
Transportation Safety Research Alliance
2100 Wharton Street, Pittsburgh PA 15203

Optimizing Train Performance through Advanced
Planning and Integrated Data Recording Systems

(FRA Grant Number: DTFRDV-99-G-60017)

FINAL REPORT

May, 2000

Period Covered in this project report:
June 1,1999 - March 1, 2000

Transportation Safety Research Alliance
2100 Wharton Street, Pittsburgh PA 15203

Optimizing Train Performance through Advanced
Planning and Integrated Data Recording Systems

(FRA Grant Number: DTFRDV-99-G-60017)

FINAL REPORT

May, 2000

Period Covered in this project report:
June 1,1999 - March 1, 2000

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

Table of Contents

Executive sum m ary Page 1

1. In troduction Page 3
2. B ackground Page 3

2.1 A_Teams Problem-solving Architecture Page 3
2.2 O TP O peration Page 5

3. Scope and Functionality Page 6
3.1 M ajor Com ponents of the OTP Page 6
3.2 Scope of Phase 1 Page 7

4. A rchitecture and Design Page 7
4.1 P rim ary Components of the Plan G enerator Page 7
4.2 A_Teams Agents Page 9
4.3 Connectivity M odel Page 9
4.4 Schedule P a g e ll
4.5 M ovement M odel Pagel2
4.6 D ispatcher Pagel3

4.6.1 Deadlock Avoidance Pagel5
4.7 M ovement P lan Pagel5
4.8 Scoring M echanism Pagel6

5. Im plem entation Pagel7
6. Test Procedure and Environm ent P agel7

6.1 Test P rocedure Overview Pagel7
6.2 Evaluating O TP Perform ance: The Objective Function Pagel7
6.3 In p u t Form ats of Test D ata Pagel8
6.4 Test P rogram Execution Pagel8
6.5 Test Results Processing Pagel8

7. Discussion of Results Pagel9
7.1 Pool Score T rend G raph P agel9
7.2 String-Line G raph Pagel9
7.3 Agent Perform ance Table Page20
7.4 Test Results Table Page20
7.5 G eneral Discussion Page21

8. Project Sum m ary and Conclusions Page21

Appendix 1: Agent Descriptions Page23
Appendix 2: P lan G eneration Page26
Appendix 3: Schedule D ata Page38
A ppendix 4: P roject Progress Reports Page48
Appendix 5: University Participation Page49

M a y 2 0 0 0 P a g e i

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

OPTIMIZING TRAFFIC PLANNER PROJECT
FRA Grant: DTFRDV-99-G-60017

FINAL REPORT

EXECUTIVE SUMMARY

This Final Report to the Federal Railroad Administration (FRA) presents an summary of
the work conducted under FRA Grant, DTFRDV-99-G-60017, by Union Switch &
Signal (US&S), a subcontractor of the Transportation Safety Research Alliance (TSRA),
to develop an Optimizing Traffic Planner (OTP) for optimizing the movements o f trains
across railroad networks. The report summarizes the work done between June 1, 1999
and March 1, 2000 (time period covered by the Grant), describing the core planning
engine component o f the OTP system that was developed during that time period and
prior to June 1, 1999.

The work supported by FRA Grant, DTFRD V- 9 9 -G -60017 , constitutes the first phase
of a three phase project to develop and install a real-time OTP for optimizing the flow of
rail traffic across a railroad track network. There are currently no optimizing traffic
planners in service on any freight railroads. The OTP is a planning system that will be
interfaced to a Central Traffic Control (CTC) system to automate the optimized
movement planning o f trains. Initially the OTP will be interfaced to US&S’s CTC
system, but it is being designed so that it can be interfaced to any CTC system. A unique
feature of the OTP is its state-of-the-art, scalable problem-solving architecture, which
enables it to optimize the movements of trains regardless o f how many it plans or the size
of the rail network over which they travel. It includes advanced auto-routing features for
generating multiple candidate solutions (movement plans), and then recommends the
most promising solution based on optimization criteria related to on-time performance,
increased capacity utilization and operating cost. The specific criteria chosen depend on
the business objectives of the particular railroad. The OTP will provide substantially
improved operating efficiencies, typically in the form of increased capacity utilization
coupled with better on-time performance, and, because it works to avoid congestion, will
increase the level o f safety by avoiding unsafe train configurations.

The outcome for this first phase of the project - the Alpha Demonstration Phase - is a
core planning engine that generates optimized meet/pass plans given a set o f train
schedules, a track configuration, train characteristics, an objective function and train
movement constraints. This core planning engine has been tested on a number o f track
configurations and train schedules obtained from two Class I American railroads. The
results o f testing demonstrate the capability o f the planning engine to optimize train
movements in a short period of time.

The planning engine is the core o f the OTP, and will continue to evolve as it is fine tuned
for different track configurations and traffic profiles. Phase 2 o f the project will see this

M a y 2 0 0 0 P a g e 1

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

first version plan generator interfaced to US&S’s CTC system so that it can dynamically
plan in a changing environment. This second phase will be followed by an installation
phase, Phase 3, the goal o f which will be to install it on a Class I railroad property and
field test it. The potential benefits of optimized traffic planning for the railroads are
significant and will be realized in the form of increased capacity utilization, increases in
car revenue, better on-time performance and increases in average train velocity.

M a y 2 0 0 0 P a g e 2

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

1. INTRODUCTION

The Optimizing Traffic Planner (OTP) is a software system that plans the movements of
trains across a railroad track network. This report describes the core planning engine
(Alpha Demonstration Release) o f the OTP, which was the deliverable for Phase 1 o f a 3-
phase project. Phase 1 was completed at the end of February, 2000. This report describes
the results o f work done during the period between June 1, 1999 and March 1, 2000 (the
Grant period) as well as work carried out on the core planning engine development prior
to June 1, 1999. The outputs of the core planning engine are static plans in the form of
time-distance graphs o f train movements.

Phase 2 o f the project, which began March 1st following the end o f Phase 1, involves
interfacing the core planning engine to Union Switch & Signal Inc.’s Central Traffic
Control (CTC) system so that it can plan and then dynamically re-plan using live data
received from the field. This will require modifying the core planning engine so that it
generates robust schedules: those capable o f absorbing some amount o f delay. Phase 3 of
the project will involve implementing the Phase 2 optimizing traffic planning system on a
railroad, testing and fine tuning it, and placing it into revenue service.

The scope o f this report covers the core planning engine o f the OTP. Given a train
schedule, track layout, train characteristics, operational and physical constraints, and an
objective function, the core planning engine generates static meet/pass plans for a
specified time period over the region it was set up to plan over. How the planner
generates optimized train plans is described in more detail in the sections that follow. The
report discusses the testing of the system as well as its performance and the data it
outputs.

This report is organized as follows: Section 2 describes the core problem-solving
architecture o f the OTP. This unique organization of multiple problem-solving software
agents acting on a “pool” o f potential solutions is what makes the OTP scalable and
capable o f optimizing to multiple objectives. Section 3 describes the scope o f Phase 1 in
terms o f the components o f the final product at the end o f Phase 3. Section 4 goes into a
more detailed discussion o f the core planner engine and the components o f which it is
composed. Section 5 very briefly describes the software implementation particulars.
Section 6 and 7 discuss testing and test results. Finally, Section 8 provides a summary of
the project results.

2. BACKGROUND

2.1 A_Teams Problem-solving Architecture
The core o f the OTP problem-solving engine consists o f multiple problem-solving
algorithms, in the form o f software agents, and a pool o f potential train movement plans
that the agents modify over time. This is referred to as the A_Teams problem solving
system. Agents may consist of any problem-solving algorithm whatsoever, from simple

M a y 2 0 0 0 P a g e 3

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

heuristics to more complex branch-and-bound inference engines. Typically, agents make
changes to train movement plans by identifying plan characteristics that when modified
optimize the combined movements of all trains in the plan.

A software agent is an algorithm or operator encapsulated by a number o f control
mechanisms that enable it to act autonomously. That is, there are no control-flow
restrictions or supervisory control structures, which complicate many software programs,
making them difficult to modify. Agents interact asynchronously (i.e., there are no data
dependencies between them) via shared memories, searching through spaces o f feasible
solutions (in this case, train movement plans) until one is found that satisfies a given
optimization criterion (or multiple criteria).

Figure 1 below is a schematic o f an A Team. Although this illustration depicts a single
solution memory, three construction agents, four modification agents and one destroyer
agent, in general the number o f agents and memories is arbitrary.

Solution __
Construction—

Agents —

Destroyer

Memory of
Solutions

Solution Modification Agents

Figure 1. Schematic of an A_Team Problem-solving System

Such a system works as follows: initially, a number o f construction, or seeder, agents
create a pool, or memory, o f candidate solutions (tactical traffic plans in the case o f the
OTP) that are, in general, not optimized. Modification agents, which embody algorithms
that lead to Better solutions with respect to specific optimization criteria, then make
incremental changes to the solutions in memory. The modification agents request
solutions from the memory and operate on.them. Whenever a change is made, an
evaluator computes the value of the solution with respect to specific optimization criteria,
such as total lateness o f all trains. Destroyer agents maintain a constant or nearly constant
number o f solutions in memory by eliminating the worst solutions or solutions that have
particular (usually undesirable) characteristics. At any point in time, an external request
can be made to the problem-solving system to output the best solution in its solution
memory.

The construction and modification agents can be encapsulations o f any problem-solving
algorithm whatsoever, cooperating to produce a synergistic effect with respect to
problem-solving performance, including heuristics in the form o f rules, branch and bound

M a y 2 0 0 0 P a g e 4

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

programs and genetic algorithms. The main idea behind the A T e a m s architecture is that
it enables different algorithms to work together cooperatively (known as cooperative
computation), producing a synergistic effect with respect to problem-solving
performance, very much like a group of experts who collaborate to solve a problem.

2.2 OTP Operation
Given this description o f A Teams problem solving, the following is a brief outline o f
how the OTP core planning engine operates.

Initially, the track database for the trackage to be planned over is read into the OTP’s
memory. This is followed by inputting train schedules and train characteristics. Once this
data is loaded, the construction agents generate an initial set o f train movement plans,
which are stored in the solution pool. As noted above, these initial plans are not
necessarily optimized, but are nevertheless feasible in that they do not violate any
physical or operational constraints. The plans are then improved through the application
of modification agents, as described above, until the system is queried for the best
solution. Each solution in the pool consists o f a priority matrix and a movement plan.
Agents typically make changes to the priority matrix, which specifies the relative
priorities of all trains for moving into each section o f track. The priority matrix must be
converted into a movement plan each time a change is made to it. Most o f the agents,
though, use the movement plan part of the solution to determine the changes that should
be made to the priority matrix. Whenever such a change is made, a “dispatcher” uses the
new priority matrix to generate a new movement plan. Hence, the OTP’s problem solving
can be characterized by an agent changing the priority matrix and the dispatcher
converting that changed representation into a new plan, which is repeated again and
again.

Using the relative priorities of trains, the dispatcher moves the trains, as it were, across
the territory, producing the required time-distance plan representation through simulation.
To do this, it employs a number of software modules that determine train movement
(movement model), avoid deadlock (deadlock avoidance algorithm), connect routes
(connectivity model) and evaluate plans (plan scorer). Most o f the work during the course
of this project involved development of the dispatcher and these latter modules.

Before June 1st, the framework of the A Teams problem-solving engine, which is the
core o f the OTP, along with an initial set of construction, modification and destroyer
agents, was implemented as well as the code to compute the value o f the objective
function. In addition, the interface to the US&S track database and most o f the deadlock
avoidance algorithm were developed. Development continued after June 1st, adding
agents to the system, improving the movement model, performance testing and so on.

When the project began, a set of requirements for the OTP were laid out and a Software
Requirements Specification (SRS) written to formally document them. In order to track
the requirements throughout the development process, a Requirements Traceability
Matrix (RTM) was created. An analysis and high-level design model were developed
with the aid o f Rational corporation’s CASE tool, Rose. This was followed by

M a y 2 0 0 0 P a g e 5

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

development o f a detailed design model. By June 1st, a fair amount o f this latter model
was completed and parts of the software implemented. Development progressed
according to an iterative process: design part o f the system, then implement that part,
repeating this two-step cycle until implementation is complete (the highest risk items are
designed and implemented first).

3. SCOPE AND FUNCTIONALITY

3.1 Major Components of the OTP
This section illustrates the scope of Phase 1 by placing it in the context o f the remaining
components proposed for the final version o f the OTP (at the end o f Phase 3). A
schematic of the final version o f the OTP is depicted in Figure 1 below.

Figure 1. Optimizing Traffic P lanner Components

M a y 2 0 0 0 P a g e 6

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

The shaded parts in the figure are those components developed in Phase 1 (i.e., part o f the
Alpha Demonstration Release). The functionality for each o f the five major components
is briefly described:

> Plan Generator: the core o f the OTP, and that part of the system which is the focus of
this report, receives inputs about trains, schedules, track layout and so forth, and
generates optimized movement plans for the region it plans over.

> Plan Monitor, (for dynamic planning) continually compares the state o f the railroad
against the movement plan that is executing in order to determine if re-planning is
necessary. Re-planning may be triggered by train delays or faults in the field.

> Plan Executive: converts a movement plan into signal clears and other control
commands so they can be executed by the CTC system.

> Database Interface: the plan generator employs various representations o f the railroad
planning problem that help expedite the production of optimized plans. In order to be
compatible with the CAD system, these representations must interface to the CTC
system database, which is where the OTP gets information about the state o f the
railroad.

> Train Graph Interface: the OTP will output plans to a human-machine interface
called a train graph, which is a time-distance representation o f the planned
movements o f scheduled trains.

3.2 Scope of Phase 1
The core planning engine developed in this phase includes a first version o f the plan
generator component and an interface to the CTC system database. There is also a string
line graphics output, but it is only a temporary version. The final system will replace this
version with the TrainGraph process running on US&S’s CTC system. The main
components o f plan generation include the railroad infrastructure to be planned over
(stored in the database), a schedule, movement plan, plan scorer, A_Teams engine,
agents, dispatcher, and movement model. Each of these plan generation components will
be described in the next section.

The primary output o f the planner is the string-line diagram or time-distance/location
graph. This is just a Gantt Chart that represents the movements and planned movements
of trains over a given territory as sloped lines (the values of the slopes are the velocities
of the trains). Such diagrams also show where trains are stopped and the points where
two trains meet and pass.

4. ARCHITECTURE AND DESIGN

4.1 Primary Components of the Plan Generator
This section describes the components that constitute the core plan generator. It accepts
as inputs train schedules, train properties and track descriptions for a region o f a rail
network and then constructs optimized, detailed movement, or meet/pass plans for trains

M a y 2 0 0 0 P a g e 7

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

over a specified time interval (e.g., 24 hours). It generates feasible plans (feasible plans
do not violate any contraints) based on static data for the trackage planned over.
Constructor agents, a destroyer agent and modification agents provide its problem
solving capabilities. Given a feasible schedule, an operationally feasible movement plan
is generated. Currently, the plans are scored by adding the total minutes late for all
trains, but this can be changed. When queried, it will output the best plan in the form of a
string line diagram.

Figure 2 below is a diagram of the components and their interactions. In the figure, a loop
structure (solid arrows) represents the primary problem-solving cycle that the Plan
Generator executes in order to generate optimized plans. Before this problem-solving
cycle begins, a number o f Construction Agents generate an initial set o f solutions in the
form o f priority matrices containing priorities for each train moving into each o f the
sections o f track being planned over. These internal solutions are sent to the Dispatcher,
which converts them into plans, after which they are scored and then placed in the
solution pool (the priority matrix and the movement plan together constitute a solution, as
noted earlier). This initial solution set is then improved by Modification Agents. Each
time a modification agent selects and modifies a solution from the solution pool, it only
modifies the priority matrix, but it does so based on information in the corresponding
plan. The modified priority matrix is then submitted to the Dispatcher, which converts it
to a new plan using constraint information, such as the Schedule and Connectivity Model,
and simulation tools, such as the train Movement Model. The plan (along with its priority
matrix) is then sent to the Scoring Mechanism so that it can be scored, after which it is
placed back in the solution pool. To improve the population o f solutions in the solution
pool and to maintain a constant number of solutions, Destroyer Agents remove the
solutions with the lowest scores (i.e., the least fit members o f the population). Thus, plan
generation continues until the best plan is requested from the system.

Figure 2. Plan Generation

M a y 2 0 0 0 P a g e 8

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

Descriptions o f the components shown in Figure 2 are described in the next several
sections.

4.2 A_Teams Agents
The Plan Generator consists of 19 Modification Agents. They include a crossover agent
(genetic algorithm), four bottleneck improver agents, three useless siding agents, four
early arrival remover agents, a route divider agent, four critical path improver agents, a
prioritize-by-schedule agent, a pass constructor agentand several others (some o f the
agents, particularly the critical path/bottleneck improver agents are actually implemented
as different functions in a multi-functional algorithm). In addition to these Modification
Agents, there is a Construction Agent and a Destroyer Agent. All the agents are described
in Appendix 1. How they work is discussed in Section 2.1. The frequency o f application
o f the Modification Agents depends on a probability table that can be modified according
to the relative frequencies o f applications for the different agents.

4.3 Connectivity Model
The basis for the rail connectivity model o f the OTP is Union Switch & Signal’s Support
Database. The physical devices that make up the Rail Network are defined in this
database. The OTP connectivity model inherits from this basic framework to build its
own model of the railroad. From the connection o f tracks, switches and signals in the
Support Database, the connectivity model builds a track infrastructure configuration that
depends on authority units (the smallest portion o f the rail network that may be
dispatched), interchanges (interlockings where alternate routing options may be
employed) and segments (areas delimited by the same 'from' and 'to' interchanges, which
contains a list o f authority units that originate at the 'from' interchange and terminate at
the 'to' interchange).

The Rail Network database provides a model of the physical network required by the
planner. It extracts the needed static and dynamic information from the rest o f the CTC
system. The network, which consists o f representations of all the objects found in the
field (tracks, signals, switches, etc.), is stored in a data file that is read by the OTP when
it starts up. The objects represented in the file are converted to software objects, the states
o f which are changed to reflect changes in the field (state changes, of course, will only be
utilized by the OTP when it is interfaced to the CTC system in Phase 2 of the overall
project).

The rail network representation is partitioned into three levels: the connectivity level, the
control level, and the feedback level.

a. The connectivity level: represents the physical track sections and their
interconnections. It is used to determine where trains can move. Track sections may
contain geometric information such as length

b. The control level: is used to determine how trains will move across a section o f track.
It depends on the particular means o f controlling train movements. There are two

M a y 2 0 0 0 P a g e 9

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

main control mechanisms: Central Traffic Control (CTC) and dark territory control
(train orders, warrant territory, etc).

1. In CTC (signaled) territory, the means for giving permission to a train to enter
a track section is by a signal lamp at the entrance to that section. The lamp
may be represented by an icon on a human dispatcher’s computer screen,
which indicates its particular state (i.e., red, yellow or green). Lamps have a
face and hence they give permission to move only from one direction. The
directed nature implies directed permissions (i.e. it is okay to proceed beyond
this lamp). Lamps are typically red and turn green or "amber" only to allow a
movement. Conceptually they give permission to move from one lamp to the
next lamp facing the oncoming train. The directed path or part o f a track
section over which permission is given is called a route. Routes are known to
failsafe equipment in the field that control the signal lamps and interlockings.
Entering a route that conflicts with (fouls) an already lined route will be
rejected by the field. The rules that determine when the route will be
prevented from being lined are called the interlocking rules.

2. In dark territory, trains are sent a piece o f paper or given verbal instructions
that allow them to proceed through a sequence o f track sections between two
landmarks (e.g., mileposts). The landmarks are associated with the track
section.

Each control method has its own preferred position feedback system. These are track
circuit feedback in CTC territory and voice exchange in dark territory. In CTC territory, a
train’s position is indicated by a completed track circuit signal that is communicated first
to a local collection site (called a control point) and then to a dispatch office o f the
railroad. Sections o f the physical steel are electrically isolated from one another and,
hence, some degree o f local isolation o f the trains is achieved. Thus, the degree to which
a train’s position is known depends on the length o f track that makes up a single track
circuit. All the steel electrically connected is called a track circuit or track for short.
Associating isolators with a length along a track circuit allows all the track circuits to be
determined. Track circuits interface with one another at these isolator locations.

In dark territory, the train typically has its position communicated back to the railroad’s
dispatching office via radio. It is usually sent as a voice message that uses local
landmarks to identify train position.

In addition to train position, the CTC system is also sent states o f devices in the field. The
most common devices are switches and signals. Switches have three distinct states:
normal, reverse, or not detected either normal or reverse (also called free). Occasionally,
two switches are tied together and must be controlled as a group. Signals indicate the
state o f a lamp. There can be many states including green, go slow and red. Other
equipment such as temperature gauges, flood detectors and so forth may also have their
states indicated to the CTC system.

M a y 2 0 0 0 P a g e 10

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

For the OTP, the most important level is the connectivity level, from which the other
levels can be accessed as needed. The relevant database objects constituent o f this level
are as follows.

1. PlanningRegion is a collection of elements of a railroad network that are considered
together for the purpose of constructing movement plans. A planning region may be
disconnected; that is, there may be two or more groupings o f elements where there is
no path from elements o f one group to elements of the other group.

2. Authority Unit is the smallest controllable entity in the railroad network for which it
is possible to grant permission for a train to enter. The amount o f track this
corresponds to depends on the traffic control system. While in an authority unit, the
train may have to follow some movement speed restrictions. Authority units are
directed. Thus a single piece o f track typically has at least two authority units on it;
one for traffic in each direction.

3. Interchange is a section of a railroad network where trains can switch from line to
line or track to track. They are delimited by a set o f Interchange Limits (see below)
according to the following rule: Given a signal, P, and some route, R, if R's
destination signal is P's partner, then R's source signal is in the same interchange as
P. Another connectivity-level object, Segment, which is defined as a collection of
AuthorityUnits that connect adjacent Interchanges, is also used by the Plan
Generator.

4. InterchangeLimit (IL) models the elements that bound a switching area on a railroad
(e.g. signals). An IL's partner is the first signal encountered on the line in the reverse
direction o f the IL, and granting access in that direction; i.e., the partner o f a left
facing signal is.the first right facing signal on the line to the right of the first signal.
This places partners *between* interchanges, *not* across, as one might initially
guess.

Theory O f Operation
The space domain used by the OTP is provided by PlanningRegion, which represents a
region o f the track network. PlanningRegion has pointers to neighboring regions for
continuity. Within a planning region, AuthorityUnit is the primary interface to the track
network and its current state. AuthorityUnits can be grouped to form a Segment or a
Route. Three or more Segments are connected by an Interchange. An Interchange is
delimited by InterchangeLimits.

For the purposes o f planning, other objects besides those listed above are employed,
including Location, which specifies a place where a train can be stopped, Via, which
specifies a Location where a train stops to perform an activity (e.g., setout or pickup), and
ByWay, which is a location where a Via can be defined.

4.4 Schedule
The schedule component represents the traffic demands being placed on the railroad
network. It is composed o f a set o f requirements on the travel of individual trains. Each
train in a schedule (known as a Service) is required to enter the railroad at a certain point

M a y 2 0 0 0 P a g e 11

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

and time, travel across the rail network according to its trip plan, possibly making stops,
and then leave the railroad at another specific place and time.

Theory O f Operation
A Schedule is composed of an unordered set of Services. Each Service represents the
travel o f a single train from the time the train enters the planning region until the train
leaves the planning region.

Each Service contains an ordered sequence of WorkSets to be accomplished in the order
given. Each WorkSet is a collection of WorkUnits to be accomplished at a given Location.
WorkUnit types are things like car setout or pickup, crew-change, add a helper engine,
remove a helper engine, etc. Each WorkUnit also specifies TimeConstraints, which
indicate when the work should be performed. The first WorkSet represents the start o f the
service, while the last WorkSet represents the end of the service.

Each Service contains an ordered sequence o f Legs. A Leg represents the travel required
between a pair o f WorkSets that are adjacent in the sequence o f WorkSets in the Service.
Each Leg contains a collection o f ByWays known as a ByWayStore. The store is a subset
of all possible ByWays that might appear on any of the possible paths from the starting
Location to the ending Location of a given Leg.

Schedule elements are served to the Plan Generator as they are known. The Plan
Generator will be notified (through an interface to the CTC system, which will be
completed in Phase 2 o f the project) as trains are added to, removed from, or modified in
the schedule. At any instant in time, there will be a number o f trains on the railroad that
can be identified as the trains in the schedule. There may also be unscheduled trains on
the railroad. The Plan Generator must also plan those trains from their current Locations
to their final Locations.

4.5 Movement Model
The Dispatcher must estimate the duration o f travel for the trains as they move. It is the
Movement Model component of the Plan Generator that determines the duration and
speed profile o f a train’s movement between two points on the railroad network. Such a
calculation depends on restrictions that apply at any point in time, like grade and
curvature information, as well as train characteristics. The static information needed,
such as civil speed limits and terrain information, exists in the track database. Other
dynamic information, such as certain train characteristics and train ahead identification, is
provided by other components of the CTC system through the Support Database.
Additionally, device behaviors such as switch position change and signal state change are
also accounted for.

All o f this information is used to calculate a maximum speed profile that the train needs
to satisfy. Terrain and train characteristics affect acceleration and deceleration rates. The
tractive and resistive forces are computed based on available information about
locomotives, load and length of the train, terrain information, and so on. Additionally,

M a y 2 0 0 0 P a g e 12

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

operating style for manual locomotives and control parameters for automated cabs may
affect the movement dynamics. Because the required information is not always readily
available, the Movement Model should gracefully deal with incomplete data. For
example, when the terrain information is incomplete, the acceleration and deceleration
are approximated. Finally, it should be mentioned that safe braking distance models play
an important role in the determination of simulated speed and deceleration rates.

A simulated speed profile over a particular segment o f track results after applying
acceleration and deceleration rates to the previously computed maximum speed profile.
This discrete profile is used to determine the duration o f the movement that is returned to
the Dispatcher, so that it can be accounted for in the movement plan.

4.6 Dispatcher
The Dispatcher is responsible for creating the reservations that consititute a given plan.
The plan contains information about the trains and their desired destinations. Trains are
dispatched one Leg (one or more sections o f track) at a time based on the priority o f Leg
destinations. The priorities of a train’s destinations are set by the A_Teams problem
solving agents. The agents set the priorities in the Priority Matrix in order to influence the
dispatching process.

During the dispatching of a train, the dispatcher reserves the routes that will allow the
train to move to its desired destination along a preferred path. If there is a Route that
cannot be reserved, the Dispatcher attempts to find another route that will allow the train
to continue towards its destination.

When there are no other routes, the dispatcher determines if the train could wait at its last
reservation for the next route to clear. If waiting is possible, the Dispatcher will extend
the last reservation and continue reserving the path with the consequent delay. If waiting
is not possible, the last reservation is deleted and the train is “virtually” backed up one
route and the process is repeated by looking for an alternative and waiting. This will
accomplish a meet/pass for two opposing trains as required. The process will continue
until the train either reaches its destination or the start o f the leg that is being dispatched.

If backing up continues to the beginning of the path, the Dispatcher will try an alternative
if one exists. If no other paths exist for that train, it is placed in a holding pool for later
consideration. Dispatching then continues with the next train. After successfully
dispatching the next train, any trains that were put on hold are reintroduced so that
dispatching of those trains can begin again. This process will continue until all trains
have been dispatched or the remaining trains have been put on hold. Trains remaining in
the holding pool when the Dispatcher has completed will contribute a very large penalty
to the score o f the plan, indicating that it is not feasible, since one or more trains could
not be dispatched without deadlocking the system.

This method o f dispatching has an advantage over static branch and bound methods for
movement plan generation in that it is able to account for time-dependent constraints like
temporary slow orders, which the latter methods cannot do without a lot o f difficulty.

M a y 2 0 0 0 P a g e 13

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

Theory O f Operation
The Dispatcher uses simulation methods to construct detailed movement plans for a
schedule. It constructs the reservations for a given Movement Plan based on the hints
contained therein, along with current railroad conditions and committed reservations for
trains. The Dispatcher considers physical constraints such as bridge loading limits and
tunnel dimensions when selecting routes. Reservation times are computed based on the
Movement Model.

The Dispatcher’s goal is to route all of the Services past the Vias without creating any
deadlock situations in the railroad. A train is considered to be in a deadlock situation if
the only available move for the train requires that it back up. A train is also considered to
be deadlocked if there remain some forward moves, but those moves will still not allow
the train to reach its destination. For example two long trains may be facing each other
400 miles apart on single track, but there are no intervening sidings long enough to allow
them to meet and pass.

Note that there may be situations that appear to be deadlocks to the Dispatcher, which
were caused by a human dispatcher. For example, the human dispatcher may know that a
siding is longer than is recorded in the track database, so that a meet/pass may occur
there, while the Dispatcher determines that it cannot occur. The human dispatcher may
also know that a train is required to back up into a siding for unloading purposes, rather
than pulling in engine first. The OTP will never back up trains, since that is a costly and
risky operation.

When the Dispatcher begins a dispatching session, the simulated railroad is initialized to
the state o f the real railroad. Trains are placed on the network in their most currently
known locations. Any Routes already cleared for a given train are said to be committed
and cannot be changed, since that might result in the train loosing its green light with no
opportunity to stop (i.e., knocking down a signal in front of a train). Any future
reservations are also recorded.

The Dispatcher then organizes the DispatchTable. The head of each queue in the
DispatchTable represents the next Via that a given train should be routed to, with what
priority, and how long the train should occupy that location (including traversal time).
The Dispatcher selects the service whose next via has the highest priority for being
dispatched.

The Dispatcher defers the selection of routes from a train’s current location to the target
Via to CourseSelectionBySegment. The Dispatcher will ask the MovementModel for
traversal times for each o f the routes on the course and attempt to acquire reservations at
the indicated times. If one or more of the reservations are not available, the Dispatcher
will attempt to delay the train for a short interval (determined by the size of reservation
overlap in time). If the Dispatcher is unable to delay the train, another course will be
requested.

M a y 2 0 0 0 P a g e 1 4

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

The interplay between Segments and AuthorityUnits is important to understand. Courses
are sequences o f Segments, and Segments are bundles of nearly equivalent
AuthorityUnits. Using Segments in Courses dramatically reduces the state space that
needs to be searched, since nearly equivalent AuthorityUnits are handled as a group. The
dispatcher must choose one o f the AuthorityUnits from a Segment when acquiring actual
reservations.

The Dispatcher makes only a few attempts to route a train before giving up. If it is unable
to route a train, the train is moved to a holding pool (referred to as the “hold-out-pool”),
and another train is dispatched. Whenever a any train is dispatched to another Via, all the
trains in the hold-out-pool are moved back to the Dispatch!able, and the process of
dispatching those trains resumes. If all remaining trains have been moved to the hold-out-
pool, then the Dispatcher terminates. This condition should only result from a human-
induced deadlock.

4.6.1 Deadlock Avoidance
Deadlock avoidance by the Dispatcher has been designed to work on general network
configurations o f track, and so should be applicable to any railroad’s track layout. The
algorithm is used by the Dispatcher to avoid deadlocking trains as it dispatches them over
the tracks. Such a mechanism is required to prevent machine induced deadlocks. A
particular method for predicting deadlocks, called the Modular Switch Array Method,
predicts whether the movement of a train onto a segment of track (a schedulable
operation) will create an eventual deadlock. Without deadlock avoidance, it was found
that most solutions generated by the OTP contained deadlocks, which is computationally
prohibitive and operationally unacceptable.

Deadlock avoidance is based on a model o f the connectivity and capacity of the railroad
network derived from the routing and track interconnections, along with a few heuristic
statements about the ability of trains to move. The model and heuristics determine
whether the movement of a train into the next route will result in deadlock of the railroad
network. It avoids NP-completeness by limiting the search scope when evaluating the
statements to a reasonable space. The limits will result in accurate predictions for all but
the most congested networks without undue computational cost.

4.7 Movement Plan
The Movement Plan contains a representation o f the detailed train movement plan that
satisfies the associated Schedule. It consists o f two main parts: a set of hints to the
Dispatcher (the Proto-plan), and a complete reservation list (the Plan). The latter is the
ResourceUse structure that the Dispatcher constructs. The leaf elements of the Proto-plan
are Vias.

The Proto-plan consists o f the ServicePlans, LegPlans, and Vias. It is this set o f objects
that are created to guide the work o f the Dispatcher. In particular, the Vias provide hints
to the Dispatcher to choose a path that goes over particular parts o f the railroad network.

M a y 2 0 0 0 P a g e 15

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

The Via may also suggest that the service be delayed at that point for a short interval. The
Vias also provide guidance to the Dispatcher on the order in which the services should be
assigned resources. One way to view the Proto-plan for a particular Service (i.e. Train) is
as a list o f Waypoints: suggestions to the Dispatcher that the trains be routed so that they
pass close to certain places on the railroad. The Vias contain that information, along with
a time interval and a priority number.

The Plan consists o f the ResourceUse and Reservations. It is the result o f the efforts of
the Dispatcher. It is this developed plan that contains the information that is delivered to a
plan execution task (the Plan Executive in Figure 1), which translates the plan into
controls to be sent to the field. It contains nearly all o f the clues that an agent would use
to construct plan improvements.

Reservations in the ResourceUse fall into 3 categories: committed, occupancy, and
fouling. Committed reservations are those that have been issued to the railroad, i.e.
signals have been cleared and trains are approaching the control points. The planner is
not permitted to change these reservations since it is unlikely that the train operators
would have time to react to the change. Occupancy reservations are issued for the
AuthorityUnits that a train will use in a given plan. Fouling reservations occur on
opposing, or overlapping AuthorityUnits to an AuthorityUnit with an occupancy
reservation, since those AuthorityUnits will be unavailable for a period of time related to
the type o f overlap and the speed of the train. Fouling reservations will occur for
committed reservations as well as planned occupancy reservations.

Theory O f Operation
An agent creates a Proto-plan based on an examination o f any or all o f the Schedule, the
current railroad conditions, or an existing Plan, presumably with some modifications that
the agent “thinks” will improve it. When the new Plan is scored, it is placed back into the
holding pool.

4.8 Scoring Mechanism
Since the OTP maintains a set of Movement Plans (solutions to the problem of moving
trains to a schedule) that are optimized according to specific optimization criteria, it
needs a method for ranking the overall goodness o f each plan. Plans with the lowest
scores will be destroyed, while the better plans will be retained for modification and, if
selected, execution.

The Scoring mechanism used in the OTP allows multiple evaluation metrics to be used
for judging each plan. Each evaluation metric represents an aspect of a plan's goodness
or badness. For example, there is a Schedule Deviation Metric, which measures the
number o f minutes a train has deviated from its schedule. For that particular metric, the
smaller the number, the better a plan is. The scores generated by the multiple evaluation
metrics are then combined to form a single score that represents a plan's overall
goodness.

M a y 2 0 0 0 P a g e 1 6

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

5. IMPLEMENTATION

The OTP is a distributed, object-oriented software system, implemented using the C++
programming language and the Standard Template Library (STL). It is compiled with
Cygnus compilers on Linux, SunOS, and OSF1-Alpha platforms, making it cross
platform ready. The system is configured in a 3-tier architecture: database (Support
Database), server (OTP) and client workstation (for inputs and Train Graph display
output). The code is partitioned into two main class libraries along with the application
code itself.

6. TEST PROCEDURE AND ENVIRONMENT

In order to validate that the plan generator was working correctly, a series of tests were
set up and executed. Initially, testing was performed for debugging purposes and later to
assess system performance. This section describes the test procedure, the input data and
various measures and criteria for evaluation.

6.1 Test Procedure Overview
The test procedure that was used to evaluate the OTP consisted o f a series o f executions
of a test program, OPG, with a variety o f inputs. The inputs presented OPG with track
descriptions from two Class I railroads, and a schedule o f trains that were to run over that
railroad during some time interval. These pairings o f a railroad and schedule are called
scenarios for test purposes. In addition to the track and the train schedules, there are train
characteristics and operational constraints.

Most of the schedules used for testing covered an interval of time in the neighborhood of
24 hours, but ranging from a low of 11 hours to a high of 84 hours. The schedules
contained varying numbers of trains ranging from 2 trains to 45 trains.

The track descriptions from which the data were gathered for this phase o f the project
consisted of a 250 mile CSX line running through Orlando, Florida, and a 240 mile
section of a BNSF coal line in Nebraska.

The test program was set to run a fixed number o f agent trials, after which execution was
halted. For this report, and for the regular regression tests, 1010 agent executions were
allowed to complete. Because some agents produce more than one plan, the total number
of generated plans was usually more than 1010, typically around 1100.

6.2 Evaluating OTP Performance: The Objective Function
A score for comparing plans was computed for each generated plan by applying an
objective function, which is a measure o f the fitness o f the plan. The objective function
used by the Plan Generator in this phase o f the project was related to on-time
performance. Specifically, it allocated a penalty o f 2 units for each minute o f lateness and
1 unit for each minute that a train was early, 10,000 units for each missed destination, and

M a y 2 0 0 0 P a g e 1 7

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

100,000 units for each deadlocked train. Thus, smaller scores indicate better plans. A
Destroyer Agent removed plans with lower scores. Clearly, plans with missed
destinations or deadlocks will most likely be removed. On average the pool o f solutions
improves over time, so that the overall effect o f the objective function was to drive the
OTP to produce the best on-time performance.

A feature o f the objective function is that specific limits on its upper and lower bounds
are not defined. The lower bound would be the optimal plan (lowest possible score), but
cannot be discovered without an exhaustive search o f the space o f possible plans, which
in most cases is computationally prohibitive. Thus, the goodness o f a plan and, hence, the
value of the objective function, are relative measures not absolute. In this case, the
comparison would be to the performance of an automated routing system that does not try
to optimize or to a human dispatcher. The upper bound, on the other hand, is arbitrarily
large by inspection.

6.3 Input Formats of Test Data
There are a number o f data formats for the data used by the Plan Generator. These are as
follows:

A. Railroad Description Files: The railroads are described using the standard file
formats employed by the US&S Computer Aided Dispatching product.

B. Schedule File: For purposes of testing, the schedules were provided in a file with
a simple grammatical structure. The structure is nearly self-explanatory.
Comments provided in the example schedule file in Appendix 3 describe the
schedule elements.

C. Agent Configuration: The agent configuration file informs OPG to construct
agents. Entries in the file specify what the agent type to construct and possibly
some parameters to configure on the agent instance. The parameters and types of
agents have been held constant for trials to date. Tuning of the agents will be
considered at a later date.

6.4 Test Program Execution
OPG reads a traffic scenario and begins to generate detailed movement plans to satisfy
the schedule. Each time a plan is constructed that is better than any previous plan, a
string-line is constructed representing that plan. At the end of the run, a detailed
movement plan is written along with a string-line diagram. While OPG executes, it writes
updates to a log file reporting simple statistics on the operation of the current agent. This
file is used to collect statistics o f agent performance.

6.5 Test Results Processing
Each run o f OPG produces a number o f output files containing various kinds of
information, from plan validation results to string line plot data to detailed movement
plans. The files o f interest are processed by a series o f scripts that create the various

M a y 2 0 0 0 P a g e 18

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

tables and graphs used in the reports. Clearly, in a production environment, most o f the
output would not be generated. The graph images were created using the GnuPlot utility.

7. Discussion of Results

The outputs from testing consist of two primary graphs as well as various tables that
contain the values o f a number o f parameter calculations, which summarize a particular
test run. The graphs consist of a Solution Pool Score Trend Curve and a String Line
Graph. These, along with the data in the tables are described below. Appendix 2 contains
a set o f graphs and tables for a specific scenario (40 trains) on the BNSF coal line.

7.1 Best Plan Score Trend Graph
The Best Plan Score Trend graph shows the relationship between the current best
objective function value and the number of agent applications. In other words, it is a
graph o f the best plan score over time, where time is measured by the number o f plans
generated so far. It is interesting to note that the resulting curve has a generally
asymptotic character, as can be readily seen from the Best Plan Score Trend graph in
Appendix 2.

The Best Plan Score Trend graph indicates that over time the goodness of the solutions in
the solution pool improves. At this point, however, it is unknown what the optimal score
for this BNSF scenario is for the same capacity and movement models used in generating
the plans. Likewise, there are no relative measures for evaluating the goodness o f the
solution (comparing to the optimal score is an absolute measure) because there is no data
about how the 40 trains with those schedules actually run. However, reviewing the
detailed data, it appears that all but about five trains were on time.

The graphs also indicate that trains exiting the line at the west end (bottom of the graph)
have to wait because there is only a single track, whereas the exit at the east end (top of
graph) is double track. This is why there are horizontal lines at the ends o f the string lines
for west-bound trains (at the bottom) and not for east-bound trains.

7.2 String-Line Graph
The string-line graph is inspired by the string line displays used by railroads to depict
schedules graphically, but with some notable differences. The y-axis indicates the
position o f the train, while the x-axis indicates the calendar time in universal time
coordinates. Horizontal line segments indicate the time spent by the locomotive on a
particular section o f the rail network. Vertical segments indicate the entry o f the
locomotive onto the next segment of the rail network. Consequently, these graphs
resemble Gantt-charts.

The railroad network model used by the OTP contains the notion o f a place where a
locomotive can be controlled to a stop by the signalling system in either direction. These
places are called ByWays, as noted in Section 4. We further label the ByWays using a

M a y 2 0 0 0 P a g e 19

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

topological sort on distance from the left side of the network, breaking loops to favor
early placement. The position of each ByWay in the resulting ordering is called the
ByWay index, and this index is used to order Byways on the y-axis o f the string line
graph.

For simple to moderately complex lines, this method works well. For some more
complex regions with multiple traffic loops and a mixture o f directions mapped on to
right and left, this method does not work as well. In actual operation, a train graph o f the
planning region would be much better for human dispatchers to view. A supervisor would
prefer to examine many such train-graphs taken as a summary for the entire line or
region.

The set o f string-line graphs in Appendix 2 correspond to those points on the Best Plan
Score Trend graph where an improvement in the best plan score occurred; that is, points
where there is a step down. The number o f the agent application is indicated at the top of
each graph. Thus, the first drop on the pool score trend graph occurs on the 31st agent
application, the next one occurs on the 39th, and so on.

7.3 Agent Performance Table
This table reports on the performance of the A Teams software problem-solving agents.
The first column is a one character identifier for the agent type. The second column
indicates the number o f times that agent was selected to run. The third column indicates
the number o f times that agent’s actions resulted in a new best plan. The fourth column
reports the number o f times the resulting score was better than the score of the Plan (or
Plans, in the case o f the Genetic Algorithm Agent) that the agent used to generate the
new Plan. The fifth column reports the number o f times the new Plan was worse than the
Plan(s) it was generated from. Agents sometimes produce new Plans that have the same
score as the Plan(s) from which they were generated. Thus, the number o f runs (second
column) may be greater than the sum of the better and worse columns (the fourth and
fifth columns).

It is interesting to note that in all the trials to date, the rate o f improvement is quite low
for individual agents, but the overall performance of the system appears to be quite good.
This would indicate that the core idea o f cooperative computation embodied by the
A Teams is sound.

7.4 Test Results Table
This table contains collected regression test results. The first column indicates the
number o f trains appearing in each schedule. The second column specifies the time
interval covered by the schedule, extending from the appearance o f the first train to the
departure o f the last train out of the planning region. The third column contains the actual
planned time interval. The fourth column specifies the number o f agent applications. The
elapsed run time in the fifth column includes only agent execution times. The sixth
column reports the rate at which the agents executed.

M a y 2 0 0 0 P a g e 2 0

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

The column labeled "Final Minutes Late" contains the sum o f the minutes late arriving at
the final destination for every train. The scores in the next two columns are the best and
median scores o f all scores in the pool at the end o f the run. The score is computed using
the formula: 100,000*(# of deadlocked trains) + 10,000*(# o f missed locations) + 1*(# o f
minutes deviated from schedule) + 1*(# o f minutes late).

The remaining columns in the table report the number o f various types o f agents and the
schedule file used in that trial.

7.5 General Discussion
Without some base-line data obtained from the actual running o f trains planned by the
OTP, it is difficult to assess the performance o f the plan generator. Clearly, the OTP
optimizes, as indicated by the Best Plan Score Trend graph in Appendix 2, but more
testing can be done with different sets of agents on different configurations o f track to
determine which sets work best and where. Because the set o f agents is open-ended, this
implies extensive testing o f the OTP to duly assess its capabilities. Part o f the work in
Phase 2 will be to continue such testing. New combinations o f agents will be tried on
different configurations o f track with different train mixes and schedules. As more data
are gathered, the relative performances o f the different agent combinations can be
compared. With the implementation of Phase 2, and the capability to inject faults, a
comparison with actual train runs can be made, providing quantitative data on the
improvements afforded by the OTP.

Currently, with only the capability for static planning, a comparison with actual railroad
performance is confounded by the fact that the state of the railroad changes over the
period planned. One comparison that could be made is with results from ART, US&S’s
non-optimizing planner, applied to the same train scenarios, or with results from the OTP
using an objective function that is modified so that higher priority trains will always go
first. Still another possibility is to get an absolute measure by comparing with the results
obtained from running a branch-and-bound program that is guaranteed to find the optimal
solution, even if it takes a very long time to compute. This is a program that is currently
being developed for such comparisons and will be utilized during Phase 2.

8. PROJECT SUMMARY AND CONCLUSIONS

The outputs at the end o f Phase 1 of this Project are a designed and implemented core
Plan Generator for the Optimizing Traffic Planner, with accompanying documentation.
Given a set o f inputs, the plan generator produces optimized movement plans for trains
that are displayed as string-line diagrams. The performance of the plan generator has not
been base-lined at this point because of a lack of comparison data as noted above; e.g.,
human dispatcher performance statistics for the lines planned over. However, given the
plan generator’s performance on the two test lines, the system appears to be generating
good plans, with all but a few trains arriving on time.

M a y 2 0 0 0 P a g e 21

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

Testing o f the plan generator will continue following the end o f this project. Because it is
a multi-agent distributed problem-solving architecture, there is an arbitrarily large
number o f system configurations - combinations o f different agents, probabilities of
agents making changes, number o f iterations, etc. — that can be tried in order to fine tune
the system. Moreover, different parts o f a railroad will likely demand different
configurations for best performance. Thus, testing o f the OTP is open-ended in this
regard. However, because o f the modularity o f the problem-solving architecture, there is
almost no effort involved in reconfiguring the system making testing different
configurations straight forward.

Consequently, testing o f the plan generator will continue into the second phase o f the
project. Phase 2 will also see additional testing o f agents and agent configurations
capable o f generating robust schedules and re-planning because the OTP will be planning
in a dynamic environment.

This final report describes the state o f the OTP at the end o f Phase 1. The specific tasks
that were accomplished during the time period covered by the FRA grant are summarized
in the attached interim reports (Appendix 4).

M a y 2 0 0 0 P a g e 2 2

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

APPENDIX 1

Agent Descriptions
In the following table, the agents are either modifier, constructor, or destroyer agents.
Initializers create new plans from schedules. Modifier agents function by examining one
or more existing plans for potential improvements, possibly combining one or more
plans, and creating a new plan based on the discovered opportunities. Destroyer agents
remove the lower quality plans from the pool. When plans are selected, the normal
mechanism is to select the plans randomly, with the selection weighted by fitness.

Agent Descriptions

Code(s) j Agent Name, description
B b C c o A% |CPMImprover

This agent will analyze the Critical Path Method resource allocation
graph with the events in the graph representing the start o f reservations.
There are two types o f reservations in the graph; those representing the j
presence o f a train, or those representing the unavailability o f one or
more routes due to the presence o f a train on some near by route. The
activities represent the transit o f a locomotive from reservation starting
location to reservation starting location, or the corresponding start and j
end o f unavailability o f a route due to the presence o f a train on a near by |
route.
The agent looks for two types o f features in the graph, and makes one o f j
4 types o f repairs, depending on the configuration. The two features are
the longest critical path sequence in the graph, and the event with the
most items depending on its completion (a bottle neck). The types of
repairs are to lower or raise the priority of a suitable event in the feature,
or to choose another routing that does not use the same resource as the
event with either lower or higher priority.

jcritical Path Bottleneck
Lower jc |b
Raise jc jB

Relocate and Lower f< f '
Relocate and Raise |> |%

X CrossoverAgent
The Crossover agent carries out one step o f a genetic algorithm, specifically
selecting two existing plans, choosing two places to combine them and combining
the plans. The resulting new plan is then scored and placed in the pool.

d DividingAgent
The dividing agent selects a plan, selects a spot in the plan and inserts a randomly
selected via at that point in the new plan. The via is selected so that the plan is still
plausible

M a y 2 0 0 0 P a g e 2 3

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

! IPCByViaExitAgent
This agent creates new plans and chooses priorities for the destinations according
to the exit time from each destination.

$ IPCOverkill
This agent creates plans by inserting a via at every reasonable routing point along
the preferred path. This agent is obsolete

s IPCSortedAgent
This agent constructs new plans by sorting the destinations in the schedule by
desired arrival time and assigns priority accordingly.

u IPCUniformAgent
This agent constructs new plans by assigning the same priority to every destination.

$Vv IPCViaCreationBySegmentAgent
This agent creates new plans by considering the preferred course between each pair
of destinations. If the selection strategy is all (indicated with $), all elements o f the
course are selected. Other selection strategies are; select one (marked by V), or
select a configurable number (marked by v)
Priorities are assigned to the course elements according to one o f several strategies,
depending on the configuration o f the agent instance. The priorities are chosen
uniformly, randomly, or by exit time at each destination.

1.......... InitialPlanConstructorAgent
This agent constructs new plans with randomly assigned priority for each
destination in the schedule.

FfLl • NotTooEarlyAgent
This agent looks for planned arrival at a destination early, and inserts delays to
correct for that. Depending on the configuration of the agent instance, the first (Ff)
or last (LI) early destination for each train will be examined, and delays will be
inserted either at the start (FL) or end (fl) of the leg. The amount o f earliness that
will trigger action is configurable.

Zz NotTooLateAgent
This agent looks for planned late arrival at a destination, and increases routing
priorities o f that service before the late point. The priorities are increased according
to a calculated (Z) or random (z) factor.

P PassConstructorAgent
This agent looks for fast trains that are following slower trains, and creates a pass
by stopping the slower train in a siding.

P PrioritizeAgent
This agent raises the routing priorities o f trains that performed poorly.

r PrioritizeByViaExitAgent
This agent adjusts priorities so that earlier destinations are processed with a higher
priority than later destinations.

Yye UselessSidingRemover

M a y 2 0 0 0 P a g e 2 4

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

| This agent looks for routing into a siding where there is no apparent reason for the
: move, and removes the siding move. This situation may occur when a meet or pass
I was constructed by one agent, another agent then re-routed, delayed or otherwise
I changed the timing of one o f the trains, leaving one train in a siding for no apparent
i reason. ,The agent will repair all such sidings (Y), sidings for late trains only (y), or
randomly selected sidings (e). _____ ^

M a y 2 0 0 0 P a g e 2 5

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

APPENDIX 2

Plan Generation
Figure 3 shows the best plan score trend for a train schedule scenario on the BNSF
240 mile territory, which was one o f the data sets used to test the OTP. The diagram
shows the size and frequency o f the changes, which together resemble an exponential
decay, assymptoting toward some final value. The number o f agent applications to
reach the best score is approximately 1300. As can be seen from the graph, almost
85% of the total improvement is obtained by the 315th agent application, where it
reaches a value o f approximately 1525.

2880 T----- :---------1-------------- 1-------------- 1---------------1-----
Trend, Score os Trial [08-May-2000 23:24:22 EDT]

• s o o). ■ ■ s H s o r e - t s ' e n d , d s t •;

2600 -

2400

2 2 0 0

os.
o
o
05 2 0 0 0
+>
VI
a.

1800

1600 -

1400 -

1200 _1_ _1_
200 400 600 800

Trial #
1000 1200 1400

Figure 3= Best Plan Score Trend

The best score is the sum of early and late arrival times at every scheduled stop for all
trains: 1 point for each minute early and 2 points for each minute late. Obviously, the best
score has the lowest number of points. From the values o f the scores shown, it is clear
that there are no deadlocks or missed locations.

M a y 2 0 0 0 P a g e 2 6

D T F R D V -9 9 -G -6 0 1 7 F in a l R ep o rt

The following graphs are string-line diagrams depicting train plans that correspond to the
best scores in Figure 3 above. For each direction of travel, there is a different color
representing each train. String-lines from the upper left comer toward the lower right
represent trains traveling in one direction and string lines from the lower left to the upper
right represent trains traveling in the other direction. Each graph shows the number of the
agent application at the top, which corresponds to an improvement step in Figure 3.

00:00 0 6 : 0 0 12:00 Time 00: 00 0 6 : 0 0

Figure 4: Plan Produced by Agent Application #31

M a y 2000 P a g e 27

Page28

D TF R D V -99-G -6017 F in a l R eport

x>i'
75
C

31

31

0 0 : 0 0 0 6 : 0 0 1 2 : 0 0 Time 0 0 : 00 0 6 : 0 0

Figure 6: Plan Produced by Agent Application #43

M ay 2000 P age 29

D T F R D V -99 -G -6017 F in a l R e p o r t

08^13
00:00 08/13

06:00
08/13
1 £: 00 Time

08/14
00:00 08/14

06:00

Figure 7: Plan Produced by Agent Application #127

M ay 2000 P a g e 30

J 2 Z E Q D V -9 9 -G .^n 1 i

J j n a l R ep o rt

4000

08/14
0 6 : 00

f ig u re 8: P |an Prodllced
by Agent Application #206

P a g e 31

By
Wa

y
In

de
x

D TF R D V -99-G -6017 F in a l R eport

4 0 0 0

3 5 0 0

3 0 0 0 -

£500 -

£ 000 -

1500 -

1 00 0

500

08/13
00:00 08/13

06:00
08/13
1 £: 00 T ime

08/14
00:00 08/14

06:00

Figure 9: Plan Produced by Agent Application #315

May 2000 P age 32

In
de

x

4000

Fi^ 1 0 : p k „ prod

08 ' I 4
00:00

Uced by Agent

08^14
06:00

Nation #

M°y2ooo

p ag e 33

D T F R D V -99-G -6017 F in a j R eport

X
O'

73
C

iTJ
Hin«

00:00 0 6 : 0 0 12:00 Time 00:00 0 6 : 0 0

Figure 11: Plan Produced by Agent Application #1037

M a y 2 000 P a g e 34

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

Agent Performance
In the following Agent Performance table, the agents are specified by their single
character ids (refer to Appendix 1 for the names and descriptions of the different agents).
The count column reports the number of applications of an agent. The best column
reports the number o f times an agent’s action resulted in a new best score. The better
column reports the number of times that an agent improved a plan, and the worse column
reports the number o f times an agent made a plan worse.

What is interesting to note about the data is that individual agents consistently generate
more plans that are worse than the plan they changed rather than better. However, from
the Best Plan Score Trend graph above, the group as a whole does very well. The trick in
fine tuning the plan generator is to improve the ratio o f better to worse plans in order to
improve the performance o f the system over time.

Agent Performance Statistics Table

M a y 2 0 0 0 P a g e 3 5

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

Regression Test Results

The table below contains collected regression testing results for the planning scenario
described above. The first column specifies the number o f trains appearing in each
schedule. The second column contains the time interval covered by the schedule from the
appearance of the first train to the departure of the final train. The third column lists the
actual planned time interval. The fourth column contains the number o f agent
applications. The elapsed run time in the fifth column includes only agent execution time.
The next column shows the number o f missed destinations, which is zero in this case (if it
was not zero, then the scores would have been greater than 10,000).

The column labeled "Final Minutes Late" contains the sum of the minutes late arriving at
the final destination for all services (trains). The Scores in the next two columns are the
best and median scores of all plans in the pool at the end of the run. Each plan score is
computed from: ^00000*(deadlocked trains) +10000*{missed locations) +1*{minutes deviated
from schedule) +1 *(minutes late at each destination). Finally, the last four columns are the
numbers o f the types of agents that were applied (21 modification agents, 1 destroyer
agent and 6 constructor agents).

Regression Test Results Table

Number! Scheduled 1 f .
of Span Time, L ? P a n „ . 1 r . f Time, 1 Trials Trams i hours f , 1 \ I hours 1

1 Elapsed j i 1 . .
Run 1 Agents /1 Missed 1 ,na 1 I n * I Minutes 1 Time, 1 sec 1 Dest \ . .! 1 1 1 Late

Score

h * !med best 1 .
1,an

| t

Mod

igent Types ;

MigjDes|Cons|

40 130.0833 |29.2005 jl010 jl022 f0.988258l0 |298.43 1416 |1503

M a y 2 0 0 0 P a g e 3 6

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

APPENDIX 3

Schedule Data
This Appendix shows the schedule data used for generating the plans in Appendix 2.
Each service is a train, and each station is a scheduled stop for the particular train.
Trains have speed classes and their lengths are in feet. The sizes o f the time windows
between arriving at a station and departing are zero seconds, though this could be
changed. A train id#, the type o f train - coal (empty or loaded), freight, etc. - are
listed in the first line, along with the train’s length in feet, scheduled time o f departure
onto the line, scheduled arrival time at the end and a few other parameters. (Note:
only west-bound trains are listed for brevity. There are 20 trains traveling west and 20
traveling east in 24 hours)

// 1 CE001 5 COALEMTY 6222 1 1 30128 W RAVENNA 0 00:05 33 30364 EALLIANCE 0 06:30
0 0 287 0 0 0 08:30 50000 287 0 0 9 99:99

service
train OxCEOOl
location 0x101 // Station ID: W RAVENNA
DESTTYPE=0

dwell= 120 //seconds, for the moment,
earliestarrival = 1999/8/13 00:05
desiredarrival = 1999/8/13 00:05
latestarrival = 1999/8/13 00:05
earliest_departure= 1999/8/13 00:05
latest_departure = 1999/8/13 00:05
depart_speedclass = 5
deltalength = 6222

location OxCOOOl // Station ID: EALLIANCE
leg=0

// more work properties
desttype=l

dwell=0 //seconds, for the moment,
earliest arrival = 1999/8/13 06:30

desired arrival = 1999/8/13 06:30
latest arrival = 1999/8/13 06:30
earliest departure = 1999/8/13 06:30

latest departure = 1999/8/13 06:30

// 2 CE002 5 COALEMTY 6222 1 1 30128 W RAVENNA 0 01:30 33 30364 EALLIANCE 0 07:55
0 0 287 0 0 0 09:55 50000 287 0 0 9 99:99

service
train 0xCE002
location 0x101 // Station ID: W RAVENNA
DESTTYPE=0

dwell=120 //seconds, for the moment,
earliest arrival = 1999/8/13 01:30
desired arrival = 1999/8/13 01:30
latest arrival = 1999/8/13 01:30

M a y 2 0 0 0 P a g e 3 7

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

earliest_departure= 1999/8/13 01:30
latestdeparture = 1999/8/13 01:30
departspeedclass = 5
deltalength = 6222

location OxCOOOl // Station ID: EALLIANCE
leg=0

// more work properties
desttype=l

dwell=0 //seconds, for the moment,
earliestarrival = 1999/8/13 07:55

desiredarrival = 1999/8/13 07:55
latestarrival = 1999/8/13 07:55
earliest departure = 1999/8/13 07:55

latest departure = 1999/8/13 07:55

// 3 121 2 FREIGH45 6730 1 1 30128 W RAVENNA 0 01:55 33 30364 EALLIANCE 0 08:35 0
0 0 3 0 0 10:35 50000 0 3 0 9 99:99

service
train 121
location 0x101 II Station ID: W RAVENNA
DESTTYPE=0

dwell=120 //seconds, for the moment,
earliestarrival = 1999/8/13 01:55
desiredarrival = 1999/8/13 01:55
latest_arrival = 1999/8/13 01:55
earliest_departure= 1999/8/13 01:55
latest_departure = 1999/8/13 01:55
depart_speedclass = 2
deltalength = 6730

location OxCOOOl // Station ID: EALLIANCE
leg=0

// more work properties
desttype=l

dwell=0 //seconds, for the moment,
earliest arrival = 1999/8/13 08:35

desired arrival = 1999/8/13 08:35
latest arrival = 1999/8/13 08:35
earliest_departure = 1999/8/13 08:35

latest_departure = 1999/8/13 08:35

// 4 CE003 5 COALEMTY 6222 1 1 30128 W RAVENNA 0 03:05 33 30364 EALLIANCE 0 09:30
0 0 287 0 00 11:30 50000 287 0 09 99:99

service
train 0xCE003
location 0x101 // Station ID: W RAVENNA
DESTTYPE=0

dwell=120 //seconds, for the moment,
earliest arrival = 1999/8/13 03:05
desired arrival = 1999/8/13 03:05
latest arrival = 1999/8/13 03:05

M a y 2 0 0 0 P a g e 3 8

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

earliest_departure= 1999/8/13 03:05
latestdeparture = 1999/8/13 03:05
departspeedclass = 5
deltalength = 6222

location OxCOOOl // Station ID: EALLIANCE
leg=0

// more work properties
desttype=l

dwell=0 //seconds, for the moment,
earliestarrival = 1999/8/13 09:30

desiredarrival = 1999/8/13 09:30
latestarrival = 1999/8/13 09:30
earliestdeparture = 1999/8/13 09:30

latest departure = 1999/8/13 09:30

// 5 CE004 5 COALEMTY 6222 1 1 30128 W RAVENNA 0 04:05 33 30364 EALLIANCE 0 10:30
0 0 287 0 0 0 12:30 50000 287 0 0 9 99:99

service
train 0xCE004
location 0x101 // Station ID: W RAVENNA
DESTTYPE=0

dwell=120 //seconds, for the moment,
earliest arrival = 1999/8/13 04:05
desired arrival = 1999/8/13 04:05
latest arrival = 1999/8/13 04:05
earliest_departure= 1999/8/13 04:05
latest departure = 1999/8/13 04:05
departspeedclass = 5
deltajength = 6222

location OxCOOOl // Station ID: EALLIANCE
leg=0

// more work properties
desttype=l

dwell=0 //seconds, for the moment,
earliestarrival = 1999/8/13 10:30

desiredarrival = 1999/8/13 10:30
latestarrival = 1999/8/13 10:30
earliestdeparture = 1999/8/13 10:30

latest_departure = 1999/8/13 10:30

//* 6 223 2FREIGH45 5000 1 1 30128 W RAVENNA 0 05:05 33 30364 EALLIANCE 0 12:15 0
0 0 3 0 0 14:15 50000 0 3 0 9 99:99

service
train 223
location 0x101 // Station ID: W RAVENNA
DESTTYPE=0

dwell=120 //seconds, for the moment,
earliest arrival = 1999/8/13 05:05
desired arrival = 1999/8/13 05:05
latest arrival - 1999/8/13 05:05

M a y 2 0 0 0 P a g e 3 9

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

earliest_departure= 1999/8/13 05:05
latest departure = 1999/8/13 05:05
departspeedclass = 2
deltalength = 5000

location 0xlC0BD704 // Station ID: 30183
leg=0

// more work properties
desttype=l

dwell=1800 //seconds, for the moment.
earliest_arrival = 1999/8/13 05:05

desiredarrival = 1999/8/13 05:05
latestarrival = 1999/8/13 12:15
earliestdeparture = 1999/8/13 05:05

latest_departure = 1999/8/13 12:15

location OxCOOO 1 // Station ID: EALLIANCE
leg=0

// more work properties
desttype=l

dwell=0 //seconds, for the moment,
earliestarrival = 1999/8/13 12:15

desiredarrival = 1999/8/13 12:15
latestarrival = 1999/8/13 12:15
earliestdeparture = 1999/8/13 12:15

latest_departure = 1999/8/13 12:15

// 7 CE005 5 COALEMTY 6222 1 1 30128 W RAVENNA 0 06:50 33 30364 EALLIANCE 0 13:15
0 0 287 0 00 15:15 50000 287 0 0 9 99:99

service
train 0xCE005
location 0x101 // Station ID: W RAVENNA
DESTTYPE=0

dwell=120 //seconds, for the moment,
earliest arrival = 1999/8/13 06:50
desired arrival = 1999/8/13 06:50
latest arrival = 1999/8/13 06:50
earliest_departure= 1999/8/13 06:50
latest departure = 1999/8/13 06:50
depart_speedclass = 5
deltalength = 6222

location OxCOOO 1 // Station ID: EALLIANCE
leg=0

// more work properties
desttype=l

dwell=0 //seconds, for the moment,
earliestarrival = 1999/8/13 13:15

desiredarrival = 1999/8/13 13:15
latestarrival = 1999/8/13 13:15
earliestdeparture = 1999/8/13 13:15

latestdeparture = 1999/8/13 13:15

M a y 2 0 0 0 P a g e 4 0

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

// 8 CE006 5 COALEMTY 6222 1 1 30128 W RAVENNA 0 07:40 33 30364 EALLIANCE 0 14:05
0 0 287 0 00 16:05 50000 287 0 0 9 99:99

service
train 0xCE006
location 0x101 // Station ID: W RAVENNA
DESTTYPE=0

dwell=120 //seconds, for the moment,
earliestarrival = 1999/8/13 07:40
desiredarrival = 1999/8/13 07:40
latestarrival = 1999/8/13 07:40
earliest_departure= 1999/8/13 07:40
latest departure = 1999/8/13 07:40
depart_speedclass = 5
deltalength = 6222

location OxCOOOl // Station ID: EALLIANCE
leg=0

// more work properties
desttype=l

dwell=0 //seconds, for the moment.
earliest_arrival = 1999/8/13 14:05

desiredarrival = 1999/8/13 14:05
latestarrival = 1999/8/13 14:05
earliest_departure = 1999/8/13 14:05

latestdeparture = 1999/8/13 14:05

// 9 125 2FREIGH45 6730 1 1 30128 W RAVENNA 0 08:20 33 30364 EALLIANCE 0 15:55 0
0 0 3 0 0 17:55 50000 0 3 0 9 99:99

service
train 125
location 0x101 // Station ID: W RAVENNA
DESTTYPE=0

dwell=120 //seconds, for the moment,
earliest arrival = 1999/8/13 08:20
desired arrival = 1999/8/13 08:20
latest arrival = 1999/8/13 08:20
earliest_departure= 1999/8/13 08:20
latest departure = 1999/8/13 08:20
departspeedclass = 2
delta_length = 6730

location OxCOOOl // Station ID: EALLIANCE
leg=0

// more work properties
desttype=l

dwell=0 //seconds, for the moment,
earliestarrival = 1999/8/13 15:55

desiredarrival = 1999/8/13 15:55
latestarrival = 1999/8/13 15:55
earliestdeparture = 1999/8/13 15:55

latestdeparture = 1999/8/13 15:55

M a y 2 0 0 0 '1 P a g e 41

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

//10 CE007 5 COALEMTY 6222 1 1 30128 W RAVENNA 0 10:05 33 30364 EALLIANCE 0 16:30
0 0 287 0 0 0 18:30 50000 287 0 0 9 99:99

service
train 0xCE007
location 0x101 // Station ID: W RAVENNA
DESTTYPE=0

dwell=120 //seconds, for the moment,
earliestarrival = 1999/8/13 10:05
desiredarrival = 1999/8/13 10:05
latestarrival = 1999/8/13 10:05
earliest_departure= 1999/8/13 10:05
latestdeparture = 1999/8/13 10:05
departspeedclass = 5
deltalength = 6222

location OxCOOOl // Station ID: EALLIANCE
leg=0

// more work properties
desttype=l

dwell=0 //seconds, for the moment,
earliestarrival = 1999/8/13 16:30

desiredarrival = 1999/8/13 16:30
latestarrival = 1999/8/13 16:30
earliestdeparture = 1999/8/13 16:30

latestdeparture = 1999/8/13 16:30

// 11 CE008 5 COALEMTY 6222 1 1 30128 W RAVENNA 0 11:05 33 30364 EALLIANCE 0 17:30
0 0 287 0 0 0 19:30 50000 287 0 0 9 99:99

service
train 0xCE008
location 0x101 // Station ID: W RAVENNA
DESTTYPE=0

dwell=120 //seconds, for the moment,
earliestarrival = 1999/8/13 11:05
desiredarrival = 1999/8/13 11:05
latestarrival = 1999/8/13 11:05
earliest_departure= 1999/8/13 11:05
latestdeparture = 1999/8/13 11:05
departspeedclass = 5
delta_length = 6222

location OxCOOOl // Station ID: EALLIANCE
leg=0

// more work properties
desttype=l

dwell=0 //seconds, for the moment.
earliest_arrival = 1999/8/13 17:30

desiredarrival = 1999/8/13 17:30
latestarrival = 1999/8/13 17:30
earliestdeparture = 1999/8/13 17:30

latestdeparture = 1999/8/13 17:30

M a y 2 0 0 0 P a g e 42

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

//12 CE009 5 COALEMTY 6222 1 1 30128 W RAVENNA 0 12:05 33 30364 EALLIANCE 0 18:30
0 0 287 0 0 0 20:30 50000 287 0 0 9 99:99

service
train 0xCE009
location 0x101 // Station ID: W RAVENNA
DESTTYPE=0

dwell=120 //seconds, for the moment,
earliestarrival = 1999/8/13 12:05
desiredarrival = 1999/8/13 12:05
latestarrival = 1999/8/13 12:05
earliest_departure= 1999/8/13 12:05
latestdeparture = 1999/8/13 12:05
departspeedclass = 5
deltalength = 6222

location OxCOOOl // Station ID: EALLIANCE
leg=0

// more work properties
desttype=l

dwell=0 //seconds, for the moment,
earliestarrival = 1999/8/13 18:30

desired_arrival = 1999/8/13 18:30
latest_arrival = 1999/8/13 18:30
earliestdeparture = 1999/8/13 18:30

latestdeparture = 1999/8/13 18:30

//13 CE010 5 COALEMTY 6222 1 1 30128 W RAVENNA 0 13:35 33 30364 EALLIANCE 0 20:00
0 0 287 0 0 0 22:00 50000 287 0 0 9 99:99

service
train OxCEOlO
location 0x101 // Station ID: W RAVENNA
DESTTYPE=0

dwell= 120 //seconds, for the moment.
earliest_arrival = 1999/8/13 13:35
desiredarrival = 1999/8/13 13:35
latestarrival = 1999/8/13 13:35
earliest_departure= 1999/8/13 13:35
latestdeparture = 1999/8/13 13:35
departspeedclass = 5
deltalength = 6222

location OxCOOOl // Station ID: EALLIANCE
leg=0

// more work properties
desttype=l

dwell=0 //seconds, for the moment.
earliest_arrival = 1999/8/13 20:00

desired arrival = 1999/8/13 20:00
latest arrival = 1999/8/13 20:00
earliest_departure = 1999/8/13 20:00

latest_departure = 1999/8/13 20:00

M a y 2 0 0 0 P a g e 43

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

I I 14 021 1 INTERMOD 5081 1 1 30128 W RAVENNA 0 14:20 33 30364 EALLIANCE 0 20:55 0
0 443 0 0 0 22:55 50000 443 0 0 9 99:99

service
train 021
location 0x101 // Station ID: W RAVENNA
DESTTYPE=0

dwell=120 //seconds, for the moment,
earliestarrival = 1999/8/13 14:20
desiredarrival = 1999/8/13 14:20
latestarrival = 1999/8/13 14:20
earliest_departure= 1999/8/13 14:20
latest_departure = 1999/8/13 14:20
departspeedclass = 1
deltalength = 5081

location OxCOOOl // Station ID: EALLIANCE
leg=0

// more work properties
desttype=l

dwell=0 //seconds, for the moment,
earliest arrival = 1999/8/13 20:55

desired_arrival = 1999/8/13 20:55
latest arrival = 1999/8/13 20:55
earliestdeparture = 1999/8/13 20:55

latestdeparture = 1999/8/13 20:55

// 15 CEO 11 5 COALEMTY 6222 1 1 30128 W RAVENNA 0 15:35 33 30364 EALLIANCE 0 22:00
0 0 287 0 0 1 00:00 50000 287 0 0 9 99:99

service
train OxCEOll
location 0x101 // Station ID: W RAVENNA
DESTTYPE=0

dwell=120 //seconds, for the moment,
earliestarrival = 1999/8/13 15:35
desired_arrival = 1999/8/13 15:35
latestarrival = 1999/8/13 15:35
earliest_departure= 1999/8/13 15:35
latest_departure = 1999/8/13 15:35
departspeedclass = 5
delta_length = 6222

location OxCOOOl // Station ID: EALLIANCE
leg=0

// more work properties
desttype=l

dwell=0 //seconds, for the moment,
earliest arrival = 1999/8/13 22:00

desired arrival = 1999/8/13 22:00
latest_arrival = 1999/8/13 22:00
earliest departure = 1999/8/13 22:00

latest departure = 1999/8/13 22:00

M a y 2 0 0 0 P a g e 44

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

I I 16 CEO 12 5 COALEMTY 6222 1 1 30128 W RAVENNA 0 17:05 33 30364 EALLIANCE 0 23:30
0 0 287 0 0 1 01:30 50000 287 0 0 9 99:99

service
train 0xCE012
location 0x101 // Station ID: W RAVENNA
DESTTYPE=0

dwell=120 //seconds, for the moment,
earliestarrival = 1999/8/13 17:05
desiredarrival = 1999/8/13 17:05
latestarrival = 1999/8/13 17:05
earliest_departure= 1999/8/13 17:05
latestdeparture = 1999/8/13 17:05
depart_speedclass = 5
deltalength = 6222

location OxCOOOl // Station ID: EALLIANCE
leg=0

// more work properties
desttype=l

dwell=0 //seconds, for the moment,
earliest arrival = 1999/8/13 23:30

desired arrival = 1999/8/13 23:30
latest arrival = 1999/8/13 23:30
earliestdeparture = 1999/8/13 23:30

latest departure = 1999/8/13 23:30

// 17 CEO 13 5 COALEMTY 6222 1 1 30128 W RAVENNA 0 18:05 33 30364 EALLIANCE 100:30
0 0 287 0 0 1 02:30 50000 287 0 0 9 99:99

service
train OxCEO 13
location 0x101 // Station ID: W RAVENNA
DESTTYPE=0

dwell=120 //seconds, for the moment,
earliestarrival = 1999/8/13 18:05
desiredarrival = 1999/8/13 18:05
latestarrival = 1999/8/13 18:05
earliest_departure= 1999/8/13 18:05
latestdeparture = 1999/8/13 18:05
departspeedclass = 5
delta_length = 6222

location OxCOOOl // Station ID: EALLIANCE
leg=0

// more work properties
desttype=l

dwell=0 //seconds, for the moment,
earliestarrival = 1999/8/14 00:30

desired_arrival = 1999/8/14 00:30
latest arrival = 1999/8/14 00:30
earliestdeparture = 1999/8/14 00:30

latestdeparture = 1999/8/14 00:30

M a y 2 0 0 0 P a g e 4 5

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

I I 18 CEO 14 5 COALEMTY 6222 1 1 30128 W RAVENNA 0 19:35 33 30364 EALLIANCE 102:00
0 0 287 0 0 1 04:00 50000 287 0 0 9 99:99

service
train 0xCE014
location 0x101 // Station ID: W RAVENNA
DESTTYPE=0

dwell=120 //seconds, for the moment,
earliestarrival = 1999/8/13 19:35
desiredarrival = 1999/8/13 19:35
latest_arrival = 1999/8/13 19:35
earliest_departure= 1999/8/13 19:35
latestdeparture = 1999/8/13 19:35
depart_speedclass = 5
deltalength = 6222

location OxCOOOl // Station ID: EALLIANCE
leg=0

// more work properties
desttype=l

dwell=0 //seconds, for the moment,
earliestarrival = 1999/8/14 02:00

desiredarrival = 1999/8/14 02:00
latest arrival = 1999/8/14 02:00
earliest_departure = 1999/8/14 02:00

latest_departure = 1999/8/14 02:00

//19 CEO 15 5 COALEMTY 6222 1 1 30128 W RAVENNA 0 21:25 33 30364 EALLIANCE 1 03:50
0 0 287 0 0 1 05:50, 50000 287 0 0 9 99:99

service
train 0xCE015
location 0x101 // Station ID: W RAVENNA
DESTTYPE=0

dwell=120 //seconds, for the moment,
earliest arrival = 1999/8/13 21:25
desiredarrival = 1999/8/13 21:25
latest_arrival = 1999/8/13 21:25
earliest_departure= 1999/8/13 21:25
latest departure = 1999/8/13 21:25
departspeedclass = 5
delta_length = 6222

location OxCOOOl // Station ID: EALLIANCE
leg=0

// more work properties
desttype=l

dwell=0 //seconds, for the moment,
earliestarrival = 1999/8/14 03:50

desired_arrival = 1999/8/14 03:50
latest arrival = 1999/8/14 03:50
earliestdeparture = 1999/8/14 03:50

latestdeparture = 1999/8/14 03:50

M a y 2 0 0 0 P a g e 4 6

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

1/20 CEO 16 5 COALEMTY 6222 1 1 30128 W RAVENNA 0 23:30 33 30364 EALLIANCE 105:55
0 0 287 0 0 1 07:55 50000 287 0 0 9 99:99

service
train 0xCE016
location 0x101 // Station ID: W RAVENNA
DESTTYPE=0

dwell=120 //seconds, for the moment,
earliestarrival = 1999/8/13 23:30
desired arrival = 1999/8/13 23:30
latestarrival = 1999/8/13 23:30
earliest_departure= 1999/8/13 23:30
latest departure = 1999/8/13 23:30
depart_speedclass = 5
deltalength = 6222

location OxCOOOl // Station ID: EALLIANCE
leg=0

// more work properties
desttype=l

dwell=0 //seconds, for the moment,
earliestarrival = 1999/8/14 05:55

desired arrival = 1999/8/14 05:55
latestarrival = 1999/8/14 05:55
earliestdeparture = 1999/8/14 05:55

latest_departure = 1999/8/14 05:55

M a y 2 0 0 0 P a g e 4 7

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

APPENDIX 4

This appendix contains the activity sections from each o f the project progress reports that
were submitted between November 1,1999 and February 29, 2000.

PROGRESS REPORT #1:

Progress from June 1,1999 to October 31,1999

The following is a list o f system components and concomitant work activities that have
been progressed since June 1, 1999. In order to provide the reader with a better
understanding o f the work involved and how it relates to the overall system, some o f
these are accompanied by extended explanations. Generally speaking, a working version
of the OTP has been implemented that accepts as inputs train schedules, train properties
and track descriptions for a region of a rail network and then constructs optimized,
detailed movement, or meet/pass, plans for trains over a specified time interval (e.g., 24
hours). Currently this software generates feasible plans based on static data for the track
plan being used for testing. Constructor agents, a destroyer agent and modification
agents have been implemented. Given a feasible schedule, an operationally feasible
movement plan will be generated. Currently the plans are scored by adding the minutes
late based on the schedule that is being optimized to. When queried, it will output the
best plan in the form of a string line diagram.

• Train Dispatcher. The dispatcher has been fully designed and implemented, and is
currently undergoing integration and performance testing.

The Train Dispatcher is responsible for creating the reservations that accomplish a
given plan. The plan contains information about the trains and their desired
destinations. Trains are dispatched one leg (one or more sections o f track) at a time
based on the priority of leg destinations. The priorities of the train’s destinations are
set by the agents. The agents set the priorities in the priority matrix in order to
influence the dispatching process.

During the dispatching process for a train, the dispatcher reserves the routes that will
allow the train to move to its desired destination along a preferred course. If there is a
route that can not be reserved, the dispatcher tries to find another route that will allow
the train to continue towards its destination.

When there are no other routes the dispatcher determines if the train could wait at its
last reservation for the next route to clear. If waiting is possible, the dispatcher will
extend the last reservation and continue reserving the course with the consequent
delay. If waiting is not possible, the last reservation is deleted and the train is
“virtually” backed up one route and the process is repeated by looking for an
alternative and waiting. This will accomplish a meet/pass for two opposing trains as

M a y 2 0 0 0 P a g e 4 8

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

required. The process will continue until the train either reaches its destination or the
start o f the leg that is being dispatched.

If backing up continues to the beginning o f the course, the dispatcher will try an
alternative course if one exists. If no other courses exist for that train, it is put in a
holding pool for later consideration. The dispatching then continues with the next
train. After successfully dispatching the next train, any trains that were put on hold
are reintroduced in an attempt to dispatched those trains again. This process will
continue until either all trains have been dispatched or the remaining trains have been
put on hold. Trains remaining in the holding pool when the dispatcher has completed
will contribute a penalty to the score of the plan.

This method of dispatching has an advantage over static branch and bound methods
for movement plan generation in that it is able to account for time-dependent
constraints like temporary slow orders, which the latter methods annot do without a
lot o f difficulty.

• Deadlock predictor algorithm. The deadlock predictor has been designed and
implemented to work on general network configurations o f track, and so should be
applicable to any railroad’s trackage. It is used by the dispatcher component.

Though started before June 1st, this critical component was finished during the
summer. A deadlock avoidance mechanism is required to prevent machine induced
deadlocks from occurring. A particular method for predicting deadlocks that is
general across different kinds o f interlockings was chosen for this task. Called the
Modular Switch Array Method (MSAM), it predicts whether the movement o f a train
onto a segment o f track (a schedulable operation) will create an eventual deadlock.
Without deadlock avoidance, it was found that most solutions generated by the OTP
contained deadlocks, which is a computationally prohibitive and operationally
unacceptable.

The deadlock predictor is based on a model of the connectivity and capacity o f the
railroad network derived from the routing and trackwork interconnects, along with a
few heuristic statements about the ability of trains to move. The model and the
statements predict whether the movement o f a train into the next route will result in
deadlock of the railroad network. The predictor avoids NP-completeness by limiting
the search scope when evaluating the statements to a reasonable space. The limits will
result in accurate predictions for all but the most congested networks, without undue
computational cost.

• Development o f the Movement model: The movement model has been designed.
Implementation o f several o f the factors affecting train movement has begun.

The OTP must estimate the duration o f travel for the trains as they move. It is the
Movement Model component that determines the duration and speed profile o f a
train’s movement between two points on the railroad network. Such a calculation

M a y 2 0 0 0 P a g e 4 9

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

depends on restrictions that apply at any point in time, like grade and curvature
information, as well as train characteristics. The static information needed, such as
civil speed limits and terrain information, exists in the track database. Other dynamic
information, such as certain train characteristics and train ahead identification, is
provided by other components of the CTC system through the OTP’s database.
Additionally, device behaviors such as switch position change and signal state change
are also accounted for.

All o f this information is used to calculate a maximum speed profile that the train
needs to satisfy. Terrain and train characteristics affect acceleration and deceleration
rates. The tractive and resistive forces are computed based on available information
about locomotives, load and length of the train, terrain information, and so on. In
addition, operating style for manual locomotives and control parameters for
automated cabs may affect the movement dynamics (though this will not be part of
the movement model for this release o f the OTP). Because the required information
is not always readily available, the Movement Model should gracefully deal with
incomplete data. For example, when the terrain information is incomplete, the
acceleration and deceleration are approximated. Finally, it should be mentioned that
safe braking distance models play an important role in the determination o f simulated
speed and deceleration rate.

A simulated speed profile over the segment chosen results after applying acceleration
and deceleration rates to the previously computed maximum speed profile. This
discrete profile is used to determine the duration of the movement that is returned to
the planner, so that it can add it to the movement plan.

• Development o f software problem-solving agents. Development o f software agents is
an ongoing task, since better agents along with different combinations o f agents will
solve the problem more effectively.

Agents developed after June 1st include a crossover agent, which is a genetic
algorithm that mimics genetic crossover, a critical path agent that alters which trains
are on the critical path, a meet/pass improver agent, a late-time improver agent and a
wait-time improver agent. The latter three agents are heuristics that look for specific
features o f a train’s movement profile, like waiting too long at some point. If such
features are identified, the agent attempts to change the train’s priority in order to
remove or reduce the effects of the feature, after which the dispatcher component
generates a new movement plan.

• Development o f the Connectivity Model: The connectivity model has been designed
and implemented.

The basis for the rail connectivity model o f the OTP is US&S’s Support Database.
The physical devices that make up a rail network are defined in this database. The
OTP connectivity model inherits from this basic framework to build its own model of
the railroad. From the connection o f tracks, switches and signals in the US&S

M a y 2 0 0 0 P a g e 5 0

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

support database, the OTP model builds a configuration based on authority units (the
smallest portion o f the rail network that may be dispatched), interchanges
(interlockings where alternate routing options may be employed) and segments (areas
delimited by the same 'from' and 'to' interchanges, which contains a list o f authority
units that originate at the 'from' interchange and terminate at the 'to' interchange).

• Scoring mechanism: A simple scoring mechanism has been designed and
implemented. In the coming months, this component will be enhanced.

Since the OTP maintains a collection o f movement plans (solutions to the problem of
moving trains to a schedule) that are optimized according to specific optimization
criteria, it needs a method o f ranking the overall goodness o f each plan. The lowest
scoring plans will be destroyed, while the better plans will be retained for
modification and, if selected, execution.

The Scoring mechanism used in the OTP allows for multiple evaluation metrics to be
used for judging each plan. Each evaluation metric represents an aspect o f a plan's
goodness or badness. For example, there is a Schedule Deviation metric, which
measures the number o f minutes a train has deviated from its schedule. For that
particular metric, the smaller the number, the better a plan is. The scores generated
by the multiple evaluation metrics are then combined to form a single score that
represents a plan's overall goodness.

• Integration testing: integration testing o f the OTP began in September and continues
today. The A_Teams problem-solving subsystem and the above described modules
currently make up the OTP. A number o f bugs in the dispatcher have been found and
corrected because of integration testing. As new components are completed, they will
be integration tested.

• Performance testing: One o f the things that is imperative for the OTP is that it be able
to generate optimized plans in under 30 seconds and preferably in less than 20
seconds. This is necessary so that the human dispatcher is able to quickly see the
movement plans after a change has occurred, such as a track block or slow order. The
dispatcher component of the OTP represents the most time consuming of the
processes and so has been the focus o f performance improvements. In the course of
this testing, many algorithms have been streamlined to enhance performance. In
addition, since better agents produce better solutions faster, agent development is
another area that will likely enhance performance.

PROGRESS REPORT #2:

Progress for November, 1999

The work in November consisted o f the following tasks:

M a y 2 0 0 0 P a g e 51

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

• Further refinement o f the movement model. This work consisted primarily of
debugging, followed by testing, which took longer than expected. The
movement model now appears to work correctly. It is used by the dispatcher
component o f the OTP to determine how long it will take a train to traverse a
particular section of track.

• Design document for the movement model. This document will be completed
in December as part of the Alpha Demonstration release o f the Optimizing
Traffic Planner (OTP).

• New software agent development. Several new agents were added to the OTP.
These include:

a. Pass Constructor Agent. This software agent determines if a
pass is needed, and if so, will change the priorities o f the trains
involved for entering the section o f track where the next pass is
possible.

b. Useless Siding Agent: This agent eliminates trains from
entering sidings for no reason. The reason a plan would contain
such a maneuver is that another train, which was the original
reason for the first train entering the siding, had its route
changed in the meantime.

c. Early Arrival Remover: This agent attempts to get rid o f trains
arriving at their destinations too early.

The system currently has 24 agents, including the three above. Besides the
latter three, they consist of a crossover agent (genetic algorithm), five
bottleneck improver agents, two additional useless siding agents, three
additional early arrival remover agents, a route divider agent, three critical
path improver agents, a prioritize-by-schedule agent, and five plan
initialization agents.

• Found and corrected several bugs in the statistical analysis software. This
software is responsible for keeping statistics on the number o f times agents are
applied to the solutions in the solution pool, the improvements o f movement
plans over time, and so forth. This software is used to analyze the
performance of the OTP and helps determine where improvements can be
made. •

• Ran the planner on a second railroad database. Previous to this, the OTP was
being run on a CSX territory that was primarily single track. In November, the
testing territories were switched over to those o f BNSF. Switching databases
brought to the fore a number o f issues and a couple o f bugs. Since the BNSF
database was much larger than the CSX database, changes were made to the
OTP software to shorten the initialization phase (when the track database is
read into the system). Also, there were a couple o f bugs in the database itself,
and a bug was detected in the OTP and corrected.

M a y 2 0 0 0 P a g e 52

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

• Software was added so that agents can be configured during runtime rather
than compile time. Doing this allows agents to be added to (and deleted from)
the active set so that new agents can be analyzed in terms o f how well they
improve the performance of the OTP. Different combinations o f agents will
probably work better depending on the track configuration they are planning
over.

• Modified OTP software to reduce memory consumption. Because there are
approximately 50 solutions in memory simultaneously, the system uses a large
amount o f memory. This usage was streamlined so that less swapping would
occur and the OTP would run faster.

• Incorporating the constraint propagation solution generator with the A Teams
planning architecture. One o f the efforts o f the OTP project has been to
develop an alternative problem solver - that is, one that could solve the
planning problem on its own, without benefit o f the A Teams organization.
This alternative solver applies constraint satisfaction in the context o f a branch
and bound search algorithm (though such algorithms exhibit certain
limitations when applied to problems the size of rail traffic planning). Because
this alternative problem solver generates fairly good initial solutions quickly
(the other initialization agents alluded to above are fast, but the solutions they
generate are not that good), it was decided to integrate it with the A Teams
problem solver as a construction agent. There is still work remaining to get
this integration completed.

During November, having overhauled the movement model and debugged other parts of
the system, the development team was able to reduce the time to generate solutions, as
well as improve the quality of solutions. Following the next section, there is a data
section showing output from the OTP planning over a BNSF coal line in Nebraska
(between Ravenna and Alliance). The train data for this was received from BN in 1994 -
95.

PROGRESS REPORT #3;

Progress for December, 1999

Work on the Optimizing Traffic Planner (OTP) in December consisted o f the following:

• Fixing problems with several agents. This work consisted primarily of
debugging, followed by testing the changes. •

• Design document for the movement model. This document was completed
during December as part of the Alpha Demonstration release high-level design

M a y 2 0 0 0 P a g e 53

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

documentation of the OTP. It will have added to it the detailed system design
during January and February.

• New software agent development. Several new agents were added to the OTP.
These include:

d. Overtake Agent. This software agent looks for situations where
passes between trains could occur.

e. Late Arrival Time Improver Agent: This agent changes the
plans of trains with late arrival times.

f. Early Arrival Time Improver Agent: This agent changes the
plans of trains with early arrival times.

The system now has 27 agents, including the three above.

• Continued testing on the BNSF data. Testing consisted o f running different
combinations of agents and with different frequencies o f application to
generate potential solutions. The goal is to both improve the planning
capability o f the system and to study the computational behaviors o f different
combinations of agents.

• Added end of train exit time to the movement model. Makes it a more realistic
movement model. Also fixed the initial and final velocity calculation o f the
movement model.

Progress for January, 2000

The work in January consisted of the following:

• CSX line data for analysis. We obtained data from CSX for one o f their lines,
which we will run the OTP on. Their track database is configured differently
than the BNSF database, which necessitated changes to the program reading it
in.

• Detailed Design Document. The detailed design document for the Alpha
Demonstration release of the OTP was started this month and is scheduled for
completion in February (being added to the high-level design document
completed in December). •

• Preparation for working with George Washington University: We will be
subcontracting software agent algorithm development work to George
Washington University (GWU) during most o f this year (kickoff is scheduled
for February 10th and 11th), which required putting together materials and a
working system so that the GWU team can get started.

M a y 2 0 0 0 P a g e 5 4

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

• Continued testing on the BNSF data. Same goals o f tuning the system and
studying the performance of the A Teams problem solving agents. A
composite o f the results will be included in the final report, which is due next
month (March).

• General debugging of the OTP software.

• Re-writing particular parts o f the code to make it more efficient with respect
to memory usage and some speed o f processing.

• Started work on System Architecture Document.

Work Planned for February, 2000

The work planned for February is as follows:

• Work with GWU. The team at GWU will become familiar with the OTP in its current
state and begin work about mid-February. US&S project personnel will interface with
the team on a regular basis, primarily through email and telephone, but will meet
face-to-face approximately once a month.

• Continue to run the OTP on the BNSF track scenarios to fine tune and debug the
system. •

• Apply the OTP to the CSX track database using the train schedules provided by CSX.
The plan is to demo the results to CSX sometime in March.

• Complete the detailed design document.

• Modify the Dispatcher Component algorithm to make it execute faster. Presently is
has an n2 time complexity, which should be reduced to nlog(n) or n.

M a y 2 0 0 0 P a g e 5 5

D T F R D V -9 9 -G -6 0 1 7 F in a l R e p o r t

APPENDIX 5

University Participation:

It was originally intended to subcontract with two universities for this phase of the
project: George Washington University (GWU) and the University of Alabama (UA).
Due to the relatively short duration of the project and the time required to put together
agreements and, subsequently, set up a development environment with the universities,
GWU was on board and working only for the latter part of January and the month of
February (through the end of this phase - Phase 1 - of the project). UA did not
participate. GWU continues to work in Phase 2, and it is planned that UA will have an
agreement in place toward the end of Phase 2 and continue into Phase 3.

The following is a summary of GWU’s work during Phase 1. The time was used
primarily for training, to work out a plan or statement of work and to set the GWU lab up
with the requisite software and development environment. They were asked to complete
the following three related tasks:

1. Develop new agents for improving the performance of the OTP;
2. Develop a process agent that will decide which agents to apply to a solution and when

(to improve performance);
3. Perform an extensive analysis of the application of problem-solving agents to

different problems and summarize the results.

All these tasks, though begun at the very end of Phase 1, are currently ongoing (post
Phase 1).

M a y 2 0 0 0 P a g e 5 6

“•“ K̂ggau,

Optimizing Train Performace through Advanced Planning and
Integrated Data Recording Systems (Final Report), Transportation
Safety Research Alliance, 2000 -06-Signals, Control &
Communications

