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Summaries

Normal and tangent contact pressure distributions in railroad rails and wheels, new
concepts
J.Krok
This work introduces new idea of normal and tangent forces (transverse and longitudinal traction)
definition for smooth as well as for rough wheel/rail surfaces. The main features of proposed idea are:
stochastic approach, and neural network analysis used to determine load parameters.

Error controlled 3D stress analysis in railroad rails under contact loadings by the adap-
tive FEM/MFDM and Fourier series. Progress report
J.Krok
Elastic solutions for a railroad wheel subject to various types of loadings simulating the true wheel/rail
rolling contact forces may be obtained by new FEM/MFDM approximation presented here. Specially de-
veloped Generalized Finite Fourier Method, FEM and variational version of the Meshless Finite Differ-
ence Method (MFDM) are applied in the wheel cross section and Fourier series approach in the
circumferential direction. The Fourier analysis is also used to reconstruct loads of biparabolic shape. Ra-
dial, transversal and tangent loads (friction) may be considered.
New, reproducibility conditions based, meshless FDM approximation and mixed FEM/MFDM ap-
proximation are given. A'posteriori error estimation technique, based on mixed FEM/MFDM approxima-
tion, is introduced.

h-adaptive FEM analysis of shakedown problems modeled by Zarka's approach
W.Cecot

The paper addresses development of numerical implementation of the Zarka shakedown model. The
resulting boundary value problem is discretized by the h-adaptive finite element method. The paper pre-
sents also validation tests of the Zarka approach and its application to the analysis of selected engineering
problems with special attention paid to reliability of the modeling as well as of the numerical analysis. The
tests confirm possibility of a proper, for engineering purposes, estimation of residual stresses by the Zarka
shakedown approach.

Extension of the constrained minimization shakedown model to the case of material ex-
hibiting kinematic hardening. Sample engineering applications
M.Pazdanowski

An extension of the mechanical/mumerical constrained minimization shakedown mechanical model to
include the plastic strain incompressibility has been proposed and included in the algoritm. The developed
numerical application has been tested and verified. Subsequently it has been applied to compute plastic
strains and residual stresses in two problems interesting from the engineering point of view, i.e. "wheel
wandering" phenomenon and sensitivity of residual stresses to changes in material constants (yield limit
and hardening ratio).



Error controlled 3D stress analysis in railroad wheels under contact loadings by the
adaptive FEM/MFDM and Fourier series.
J.Krok
Elastic solutions for a railroad wheel subject to various types of loadings simulating the true wheel/rail
rolling contact forces are presented here. Specially developed Generalized Finite Fourier Method, FEM
and variational version of the Meshless Finite Difference Method (MFDM) are applied in the wheel cross
section and Fourier series approach in the circumferential direction. The Fourier analysis is also used to
reconstruct loads of biparabolic shape. Radial, transversal and tangent loads (friction) may be considered.
Results of elastic stress analysis in test problems, as well as in wheels for normal contact pressure
were given. New aposteriori error estimation technique, which removed main drawback of so called
Zienkiewicz-Zhu error estimator, has been introduced and successfully tested.

On improving the estimation of residual stresses in bodies made of material exhibiting
kinematic hardening
M.Pazdanowski

A new approach to approximation of the solution in the area of changing mesh density has been pro-
posed as the remedy to the more pronounced sensitivity of the Meshless Finite Difference Method over
the Hybrid Finite Element Method to the changes in mesh density. Such changes are necessary, if a large
body with a localized loading of high intensity is to be analyzed with high accuracy. This approach, to-
gether with the accompanying changes in the underlying computer code has been tested and validated. An
application of the code to determine residual stresses and plastic strains in a vehicle wheel is presented.

Incremental analysis of residual states by the elastic-plastic constitutive models. Part I.
New element families in incremental plasticity - further research
J.Krok

The work addresses development of theory and techniques to obtain the solution of three dimensional

elasto-plastic and elasto-viscoplastic (Perzyna's model) problems with a'posteriori error estimation, based
on Zienkiewicz-Zhu stress recovery estimators. The 3D model has been considered.

A new family of brick elements of arbitrary order has been introduced and successfully tested on up to

7" order.

Incremental analysis of residual states by the elastic-plastic constitutive models. Part Il.
Testing of the new element families in incremental plasticity
J.Krok

The work addresses development of theory and techniques to obtain the solution of two dimensional
elasto-plastic and elasto-viscoplastic (Perzyna's model) problems with a'posteriori error estimation, based
on Zienkiewicz-Zhu stress recovery estimators. The 2D models (2D stress, 2D strain and axially symmet-
ric case) have been considered.

The most important advantages of the above mentioned models when compared with shakedown ap-
proach, lie in capability to describe various kinds of non-elastic material behavior like: creep, relaxation,
strain softening, continuum damage and termomechanical fatigue. The models require yielding conditions
and loading unloading criteria.

Numerical solutions of various boundary value problems illustrate effectiveness of the MFDM in
a'posteriori error estimation of inelastic problems for various element types like simple and higher order
triangular and quadrilateral ones.



2D Incremental analysis of residual stresses in railroad rails with plastic strain harden-
ing taken into account
J.Krok

The objective of the work is to evaluate elastic and residual stresses in railroad rails, due to normal
contact loads of different amplitudes on the rail/wheel interface, with hardening taken into account.
Elasto-plastic analysis is performed to evaluate residual state in the railroad rails, under the assumption of
plane stress state. Comparison of magnitudes and izolines of the axial stresses for dlfferent load levels, for
incremental plasticity models, has been made.

h-adaptive FEM analysis of residual states in railroad rails by the Bodner-Partom consti-
tutive model
W.Cecot
The paper addresses development of numerical implementation of the Bodner-Partom rate model. The
resulting boundary value problem is discretized by the h-adaptive Finite Element Method.
These constitutive equations were used to model such phenomena as continuum damage and ther-
momechanical fatigue. The incremental results were compared with the shakedown Zarka's modeling.

Adaptive mesh generation and visualization for MFDM and FEM analysis of railroad rails
and vehicle wheels
l.Jaworska, J.Orkisz, P.Przybylski
The report presents the research on the original mesh generation method, based on mesh density con-
trol. The method is designed for adaptive analysis of 2D and 3D objects, including railroad rails and vehi-
cle wheels. It is capable of various mesh modifications especially focused on highly efficient multigrid
solution approach, carried out by means of meshless FD and FE methods.

An unified approach to the adaptive meshless FDM and FEM
J.Krok, J.Orkisz
The work addresses the general topic of a Combined Adaptive Finite Element Method (AFEM) and
Adaptive Meshless Finite Difference Method (AMFDM). Enhancement of numerical solution in both
methods and, first of all, in a combined AFEM/AMFDM technique is considered. Several ways of possi-
ble formal unification and combination of the FE and MFD methods are examined.
Several benchmarks were analyzed as well as engineering type of stress analysis in railroad rails.

On development of Moving Weighted Least Squares approximation and a’posteriori er-
ror estimation in Meshless FDM
J.Krok

The work addresses the general topic of an Adaptive Meshless Finite Difference Method (AMFDM).
Enhancement of numerical solution in meshless methods is considered. Several different MFDM ap-
proaches are examined. All MFDM approaches are oriented on determining a basic approximation matrix
of the same type, and the full vector of derivatives based on a linear combination of nodal unknowns. In
the MFDM, for a given fixed point of the domain, such approximation matrix presents full set of the finite
difference formulas for all derivatives up to required order. Several benchmarks are analyzed as well as
engineering examples of stress analysis in railroad rails.

\'!



Wear and grinding modeling by the Zarka shakedown model
W.Cecot
The paper addresses application of the Zarka shakedown approach to simplified analysis of grinding
and cumulative wear. Also continuum damage is accounted for. The model was subject to further verifi-
cation on the cylinder benchmark problem, then it was used for the preliminary analysis of the wear and
grinding in railroad rails. The previous conclusions were confirmed.
Modern wear and grinding theories were briefly reviewed.

Further investigation of the rail wear and grinding process - stability tests
M.Pazdanowski
A model of grinding and cumulative wear was subject to further tests on the rail residual stress prob-
lem. The wheel wandering effect and elastic-perfectly plastic material model have been chosen as.the test-
bed. Several grinding passes of various depths have been simulated. Cumulative effects of grinding passes
(number of passes and thickness of single pass) are analyzed. Residual stress distributions obtained are
presented as contour plots and in the tabular form.

Incremental analysis of an elastic-plastic bending beam rail model
G.Midura, W.Cecot, J.Orkisz

Development of a generalized beam model for elastic-plastic analysis of railroad rails is the main ob-
jective of this research. It is a part of an engineering approach to estimate residual stresses resulting from
the roller straightening process. Proposed algorithm based on FDM will be used to analyze statically inde-
terminate, elastic-plastic beams.

During the last year an incremental approach taking into account residual deformation indispensable in
simulation of rail motion has been proposed. Algorithm based on this technique has been developed,
tested and successfully verified in comparison with both theory and ADINA commercial code.

Application of Zarka's model to railroad rail roller straightening analysis
W.Cecot
The paper presents verification of the algorithm of a simplified roller straightening analysis. The meth-
odology was applied to evaluate residual states developed during the production. The initial deformation
due to quenching was taken into account.

An approach using GL approximation to plan the optimal locations of experimental
measurements
W.Karmowski
The analytical and numerical analysis in mechanics requires experimental verification. This work an-
swers the question how to locate measurements to obtain the best result at the lowest cost of the experi-
ments and taking into consideration experiment credibility and cost. This was The task has been
accomplished using the global — local approximation technique. The results of this work will be applied to
plan the railway rails and vehicle wheels experiments executed to determine residual stresses.
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Testing of the global-local method version taking into account gradient and curvature
to estimate a’posteriori error and its application to residual stress analysis in railroad
rails
W.Karmowski, J.Orkisz

The version of global-local method taking into account gradient and curvature of the sought field has
been tested on coarse FEM/MFDM data. This technique allows to smoothen obtained solution and esti-
mate a'posteriori error. It may be used to plan the new mesh in adaptive FEM/FDM methods. The
method takes into account given nodal values and equilibrium equations simultaneously. The method has
been used to smoothen the residual stress field in the railroad rail obtained by the MFD method.

Further development of the global approach to the physically based approximation
techniqgue in experimental analysis of residual stresses
J.Magiera

The report presents results of the current research effort aimed at further development of the global
method (GM) approach to the physically based approximation technique in experimental analysis of resid-
ual stresses. In the report presented are new studies of optional criteria for selecting weighting
factors/gate widths for experimental data (two new criteria, four algorithms proposed), another formula-
tion for the break-off criteria (Stage II optimization loop, in GM formulation proposed), further tests of
the global method as a tool for experiment planning and a posteriori estimation of experimental error (a
new error indicator proposed).

On using the radial basis function neural network and backpropagation neural network
in analysis of residual stresses in railroad rails
J. Kogut, J. Orkisz

A neural network approach to theoretical prediction of required residual stresses is considered here.
Artificial neural networks trained well and long enough on residual stresses induced by various contact
loads may provide very fast response. Results of numerical meshless finite difference analyses were pre-
processed and introduced into the neural networks as input and output parameters. The study was per-
formed for two different types of neural networks: a backpropagation neural network (BPNN) and a

newly examined radial basis function neural network (RBF).

Reconstruction of the full 3D rail residual stress field by the physically based global
method fit to neutron diffraction data and transverse/oblique slicing data reduction
algorithm
J.Magiera

The report presents the current work regarding reconstruction of the full 3D rail residual stress field
by the physically based global method fit to neutron diffraction data and transverse/oblique slicing data
reduction algorithm. The work concentrated currently on analysis of the neutron diffraction data (rail
samples #1-5) for improved quality FE/FDM grids generated recently (sample #1 analyzed as an exam-
ple), certain improvements in 2D solution strategy (a'posteriori analysis of experimental error), 3D analy-
sis for the case of several independent data series for a sample, and introduction to a three slice
procedure.
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An extended adaptive procedure of experimental data collection and evaluation by
a'posteriori error estimation
J.Krok

The work addresses extended formulation of a new approach proposed to measurements planning and
carrying out by means of error control of experimental data.

It includes: development of postprocessing techniques to approximate data given in a discrete form,
a'posteriori error estimation (evaluation) of measured data, estimation of new required experimental
points location and density, definition of reliability index of experimental data.

Theoretical consideration and numerical analysis are based on the Adaptive Finite Element analysis
(AFEM) and the Meshless Finite Difference (MFDM) approach. Differences in numerical and experimen-
tal data analysis are underlying.

Reconstruction of residual stresses in railroad vehicle wheels based on enhanced saw
cut measurements
J.Orkisz, A.Skrzat
The results obtained for all investigated wheels on coarse finite element mesh are presented. The re-
sults for the wheel #3, obtained for the first time on the dense mesh are presented as well. Additionally
benchmark tests which prove the efficiency and precision of the approach in numerical calculations of in-
fluence coefficients (20-node elements, element pressures as loading) are included.

Further investigation and testing of the proposed solution approach to analysis of life
prediction of railroad rails
W.Karmowski, J.Orkisz

Further analysis of the influence the residual stresses exert on fatigue service life of railroad rails is the
objective of this research. The crack nucleation problem is considered basing on the classic stress-life (S-
N) approaches. Experiments and theoretical predictions indicate that residual stresses in railroad rails can
be large and therefore the role of these stresses is investigated. A single point wheel/rail contact at several
rail locations is taken into account. The needed computer programs have been developed and numerical
analyses have been carried out. The shortest life to fatigue crack nucleation was predicted for a neighbor-
hood of the rail running surface (top of the rail head). The fatigue life is mostly affected by contact load-
ing, while influence of residual stresses is negligible.



Topic 2.3

Development and application of artificial neural networks and
genetic algorithms to analysis of residual stresses in railroad rails
and vehicle wheels



Development and application of artificial neural networks and genetic
algorithms to analysis of residual stresses in railroad rails and vehicle
wheels.

A neural network approach to theoretical prediction of residual stresses is
considered. Artificial neural networks trained well and long enough for residual stresses
induced by various contact loads may provide very fast response. Results of nhumerical
meshless finite difference analyses were pre-processed and introduced into the neural
networks as input and output parameters. The study was performed for two different
types of neural networks: a backpropagation neural network (BPNN) and a newly
examined radial basis function neural network (RBF).

In the last year this research, carried out within the topic 2.3 on application of artificial
neural networks to residual stress analysis in railroad rails, was temporarily suspended,
due to temporary absence of Dr. J. Kogut. However, within the scope of the last three
years, the following two reports.

1. On using the radial basis function neural network and backpropagation neural

network in analysis of residual stresses in railroad rails.

2. Further improvement of the version of the global-local method including

information on gradient and curvature of a searched field.
presented earlier describe the current state of the art of our research performed. within
this topic.
As preliminary results of this research proved to be encouraging — especially from the
point of view of practical applications — further research is planned with particular
attention paid to increasing the NN learning process efficiency.



vy

Cracow University of Technology
ul. Warszawska 24, 31-155 Cracow, POLAND

On using the radial basis function neural network and backpropagation
neural network in analysis of residual stresses in railroad rails.

Janusz Kogut, Janusz Orkisz

Report to the
US Department of Transportation,

Federal Railroad Administration,
Washington, DC

Cracow, June 2003



4,

Contents

. Introduction

1.1. Theoretical and experimental background of residual stress states in rails and wheels
1.2. Actual “state of the art”
1.3. Scope

Outline of artificial neural networks
2.1. Single artificial neurons

2.2. Basic neural networks
2.3. Neural network learning algorithms
2.4. Regularization theory

Shakedown problem definition
3.1. Shakedown MFDM formulation for the residual stress solution

3.2. MFDM theoretical-numerical solution for the US 132 RE railroad rail
3.3. Neural networks definitions based on the MFDM formulation

3.4. Comparison of the results of backpropagation and radial basis function neural networks.

Final remarks

Reference

535



1. Introduction

1.1. Theoretical and experimental background of residual stress states in rails and
wheels

Investigation of the problem of residual stresses in railroad rails is required as permanent
increases in traffic and axle loads take place. In engineering practice improved procedures are
adopted, for instance, replacement of jointed rail with continuous welded rail (CWR). Asa
consequence of these developments more rails now stay in service long enough to develop fatigue
cracks. These cracks are caused mostly by the repeated action of rolling wheel contact loads, and
can be classified as either surface or subsurface cracks. The cracking phenomena cause eventual
deterioration of the running surface and reduction of a rail service life. Crack nucleation and
propagation are driven by stress concentrations in a body, and may be predicted if the stresses are
known. These stresses are the total stresses i.e. sum of the live and residual stresses (which
remain in the body when loading is removed). Inrailroad rails they are generated both in
manufacturing and service (e.g. by the rail/wheel rolling contacts).

Most rails manufactured today contain an initial residual stress field, which is distributed
over the entire rail cross section. These stresses result from many sources, such as cooling
process following rail forming, and roller straightening operations employed by the mills to meet
the stringent limits imposed on the curvature of rails intended for CWR construction. The
service-induced residual stresses (concentrated in the rail head) are superimposed over these
stresses. The objective of this report is to present the progress of a new approach to the residual

stress analysis in rails, principally known as an artificial intelligent system or neurocomputing.

1.2. Actual “state of the art”

Residual stresses and strains arising in both railroad rails and vehicle wheels due to
manufacturing and service are under permanent investigation. These stresses are generated and
modified throughout the whole rail life. Typical rail life includes the following stages [1]:
manufacturing (rolling process, cooling, roller-straightening), track installation and maintenance

(welding, geometry adjustment, rail replacement, destressing, grinding, and lubrication), service
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conditions (particularly repetitive wandering rail/wheel contacts and rail bending on foundation,

and temperature changes, wear), and material degradation.

1.3. Scope

The analyzed problem concerns repetitive wandering rail/wheel contacts and rail bending
on its foundation. Residual stresses are generated mostly due to plastic effects resulting from
rail/wheel contact loading. Rail bending on its foundation (including possible rail/foundation
motion) also contributes here as one of the vital factors influencing residual stresses. A theoretical
approach, providing means for residual stress analysis, was proposed in [2], followed by the
development of complex but effective computational solution methods. Numerical solution to
such a problem by discrete (Finite Element - FE, Boundary Element - BE, Meshless Finite
Difference - MFD) methods is possible, though troublesome and much computer time
consuming. However, in engineering applications, it is often important to get almos‘t immediate
answers to a given input data. Therefore, a neural network approach to theoretical prediction of
required residual stresses is considered here. It takes advantage of the fact, that artificial neural
networks, when trained well and long enough on residual stresses induced by various contact
loads locations may provide very fast response to a wide class of input data. A set of MFDM
solutions was used here. Results of numerical analyses were pre-processed and introduced into
the neural networks as input and output parameters. The study was extended to two different
types of neural networks: a backpropagation neural network (BPNN) and a newly examined

radial basis function neural network (RBF).
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2. Outline of artificial neural networks

2.1. Single artificial neuron
Biological neural system able to carry information and control processes runs every
organism living on Earth. It could be considered as a highly complex, nonlinear and parallel
information processing system. Such a.system consists of single basic elementary cells called
neurons. In reality such neurons receive electrical signals and produce responses. In such a way

s they store and transmit information in a body.

Figure 2.1 Real biological neuron.

surrining activation
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Figure 2.2 Artificial neuron.
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Figure 2.1 presents a model of the real neuron. Such a neuron consists of synapses and
dendrites, which receive signals and transmit them into the cell body. If the accumulated signal is
strong enough it causes the neuron to produce an action potential as an output signal in the axon.
Combining pointed elements and mapping them one may arrive at the simplest artificial neuron
(Figure 2.2). Furthermore, such neurons are joined into neural networks. One of the most
important elements of artificial neuron is an activation function (unit) - F. The following may be
distinguished among activation functions:
unipolar (Figure 2.3):

1 if wuzuy

0 if wu<u @D

F(u)={

Figure 2.3 Unipolar activation function.

- bipolar (signum) — Figure 2.4:

F(u):{ 1 if u20

-1 if wu<0 @2)

Figure 2.4 Bipolar activation function

- sigmoidal activation function — Figure 2.5:

_ 1
F(u)= Troo B p— (2.3)
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where: [ - parameter;

Figure 2.5 Sigmoidal activation function.

. - sigmoidal bipolar activation function — Figure 2.6:
. F(u) = 1- exp(—Blu)
- 1+ exp(=Bu)

. . y 24
i e s o g s A m?

Figure 2.6 Sigmoidal bipolai activation function.

- linear:
F(u) =bu if b>0

- radial (Figure 2.7):

ﬁq;t‘;w»uwnn 3

Figure 2.7 Gaussian radial basis function.
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(u) =€Xp ——2-T (26)

o

where
¢ — the center

o - the spread (support) of radial basis function.

2.2. Basic feedforward neural network
Arranged in layers, artificial neurons canbe a primitive model of a biological nervous

system and simulate in certain ways the real brain’s behaviors. The arrangement in layers
method is the best known. In this method neurons from the preceding layer are connected only to
the neurons in the following layer (Figure 2.8). Such a network architecture is called a
feedforward neural network. The first layer is called the input layer, the last one is the output
layer. Between them hidden layers are placed. In this kind of network signals are transmitted
only in one direction i.e. from inputs to outputs. The process of transmission is known as training

of the network.

input layer

Figure 2.8 Artificial neural network.

The use of neural networks is described as neurocomputation. It has many features. One
of them is natural massively parallel processing of information, the other is distributed processing

and storing of information. These imply relatively low sensitivity of the neural network either to
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its partial destruction or to errors caused by noisy information. A neural network (NN) when
properly trained (teached) is able to generalize. This means, that the network is capable of
efficient processing of data other than that used in the training procedure. The NN is also

proficient in adapting to new information delivered to it.

2.3. Backpropagation neural network learning algorithm

As mentioned earlier the NN must be trained properly, to be flexible in later use. This
means that it needs to be trained in a specific way i.e. by the backpropagation (BP) weights
updating. The learning rule corresponding to the gradient method of the steepest descent is used
very often (here as well). It helps in updating the multilayer NN. The least mean squared error of

the network for a single pattern is computed as follows:
1 & 2
Ens=52(4-0) @7
i=1

where: ¢,,0; - target and computed values of +th output

M - number of outputs.

Usually target values are normalized to accelerate convergence and improve the
effectiveness of the training process. The least mean squared error of the network for all patterns
is formulated as follows:

E = %i i( ti(p) _Oi(P)) 2 (2.8)

p=l =l

where: K — number of patterns

p — single pattern.

The average error is computed as follows:

11
E,, =—— 2F 2.9
AV K M ( )
The weight of every neuron is adjusted according to the gradient formula in which the learning

rate is included:

Aw,, = —T]aE—AV (2.10)

7T Jw,

where: 1 — learning rate.

wy; — i-th weight of j-th layer (compare Figure 2.2)

542



H

L

)

[

T

)

Ty
t o H

(]

)

(-

Moreover, a momentum term which helps to increase the speed of learning and often to avoid the

local minimum has been applied and formula (4) is changed as follows:

Aw,(s)=~ 9b;%(s)mmv,.j(s -1) (2.11)

iy

where s — iteration step number
ol — momentum term.

2.4. Regularization theory

An alternative method of neural network learning comes from the theory of
regularization. It involves adding an extra term to the error function, designed to penalize

mappings, which are not smooth [3]. In case of one single output (2.2) may have been changed

into:
E =%§;( () -0@) +-‘21 f|B| ax (2.12)

where P is a differential operator, and v is called a regularization parameter.
Considering the fact that each input vector is mapped onto an output vector O, and the
goal function is
h(@?) =0% (2.13)
it is possible to introduce a set of basis functions for each data point, which take the form

¢("x —x? ”) where ¢(-) is a nonlinear function. p-th function depends then on the Euclidean

distance "x -x7 || . The output of the mapping is the a linear combination of the basis functions

W)=, w,dx—x*) 2.14)

One can solve the regularized least squares problem of (2.12) setting the functional

derivative with respect to y(x) to zero as

3 [i(x#) - 0P| §(x—xP) +v - B-P,(x) =0 (2.15)
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where P is adjoint differential operator to P and & is the Dirac delta function. The equations
(2.15) are the Euler-Lagrange equation corresponding to (2.12). A formal solution to these
equations can be written down in terms of the Green’s functions of the operator P - P, which are
the function G(x,x'), satisfying

P-P-Gx,x)=6(x~x") (2.16)

If the operator P is translationally and rotationally invariant, the Green’s functions depend

only on the distance "x - x'|| , and hence they are radial functions (2.6). The formal solution to

(2.15) can then be written as
1) = 3w, G{x—x|) 2.17)
p

which has the form of a linear expansion into radial basis functions. Substituting (2.17) into

(2.15) and using (2.16) one can obtain

3 1) - 0] (e —xP) +v - T w,8 (k- x[)= 0 (2.18)
p 4
Integration over a small region around x® shows that the coefficients w, satisfy
(6 02) -
yE)=0" +v-w,, =0 (2.19)
Afterwards, the values of w, can be obtained as the solution of the linear equation
(G+v-DHw=0 (2.20)

where
(@), = G("x” C—x? ”), (W)p = Wp, (0),=0F and I denotes the unit matrix.
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3. Shakedown problem definition

3.1. Shakedown MFDM formulation for the residual stress solution
The theoretical as well as hybrid experimental analysis of residual stresses in railroad rails
present complex tasks formulated in terms of non-linear constrained optimization problems. The
shake-down mechanical model for evaluation of residual stresses in elastic-perfectly plastic
material proposed in [2], was extended for linearly strain hardening material [4]. It is formulated

in two steps as follows:

® calculate the correlation matrix Ayu

0'5- = Ay -8,-5-’ (3.1
solving nonlinear constrained optimization problem for self equilibrated stress o/ as a function

of plastic distortions &;7.min ©(c}), ©(c})= [} -Cyy-€f -dV ~ jel’ of-dv

i 14
(3.2
satisfying the conditions
o i, =0 in ¥ - internal equilibrium conditions
G;j’ jn=0 on 9V - static boundary conditions

(i) Findgf,
which minimize the total complementary energy functional W¥(&;/):

mi}l)l‘P(Slf]?), \P(G ) j ghy ykl Aklmn mn AV iV (3-3)

y

satisfying the conditions

¥((4 ghif ~ 1 gpij -¢)- ep +0j £y-1<0 in yield condition 3.4)
where c= EE'—}II? hardening parameter, and

O‘Z’ - estimated residual stresses in a body under consideration due to actual applied loads,
85 - plastic strains,

545



i

——

| S

J

[
[N

C

af ;- elastic stresses computed as if the object behavior was purely elastic during the loading
process,
C,y - elastic compliance matrix,

Lgpij - unit matrix,
E - Young modulus,

H- strain hardening modulus.

3.2. MFDM theoretical-numerical solution for the US 132 RE railroad rail
Residual stresses 0';; due to the contact rail/wheel load were calculated by the Meshless
Finite Different Method MFDM [5]. The following parameters were assumed
Young modulus £ =30 000 kpsi
Poisson ratio v¥=0.3
Yield limit oo = 70 kpsi
Po =33 000 Ibf.
Figure 3.1 presents the mesh and the contact loads applied to the US 132 RE rail cross-section.

Spal e

R, ~<>
i
S

%
<

Figure 3.1 Locations of the contact loading (distributed on a patch) used in analyses, and the mesh
applied in the rail cross-section.

546



)

———
[N——

:
_J

)
(G

The results were obtained for a certain number of different locations of the rail/wheel contact
zone. For the different contact load locations on the railhead, theoretical- numerical solutions in
1600 mesh-points were applied. The file of residual stresses contained four independent stress

components located in every mesh-point. There were ten load locations altogether. One of the

02/ +/ncr.=1
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L2204
688 |- —4 6.8
L g i
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Figure 3.2  Axial residual stress map /+/ for a single contact load computed by
MFDM. Increment = 1 kpsi.

solutions for the axial residual stresses is presented in Figure 3.2.

3.3. Neural networks definition based on the MFDM formulation

As mentioned earlier the NN as a kind of nonlinear simulator has strong abilities to
generalize results which were input into it, and then is capable of efficient processing of data
other than those used in the procedure of training. Two different types of NN were examined here
BPNN and RBF. BPNN oughts to have a well-organized structure, and its learning process may
consume a considerable amount of time. Regarding the structure, the basic formula for the
number of neurons in hidden layers was suggested in [6], and it included two elements: the first is
dependent on the number of inputs and outputs, the other depends on the number of patterns.

The formula was proposed as follows:

ny=05-(I+M)+JK (3.5)

where:
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I - number of inputs
M - number of outputs

K — number of training patterns.

For various purposes the number of neurons in hidden layers may be flexible [7], [8] and
without loss of accuracy might be changed by up to 10%. In the considered problem of
rail/wheel contact, one has to emphasize those parameters, which have considerable amount of
influence on the level of residual stresses in the rail cross-section. For this purpose it is important
to know especially [9], load magnitude and its location on the railhead, the position of every point
in rail cross-section, and several of the characteristics uniquely describing the state. In the
problem depicted above, input values include the load location on the surface, the mesh-point
coordinates in the cross-section, and the linear values at those points. As an output pvarameter the
residual stress 6",, computed in the mesh-points has been used. The network outputs were
compared with the MFDM values. A file of 16,000 patterns has been generated. Hence BPNN
structure consists of four inputs, two hidden layers of 61 neurons each, and one neuron in the
output layer.

The strategy of producing training and testing files from the pattern file is important for
the BPNN. Therefore the pattern file was divided into two parts: the training file and the testing
one. Usually the training file contains 80 to 90% of the patterns, while the testing one from 10 to
20% of them. The training file applied here consisted of approximately 80% and the testing file
of 20% of the patterns. The training file contained eight complete solutions for different
locations of wandering load. The testing file included two other solutions of the rail/wheel
contact problem.

RBF neural network consists of the input layer, one hidden layer and the output layer.
Hidden layer contains neurons, which have radial basis activation functions (2.6). The output
layer neurons have linear activation function (2.5). RBF neural networks learning is based on
finding the distance in a space between the target and the output value. It is possible to train such
a network in different ways: supervised — with use of a typical backpropagation algorithm (2.8)
and unsupervised — finding the solution of equation (2.20) in regularization process. The second
method is achievable in two ways: first, when the number of patterns is exactly the same as the

number of neurons in the hidden layer, second, when the number of neurons is increased one by

548



o—
{
L

e
| H

one after every iteration from certain starting point to the minimal number of neurons which
satisfies the error goal or maximum number of neurons is reached. In this way one may reach the
so called clustering of the solution. It depends also on the spread of the activation function (2.6).
In both situations the number of hidden neurons is large. This implies that the RBF neural
networks are related to local approximations around the centers in the space of input variables

and often applied to the classification problems.

3.4. Comparison of the results of backpropagation and radial basis function neural

networks.

Figure 3.2 and 3.3 present the example of the axial residual stress maps computed by MFDM
and reconstructed by the single residual stress BPNN output.

On the other hand Figure 3.4 presents axial residual stress map for a single contact load,

o/ +/incr.=1

-1.68 -12 -G08 -D4 00 04 a.8 1.2 1.8
E- S e L L L o
8.8 |- - 6.8
64 - -1 6.4
80 |- - 8D
56 |- - 5.6
5.2 _IIJ;IIIIIIIIlIllllIIIIlIIIIIIIII_5‘2

1.8 -1.2 -G8 -04 040 G4 0.8 1.2 1.6

Figure 3.3 Axial residual stress map /+/ reconstructed by the single BPNN after 100
thousand epochs of training [10]. Increment = 1 kpsi
reconstructed by the RBF network for the same loading as original MFDM solution presented in
Figure 3.2. The RBF type of network is characterized by rather fast learning time in comparison

to BPNN and larger number of neurons in the hidden layer (here 12,000).

For the axial residual stress component relevant error norms have been calculated, namely

the maximum norm:
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Emax = MAX|C
J

kl] ~Ofl ]

and the average (L2) norm:

2
£ =
4vG = "kl, ~ou ,)

where:

s"y - residual stress — input data provided by the MFDM solution,

5™, - residual stress — result of NN analysis,

q — number of iteration points.

(3.6)

(3.7)
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Figure 3.4 Axial residual stress map /+/ reconstructed by the RBF NN. Increment =1

kpsi
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Figure 3.4 Distribution of the s , average error for the single residual stress BPNN after
100 thousand epochs. Increment = 1 kpsi.
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Figure 3.5 Distribution of the s ;, maximum error for the single residual stress BPNN
after 100 thousand epochs. Increment = 2 kpsi
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Figure 3.6 Distribution of the s ,; average error for the single residual stress RBF NN.
Increment = 2 kpsi.
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Figure 3.7 Distribution of the s ,, maximum error for the single residual stress RBF
NN. Increment = 2 kpsi.
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4 Final remarks

This report presents the progress of the application of neurocomputational mechanics to
the analysis of residual stresses in railroad rails, preceded by[11],[12], and outlines the
background for the future analysis of residual stress states in vehicle wheels as well. It is worth
mentioning that neural networks are a new investigation tool, which was successfully applied
here and might be used in the nearest future in the analysis and enhancement of both theoretical
and experimental data.

The first part of the report describes the background of artificial neural networks. It
emphasizes not only the feedforward neural netwofk and its backpropagation algorithm of
learning but also radial basis function neural networks and the regularization theory of their
leaming.

Subsequently the next chapter is dedicated to the formulation of the residual stress task in
the neural network environment. Results of training and testing using elastic-perfectly plastic
solutions based on MFD Method were presented. Single component analyses of axial residual
stress were illustrated. The results were obtained and compared for different neural network
types. These are followed by the analysis of several types of error.

The study confirmed the usefullness of this new method in the analysis ofresidual stresses
in railroad rails and led us to take the closer look on the RBF neural networks. The future plans
are aimed at developing the hybrid meshless methods and RBF based neural network with
constraints based on experimental analysis of the residual stresses, dedicated to railroad rails and

wheels.
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Topic 2.4

Reconstruction of the full 3D rail residual stress by physically
based global method fit to neutron diffraction data and
transverse/oblique slicing data reduction algorithm



RECONSTRUCTION OF THE FULL 3D RAIL RESIDUAL STRESS FIELD
BY THE PHYSICALLY BASED GLOBAL METHOD FIT TO NEUTRON
DIFFRACTION DATA AND TRANSVERSE/OBLIQUE SLICING DATA

REDUCTION ALGORITHM

The research on the 3D technique in the current research year was split into work
on mastering the algorithms/numerical techniques applied, analysis of optional
sectioning scheme(-s) and practical analysis of the currently available ND data

performed on new, enhanced grids.

In particular, the research program planned for the 2002/2003 research year

included:

1. further development and mastering the 3D solution procedure;

2. 3D analysis of new rail residual stress data;

3. astudy (on simulated data) of a three slice procedures: horizontal and vertical
O/T/O with a special attention to the case of symmetrical O/T/O;

4. 3D analysis of residual stresses for the case of several independent data
series for the same rail sample, as it takes place in the case of the Sample

#3, for which three independent data series are available.
The report contains research material regarding the items 1, 2 (not performed

substitute material enclosed — explanation follows in Introduction), 3 and 4 (fully

covered).
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RECONSTRUCTION OF THE FULL 3D RAIL RESIDUAL STRESS FIELD BY
THE PHYSICALLY BASED GLOBAL METHOD FIT TO NEUTRON
DIFFRACTION DATA AND TRANSVERSE/OBLIQUE SLICING DATA
REDUCTION ALGORITHM

Jacek Magiera,
Cracow University of Technology

Summary

The report presents results of research devoted to reconstruction of the full 3D
rail residual stress field by the physically based global method fit to neutron
diffraction data and the transverse/oblique slicing data reduction algorithm. The
work concentrated on analysis of the neutron diffraction data (rail samples #1-5)
for improved FE/FDM grids (sample #1 analyzed as an example), certain
improvements in 2D solution strategy (a posteriori analysis of experimental error),
3D analysis for the case of several independent data series for a sample, and
analysis of a three slice procedure. An independent effort was aimed at
development of a higher order 3D brick finite element family that will replace the

currently used 8-node linear 3D elements.
1. INTRODUCTION

The research on the 3D technique in the current research year was split into work
on mastering the algorithms/numerical techniques applied, analysis of optional
sectioning scheme(-s) and practical analysis of the currently available ND data
performed on new, enhanced grids and with a posteriori experimental data error

analysis.

In particular, the research program planned for the 2002/2003 research year

included:
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1. further development and mastering of the 3D solution procedure;

2. 3D analysis of new rail residual stress data;

3. a study of a three slice procedure: horizontal and vertical O/T/O with a special
attention to the case of symmetrical O/T/O;

4. 3D analysis of residual stresses for the case of several independent data
series for the same rail sample, as it takes place in the case of the Sample
#3, for which three independent data series are available.

Generally, all the research tasks listed above were addressed even though there

were certain modifications to the task list required.

As far as the item 1 (further development and mastering of the 3D solution
procedure) is concerned, the report contains description of improvements
introduced on the 2D level', the new family of improved FEM/FDM grids
generated for rail samples #1-5. Another task performed in this topic was
analysis of influence the grid density has on results. Part of the work concerning
item 1 research that focused on development of a new, non-linear 3D brick
element family for enhanced analysis of elastic behavior of rail slice samples was
performed by J. Krok, the author of the NAFDEM-PC FEM/FDM code used in the
TOS-3DRS? system, and is reported elsewhere in the group report as the paper
entitled: Incremental analysis of residual states by the elastic-plastic constitutive

models. New elements families in incremental plasticity [1].

The research on the task listed as item 2 (3D analysis of new rail residual stress
data) was impossible to be carried out due to lack of the new data®. This tasks
will be performed when the new data is available. To compensate for the lack of

! by the 2D level it is understood here the global method procedure for experimental data

analysis and enhancement

2 an acronym for Transverse-Oblique Slicing - 3D Residual Stress

8 supposed to be available by the end of 2003 year
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this material, the author performed new improved 3D analysis of the old neutron
diffraction (ND) data [9] that made use of the newest advancements on the both
2D and 3D levels. Exemplary results for ND sample #1 data are presented.

The material regarding item 3 (a study of a three slice procedure) contains
introduction of the concept of three slice procedure, algorithms and exemplary
results. Unfortunately, not all tests planned were performed due to numerical

instabilities observed.

As far as item 4 (3D analysis of residual stresses for the case of several
independent data series for the same rail sample) is concerned, the report
contains results for combined analysis of data series #2 and #3 for ND rail

sample #3.

2. FURTHER DEVELOPMENT AND MASTERING OF THE 3D SOLUTION
PROCEDURE

Certain enhancements in the 3D rail residual stress reconstruction procedure
proposed in the last report [4] like different techniques for pre-smoothing of the
FEM solutions or tests for higher order approximation on the “between slices”
level provided mixed results: the procedure worked but it was hard to conclude
that certain variants are definitely better than others. Introduction of those
modifications undoubtedly cut down the total number of iterations required for
observing convergence on the assumed error norm level, but the quality of final
results sometimes suffered from those modifications. The general conclusion was
that the previously used version of the procedure seemed a sound and

reasonable choice.
In the current work several different areas of possible improvements were
considered and explored. They included:

- improvements on the 2D level (data smoothing);
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- a posteriori error estimation for assessment of experimental data credibility
- generation of improved FE/FDM grids
- analysis of influence the grid density has on final results

As mentioned in Introduction, there was also an independent effort aimed at
development of higher order 3D finite elements that should vastly improve the
quality of FE rail slice modeling but it is not reported here.

2.1 Improvements on the 2D level

The 2D level, even though formally independent from the 3D level analysis and
treated as separate research topic [2], is in fact an important ingredient of the
Transverse/Oblique Slicing (T/O-S) approach and as such, it significantly
contributes to the overall outcome of the 3D rail residual stress analysis. Thus
work on mastering of the 3D procedure naturally encompasses 2D level
procedures and benefits from improvements worked out there.

The main improvements on the 2D level worked out recently include:

- work on criteria for automatic selection of reasonable weighting factors
ascribed to experimental data points (four methods proposed, each as
iterative or non-iterative)

- a new formulation of the global method that make it possible to find the
maximum gate width parameter used in the classical GM formulation for

break-off criterion

A detailed report on these improvements is contained elsewhere in this volume
as Topic 2.2 [2].
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2.2 A posteriori error estimation for assessment of experimental data

credibility

Practical applications of the T/O-S approach to 3D analysis of rail specimens
would benefit greatly from the knowledge of data credibility that may serve for
assessment of overall quality of results. Such estimation has been difficult so far
with the classical, statistically based methods of data credibility assessment as
the experimental techniques used were destructive and the prohibitive cost level
prevented examinations of more than one rail sample of a kind [3]. Thus almost
all that could be done, as in the case of the quoted J.J. Groom examinations [3]
was to apply certain complementary approaches to provide redundant data for
such estimations. In case of the recalled examinations it was e.g., applying scribe
marks on peripheries of the rail slab prior to cutting of the examined section and
to record the length change observed upon specimen removal. This data was
then used for general verification of the data obtained from the Yasojima-Machii
and Meier samples. Such techniques are perhaps suitable for general validation
of the data but do not provide any quantitative measure of error. Needless to say,
the outcome of J.J. Groom error assessment was the conclusion that the error
was on average 10% (i.e., ca. 20-30MPa)*, the newly developed techniques
show its level as high as even more than 400 MPa at separate experimental

points.

The methodology for a posteriori evaluation of experimental data error makes
use of the high quality data fits the global method provides. Thanks to its built-in
physical relations, the smoothing of the data produces not only visibly attractive
results but also guarantee fulfillment of those relations and as such, the
smoothened fields may serve as a reference solutions for evaluation of

experimental error.

max. it was found to be 44%
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Several general error estimator were proposed, out of which two were tested and

intensively used in analysis:

1. the stress based, component-by-component (SBCC) estimator
2. the relative local curvature (RLC) estimator

Use of both of them and the results they provide for exemplary experimental data
derived from the J.J. Groom work [3] are shown in the quoted report [2].

2.3 Generation of improved FE/FDM grids

The problem with the currently used grid generator GRID [11] was that due to its
internal organization (generation of structured grids in generalized quadrilateral
sub-domains) it was unable to exactly follow the profile of the boundary line and
the discrepancies were especially visible in the areas of intensive plastic flow
where material formed cusp-like projections. This problem has been already
discussed and to a degree addressed in [10] when new grids were generated for
samples #1-5 with help of ADINA FE grid generator but it turned out that even
though the quality of the boundary representation was improved the grids had
very uneven distributions of nodes and it was difficult to control the total number
of nodes. Another difficulty with ADINA’'s grid generator was that it was
impossible to generate a family of “hierarchical”, denser and denser, grids which
would have the feature that a denser grid contains all the nodes of a coarser grid.
This would be beneficial for validation of results of the planned for research
problem of the minimum number of nodes required for analysis of neutron

diffraction data.

The new grids were generated with the GRID generator as it lends itself well for
generating “hierarchical” grids but a manual correction procedure at the
peripheral layer of nodes was applied to rectify the boundary problems that
affected the originally generated grids. This procedure was applied to all five rail
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samples for grids of exactly the same density like the previously used 971 nodes

(for comparative computations).

Results of this procedure for rail samples #1-5 are shown in Figs. 1 to 5. In each
figure the original profile (a) (as provided by NIST), the old (b) (i.e., generated
with GRID generator) and the corrected (c) grids are shown. As mentioned, the
new grids are topologically equivalent to the old ones, but corrections were
applied that make the new grids to conform to the original profiles. They are
visible especially in the tread-parts of the profiles where the material subject to
plastic flow formed local cusps or sharp points (see e.g., areas denoted as A and
A’ in Fig. 3) or in the areas where the GRID program generated nodes forming
locally, at the cross-segments boundaries defining its profile approximation
regions, concave boundary line where it should form'either straight line or

convex curve (see areas denoted B and B’in Fig. 5).

2.4 Influence of grid density on final results

One of the essential questions when performing numerical analysis with either
the finite element method or finite difference method (and the TOS-3DRS system
makes use of both) is the question about the required grid density and its
sufficiency for the considered problem. In the area of theoretical computations
the prevailing approach now is to use one of the range of adaptive methods
which through a posteriori error estimates provide a tool for building mesh/grid
density indicators. With help of this indicators and usually at the expense of
iterative procedure, a correct (or sufficient) density might be evaluated.

In the case of enhanced numerical analysis of experimental data, which is a
subject of the research activity reported here, the adaptive approaches are
almost useless. The main reason is that what has the dominating influence on
the error now is not like previously the order p of the approximation (or its
derivatives) spanned, jumps of certain derivatives at the cross-elements
boundaries j or element/star's characteristic dimension h — even thought those
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factors are present in the FE/FDM analyses performed — but the quality of
experimental data and error committed while it was collected. Thus the
techniques for evaluation of the required grid density worked out in the field of
theoretical analysis are not (at least easily) transformable to the field of
experimental data reduction algorithms. Instead, in all analyses performed by the
author and reported to the US DOT, FRA over the last several years a heuristic
approach has been applied that bounds the grid density to the experimental data
points density, keeping the FEM/FDM grids ca. 1.5-2 times denser than the
experimental ones. For such a choice all the procedures worked and no
problems with numerical instabilities were encountered, but the question whether

it is a sound reasoning has remained open.

To investigate the problem, a new higher density grid was generated for NIST
sample #1 profile. It is almost twice as dense as the old one, having 1835 nodes
(vs. 971) and 1720 quadrilateral, 3440 triangular elements. This new grid was
used in standard 2D NIST data smoothing procedure with use of the global
method and the results were compared.

In Figs. 7 — 9 results for o, 0,, and o,, for the old and new grid are juxtaposed,

in Fig. 10 differences between them are plotted. As it may be seen, the new
results do not visually differ significantly except for the area close to the
peripheries of the rail where certain more significant differences manifest their
presence. Their amplitude is on average equal to ca. 20-60 MPa (which is ca. 5-
15% of the stress magnitudes at those areas), but such extreme values happen
only at very localized points (e.g., on the right-hand side of the railhead for the

vertical stress o,,, where very steep gradients are recorded). The differences in

the shear stress modeling (Fig. 10c) are a little bit more penetrating into the
inward part of the railhead but this is not surprising as this stress component was
numerically restored and is naturally more sensitive to even slight fluctuations in
numerical procedure parameters. Their magnitude, though, at majority of data
points remain on a stable level of ca. 5-10 MPa (ca. 6-15%), at certain points

568



close to peripheries it reaches the level of ca. 30-40 MPa (ca. 40-50% of

difference).

Generally, the test with the new twice as dense grid, showed a reasonably good
agreement with the older grids family, used throughout the analysis of residual
stress in the examined rail samples. The data reduced in the inner part of the
railnead on both grids shows a very good to excellent agreement, with
differences usually not exceeding the level of 10 MPa (which gives ca. 1-8% of
error, depending on the region), at certain regions in the outer parts, it rises to
20-60 MPa.

The 3D procedure, which for both simulated experimental data [5,6] and ND
actual data [7,8] was found to change the stress magnitudes recorded in the 2D
specimens (rail slices) by a comparable in both cases level of ca. 15-35%, might
be also expected to incur the grid related errors, estimated on the 2D level as the
1%-8% at majority of data points (and up to 40% at extremums) will be projected
to the 3D space with the same factor of 15-35%, thus the resuiting 3D error due
to grid phenomena might be estimated at the 0.15% to 3% in the inner part of the
railhead and might approach the amplitude of ca. 15% at separated peripheral

nodes.
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3. 3D ANALYSIS OF NEW RAIL RESIDUAL STRESS DATA

As mentioned, the research task listed as this item was impossible to be
performed due to lack of the new data and will be performed, as planned, when
the new data is available. To compensate for this lack, analysis of the old ND
data was repeated for all rail samples #1-5 with all the improvements/
advancements on both 2D and 3D levels worked out lately (new grids, new
strategies in GM smoothing, a posteriori experimental error estimates, etc.). A
complete description of those results is provided in the final report [4], here

exemplary results obtained for sample #1 will be shown.

In Fig. 1a original profile of sample #1 as delivered by NIST [9], in Fig. 1b the old
and in Fig. 1c the new corrected grids are shown. The improvements are visible
e.g., on the running surface of the rail or vertical parts of the head profile.

In Fig. 11-13 presented are 2D results obtained for the considered rail on the new
grid (Fig. 11a, 12a, 13a) altogether with reference 2D solutions obtained for the
old grid (Fig. 11b, 12b, 13b). In Fig. 11c, 12c and 13c contour/surface plots of

differences in solutions for the new and old grids are shown.

The first impression when examining solutions in Fig. 11-13 might be that there
are no essential differences between solutions for the new and old grids.
However, when one sees the plots of differences® between those two families of
solutions (Figs. 11c, 12c and 13c) it is clearly visible that the representation of the
profile of rail- sample does affect the solutions — especially in the peripheral areas
of the head and that the differences might be at certain points as high as 100

MPa for o, stress component, 240 MPa for o, stress component and 140 MPa
for o,, stress component. Shear stress component is different from the other two

in-plane stresses in that it exhibits the biggest fluctuations in the middle of the

head. This results confirms the aforementioned feature of the shear stress that,

absolute values of to be exact
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being numerically reconstructed, is subject to the biggest sensitivity to the

approximation parameters.

The outcome of this test proves the thesis that pretty minor differences in
representation of the rail profile might lead to significant differences in the
solutions so having as exact as possible representation of the rail profiles is

crucial.

Results of analysis for reconstructed 3D solutions are presented in Figs. 14-17.
Figs. 14a, 15a, 16a and 17a contain stress patterns obtained on the old grid,
Figs. 14b, 15b, 16b and 17b stress patterns obtained on the new grid. Again,
there are no bigger differences spotted in the solutions but there are certain
differences between those two solution families thus the above listed conclusions

for the 2D levels hold also for 3D level.
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4. A STUDY OF THREE SLICE PROCEDURE

4.1 Introductory remarks

The transverse/oblique slicing (T/O-S) method, proposed at the end of the 80’s,
has been investigated so far as a two-slice procedure, in both possible versions
of rotation of the oblique slice: firstly around the horizontal axis X [5,6], secondly
around the Z axis [12]°. Both setups were proved workable, the iterative
procedures convergent and stable. Out of those two, the originally examined
version [5,6] was indicated as better and in fact so far it has been the only one

that found practical applications.

In this study another possible setups are considered, namely the proposed by
Orkisz [13] three slice procedures T/O/O and O/T/O (Fig. 18b and 18c) and the
T/OIT” setup adopted recently in the Agreement [14] (Fig. 18e).

The advantage a three slice procedure has over a two slice one is that the third
slice might be used either for performing independent computation (thus provide
a means for verification of assumptions or validation of the results) or it might be
processed simultaneously with the two other slices for additional gain in quality of

results or simplification of certain relations®.

4.2 Three slice procedures — general formulation
The theoretical background for three slice procedures considered here will be
now given. As far as the T/O/O and O/T/O setups are considered, the concept

was worked out in 1990 by Orkisz [13], the T/O/T concept was proposed during

& of course, directions of the oblique slice around both of those axes simultaneously is also

possible but was not considered due to complexity of transformation relations and no gain in
accuracy; the two-slice scheme O/O shown in Fig. 18d was not considered, too

7 also called “N" for resemblance of this setup to the capital N letter

8 in that case it will not be used as a source of redundant information for improvements in

data reduction results
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the author’s scientific visit to the Volpe Center in summer 2002.

Fig. 18

) VTG

Sectioning schemes, inclination to the vertical axis

Let us consider now a general three slice T/O/O procedure as schematically

shown in Fig. 19. in this setup there are one transverse slice and two oblique

slices, inclined under the angles « and .

W R Ry ol e aRE

Fig. 19

A general, three slice procedure
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In that case — and assuming the body is not sectioned yet — the stress states in
the oblique slices might be expressed as tensor transformation of the stress state

in the transverse slice as:

1. In the slice inclined by a :

O'ass = O-xx

0% =0, cosa+ 0, sina

0% = 0,008’ ¢+ 0, sin’ @' — 0, sin 20

0%m =0, sin’* @+ 0, cos’ a+ 0, sin2a (1)
0% = 0, sina+ 0, cosa

1 . 1 .
0% = >0 s1n2a—50'zz sin2a + 0, cos2a..

2. In the slice inclined by £:

ofuw=0,

o’s =0, cos f+0,sinf

o’v =0, cos’ f+0,sin’ -0, sin2f

o’m =0,,sin’ B+ 0, cos’ B+0,sin2f 2)
0% = o, sinf+0o, cosf

0" =%O'yy sin2ﬂ——;—o;z sin2f+0,,cos2f.

Then, the perpendicular to the transverse slice face stress components o, , o,

and o, might be expressed as [13]:
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coscos N 0% sin2f - o%usin2a
? singsin S 2sinasin fsin(o— )

cosa , 1 cosfB 5 1
O-xz=o-xy ; —O0 st =0—xy - — 0 st
sina sina sin 8 sin
o - sin(@+ ff) _ o%sin’ f—~c’usin’ &
¥ P 2sinasinf  2sinasin fsin(a— )

The advantage of the three slice procedure is visible in relations (1), (2) and (3)

by:

. additional information about validity of assumption that the stress state is
independent of the axial coordinate Z thanks to the fact that

o, = 0" = o’ for each point of the rail cross-section;
. additional information for verification of the quality of experimental
technique thanks to relation for ¢, in 2" of the Egs. (3)

. adirect relation for the o, stress component (if required); in the T/O setup
it had to be determined from a boundary value problem:
dy

Ao, =0 inV, O'yz;l—;=0'xz on oV (4)

A particularly interesting cases of the three slice procedure are symmetrical
O/T/O (as in Fig. 18c), where a=-f and the “N" (f=0, T/O/T in Fig. 18e)

setups. The symmetrical O/T/O and the “N” cases are analyzed in the next two

sections.

4.3 Symmetrical O/T/O procedure

The case when a=-p is interesting by the fact that for this setup and the

symmetric/anti-symmetric behavior of the sine and cosine functions, additional

advantages might be achieved. Let us denote 0'+,-,-=%(a”‘,-j+o""‘,-,-),
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oy =%(o"”,-j—o"“,-,-). Then the following relations hold for transformation of the

stress state from the transverse slice to the o and o~ tensors:

0's =0, 0'x=0 0082, 0" =0, cos’a+0,sin’,

0*'m=0,,sin’ @ +0,cos’ &, 0w =0, cose, O'n =0, 00820 (5)
O-_ss = 0 ) O-_Sl = O'u Sina, O u= _O-zy Sinza f

- . - . - 1 . 1 .
O m=0,8I020, O n=0,80&, O n —EO'W sm2a——2—0'zzsm2a (6)

In that case, the relations for the stresses totally lost during sectioning might be

expressed as:

o = cosza+ o'y
= ”sinfa  sin*a
1
C,=—0 s— (7)
sing
_ 1
O'zy =—0 u—
sin2a

Relations (5)-(7), thanks to the tensor transformation rule, are simplified now and
the influence of the shear stresses might be controlled (it is strengthened in the
case of subtraction and weakened in the case of addition of the stresses from the
counterpart oblique slices. There is, too, an additional equation for controlling the

quality of either the approximation or the experiment itseif:

o, =0"s (as previously in the T/O procedure)

0"« = 0, cos (additional relation) (8)
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4.4 The “N” setup

The advantage of the “N” type setup, where there are two transverse slices and
on oblique (Fig. 18e), is that this setup lends itself well to performing the vital
check of fulfillment of the basic assumption about independence of the stress
state of the longitudinal coordinate Z, and, in case such dependence is

confirmed, to introduce corrections.

Fig. 20
Evaluating fulfillment of basic assumptions

The validation procedure might resort to the fact that due to the features of the
transformation rule that nominally (if the Z-axis independence assumption holds)
guaranties that horizontal stress is exactly the same in all three slices. If not,
there are now three different but corresponding to each other points: A, A’, A’
(Fig. 20) thus for each such triplets of points, a second order approximation of the

stress variation might be assumed:
O',.j(x,y,z)=azz+bz+0',.j(x,y,0) 9

where the parameters a and b are found from the interpolation conditions:
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o, (x,y,2")=a(z')’ +b(z") + 0,;(%,y,0) = 0% (10)

o.(x,y,2")= a(z")’ +b(z") + 0,(x,y0)=0,(x,9,2")

In such a way, by repetition of the procedure at locations of all data points, a
spatial distribution of the a=a(x,y) and b=b(x,y) parameters might be
determined and this might be used for enhanced analysis of experimental data,
where with help of FEM (or equivalent) approach corrections to the data might be

computed®.

4.5 Tests for simulated data for stmetricaI OITIO

It was planned in the proposal to test the approach on the simulated experimental
data obtained from the hybrid finite element method program by M. Hotowinski
[15]. This program is dedicated to computing 3D residual stress states in railroad
rails based on shake-down type analysis and the minimum complementary
energy principle and its results were extensively used in simulation tests
performed, either for the original T/O formulation [5,6] or its X-T plane version
[12]. Thus it seemed to be natural choice to propose to test the three slice
procedure(-s) also for this pseudo-data. But, unfortunately, due to internal
restrictions of this program'® and the fact that it arbitrarily limits the stress tensor

to the o, 0,,, 0, and o, components, the aforementioned tests were not
possible. The source of this problem lies in the fact that if the o, and o,

stresses are identically equal to zero in the whole domain, then the tensor

transformation rule gives:

0’s=0"s=0,

0%u=0"%%= o, cosa

° it is also conceivable to employ least square approach and obtain global values of
parameters a and b

10 so called 10 linear approximation for the stresses spanned
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0% =0"%=0,c08 a+0,sin’a

0%m =0 =0,sin’ a+0,cos’ (11)
o-ans = _O'—ans = O-xy Sina

- 1 . 1 .
0 u=—0"= 50 sin2a - 50 sin2¢

due to anti-symmetric behavior of the sin(x) function and symmetric behavior of

the cos(x) function. As it may be seen, out of the six stress components only o,
and o, are different (anti-symmetric, in fact) in the two corresponding oblique

slices, the rest is exactly the same. Therefore, the
0-+ijEO-iaij, o ;=0 (12)

for all components except for o, and o,, but those two component are
neglected' to simplify the FEM modeling of rail samples. But this renders the
three slice procedure equal to the classic two slice T/O procedure thus no

benefits of three slice procedure might be seen in the results.

The tests for the three slice procedure will have to wait then for the new ND data

where this concept is explored’.

5. 3D ANALYSIS OF RESIDUAL STRESSES FOR THE CASE OF SEVERAL
INDEPENDENT DATA SERIES

The analysis of 3D residual stress reported here was performed for the case
when for a sample several independent data series were available. Happily, the
neutron diffraction technique on the 2D level is non-destructive thus it was

B it was proved [5, 6] that this might be done with error amplitude of ca. 0.5%

as is the “N” setup

596



possible to perform repeated scans of a sample (sample #3 data of [9]) and
collect several data series. In the case of this particular sample there were three
data series collected, one for a coarse 5x5 mm grid, the second for a fine 3x3
mm grid, and the third one for the coarse but spatially extended grid. In fact, the
first and third data series are the same for majority of data points except for four
rows'® of data points beneath the limit for all other data series/samples line of
y=147.7 mm (in Fig. 21 the gray squares mark data series #1, the white ones
beneath them — data series #3).

180j
160
140:
120:
> 100:
80:
60-
40:

20 1

0 20 40 60 80 100 120 140
Fig. 21

Data series #1 and #3, NIST ND examinations (figure source [9])

The main aim of this analysis was to test whether a simultaneous processing of
independent data sets will provide better results while not affecting convergence

and stability of solutions.

13 and several other in the web and foot of the rail
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In the report [2] enclosed in this volume, the details of 2D analysis were
discussed and the results obtained were shown. The outcome of the tests on the
2D level was that the 2D procedure was convergent and stable and that — due to
apparently not equal numbers of the qualified data points in those two sets (275
vs. 105) — the final patterns bore a strong resemblance to the fine grid data

smoothing results.

On the 3D level the procedure was also proved to be stable and convergent
though — alike to the 2D level — the solutions are more noisy and showing small
fluctuations in their stress patterns (Fig. 22a-d). Not surprising, the conclusion
about similarity of the result to the fine data patterns is also confirmed on the 3D

ievel.

A general conclusion of this test is that combined processing of independent data
sets gave mixed results. From numerical point of view, it is more demanding as it
e.g., requires finding proper weights between the data sets. However, despite
those cons, it might be a valuable addition to the physically based approximation

technique.

6. CONCLUSIONS

In the report presented were results of the newest research dedicated to 3D

procedure. They regarded such issues like:

- improvements in algorithms (three slice procedure)

- improvements in data preparation (hew FE/FDM grids)

- improvements in overall data reliability (a posteriori error estimates)

- study of influence of the distribution of nodes and/or boundary
representation on the final results

- study of grid density influence on the final result
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Reconstructed 3D patterns for o, and o, for combined data sets
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- practical analysis of ND data

The outcome of these tests/studies is that:

- the quality of the final results strongly depends on the quality of grids and
their strict conformance to the true profiles of rail samples

- it also depends on the grid density and the possible errors manifest
themselves at the sample’s peripheries; the magnitude of this error is not
high and it is further reduced on the 3D level

- the tests for the three slice procedures for currently available simulated
data hardly could be done; they require either a new theoretical approach
(incremental analysis) or actual experimental data for tests

- simultaneous processing of independent data sets is possible and the
iterative procedure convergent though the results might be a little bit more

noisy than in the case of a separated processing of the data.
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Topic 2.5

Error control in approximation, smoothing and evaluation of
physical data measured and calculated for railroad rails and
vehicle wheels



Error control in approximation, smoothing and evaluation of physical
data measured and calculated for railroad rails and vehicle wheels.

The report, entitled:
An extended adaptive procedure of experimental data collection and evaluation
by a’ posteriorir error estimation. Revised version.
deals with the problem under consideration, and pertains to all the topics (2.5.1 - 2.5.7).
The work addresses extended and revised formulation of a new approach proposed to
measurements planning and carrying out by means of error control of experimental data.

It includes: development of postprocessing techniques for approximation of data given in

a discrete form, a'posteriori error estimation (evaluation) of measured data, estimation of
a new required experimental points location and density, definition of reliability index of
experimental data. Theoretical consideration and numerical analysis are based on the
Adaptive Finite element Analysis (AFEM) and the Meshless Finite Difference (MFDM)
approach. Differences in numerical and experimental data analysis are underlying.
See also report entitled:
2D Incremental analysis of residual stresses in railroad rails with plastic harden-
ing taken into account.
in topic 1.3.
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1. Introduction

This work addresses validation of an approach proposed to control error in
smoothing/ approximation of experimental/numerical data. On the base of aposteriori
error analysis of data, adaptive procedure of experimental data collection and
evaluation is presented.

One often has to transfer discrete data known at certain points to other points, for
instance one may need e.g. a much clearer picture or require data smoothing.
Sometimes one may also need additional data. How can this be done at the minimal
loss of accuracy? Is it possible to measure the degree of information loss and if so,
how? Is it possible to recover, as a by-product, additional information on the data
(regularity, smoothness) and locations of data points (guaranteing the highest
accuracy, when distributions of data points density and function gradients are
similar). Positive answers to above-mentioned questions are crucial in proper
interpretation of experimental/numerical data.

The present research is concentrated on further development of an approximation
technique of physical/numerical data, based on the MWLS (Moving Weighted Least
Squares) [7, 8, 9, 11] and finite difference formulae (FDM) and formulation of a new
approach to experimental data measurements planning and carrying out. It includes:

¢ introducing and validation of postprocessing techniques for data approximation
done in a discrete form,

e validation of an iterative approach to additional enhancement of data at new
locations,

o formulation of aposteriori error technique to trace the loss of accuracy of
original data by using different "error norms", aposteriori error estimation,

e evaluation of experimental points density in experimental data taking into
account equal error distribution,

o formulation of the new adaptive approach to experiment planning and carrying
out, taking into account aposteriori error estimation and distribution of
experimental points with equidistributed error,

¢ analysis of the wheel saw cut data, especially for the wheel #2 (see [[3] ,11,8]),
as a sample application of the proposed approach

Part of the theoretical considerations is based on the Adaptive Finite Element
Analysis (AFEM). AFEM gives tools to solve the problem under consideration, even
though the problem does not necessarily conform to the AFEM case, because
several assumptions are violated (for example one does not know the rate of
convergence and degree of smoothness, i.e. regularity of the physical data).

The theory of aposteriori error estimation in discrete methods like in the FEM or
MFDM is already well established. As a result one obtains new mesh density to solve
boundary value problems with highest possible accuracy i.e. with equidistributed
errors. Now the same idea is proposed for experimental mechanics. Theory
presented here allows to evaluate results obtained in experiment and to give very
precise information on location and density of gauges or on size of moire
interferometry grid (output of any experimental method may be evaluated). If it is not
possible to improve measurement quality, one gets precise information on data
measured with insufficient precision. Reliability indices defined in presented work
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yield tools to assign very objective weights to measurements differing in quality.
A’posteriori error estimation in FEM, which may be (however indirectly) used to
introduce proposed idea, is presented here to explain our intent.

2. A posteriori error estimation of discrete data
2.1 Zienkiewicz-Zhu aposteriori error estimator - approach #1

For the aposteriori error estimators used in FEM and MFDM, based on the
postprocessing of the stresses (or fluxes) - see Zienkiewicz, Zhu —ZZ [14-17] - one
has

el = [gj}(o -o"Y' D™ (0 -6")dQP (2.1)

where ¢" are stresses obtained by the FEM, D is elasticity matrix.

The exact stresses o are approximated by new stresses obtained using the stress
recovery procedure (the Meshless Finite Difference Method - MFDM - is used here
[9,15])

6" =No (2.2)
where o are nodal values obtained by the MFDM recovery procedure, and N is a

shape functions matrix. = The exact strain energy and an error of the energy norm
are expressed as

Il =t !, ©@"Y D (c")dQP +|e . || = [j(o‘ —o"Y' D(6" -0")dQ]? (2.3)
Q

Both |[e| and U] norms may be evaluated as a sum of their respective element
contributions so that (n denotes the total number of elements in the mesh)

I =2 o =S (24)

Remark: An aposteriori error procedure can be split into two main stages:

e stage 1: calculation of stresses (or other primary values) at Gaussian points - the
primary set of points,

e stage 2: approximation of the Gaussian-located stresses at nodal positions
(secondary set of points), retrieval of the nodal values to Gauss points using (for
example) standard shape functions or other kind of approximation.

Having two sets of values of different accuracy at the same points, one may
calculate local |e|, [U], and global |e, [U] norms.

2.2 Approximation and error analysis of physical (experimental) or numerical
data — approach #2
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New idea of a’posteriori error estimation of randomly distributed experimental data
or numerical data coming from FEM or MFDM analysis is presented here.

Let us define the following problem:

e data, (not necessary stresses like in eq. (2.3) ) coming from experiment, located
at certain points - set #1 (see experimental points-set of primary points, fig 2.1)
is given,

e the fictitious sets of points used later in calculation - set #2 (see fictitious points —
set of secondary points - fig.2.1) is given.

0.00@ = = = ¢

0.00 2.00 4.00 6.00 8.00

squares - primary nodes, diamods -
secondary nodes

Figure 2.1. Primary and secondary mesh for approximation of physical or numerical
data

The problem lies in data translation (approximation) from #1 points set to #2 points
set. The problem is exactly the same as in error estimator (2.3), but now one has two
different sets of points with, in fact, arbitrary (not elemental) locations and one has no
information on regularity, smoothness and reliability of the data.

Differences between two surfaces defined by data #1 and #2 may be measured as
e =Lf " —u")T " =)+ (V" = Vo) (Vie* = V") + (™ — ") (™ — it )d Q] (2.6)
Q

where u" is the vector of experimental data (in experimental points) and «" is the
vector of fictitious sought data. Sometimes weighting factors may be used to
equilibrate dimensions of terms. In the above formula one can omit (sometimes not)
the gradients and curvature terms (x - see generalized curvature [[5] ,[6] ]). One can

also use discrete form of this formula, summing up differences between values at
experimental points.

To solve this problem, data from experimental points is approximated to fictitious
ones (using FDM approximation - see next part of this work) and later on, taking
values at fictitious points as original data, approximated back from fictitious points to
experimental ones. In this two-stage approximation part of data is lost, but if
differences between original data in the experimental points and fictitious data in the
same points are small enough, one may expect that the approximation in first step
does not introduce too large error. As it will be seen from numerical analysis this
assumption holds true.
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Additionally, in the zones where the gradients of approximated function are larger,
the error magnitude is considerably higher as compared to the zones with smaller
data gradients. Moreover, if irregularity in data is large the error increases. Those
facts may be used, as by-product important information, to evaluate experimental
data. Having a vector of differences between experimental and fictitious values at
experimental points one can "smear" the error, approximating vector of differences
from experimental to fictitious points. Adding correction to initial fictitious values one
can obtain new enhanced fictitious values. This process can be repeated (iteration
process gives possibility to avoid fluctuation, especially when data is very smooth,
like MFDM solution). In this way, the very well known approach elaborated mainly in
AFEM is unified, extended and generalized.

The total norm of the measured values may be expressed as (the discrete form of
the below norms may be used):

lol =t [@ul+ (V'Y V" + (') ] + - @7

The key question is, whether one can evaluate experimental data using norms
(2.6) and (2.7)? The answer is yes, if data is regular enough.

As one can see from equation (2.7), not only values of a function measured, but
gradients of the function and curvatures (needed when material discontinuities are
present) are taken into account as well. One can find any required derivatives of the
discrete data, with error control as a by-product.

3. Meshless finite difference approximation

The approximation «"(x) of function u(x) is posed as polynomial of order m with
non-constant coefficients q,(x),q,(x)....,a,,(x). The order of polynomial is defined as
the order of the basis. For a linear basis in two dimensions «"(x) can be written as

u"(x)=a,+ax+a,y, (3.1)
where unknown parameters a,(x) vary with x. The local approximation (for X =x)
is given by [[1] ,[9].,[10] ,[13] ]

(%) = 2 (99, =p" (a(x) (3.2)
where p(x) is a com'plete polynomial of order m

p’(®) =[x, y,%%,x0,5",....] (3.3)
and a(x) is given by

a’ (x) =[a,(x),a,(X),....a, (x)] . (3.4)

The unknown parameters a,(x) at any given point are determined by minimizing

the difference between the local approximation at that point and the nodal
parameters u, i.e. weighted, discrete L, norm
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J(a)= gvv(x— X" (x,, %) —u,]* = gw(x—x,)[p’(x,)a(x) ~u, P (3.5)

where w(x—x,) is a shift of a given weighting function w(x), and n is the number
of nodes in the neighborhood of x for which the weighting function w(x-x,)=#0.

The minimum of Jin (3.5) with respect to a(x) leads to the set of linear equations

AXa(x) =B(x)u. (3.6)
After solving the set of equations (3.6), one obtains
a(x) =A™ (©B(u = LA™ (9B, (x); = Q) (3.7)
where
A@) = Swlx=x,)px)p(x,) (3.8)

B(x) = [w(x —X,)p(X)), W(X ~X,)P(X,),...w(x—X,)p(x,)]  (3.9)

Substituting (3.7) into (3.2), the MWLS approximants can be defined as

u* =p" (M)A (X)B(x)u = Zi 2, (AT (X)BX)], %, = Z N,xu, =Nu,  (3.10)

I=1 j-0

where the shape functions in MWLS approximation are (note that iﬁ ,=1).
N,® =Y, p,()A"®B®], =p’A"B, =Y p,0, (3.11)
Jj=0 j=1

To determine the derivatives of the approximating function «*(x), one has to
obtain the shape functions’ derivatives. The derivatives of the shape functions are
determined by

N,,=[p"A"B,], =p"-A"B, +p’A":B, +p’A"B, , (3.12)
where
ow(x—x
B,(x) = Lax—’lp(x,) . (3.13)

Matrix A’ is computed by
Al =-A"A A", (3.14)
where

4= 32y ). (3.15)

To compute the shape functions and their derivatives, the A matrix has to be
inverted. This process is more computationally efficient if LU decomposition of the
matrix A is performed. The shape functions in (3.11) can be written as
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N, =Y p,(®A*®B,(x)=p"A"B, =¢'B,, (3.16)
j=0
where the following relationship was used [1]

A(x)g(x) =p(x). (3.17)

The vector g(x) can be determined the same way as the vector a . The derivatives
of vector g(x) can be computed similarly, this leads to a computationally efficient

procedure to determine derivatives of «". Taking spatial derivatives of (3.17), one
has

A(x)g(®) . =pX),—A 8. (3.18)

Thus, the derivative of g(x) can be calculated using the same LU decomposition
obtained from (3.17). Spatial derivatives of shape function may be obtained as [[1] ]

N,(x), =g(x),B, +g®)B, , . (3.19)

By consecutive derivation of equation (3.17) one obtains the set of following
equations for vector g and its derivatives

A(x)g(x) =p(x),

A(X)g(x), =p(x),—A,8,

A(x)g(x), =p(x), —A g,

AX)g(x) . =p(X) . —A _8-2A g, (3.20)
A(X)g(x), =p(x),, —A,8-A .8, -A g,
A(x)g(x), =p(x),, —A g-2A g .

This leads to a simple relationship for the derivatives of the shape functions

; =g(x)B,,
1 =8(x) B, +g(x)B, ,
Ly =8(),B, +g(x)B, ,
]\Nf,’n =g(x) . B, +2g(x) ,B,, +g(x)B, ., (3.21)
N,, =g(x),B, +g® B, +2(x),B,, +gxB,

N,,=g(x),,B,+2g(x) B, +&XB, .

U ==

In practical calculations, the local coordinate system h = h(#,%) is used
h=h(hk)=x-Xx,, X, =(Xg, ;) (3.22)
where x, =x,(x,,y,) is the point in which approximation is sought. The base vector

is taken as

Pl = [l,h,k,é-hz,hk,%kz,...,], (3.23)
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so coefficients a,,q,,...,a,, may be immediately interpreted as derivatives at point x,
(usualy called local derivatives)

a, =iy, a, =aa—t;°—, a, =%,..., (3.24)
and the matrix Q (see 3.7 ) now is a generalized FD matrix. Combination of rows of
this matrix and a vector of nodal values yields immediately values of function and it's
derivatives at point x, (but these derivatives may be not continuos from point to

point).

Consistent MFDM matrix (~) and the approximation rule now have the form

“I'T& N .. N7 .
“s| | aN, oN, aN, ||*
Du=<:y>= x o  ox [{2l_Qu (3.25)
u: N, N, N, u
u,| L o oy’ J

The explicit form of the matrix 6 has the following form (note that matrix Q,
contains columns of the approximation matrix Q of zero-th order)

[ p'Q, p'Q, |
pin +pTQ1,x p,T,;Qn +PTQ,,_,;
G- p,Q,+p'Q,, p,Q,+p’'Q,, (3.26)
p..Q, +2p"Q,, +p'Q, . p.Q,+2p’Q,,+p'Q,..
p.,Q +p5Q,, +p7Q, . +p'Q,, .. P,Q,+p.Q,,+p,Q,.+p'Q,,
p,Q +2p°Q,,+p'Q,, ..  p,Q,+2p7Q,,+p'Q,,

Taking into accout that approximation is sought in the origin of local coordinate
system one has p”(0)=[1,0,0,0,0,0,...,1, and thus (note: Q, is the first element in each

i-th column Q,of FD matrix)
N.=p'Q,=0: (3.27)

As one may see from equation (3.27) global shape functions are equal to first row
elements of FD matrix.

This means that global approximation is exactly the same as local one in origin of
local coordinate system. Result is rather obvious, but this means, that meshless
shape functions and local (diffuse) derivatives in modern notation were first
introduced in [7] twenty years ago (in polish), and published in [10] (in english) . This
fact was recently confirmed by O.C.Zienkiewicz in his book [16].
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Relation (3.25) is valid for a very wide class of messhless approaches and yields
continuous derivatives up to the second order very easily. Having two different
approximation matrices: Q- obtained from the MWLS approximation (see equation

(3.7)) and Q - (3.25) — obtained by means of the direct differentiation of «"(x), one
has another, very useful, capability to measure error as a violation of continuity in
approximation of the first and second derivatives. This way one may have at the
same time two different approximation matrices.

Continuity feature of derivatives is not always beneficial, especially when
approximation of data given in a set of arbitrarily spaced points is needed. Besides
that, there are problems with proper definition of a weighting function on arbitrarily
spaced grid of points, because results of approximation, especially derivative values
strongly depend on type of weighting functions used (dimensions of weight support).
if support of the weighting function is not properly correlated with grid density and its
form is not appropriate for the purpose required, results may be considerably worse
than in the case of direct MWLS MFDM approximation. If support of approximant is
too large, approximation is too smooth and thus local peak values of approximated
function are anihilated.

Weighting function used here is [5] ,[6]

wip)=(p* +g* (g® +pH)] "™, (3.26)

where p is the distance between central point and the node, p denotes polynomial
order and g is an optimality parameter making singular weighting function
(interpolation) or non-singular weights (approximation) available. If the optimality
parameter g tends to a small value, the weighting function enforces interpolation. If
optimality parameter tends to large number, approximation takes place, but data
smoothing may be over emphasized.

it is worth to mention that the continuity problem arises in the MWLS
approximation. Continuity requires that either all nodes in considered domain are
taken into account each time or weighting functions defined on an appropriate finite
supports are used providing zero end conditions. If such support is not properly
corelated with the mesh density, approximation results may be of considerably lower
quality than they could be. On the other hand continuity feature of MWLS
approximation and its derivatives may be not needed in practice (see [12, 13]).

Test problem [12]

Though the matter requires a deeper and systematic study (see [12]) a valuable
insight into the MWLS approximation quality was gained by analysis of a simple test.

Considered was a set of data presenting the values of function u = /25 — x?
defined at nodes of an evenly spaced mesh: 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 having the
increment 0.5.
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The local (3.24) and global (3.10) MWLS approximation was performed for the
function itseif and for its first local (3.24) and global (3.12) derivatives. Results of
error analysis obtained in the interval [0.5, 3.0] for various weighting functions are
presented and compared in Fig. 3.1 a and b. The following may be noticed then:

e results of the local (3™ order) and global (consistent) approximation are, of
course, the same for the function itself when using the same weighting functions.

e neither method did show clear advantages with respect to result quality when
comparing the first derivative found by means of either the local (3.24) or the
global (consistent) (3.12) differentiation approach. For local derivatives
superconvergence property at internal nodes is noted (error of the local
derivatives is considerably lower than error of the consistent derivatives).
Superconvergence property of local derivatives for lower approximation order is
much stronger, than for higher order (not presented here) . On the other hand
approximation error of the consistent derivatives is more uniform. Maximum error
is lower than approximation error of the local derivatives. It is interesting to see,
that the gap between local and global derivatives is proportional to the
approximation error. This fact explains why error estimator proposed by Gavette,
Cuesta and Ruiz works very well [18]. Probably, for the first time, it is possible to
define very convenient error estimator in meshless methods, based on
postprocessing, but for the two different types of derivatives.

e squared weighting functions proved clear advantage (minimal errors) over non—
squared ones,

e the smallest errors in the function approximation were observed when the singular
weighting factor (3.26) was used , while squared non-singular 3 order spline
weight [1], was found the best for derivative evaluation.

From above test it is evident, that the two problems arise: 1° discrete data
approximation problem, 2° boundary-value solution problem. It is not justified to
extend conclusion from data approximation to solution of boundary value problem.
Even if approximation works well in data approximation, one may not obtain good
results when boundary-value problem solution is needed. On the other hand bad
results of data approximation not neccessarily mean that approximation will give bad
results during solution of boundary-value problem.
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Fig.3.1a, Weight function influence on results of approximation - function error
data sought at points: min=0.5, max=3.0, increment Ax = 0.1
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4. Definition of points density function in experimental and numerical discrete
data

4.1Acceptable solution and mesh (grid) refinements function

In an adaptive solution approach, the aposteriori errors are used to modify mesh
appropriately mesh modifications by means of so-called error indicators and mesh
refinement parameters. An approach to mesh modification applied to the adaptive
FEM (or validation of a density of experimental points) is discussed below. This
problem is very important because one has to have the capability to take into
account, in numerical as well as in physical experiments, relation between gradients
of the measured function and density (location) of the points at which information is
available.

Solution is 'correct' if the two following conditions are satisfied:
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(i) The global error in energy norm is less than a specified percentile value of the
total strain energy

el =7lu] (4.1)
where n is the 'USER' specified value of a permissible relative global error.

(ii) Distribution of elements in a new mesh satisfies a local mesh optimality
criterion
lel, = el

where ||, is the actual error norm in i-th element and "e"a”(.‘,) is the

e (4.2)

‘required ' error norm in the element.

The global and local error parameters may be defined from equations (4.1) and
(4.2) as
- €
ég = "e" , gi — || "x . (43)
T]HU” € all (i)
The mesh refinement parameter for the i-th element is introduced as a
combination of the global and local parameters [[2] ]

o e
i =65, T — (4.4)
=50 = e

all (i)

One of the most important questions is: how one can define the required error
norm for each element. The following definitions are considered here:

(i) the global error, equally distributed all over elements in the mesh ([15])

€
o =11

where # is the total number of elements in a mesh.
(i) mesh is optimal if squared error per unit element volume is the same over the
whole mesh i.e. (Bugeda, Onate [[2] ]), taking also into account equation (4.2)
one has

(4.5)

1

Q¥
)y "e”(al)z . (4.6)

Using eqs (4.5) and (4.6) one may obtain the following element refinement

parameters
1
. [ Q
- M H )
njuln) i,
for equal error distribution [15] and for the equal specific error distribution [[2] ].

ell. €,
B B -

Q)2 (@2

(4

However, one should notice that the element and global error norms have different
orders of convergence
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d
el = o™ 92~0(h "2y, le| = o™ (4.8)
where h, and & are the i-th element size and average size of all the elements in

the mesh, m is the element order and 4 is the problem dimension. Dividing the
element error by its area one obtains

el /@) = o™ (4.9)

and new element size parameter may be defined as (this is valid only for FEM)
1

£, = EEI" = EN™ . (4.10)

Refinement of the mesh may be done in two completely different ways: breaking
elements ([[4] ]), or remeshing ([15]). For the purpose of this research, the remeshing
technique is preferred, as it is compatible with both FEM and MFDM discretizations.

If there is no information on regularity (and convergence) of the data (like in
experimental mechanics), then coefficient m may be set to one, so grid refinement
parameter (4.10) is equal to (4.4).

Soew =&, 4.11)

This way, very important unification of discrete methods (like MFDM and FEM), and
experimental data analysis has been done.

4.2 New hybrid theoreticallexperimental method of a posteriori estimation of
“experimental points” grid density

The global and local error parameters for experimental data in each experimental
point may be reinterpreted from equations (4.1) and (4.2) as

gexp — "e" , é;""p "e" (41 2)
f TIIIU” € all (i)
so the experimental grid refinement parameter (EGRP) for the i-th point is introduced
as a combination of the global and local parameters [[2] ]
éexp é e"péexp "e""e" (413)
n"U" all (i)

where "e”a” " is the 'required ' or admissible error norm in the i-th experimental point.

This way features of the measuring devices or other “experimental errors” may be
infroduced.

Theoretical or approximation based points refinement parameters (TPRP) may be
introduced from optimality criteria (4.5) and (4.6)
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1

: Q¥

gl_theor — "e", , githear — ﬂ[_]l (414)
vl ol €

for equal error distribution [15] and for the equal specific error distribution [[2] ] in

each experimental point.

New theoretical or approximation based points refinement parameters (TPRP) may
be defined by combining local and global optimality criteria

~—theor L
gilheor — (gi" ééhear)m . (415)
where
theor "e”
=t (4.16)
“ Yl

Coefficient m in numerical method depends on theory. Here, this coefficient may be
set to one or to ¥ as in problems with singularities (like in analysis of boundary
problems using numerical methods - FEM or MFDM).

if one has no information on experimental error TPRP parameter may be used. If one
has to take into account both experimental and as theoretical (approximation) errors
one may use the following proposition of combined theoretical/experimental points
refinement parameter (CTEPRP)

£ = (1= MEM + AL (4.17)

where coefficient 4 decides how much of “experimental estimation” will be used in
analysis. 1- A is part of estimate due to approximation optimality criteria.

Magnitude of A parameter depends on “user”. It is no easy to decide how much of
“‘experiment” or how much of “theory” should be taken into acocunt. Investigations on
this extremally important topic are under currenttly performed.

4.3. Error and experimental mesh (grid) density evaluation strategy in saw cut
experimental data

Crack nucleation propagation and failure of railroad car wheels is greatly
influenced by residual stresses existing in those wheels, as a result of manufacturing
and service conditions. The knowledge of residual stress distribution in wheels is
thus required.

Experimental data used for residual stress reconstruction is collected during radial
saw cutting of a wheel in laboratory conditions in order to relieve residual stresses
and strains, see Fig. 4.1. In order to obtain reasonable residual stress estimation, the
additional approximation process, which simultaneously uses error estimation
procedures for considered problem is applied.
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strain gauges
(strains)

moire interferometry
(displacements)

Fig. 4.1 Measurements taken at saw cut [19]

Wheel saw cut experimental data may be evaluated using equations (4.1) and (4.2).
Of course, density of experimental points depends on local (4.2) condition i.e. error at
experimental points must be bound by certain admissible value. The global and local
error refinement parameters may be defined from equations (4.1) and (4.2) as in
FEM analysis. Combining both global (4.1) and local (4.2) criteria one obtains the
same formula for the mesh refinement parameter at the i-th experimental point like in
the FEM. What does mesh refinement parameter in experiment mean? It means that
an experimental value at certain points changes too rapidly when compared to the
mean value and local density of experimental points. In other words, density of
experimental points must be increased in certain part of the region, it is simply too
low to properly describe the gradients of the measured function. New, required
density is computed by formula (4.7)1 - discrete form or (4.7)2 - continuous form.

One can take into account a weighting factor like an area assigned to experimental
point (see eq. (4.7)). This is a proper definition of the admissible error at a point.
Equations (4.8), (4.9) and (4.10) are not valid here because one does not have any
information on the convergence of experimental results with respect to the density of
experimental points (one may use directly (4.4)). As was mentioned above, this very
important problem may be solved by setting convergence rate to one, but any other
physically justified value may be used. For example, if discontinuity is present (at
point or along line or surface), convergence rate is substantially lower than one (in
numerical analysis is usually set to 0.5). This fact may be inserted into new
experimental grid density distribution.
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error' norms.

3. Estimation of the new experimental points’ grid density with equal distribution of

error analysis of the physical data

riori

In numerical calculations the data coming form the wheel #2 cutting process have

An error analysis described above has been applied to a problem of wheel saw cut
‘data approximation and to calculate influence matrix coefficients (see [11]). The
been considered. 20 different 8ets of data: horizontal (circumferential) and vertical

MFDM Approximation [[1] ,8,[9] ,11] has been applied. In the presented examples

Three different effects concerning experimental data are investigated:

an approximation error kept in mind.

used in numerical analysis.
2. Evaluation of the measured values taking into account five different

(radial) displacements coming from five cuts ([[3] ,8]) of the wheel have been used in

calculations.
1. An approximation error of the measured values from experimental grid to one

fictitious (discrete!) mesh generated previously: Fig. 5.1 (flange side of the wheel)
has been used and the error has been determined at the experimental points.

5. Approximation and aposte
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in both analyses, local as well as giobal error norms were considered.

An approximation of experimental data with different order and different number of
nodes in stars is presented in Fig. 5.2-5.25. Notation used: n_taylor - number of
coefficients in Taylor series expansion, nodes - number of nodes in star,
optim_par=optimality parameter g - mean distance between current node and central
point of a star.

Results obtained are plotted in Fig. 5.2 — 5.27. These pictures are divided into
3 different groups, namely:

Set #1 (Figs 5.2-5.19) - detailed analysis of data approximation performed for
each of cuts: #1, #3, #5 of the wheel #2 for flange side (horizontal displacements) of
the wheel with optimal approximation parameters taken into account. Approximation
parameters taken into account are: n_taylor=8, nodes=36, optim_par=2.

Detailed description of the pictures is as follows:

Cut #1: Fig. 5.2, Flange side, cut #1, horizontal displacements, original data,

Fig. 5.3, Flange side, cut #1, horizontal displacements, approximated data after 7
iterations,

Fig. 5.4, Flange side, cut #1, horizontal displacements, recovered data, no
iterations,

Fig. 5.5, Flange side, cut #1, error of the horizontal displacements, no iterations,

Fig. 5.6, Flange side, cut #1, horizontal displacements, recovered data after 7
iterations,

Fig. 5.7, Flange side, cut #1, error of the horizontal displacements, after 7
iterations,

Cut #3: flange side, horizontal displacements: Figs 5.8-5.13,

Cut #5: flange side, horizontal displacements: Figs 5.14-5.19,

As one can see, because the smoothness parameter has the optimum value,
approximated data is smooth enough and the errors are very small. lterations
between experimental data and fictitious data considerably decrease the errors
(magnitude of the error decreases approximately 10 times). In this way one may
absolutely ensure that data at experimental points and data at fictitious points are
very close to each other. Thus, one may use data at fictitious points for further
analysis, and this process is under error control.

Set #2, cut#3 (Figs 5.20 — 5.22) - summarizing pictures concerning full evaluation
of the approximation process and simultaneously experimental data, flange side -
horizontal displacements: local error and grid density distribution for different 'error'
norms. Detailed description of the pictures is as follows:

Flange side, horizontal displacements

Cut #3, flange side, Fig. 5.20, Error distribution and grid density distribution:

(1) horizontal displacements, (2) error norm #1 — Sobolev norm of zero order,

(3) grid density - norm #1,

(4) error norm #2 — Sobolev seminorm of first order, (5) grid density - norm #2,

(6) error norm #3 — Sobolev norm of first order, (7) grid density - norm #3,

(8) displacement curvature, (9) error norm #4 — Sobolev seminorm of second
order,(10) grid density - norm #4,
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(11) error norm #5 — Sobolev norm of second order, (12) grid density - norm #5.

Approximated experimental data may be filtered, using a certain treshold value. In
Figs 5.21 and 5.22 area where required grid density is greater than 1.0% is shown
for cut #3:

Cut #3, flange side Fig. 5.21, Error distribution and grid density distribution
(izolines greater than 1.0 are shown), (1) - (12) like Fig. 5.20,

Cut #3, flange side Fig. 5.22, Error distribution and grid density distribution
(izolines greater than 10.0 are shown), (1) - (12) like Fig. 5.20.

Set #3, cut#5 (Figs 5.23 — 5.25) - summarizing pictures concerning full evaluation
of the approximation process and simuitaneously experimental data, flange side -
horizontal displacements: local error and grid density distribution for different 'error'
norms. Detailed description of the pictures is as follows:

Cut #5, flange side, Fig. 5.23, Error distribution and grid density distribution,
(1) - (12) like Fig. 5.20.
In Figs 5.24 and 5.25 area where required grid density is greater than 1% and
10.0% is shown for one cut:

- cut #5, flange side Fig. 5.24, Error distribution and grid density distribution
(izolines greater than 1.0 are shown), (1) - (12) like Fig. 5.20,

- cut #5, flange side Fig. 5.25, Error distribution and grid density distribution
(izolines greater than 10.0 are shown), (1) - (12) like Fig. 5.20.

As one may see from the presented pictures, the results strongly depend on
approximation order and the smoothness parameter value. Namely, if the
smoothness parameter is large - data is-too smooth, simultaneously this increases
the error too (but the errors are not very large, however). If magnitude of the
smoothness parameter tends to smaller values, data recovered at experimental
points is closer to experimental one, but the data obtained at fictitious points is
rougher.

Different error norms indicate different zones of the largest errors. Magnitudes of
the norms differ essentially. Higher order norms give larger errors and are more
sensitive to changes in the experimental values.

As one may observe, the zero order Sobolev norm indicates completely different
zone of the largest errors than the first or second order Sobolev norm. From Figs
5.20 — 5.25 one may see that cutting area is best traced by second Sobolev semi-
norm.

An error analysis has been applied to approximation of numerical data coming
from FEM analysis as well. Calculation of the influence coefficient matrix (see [[10] ])
needs approximation of numerical data from FEM mesh nodes to residual stress
recovery procedure nodes (not presented here).
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6. New adaptive procedure of experiment planning

As a practical result of introduced error analysis, new adaptive procedure of
experiments planning is possible.

Experimental method should take into account character of the measured function,
it cannot be separated from character of measured physical field. Simply speaking, in
regions where gradients (and curvatures) of measured field are larger, one requires
many more experimental points. Presented approach gives a theoretical foundation
for above mentioned crucial condition in experimental mechanics.

Carrying out measurements is only first, important, but sometimes not the most
important stage to have reliable experimental data because usually experimental
data is approximated and evaluted. Therefore, mesurement process consists of:

1. A’priori estimation of experiment conditions and critical measurements
parametes like locations and density (e.g. gauges), orientation of
measurement grid and soon ....

2. Measurement — experimental data collection togehter with enviromental
parameters.

3. Approximation (smoothing) and evaluation of experimental data

4. New grid density of experimental points evaluation — a’posteriori
evaluation of critical parameters and experiment conditions. Go to point
#2.

One may distinguish two different situations:

1. it is possible to simulate behavior of measured element or part of structure by
means of numerical method (FEM, meshless FDM),
2. itis not possible to simulate experiment numerically.

One may note that the experiment may be repeated or not, if yes, sometimes one
has the chance to correct location of experimental points and other experimental
conditions. If not, presented approach defines tools for proper data evaluation.

The following procedure is proposed for the case when numerical simulation of
experiment is possible:

1. Solve problem numerically, with conditions for proper simulation of measured
part of a structure or an element as good as possible.

2. Evaluate a’posteriori error and repeat calculation with new mesh (grid) density, to
statisfy equidistribution error requirements.

3. Define experimental grid and transfer (project) numerical solution (by means of
MWLS approximation) to this grid. Try to recover original solution from
experimental grid using experimental grid as a primary grid and numerical grid as
a secondary grid. Evaluate a’posteriori error and new experimental grid density
function which takes into account equidistribution of an error.

4. If possible, change experimental point locations, repeat experiment and evaluate
a’posteriori error distribution (now real error).

5. Evaluate measured data using estimated error (or new required experimental grid
density) as a reliability index to decide which data have to be removed or taken
with lowered weight.
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If meshless method is used in above mentioned procedure, numerical simulation
of the experiment is very easy, because one may directly use experimental grid as
numerical one, without any transformations and additional (approximation) errors.

In the case when numerical simulation of experiment is not possible, procedure is
as follows:

1. After experiment evaluate a’posteriori error and calculate new mesh (grid) density
of experimental points with equidistribution of error.

2. If is it possible change experimental point locations, repeat experiment and
evaluate a’posteriori error distribution.

3. Evaluate measured data using determined error (or new required experimental
grid density) as a reliability index to decide which data have to be removed or
taken with lowered weight.

7. Final Remarks

Present work is devoted to description and evaluation of the fundamental methods
of the physical data approximation and the aposteriori error estimation i.e. the
methods based on differences between original, experimental data (or numerical
ones coming from FEM/FDM analysis) and data approximated on fictitious mesh (see
[8D)

The aposteriori error analysis described above has been applied to the wheel saw
cut data and numerical data coming from FEM analysis, using the Meshless Finite
Difference approximation. The presented error analysis approach is of great value in
determination of the required concentration of experimental points in the zones
where the largest stress gradients have occurred.

The current research done on error estimation includes:

e generalization of the Zienkiewicz - Zhu postprocessing estimator concept [[15] ]
for elastic problems in solid mechanics and its use in analysis of wheel saw cut
data,

e determination of the optimal strategies for refinement of the experimental (or
numerical) clouds of points, using different error norms (Sobolev norms up to
second order), _

e development of postprocessing techniques to enhance the solution accuracy
using different number of nodes in stars, different approximation order (i.e. 2nd or
3rd order) and additional iterative process to smoothen the largest discrepancies
between data on original (experimental) and fictitious (numerical) grids,

e formulation of the new adaptive approach to experiment planning and carrying
out, taking into account a’posteriori error estimation and distribution of
experimental points with equidistributed error,

e analysis of wheel saw cut data, especially for wheel #2 (see R.Czarnek [3]), 5
cuts of the wheel, both flange and 2nd sides of the wheel analyzed,

e analysis of numerical data, coming from FEM analysis, for wheel #2 [11].
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Advantages of the error analysis performed on the experimental as well as
numerical data (see FEM/FDM analysis [11]) have been shown. A significant step
towards a new adaptive analysis (approximation) of the physical data was done.
Besides, the approach presented here, yields formulation of new requirements
against measurements devices possible, thus making way for adaptive experimental
data collection.

The proposed further research includes: development of reliable error estimates
for computed "physical fields" with the efficiency index close to 1 (approximated fields
are very close to original ones), further development of the optimal strategies for 'h'
adaptive refinement of the experimental data points cloud, development of adaptive
modeling in which certain features of physical models are incorporated and stress
analysis of deformation fields in rails and wheels.
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Topic 2.6

Reconstruction of residual stresses in railroad vehicle wheels based
on enhanced saw cut measurements



Reconstruction of residual stresses in railroad vehicle wheels based
on enhanced saw cut measurements

Thus following problems are intended to be addressed:

(i)  Further development and improvement of numerical procedures used in the analysis of
residual hoop stresses, in order to obtain better precision results use of 20-node brick
elements

(ii) Residual hoop stress evaluation in all investigated wheels using 20-node elements in
FEM calculations,

(iii) More precise calculation of influence coefficients — solving problems with about 450 000
DOF (the size of previously solved problems is about 150 000 DOF)

Ad (i) - done

Developing software necessary to computation of kinematically equivalent loads and
computation of hoop stress in the non-cut part of the w heel (finite element method stress
results are not used here)

Ad (ii) — done
Results of all investigated wheels are included in this year report

Ad (iii) — done

For the first time the huge 400 thousand DOF problem has been solved in influence
coefficients computation of the wheel #3. In each discrete problem about 40 right-hand side
vectors occurred, and therefore the size of FEM problem has been limited to 400 thousand

DOEF.
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Reconstruction of residual stresses in railroad vehicle
wheels based on enhanced saw cut measurements

Janusz Orkisz
Cracow University of Technology

Andrzej Skrzat
Rzeszow University of Technology

1. Introduction

During service railroad car wheels develop residual stresses that can lead to premature, and in some
instances, catastrophic failure. These stresses are mainly caused by thermal loadings (heavy braking)
combined with cyclic contact stresses. Stresses are also influenced by wear of the wheel rim. A good
understanding of residual stress distribution and its variation over time in service can help develop a
better wheel design that would minimize the danger of catastrophic failure. Knowledge of this distribution
can also help improve the techniques used for routine inspection of wheels and detection of potentially

dangerous stress distributions.

In 1991 the US Department of Transportation began studies on improving the railway transportation
safety. Within the confines of this program, the Concurrent Technologies Corporation carried out
experimental destructive investigation of several railroad car wheels [2]. In each test the wheel was
radially cut. This caused partial residual hoop stress release. Effects of residual stress release could be
observed on the wheel surface. Experimental data have been obtained by means of several different
experimental techniques: moiré interferometry (relative displacements), strain gauges (absolute strains)
and clip gauges (absolute displacements). The locations of measurements are presented in Fig. 1.
Unfortunately the experimental information alone does not suffice to reconstruct initial residual hoop

stress.

The solution approach called “physically based enhancement of experimental data” [5], formulated,
developed and tested in Cracow University of Technology during last years, is now the best available
numerical tool to approximate residual hoop stress component in railroad car wheels. The precision of
residual hoop stress approximation depends mainly on numerical tools used in experimental data
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processing, as well as on the precision of FEM analysis used to compute the influence coefficients
necessary in presented approach. During last three years a significant progress has been made in the
precision of influence coefficient calculations. Instead of previously used 8-node brick elements, 20-node
brick elements have been introduced. Currently unit pressures are applied on finite elements, instead of
unit forces. Such approach yields better precision of numerical calculations, especially in areas close to
applied loads. The new version of commercial software used to calculate the coefficients (ADINA 8.0)
allows for solving huge 3D problems by the finite element method. Thus the elastic problem size limit set
at approximately 150 thousand DOF has been broken, and recently the 400 thousand DOF problem has
been successfully solved. The numerical effort is enormous, but the precision of influence coefficients and

the precision of residual stress approximation is much higher than ever before.

A benchmark test is presented in this report, which prove the efficiency and precision of the new
approach in numerical calculations of influence coefficients (20-node elements, element pressures as
loading). The results for all investigated wheels obtained for coarse finite element mesh are included as
well. Finally the results for the wheel #3, obtained for the first time for the dense mesh are presented.
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strain gauges
(strains)

moire interferometry
{displacements)

Fig. 1 Measurements taken at the saw cut test

2. Formulation

2.1. Incremental procedure

Formulation for the hoop stress reconstruction in the railroad vehicle wheel is based on measurements
done at the saw cut test. The approach is formulated as a two-step non-linear constrained optimization
problem [3].

Step one

Find the out-of-plane stresses o (/1) = {0'ee .00 ,0'92} providing the minimum of the functional
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1=10% +(1- )27, Aefo)] . M

while satisfying the equilibrium equation

00,4 1 A0ge N dog, 2 2)

and homogenous static boundary conditions for tractions

p-=pe=p,=0. 3)

normal and tangent to the (r,z) plane (saw cut plane).

Here

RS “@

q)T =q)T(0.our)= > j.K'Z(O'm)dV .
out v

is the theoretical part (a smoothness requirement for the curvature x to be minimal) of the functional,

while the experimental part ®* (o"’"’) is a weighted measurement error (CI)T and ®F are normalized).

In the axial symmetry case 0,o =0, =0, Ogge =0, and only the hoop stress Ogg (r,z) can be found

this way. The equilibrium equation is always satisfied then. In each case a family of solutions is obtained

depending on a parameter A determined in the second part of procedure.

Step two.

Find the minimum 4 ¢&[0,1] satisfying the local (5) and global (6) inequality constraints resuiting from

measurement precision.

u® — u,.“— Au,.“‘"" <0 i=1,2,....n
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;% —¢; " —Ag" <0, )

csiexp_si"_Aé'iaaﬁn <0.

"cpﬁ(a""') — A" <. (6)

Here u™, £, 6;"and u,, 0, are the experimental and approximated values of displacements,

U ’
strains or COD measurements, Au/", Asadm A8/ and A®*" are admissible experimental errors

resulting from measurement precision.
One may define the error functional as

K exp _ uk 2 exp 2 2 (7)
kZ adm + Z|: adm + z 5adm -

L
k=1 k=1

@E

The summation is extended over all experimental measurements of relative displacements K (1,7 - up to
three displacement components at each point), strains L (&;* - up to three strain tensor components at

each point) and absolute displacements M. (d;? - one component at each point).

The functional (7) depends directly on measured quantities u,£,8 rather than on the primary unknowns -

out-of-plane residual stresses in the cut zone 0Ouy ={0ge,0,0,00.} - Thus u,£,6 have to be

Cllf

expressed in terms of 0°% . Unloading process, releasing residual stresses during cutting, is assumed to

cut
out

be elastic. Therefore appropriate influence functions may be used in order to replace u,£,8 by o5 .

These influence functions are found numerically. Practical implementation requires evaluation of
appropriate kernels by means of discrete analysis of a sequence of boundary value problems for the

wheel in subsequent stages of the saw cut test. Thus, for each measured quantity #,&,J, one obtains

transformation matrices 4, 4,,4;, where:
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(

u=AON,  e=A0, 5= A00. ®

This way one can express both the functional ®* = ®f (0';’:,’ ) and all inequalities (5),(6) in terms of oy

as required.

oul

2.2. Expression of measured quantities in terms of residual stresses o,

The body V is considered to be linearly elastic, stress free and partially cut, loaded along the cut edge 7,

by tractions

p=nailL) ©

resulting from the residual stresses O'f released in the given cut layer, existing in the body before this

cut. The solution of such a boundary-value problem for a given cut depth may be written for both 2D and

3D bodies in the following form:

Aui(xs l) = lj-pk(f)Uik (x’ g, l)ds(f) = _J Gg(f)nj(‘f)Uik (x, [ l)ds(f) J

{

Ag,(x,1)= [P (OB, (v, £1)ds(&) =~ | oR(On, () By (x. £ 1)ds(£). (10)

1

A0y (1) = [Pu(§)Sys(3.5:1)a5(8) = = | o (£} (&) (3. & )s( )

I I

Here Au,,Ag, AO',.j are changes in displacements, strains and stresses, respectively, at arbifrary point x

l']’

of the body V when one layer of the body is cut. Kernels Uy, Ey; .S, present displacements, strains and

stresses, at a point x of the body V when loaded by a normal unit force (see Fig. 2) applied at a point &

located by the cut edge layer (in the neighbourhood of the cut layer).
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Fig. 2 Body loaded by normal unit force

These kernels can be found by discrete analysis (FEM,FDM,BEM). Formulas (10) may be presented then

in the following form:

Ay, (x, l) = Zpk (én)Uik(x’én’l)ASm = _Z(o-l;nfU”‘AS)m ’

m m

86(5)= T p () B 5. £ )AS, =~ (o Es), .

m m

Aoy(x,)= Zpk (&)Eu(x.&,,1)AS,, = —Z(oﬁnsE,.jkAS)lm )

m m

where ( )|m =( )I§= s and ijk,s=1,2 (2D case) or ij,k,s=1,2,3 (3D case).
One can express now both the functional (7) and the inequalities (5),(6) in terms of required unknowns

oﬁ, e.g. formulas (5) can be written in the incremental way as follows:

—Auf" <0,

u;* —Z Uoc*
!
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C_

(12)
e® -> E;o"

adm
p —Ag" <0,
i

é:',:cxp _ Z AiO'R
1

—Aﬁ”so

The summation Z is extended over all layers cut until all measurements of u;™",£7" 07 have been
I

taken.
One may solve now the optimization problem of the step two replacing inequalities (5) and (6) by

inequalities (12) expressed in terms of the primary unknowns 0',.]’.’. Our required unknowns are the

residual hoop stresses o;; existing in the body before any cut. One can easily find the relations between

them and o;f in a way similar to looking for kernels Uy ,E;; ,S;; (discrete analysis).

— R 13
o; = [a]o-ij . (13)
Matrix [a] is the matrix consisting of columns constituting stresses existing in a non-cut part of the body
when loaded by normal unit forces applied at the point & located at the cut edge (last layer cut). The

matrix [a] is not singular, therefore one can finally write the inequalities (12) as:

u® =Y Ulel'o |-Auf™ <0,
J

(14)
e~y Elal'o |-Ag™ <0,

i
J

—-AS™ <0.

57 -, AlaT'o
J
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3. Finite element simulation of the cutting process

As described in the previous chapter, the calculation of residual hoop stress component in railroad car
wheels requires the knowledge of the relation between released residual stresses and measured
quantities. Theoretical solution is not known because of complicated shape of the wheel and complex
boundary conditions. Therefore, finite element analysis is introduced. During cutting, the stiffness of the
wheel, as well as magnitudes of residual stresses in the non-cut part of the wheel changes. Therefore,
FEM simulation of the cutting process has to be performed incrementally. In order to find the relation
between released residual hoop stresses and measured quantities the set of boundary value problems

has to be solved.

3.1. Unit forces versus unit pressures

It is known that the finite element method yields over stiffened results when displacement formulation is
applied. The magnitudes of stresses, strains and displacements are underestimated. Therefore, influence
coefficients used in the analysis of residual hoop stresses may be too small. The magnitudes of
computed residual hoop stresses obtained from the analysis are too large ( see Eq. 11). The increase in
the magnitude of hoop stresses depends on the precision of computed influence coefficients. Several
numerical tests have been made to investigate the precision of computed influence coefficients. The
following figures present the results of such benchmark tests performed for the same mechanical probiem
when different types of finite elements are used. The unit force is applied to the edge of 3D body (Fig. 3).
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Fig. 3 FEM model — unit force applied
The following figures are described in Table 1.
Table 1. Results of benchmark tests — unit force is applied

Figure Type of element Max vertical displacement
Fig. 4 8-node brick 5.8e-7
Fig. 5 20-node brick 11.1e-7
Fig. 6 27-node brick 15.5e-7
Fig. 7 8-node brick (dense mesh) 2.9e-7

One may notice in Table 1 and also in Fig. 4 — Fig. 7, that the differences in the magnitude of vertical
displacement is significant. The 8-node element model is about three times stiffer in the location of

applied load, than the 27-node model. Moreover, even when dense mesh is used (Fig. 7) there is still no
convergence to Fig. 6, which presents the most precise solution.
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Solutions presented in Fig. 4 to Fig. 7 have shown, that unit forces applied to the 3D FEM model don't
yield solutions converging with decreased size of element used. Therefore, unit pressures should be
applied rather than equivalent concentrated loads. Practically, instead of the pressure, appropriate
forces are applied in certain nodes of an element. These are kinematically equivalent forces. The next
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Element size

Fig. 10 Benchmark test — unit pressure, different elements

Although the solution obtained for 27-node elements is the most flexible, the results of sufficiently high
quality are obtained for 20-node elements as well. The FEM mesh consisting of 8-node bricks requires
elements very small in size in order to obtain locally precise solution.

3.2. Magnitudes of computed influence coefficients

In this chapter benchmark tests are included in order to show, that different finite elements yield the
solutions of different precision. The hoop strains are used as indicator of FEM solution quality. These
strains constitute the numerical input data in the analysis of residual hoop stresses in railroad car wheels.

For simplicity the two dimensional problem is considered.

Fig. 11 is the example of one finite element problem solution.
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TIME 1.000

H 1.000

ow

In the first cut element #142 is loaded by normal unit pressure. Then in the second cut element #143 is
loaded. Fig. 11 corresponds to the cut #4. Of course the boundary conditions are different for each cut i.e.

Fig. 11 FEM cutting simulation, 4 node element used

in the non-cut part of the wheel on the bottom horizontal line vertical displacements are prohfbited (in Fig

11. letters “B"). In each of discrete problems the responses in measurement locations are found. These
are displacements or numerically found strains in several nodes. Vertical strains corresponding to loading

and boundary conditions shown in Fig. 11 are presented in Fig. 12

ADINA

TIME 1.000

X
-=\P‘m_ \

I

SMOOTHED
STRAIN-2Z

RST CALC
TIME 1.000
— 03000
— 0.2000
= 0.1000
— 0.0000
—-0.1000
= -0.2000
— -0.3000
— -0.4000

MAXIMUM
A 0.3383
MINIMUM

* -0.4601

Fig. 12 Distribution of vertical strains — cut #4 (4 node elements)
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These strains constitute the elements of the influence matrix [a] (Eq. 13 and Eqg. 14).

Of course the quality of finite element method solution depends of the number and type of element used.
If 8 node or 9 node elements are introduced the magnitudes of calculated strains changes. The following
figures present finite element meshes and vertical strain distributions for 8 node and 9 node finite

elements.

ADINA

TIME 1.000

.

PRESCRIBED
PRESSURE

TIME 1.000

ﬂ 1.000

Fig. 13 FEM cutting simulation, 8 node element used
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Fig. 15 FEM cutting simulation, 9 node element used
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Fig. 16 Distribution of vertical strains — cut #4 (9 node elements)

One may notice that although the strain distributions are similar, the strain magnitudes differ significantly.
Because these strains constitute the influence coefficients necessary to analyse the residual hoop
stresses in railroad car wheels, they influence the precision and magnitude of calculated stresses. The
best results may be achieved when the very dense mesh consisting of the possibly highest order
finite elements is used, but limitations of computer power and resources and the time of numerical
computations, forces a reasonable compromise. For the three dimensional mesh these are 20 node
brick elements which allow for relatively precise solution in reasonably short time.

4. Finite element wheel models

Each analyzed wheel (wheel #2 — wheel #8) comes from different production series, therefore geometries
of these wheels differ. Finite element mesh has to be developed separately for each investigated wheel.
The following figures present 2D finite element meshes for investigated wheels’ cross sections. These
meshes are rotated next, in order to form 3D finite element meshes consisting of 20-node brick elements.
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Fig. 17 Enlargement of wheel! #3 head with nodes shown

Fig. 18 2D FEM mesh —~ wheel #3
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: ' Fig. 19 2D FEM mesh — wheel #4

Eagans:

i Fig. 20 2D FEM mesh — wheel #5
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Fig. 21 2D FEM mesh — wheel #6
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Fig. 22 2D FEM mesh — wheel #8

The following figure is an example of 3D FEM mesh used in numerical simulations of the cutting process.

Table 2 summarizes the properties of presented meshes.
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Fig. 23 3D FEM mesh - wheel #3

Table 2 Discrete problems’ data

Wheel # Number of nodes Number of Number of Number of
elements theoretical cuts unknown res.
hoop stresses
3 43646 9350 14 207
4 47223 10175 13 212
5 45082 9648 15 257
6 49060 10584 15 271
8 49060 10584 15 271

5. Analysis of the experimental data

Typical experimental data comprise displacement fields registered on both sides of the wheel — see Fig.
8. Unfortunately these are relative displacements, which cannot be directly used in the analysis of
residual stresses. It is reasonable to assume that displacement fields should be symmetrical
(displacement component along the cut) or anti-symmetrical (displacement component perpendicular to
the cut).
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Fig. 24 Moiré interferometry measurements.

Unfortunately, measured displacement fields don't satisfy symmetric/anti-symmetric requirement — thus in
numerical approach axial symmetry is assumed for residual hoop stresses and imposed on raw
measured data. An example of the actual data is included in Fig. 25. Small crosses denote measurement

locations.
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10

v As mentioned above, this displacement distribution is not anti-symmetric. Moreover, measurements

situated in cut part of the wheel — area in the middle of the domain, where huge concentration occurs are

| very inaccurate, and therefore, have to be excluded from further analysis. In Fig. 26 presented is the
— same displacement component after removal of measurements mentioned.

665



+¥ 4

+ +
+ +
+ 4+

+ P+
++ ¢
+++F

t+ort++ ¢+ o4+
I R,

Ftd e+ 4

PR P

o

+
25

+ +

I BTN S 1 'R T T Y N
T LI | — L2 R I B B B

20 15 -0 5 0 5
Fig. 26 Horizontal displacements [mm)] after cut #3, flange side, wheel #5 — part of data is removed

+

Q

s %
A —
10 15 20

Presented displacement distribution, although of high quality, still doesn't satisfy the assumption of axial
symmetry. Before differentiation, this displacement field is anti-symmetrized (for horizontal displacement
component anti-symmetrization is required) as shown in Fig. 27. Small circles show locations of fictitious

measurements i.e. points where function and derivatives are calculated.

666



50

q

| |
© o000 O © 000 o0 O 906000 ° ° ° T o000 o0
© 900000 o ©oo0o000o0 @ oo o, ° [ © o000 000
Ne o oo 660 0 0 o\g ° ° ° o000 )
oo o009 o0 0000 & s 00000 oo ) ° 0 o CRCIC I )
4590 o o o o eﬁog o000 00 o o o o o ° ° ° 0-°§n o000 O 4
° o0 0o oo o o0 o000 N\ o/% o 00 ) © o o000 o0 °
o oo @ © 000000 o000 o6 0 o oo0oo0o0o0 o o0ooo0o0o00n @ 000
coocoo0 o0& o0 00000 o oo °© oo © 000000 % 000000
No © o oo cocoo0oo0 o ) @ 00000 © 000000 c]
409 o o © © 6000 0 ©ooooao 90 o000 o © 0o o 0 o 0 D @ 0o o ¢
°o oo o?'éa 8 56000000 g oo o e 0 o0 9 L3 Q‘o?e o oo
© oDoo000G0 9000000 o o e o ° T ooo000 00
o o © © 000000 & 9000000 o o o @ 0000 T oo
o 000 o B © 500000 ¢ 2 ©o 0o oo ) L) 3 00000
35-< © 00 o00DO0DO G © 000000 ° [ o ? 0o oopoaoooao >
Mn o oooo0o03 9000000 ©ooo0oDo0og0 T 006000 ° o
°o o o ,.9-07 9 0000000 ) o o o © ooo0o000 0 mﬁl © oo o
@ o 0000000 ©c o000 00 © 000000 © 0o o0oo0o0oo00 00
o o © o000 o0o00 © 00000 ©ooo0o000 © 0000000 ()
309 o000 o0 © 0000006 o o o o ® o0 00000 © 000 0 0 ¢
%:io © 0000 © 00000 &0 6% o000 00 © o ooooo0 000
o o ® © o ooo0o00 0 © oo o o000 @ o op0oo0o0o0 o o0 o
o oo a?'gec 9 Po o000 0 O S 0000000 uqi"“;c o oo
D opooDoOODDS © 00 0 0 ojo o000 o0o0 T o0oo0o0000000
2549 o 0o o ® 0 00 0O0CO0OD0 OO o o o o © 0000 O0O0O0CGO T 0 0 0 9—
©Dbooo6oo0oo0 0o 20000000 © 000000 G 000000O0GOO
© 0,000 0D00GCO0O0O0 ) o ©° © o oo0o000000. Q0 0 O
":‘:ﬁ.oo'pso © 0 00000O0CO © o o000 00C0 oQ1 e o0 o
©00000ODOO0ODOCO O O o o o\g o T 0009 0000O0COO®0O0LD0 DO

20-¢ © 0000OCO0O0OGO © 6 000DOGGO OO —
H \E-TOZQ$

o oe DI . Goj
104 o o 0o o o ° L} o % o ° olo
o © © o o0 o o o ® o O o © o|jo ©
© 0o 6 0 O o 0 o o o e o o|lo ©
oouong!‘uuooo o 0o 0 © o o/o o © 0|0 ©
54/‘/:'52:2"”‘2:;6\:?&:0;;:
:Z"Z.,:/;%:ZHZ:::::Z::
Y | T T

-20 -15 -1|0 -5 0
Fig. 27 Anti-symmetric displacement field, cut #3, flange side, wheel #5

Such displacement field is then numerically differentiated in order to obtain strains. Numerically found

strains constitute the real input data in the analysis of residual hoop stresses. The above-presented

displacements after differentiation give strain field shown in Fig. 28.
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, cut #3, flange side, wheel #5.

Fig. 28 Horizontal strain field

Such data taken from one half of the cut wheel is used in the analysis of residual hoop stress. However,

on the boundaries, the precision of numerical differentiation is usually low. Therefore, these fictitious

measurements are removed additionally. Sometimes physical grating defects occur — in these areas

measurements are burdened by significant errors and have to be removed as well.

The locations of original data and fictitious points don't have to be the same. The grid of fictitious points is

more dense than the original one. Thus the number of numerical input data in the analysis of residual

stresses is increased, and therefore the problem is better conditioned. Such generation of experimental

data cannot be overdone, because very dense grid of fictitious points an areas of smail strain gradients

doesn't introduce any additional experimental information. As described in the next chapter, the saw cut

process has to be numerically simulated, practically by the finite element method. In this model,
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displacements obtained in discrete points — FEM nodes — are differentiated to the same fictitious locations

as in the analysis of experimental data.

The input data preparation process in hoop residual stresses analysis, should be conducted very carefully
in order to exclude fatal experimental errors from the analysis. Practically any automatic numerical tool
doesn’t guarantee the reliability of obtained strains. All numerically found strain fields have to be carefully

checked by the program operator.

6. Residual hoop stress approximation

In this chapter presented are results of residual stress analysis in the investigated wheels. These are the

following wheels:

wheel #3 (36524-46 146)
wheel #4 (44543-46 146)
wheel #5 (26526 242)
wheel #6 (26508 242)
wheel #8 (26512)

The other wheels (wheel #1, wheel #2 and wheel #7) are not considered here, because for these wheels
the profiles are not known. Therefore, the location of moiré measurements is not known, and as influence
coefficient cannot be computed properly. Final residual stress approximations for these wheels would be

not reliable.

For each wheel considered here presented are the following residual stress distributions called

respectively: case 1, case 2 and case 3

1. Residual hoop stress reconstruction (case 1) obtained when only moiré measured displacements
perpendicular to the cut, and registered for the deepest cut are taken into the analysis. These
measurements are the most valuable ones.

2. Residual hoop stress reconstruction (case 2) obtained when all moiré measured displacement
components, as well as information resulting from all cuts are used in the analysis.

3. Residual hoop stress reconstruction (case 3) when strain gauge measurements are also used in the

analysis.

All residual hoop stresses are expressed in [MPa], wheel dimensions (horizontal and vertical scales) are
in [cm]. In order to present clearly residual stress distributions in all investigated wheels, each plot is

scaled separately.
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Fig. 29 Residual hoop stress distribution [MPa] — wheel #3, case 1
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Fig. 32 Residual hoop stress distribution [MPa] — wheel #4, case 1
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Fig. 33 Residual hoop stress distribution [MPa] — wheel #4, case 2
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Fig. 34 Residual hoop stress distribution [MPa] — wheel #4, case 3
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Fig. 35 Residual hoop stress distribution [MPa] — wheel #5, case 1
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Fig. 36 Residual hoop stress distribution [MPa] — wheel #5, case 2
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Fig. 38 Residual hoop stress distribution [MPa] — wheel #6, case 1
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Fig. 40 Residual hoop stress distribution [MPa] — wheel #6, case 3
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Fig. 42 Residual hoop stress distribution [MPa] — wheel #8, case 2

683



SIS
SIS 5,
CSIRTIOTTRSL SRS
S SORSOTSSSSISIISSIHKII
S S SSS O SISHILEY
S

>
“‘:“ TSSO <S
T e S0 0031
‘333‘:.::2::“:‘\\:‘:‘::“‘:“:“‘$“‘:$’ I
= esSe ey

Fig. 43 Residual hoop stress distribution [MPa] — wheel #8, case 3

7. Analysis of the wheel #3 — dense mesh

7.1. Finite element model

The new version of the ADINA program used to compute the influence coefficients allows for solving on a
PC class computer problems having more than 200 thousand DOF. Simple tests have shown, that the
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size of linear problem cannot exceed 550 thousand DOF on 32-bit computer. Problems having above 600
thousand DOF require powerfui workstation and appropriate finite element method software, which
currently are not available at Cracow University of Technology. The main goal of the last year's efforts
was to establish the relation between the size of discrete problem solved in influence coefficient
computation and distribution and magnitude of approximated residual hoop stresses in railroad car
wheels. The new dense mesh has been developed recently for the wheel #3. The comparison of the old
and the new mesh in the cross-section of this wheel is shown in Fig. 44 and Table 3.

Fig. 44 Coarse and dense 2D meshes — wheel #3

Table 3. Coarse and new 3D mesh data — wheel #3

- Coarse mesh Dense mesh
Number of nodes 43643 137362
v Number of elements 9350 30778
) Number of DOF 150k 390k
Number of cuts 14 28
Avg. number of right hand side vectors 19 38
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7.2. Comparison of results obtained for wheel #3 for the coarse and dense mesh

In this chapter presented are preliminary results obtained for the wheel #3 when the new dense mesh is
used in influence coefficients computation. Included results are obtained, when only measurements taken
from the last deepest cut are used (both horizontal and vertical component). The same solution is found
for previously used coarse mesh. Results are presented for the same values of A parameter. It doesn't
mean that the solution conditions are exactly the same for both sets of approximations. Both theoretical
and experimental part of the functional (1) are normalized, and therefore the same values of A4 give only
similar conditions, but they are comparable. In all examples no scaling to the value of the yield stress is

made.
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Fig. 45 Residual hoop stress [MPa] - coarse mesh, A=04
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Fig. 46 Residual hoop stress [MPa] — dense mesh, 4=0.4
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Fig. 47 Residual hoop stress [MPa] — coarse mesh, A=0.5
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Fig. 49 Residual hoop stress [MPa] - coarse mesh, A=07
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Fig. 50 Residual hoop stress [MPa] - dense mesh, A=07
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Fig. 51 Residual hoop stress [MPa] — coarse mesh, 4=0.8
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Fig. 52 Residual hoop stress [MPa] — dense mesh, A=0.8
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One may notice, that all solutions obtained for the dense mesh are smoother, and the magnitudes of
hoop residual stresses are smaller. Finite element model is always too stiff. Therefore, influence
coefficients are too small, and residual hoop stresses are overestimated. The finite element model for
which the magnitudes of obtained residual hoop stresses are smaller is better. Therefore, new
approximations of residual hoop stresses in railroad car wheels are more precise that old ones.

8. Discussion on precision of influence coefficients

The main condition of proper residual stress approximation is the precise computation of influence
coefficients. During last years the great effort has been dircted towards discrete FEM analysis precise
enough to model actual measurements taken at saw cut test. Instead of previously used lumped load
(nodal forces) unit pressures (kinematically equivalent forces) are applied. To get better local strain
approximation 20-node brick elements are used instead 8-node brick elements. Finally the new very
dense FEM mesh is used for the wheel #3. The size of FEM problem is about 400 thousands degrees of
freedom. It is worth stressing, that such huge problem has to be solved hundreds of times. Even on
computer with 2GHz processor this takes three weeks of continuous computations. Obtained solutions
are very precise in the sense of nodal displacements. Unfortunately, using the finite element method one
obtains the stress solution which is one order less accurate than the displacement solution. Equilibrium
conditions are satisfied only on the element level, for the whole model, and of course in nodes, but are

not satisfied locally e.g. on element faces.

Stresses computed in the non-cut part of the wheel form the influence force coefficient matrix. Simple
benchmark tests presented in this chapter have shown, that the precision of calculated stresses should
be improved. A flat plate fixed on one half and loaded by unit pressure is considered (Fig. 53)
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Fig. 53 Plate loaded by unit pressure

In the theoretical solution the stress component perpendicular to the free surface of the plate should be
equal to the external loading i.e. should be —1 in those points where pressure is applied and zero
elsewhere. Unfortunately this stress component in the loaded element (Fig. 53) in all Gaussian points is

quite different than —1 (see Table 4). The local equilibrium conditions are not satisfied then.
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Table 4 0O, values in Gaussian points

Point # o,
Int point 111 -1.93688E-01
Int point 112 -3.01972E-01
Int point 113 -5.50704E-01
Int point 121 -4.19131E-01
Int point 122 -4.,32373E-01
Int point 123 -5.41274E-01
Int point 131 1.17798E-01
Int point 132 2.21905E-01
Int point 133 2.75142E-01
Int point 211 -3.73569E-01
Int point 212 -4 ,.84918E-01
Int point 213 -7.36717E-01
Int point 221 -5.02927E-01
Int point 222 -5.19235E-01
Int point 223 -6.31202E-01
Int point 231 1.30086E-01
Int point 232 2.31127E-01
Int point 233 2.81297E-01
Int point 311 -1.93688E-01
Int point 312 -3.01972E-01
Int point 313 -5.50704E-01
Int point 321 -4.19131E-01
Int point 322 -4.32373E-01
Int point 323 -5.41274E-01
Int point 331 1.17798E-01
Int point 332 2.21905E-01
Int point 333 2.75142E-01

This difference between theoretical and computed value of ¢, is a result of the way, the loading is
applied (kinematically equivalent forces) and by the stiffness of neighbour elements. The influence of
these elements doesn't allow for reaching the theoretical value of &, even for much denser mesh. Much

better result may be obtained, when the whole group of elements is loaded by unit pressure and the

dense mesh is used (Fig. 54).
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Fig. 54 Group of element loaded by unit pressure

In this test the o, component in the element surrounded by loaded elements is close to the theoretical

value (see Table 5)
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Table 5 0o, values in Gaussian points

Point # O
Int point 111 -9.24996E-01
Int point 112 -9.51387E-01
Int point 113 -1.03166E+00
Int point 121 ~-9.54866E-01
Int point 122 -9.45228E-01
Int point 123 -9.88472E-01
Int point 131 -9.91747E-01
Int point 132 -9.44065E-01
Int point 133 -9.48261E-01
Int point 211 -9.50042E-01
Int point 212 -9.65192E-01
Int point 213 -1.03540E+00
Int point 221 -9.79670E-01
Int point 222 -9.58291E-01
Int point 223 -9.90967E~-01
Int point 231 -1.01672E+00
Int point 232 -9.56798E-01
Int point 233 -9.49925E-01
Int point 311 -9.70092E-01
Int point 312 -9.72245E-01
Int point 313 -1.03063E+00
Int point 321 -9.99955E-01
Int point 322 -9.65079E-01
Int point 323 -9.85428E-01
Int point 331 -1.03765E+00
Int point 332 -9.63731E-01
Int point 333 -9.44032E-01

The above tests have shown, that the best results in the sense of locally computed stresses may be
obtained when the patches consisting of finite elements are loaded by unit pressures. The inner element

of the patch yields the best stress result.
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9. Final conclusions

Solution approach proposed and carefully tested in recent years has made possible high quality
approximations of residual hoop stresses in railroad car wheels. During last years a significant progress
has been made in enhancing influence coefficients calculations. Higher order finite elements have been
introduced. Instead of unit forces, unit pressures have been applied in order to obtain more precise strain
distributions. Finally very dense mesh has been used for the wheel #3.

Appropriate benchmark tests have proved efficiency of the new approach. Computed influence
coefficients are more precise nowadays due to higher order finite elements used, the type of loading
applied to elements and the size of the discrete problem. Residual stress approximations are of good
quality and they are similar for different measurement components and for different cut depths.

There are many factors which influence the quality of approximated residual stresses. First of all
experimental results are never 100% precise. Sometimes mechanicai damages may occur like in the
wheel #3, flange side, the deepest cut. If erroneous or uncertain data are input into analysis, they
influence adversely the final solution. The second important factor is the precision of influence coefficients
computed numerically. Important is not only the size of solved discrete problem, but also type of elements
used in FEM an the way the loading is applied. Even for the same finite element mesh, the magnitudes
of hoop residual stresses may differ significantly.

In the simulation of cutting process by finite element, hardware and software limits have been reached.
The solution approach and numerical procedures have been optimised very carefully in order to obtain
the best possible results. However there is still a chance to improve the residual hoop stress
approximation quality, by applying the loading to the patches of elements instead of applying it to the

separate elements.
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Topic 2.7

Failure mode and life prediction of railway rails



Failure mode and life prediction of railway rails

Further preliminary analysis of the influence the residual stresses on fatigue failure
modes and fatigue service life of railroad rails has been performed. At first the crack
nucleation problem is considered basing on the classic stress-life (S-N) approaches
to fatigue life estimation and initial ability to grow crack is investigated (topic 2.7.1).
~ The role of the total stresses has been examined as a sum of actual stresses and
residual stresses. The magnitude and distribution of these stresses determines rail
failure modes and is used to predict service life (topic 2.7 .2). The current knowledge
on the problem in mechanical understanding of rail fatigue are considered. A
preliminary analysis of the role of the residual stresses in the railroad rails in both
crack nucleation and growth is discussed. In this work one assumes, that single point
wheel/rail contact at several central and off central rail localization appears. The
needed computer programs have been developed and numerical analyses have
been carried out. One assumes that examined body is subject to damage by
repeated cycles of altering stresses. In present work 132 RE railroad rail subject to
15 ton wheel load was analyzed. It was realized for three localization of loading. The
results are obtained using own computer program. The shortest life to fatigue crack
nucleation was predicted for a neighborhood of the rail running surface (top of the rail
head) (topic 2.7 .3).
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Further investigation and testing of the proposed solution approach to failure
analysis and life prediction of railroad rails

W. Karmowski. J. Orkisz
Abstract

Further preliminary analysis of the influence the residual stresses have on fatigue
failure modes and fatigue service life of railroad rails is the goal of this work. At first the
crack nucleation problem is considered based on the classic stress-life (S-N)
approaches to fatigue life estimation. The crack propagation problem in the case of off
center force localization has been considered. Initial ability to grow crack is investigated.
The role of residual stresses has been examined. It is expected that the detailed
analysis will show whether available experimental data is sufficient of rail failure and life
prediction analysis. This problem has been discussed in the report [9], where total
stresses in the central loading case were investigated.

1. Introduction

Crack nucleation in railroad rails and resulting failure present a very important
problem in railway practice. Therefore, service life prediction is a significant goal of
theoretical works. Crack growth depends mainly on the distribution of total stresses
throughout the rail [4, 5, 7, 8, 15, 16, 17, 23, 25, 26], which is a sum of actual stresses
and residual stresses. The magnitude and distribution of these stresses determines rail
failure modes and may be used to predict service life. A knowledge of the residual stress
distribution is crucial only if they constitute a significant part of the total stresses.

Experiments and theoretical predictions indicate that residual stresses in railroad
rails may be large and therefore can not be neglected a'priori. Therefore, without
reasonably accurate residual stresses included, failure mode and life prediction analyses
may provide inaccurate estimates.

The current state of the art in mechanical understanding of rail fatigue is
considered. A contemporary approach to fatigue in metals is presented in [25]. Railroad
rail fatigue problems were broadly discussed and an engineering solution approach was
proposed in [17]. Recent increases in freight car axle loads have created the need for
further development and verification of the current approach. Thus an updated approach
to rail failure analysis and service life prediction has been recently discussed and
presented in [12].

A preliminary analysis of the role the residual stresses play in the railroad rails in
both crack nucleation and growth is the goal of this work. It is based on the works [12,
13].

It is assumed here, that single point wheel/rail contact appears at several central
and off central rail locations. Two points contact and wheel wandering analysis are left
for the future when interaction of the neighboring cars [17] will be discussed. The rail is
treated as a collection of bars i.e. only axial stress is taken into account instead of full
stress tensor components. General case will be considered in the future basing on
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concepts given e.g. in [22, 23]. Additionally one assumes that micro cracks are uniformly
distributed over the rail cross section. Analysis takes into account LEFM laws for initial
crack growth only (Paris [19] and Elber [3] laws) when no crack growth investigation has
been performed. Investigation of the stress-life (S-N) type approach to fatigue life
estimation of railroad rails has been performed. The needed computer programs have
been developed and numerical analyses have been carried out.

2. Estimation of crack nucleation life
Influence of residual stresses on the crack nucleation is considered. The total

stresses are the sum of elastic stresses (due to loading) and residual stresses
(independent of rail longitudinal axis). They may be presented as:

6!0&11 (X’ Y, Z) = 6elasﬁc (y ’ Z)+ E’sresidual (X, y, Z) H ( 1 )
where "X" is a longitudinal axis, "z" is a vertical axis and "y" transverse axis.
The longitudinal elastic stress component ox for one force located at the zero

longitudinal coordinate exhibits dependency shown in Fig. 1., when using beam rail
model ([17]),

100 —

-100 —

Sxx
]

-200 —

-300 —

400 1 L ' | T
-200 -100 0 100 200
X

Fig. 1. The longitudinal stress component Gyx.

This o stress component distribution in rail has three characteristic points with respect
to wheel/rail contact location:

1. compressive stress maximum for  x=0- c(0),
2. tensile stress maximum for X=X_, olx_. ),
3. zero elastic axial stresses in infinity x=o0 o(e).
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Stresses at these points are:

6,=6"(0)+0c"
62 :(SE(Xmax)—*-(sr ( 2)

c,=0"

where G°,6" are elastic and residual stresses. These three situations happen at every

point along the rail length during vehicle wheel motion. Therefore, minimum and
maximum stresses/strains at any point may be found by taking extreme of the three
following total stress and strain values

Joahlo)) (3)

0'3|) O = maxﬂcs1

G in = min{o ||,
Alternate and average stresses be defined as

c$=max min 0.__:max min (4)

These formulas will be used to estimate life prediction in stress criteria.

In the S-N approach one assumes that examined body is subject to damage by
repeated cycles of altering stresses. The most common Basquin [1] theory states that
life prediction is a function of ultimate stress (S,), two fatigue material constants (4
and B) and two state parameters: altering stress (S,) and medium stress (Sy). This
rule has the form

S, +s—“‘=1 (5)

S, (Sa)_
3 +(S )—1 (6)

seems to be erroneous because quantity S_ may be negative and in such a case it
leads to wrong results. The equation

Sa +S__=:1, (7)
SNf q:

where ¢, is true fracture strength gives almost the same results as the Basquin
equation. Material constant S, is found from basic material measurements. Equation
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(9) may be used to find life prediction of the railroad rail. Taking into account that for
N; =1 Sy, =S, one obtains A=S,. B may be found based on experimental fact that

life prediction of railroad rail may be assumed as equal to 10, where k=18, if k=8 i.e.
fully reversed fatigue limit, then

. =S, (108)B (8)
and finally
I Sas
N, =exp| 8 [n10 —_"m (9)
S
Sll

3. The analysis of capabilities to predict railroad rail life.

In present work 132 RE railroad rail subject to 15 ton wheel load was analyzed.
The analysis was performed for three loading locations, namely when force is on the -
axis of symmetry, and offset by 0.33" and 0.5" from the centerline. The following material
constant values: S,=115 ksi, S#=67 ksi ([17]) has been used. At first foundation
modulus "k" has been chosen as 2000 psi.

Distributions of: ¢°(0), 6 (X, ), 6, G5, O3, O » Omm» O.» On and N; in the rail
head are presented in the figures (2-31) for the cases when contact force is located on
the vertical axis of symmetry, and is offset by 0.33" and 0.5". These values have been
obtained using computer program prepared by first author basing on the equations
presented in [17] and residual stresses have been obtained by M. Pazdanowski [20].
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Figs. 32 and 33 present elastic stress at the rail/wheel contact point and in the far
distance when foundation modulus is changed to 5000 psi.
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4. Final Remarks

1.

2.

3.

The shortest life to fatigue crack nucleation was predicted for a neighborhood of the
rail running surface (top of the rail head);

The fatigue life N¢ is mostly affected by contact loading, while influence of residual
stresses ¢’ on Ns is negligible;

Application of the precise Finite Strip Method solutions to evaluate the elastic
stresses is necessary;

It is expected that taking into consideration multiaxial stresses will results in more
precise S-N analysis;

Analysis of the influence residual the stresses have on rail failure and life prediction
in the case of off-center wheel/rail contacts shows rather small impact on crack
nucleation process. It is expected that it will be significant in case of crack
propagation speed as was proved in report [9].

Use of a more realistic, two wheel truck loading, instead of a single wheel loading is
needed for rail fatigue analysis;
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