails and the corresponding
computer programs had been verified thoroughly using various benchmark tests with both known
and unknown analytical solutions. The comprehensive description of those tests and their results
can be found in [4], [17], and [18]. In this work, significant changes have been made regarding
the types of loads. First of all, to be able to deal with normal and tangent loads acting
simultaneously, a new finite element has been formulated. In comparison to the finite elements
considered previously, it contains all the residual stress tensor components. Additionally, the
program flow logic has been expanded so that many enveloping stress states can be defined. The
new finite element has been verified using the same tests as in [17], where a thick-walled
cylinder subject to either internal pressure (normal load) or torsion (tangent load) was considered.
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Unfortunately, to the authors’ knowledge, there are no benchmark problems with known
analytical solutions that could be used to verify the above modifications thoroughly. However,
the quality of the results described below indicates that the computer programs have been
modified properly. The second group of modifications is connected with thermal loads. These
loads are usually accompanied by substantial changes in material properties, requiring the

application of an appropriate algorithm for the evaluation of residual stresses. Such an algorithm

has been proposed in [14] and verified in [15], where a railroad car wheel subject to thermal load

due to stop-braking was considered. The same algorithm has been implemented in the computer

- programs described in the previous section. In the authors’ opinion, additional tests were not
necessary. Moreover, such tests would require the corresponding elastic analyses to be
performed first, which could be the subject of a separate study.

The computer programs developed for the evaluation of residual stresses have been applied to

estimate rail shakedown stress states in a 132 RE rail section. Two cases of loading have been
considered.

In case #1, the rail was subject' only to vertical surface tractions ¢ (X Y) of intensity

t,,=1239.98 MPa actlng over a rectangular contact area of dimensions a=6.947 mm and
b =5.083 mm , with the center C of coordinatés x = 0.0 m and y= 0.180086 m and the slope
o =0 (for the notation and conventions see section 2.4). ;I'he parameters toz, a,and b were
calculated using the formulae (2.48), where the vertical force T, was equal to 77.84 kN, and the

dimensions of the elliptical contact area, A=6.4mm and B=4.683 mm, were obtained by -

means of the Hertz formulae assuming the following data: radius of the wheel R, =0.4064m,
radius of the wheel profile R, =0, and radius of the rail profile R, = 0254m the rail was
assumed to be flat in the longltudmal direction, i.e., R{ = .

ttttt

As far as the material properties are concerned, Young’s modulus E , Poisson’s ratio v, and the

flow stress 6, were assumed to be temperature-independent and _equal to 206.832 GPa ‘_O 3,and .

448.137 MPa, respectively. | Additionally, the dimensions of the Hertz ellipse were calculated
~ assuming that both the rail and the wheel were made of material with the same elastic constants.

The problem was solved using the same finite element meshes that were used in the elastic
analyses presented in section 2.6. The elastic solution necessary as input data was found by
means of the programs described in section 2.4. "The contour line plots of elastic. stresses for
meshes #2 and #3 are shown in section 2.6. The analysis of residual stresses was performed

assuming only one enveloping elastic stress state for the cross section that contained the center of

the contact zone. In spite of the fact that such selection seemed to be straightforward, after the
residual stress state had been found, the yield conditions were additionally examined for
neighboring cross sections.

Some selected results for case #1 are shown in figures 3.1 through 3.6. The convergence of the

solution with respect to the mesh density is presented in figures 3.1 and 3.2; where the stress
tensor components are plotted along the lines oo—o and B—-PB shown in figures 2.20
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through 2.22. The contour line plots of stresses for the meshes #2 and #3 are presented in
figures 3.3 through 3.6.

These results indicate that mesh #1 is definitely too coarse. Mesh #2 seems to be acceptable, and
mesh #3 may be recognized as appropriate for the problem under consideration. The solutions
obtained for meshes #2 and #3 are in quite good agreement. Significant differences can be
observed only for normal stresses o, but these stresses are strongly influenced by the fact that

the boundary conditions on the contact surface are satisfied in an integral sense.

‘In case#2, the wheel was subject to the vertical surface tractions #,(X,Y) of intensity
toz =123998MPa and the horizontal surface tractions #,(X,Y) of intensity,
= 0.31,, =371.994 MPa. The other data were assumed to be exactly the same as for case #1.

The elastlc solution was found using the programs described in section 2.4. The contour hne
plots of elastic stresses for meshes #2 and #3 are presented in sectlon 2.6.

The analysis of residual stresses was performed assuming that several enveloping stress states
had to be taken into consideration. In the first step, the number of such states was assumed to be
equal to 5, conespondlng to the division of the contact zone into 4 sectors in the longitudinal
direction. In the’ second step, the number of sectors was doubled, resultmg in 9 enveloping stress .
states. The differences between the correspondlng solutions were. very. small and further division
was not considered. :

The results in the form of contour line plots of residual stresses for meshes #2 and #3 are shown
in ﬁgures 3.7 through 3.12. In spite of the fact that the horizontal loading constitutes:only. 30%
of the vertical loading, it has relatively significant influence on the quality.of the results, whichis -
lower than in #1. Unfortunately, available computer equipment did not permit the solution of . .
this problem for denser meshes. It should be stressed that the quality of the solution is influenced -.
* not only by the mesh density but also by the quality of the elastic solution, which is used as input
‘data. Comparative tests carried out for problems with known analytical solutions indicate that
even small differences in the latter solution may result in different res1dua1 stress states, and that
is why appropriate mesh refmement must not be neglected. '
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