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PREFACE 

This document describes procedures for determining the period between regular inspections in 

order to ensure that no more than a certain percentage of units of a selected population in service 

fail. These procedures assume that the units have a uniform random failure rate and that the 

population is divided into many groups. These groups are inspected sequentially at a uniform 

rate overthe inspection interval, repaired if necessary, and returned to service. These procedures, 

combined with engineering data and experience, may be applied to the definition of approaches 

for ensuring the safety of equipment in railroad operations. These procedures were developed 

under the Federal Railroad Adminstration (FRA) Rail Equipment Safety Program (RR428) being 

conducted at the Volpe Center. 
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EXECUTIVE SUMMARY 

Procedures have been developed to establish inspection intervals for a population of regularly 

maintained units that, in use, can fail at random times. These procedures are intended to 

attain performance goals to ensure that no more than a certain small percentage of the units 

will be failed at any one time. Methods to choose and to change the length of time of the 

inspection interval are specified. Phase-in, i.e., the transition from one inspection interval to 

another illspection interval and the transition to a performance goal, is described. 

A formula has been developed to predict, on a statistical basis, the upper limit of the 

percentage of the population that will be in a failed state during a future cycle based upon the 

number of defective units found in the previous inspection cycle. To estimate how well the 

formula will perform, repeated simulations of the upper limit using randomly generated 

failure data were compared with repeated simulations of independently generated random 

numbers of units found failed at inspection. The formula is primarily for use when the 

population is greater than 100 units and the percentage of the population found failed at 

inspection is greater than 1 %. 

To illustrate these procedures, the formula has been applied to the maintenance of a 

population of light bulbs in a building where bulb failures are not to exceed a given small 

percentage of the bulb population. The formula can apply equally to fleets of trucks or taxis, 

or to populations of rail cars or transit cars. 
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PROCEDURES TO ESTABLISH INSPECTION INTERVALS 

1. BACKGROUND 

Along with the assurance of a long, reliable life, in-service equipment may be required to 

operate safely and economically with some failed units. Procedures for inspection, repair, and 

replacement can be employed to permit operation with no more than a specified small 

percentage of failures. 

A statistical procedure of systematic inspections may be used to limit the percentage of the 

population that is failed at a given point in time when the units of the population are 

inspected and repaired at regular intervals. The procedure permits this percentage to be 

estimated with a sequence of regular inspections conducted over a given period. During this 

period, the entire population would be inspected at different times, thereby, enabling the time 

between inspections and repairs to be used to control the percentage of failures. 

With some populations, as varied as fleets of trucks or populations of lamps in large 

buildings, an issue is ensuring that a given percentage of the population of units in service is 

functioning properly. The unit~ can and do operate practically with a small percentage of 

failures. Establishing a statistical procedure for inspection, repair, and replacement can ensure 

that at a given point in time and with a high probability (e.g., 98% ), no more than a certain 

percentage (e.g., 5%) of the units in service will be failed. 

2. OBJECTIVE 

The objective of this paper is to describe a statistical inspection tool relating the interval of 

time required to inspect a given population of regularly maintained units subject to failure to 

the percentage of the population that is failed at a given point in time. 
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3. PROBABILITY OF FAILURE OF A SINGLE UNIT 

Periodic maintenance inspections are conducted on a population of identical working units 

that tend to fail in service. Except for those units that have just been inspected, the condition 

of each unit within a population is unknown. Thus, the time of failure cannot be determined 

precisely and is assumed to be random. Some small number of units is known to fail in the 

regular interval between inspections. At each inspection, failed units are repaired to their 

original condition and returned to service to maintain a fixed population size. 

The intervals between successive failures are assumed to be independently and identically 

distributed. The start of each inspection of any unit is considered to be the start of a new 

lifetime of that unit with the same probability of failure in the interval between some time, t, 

and some subsequent time, t+-r. This probability depends only on the length of the interval, -r, 

and not on the previous time, t. In any interval, v-0, the probability of failure is greater than 

zero. The interval is assumed to be sufficiently small to permit, at most, only one failure to 

occur. 

Each unit is assumed to have an exponentially distributed failure time. All units that are not 

failed, including repaired units, are assumed to fail at a constant average rate, A. Further, 

since each unit of the population is identical and is inspected at the same regular inspection 

interval, T, the probability, P, that any unit, not failed at any time, t, will fail before some 

later time, t+ T, is an exponential function, 

that depends only on T. 
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4. INSPECTION SCHEDULE AND INSPECTION INTERVAL PHASE-IN 

The population of N units is divided into M groups of equal size. An inspection interval T is 

established and maintained, and is the same for each group and for each unit within its_ group. 

If the number of groups is fairly large, the prescribed conditions for inspection should 

approximate a uniform regular inspection with interval T. Figure 4-1 illustrates the sequential 

division o! time for inspecting all units of the population. 

In the first stage of the inspection procedure, every unit is inspected and repaired as needed 

according to a proposed interval, T,, although repairs to these units are not recorded at this 

time. In the second stage, every unit is inspected and repaired as needed, and data related to 

all repairs are recorded. Second stage inspections will be repeated in the inspection interval, 

T,, until data indicate a need to establish a new inspection interval, T2• 

The transition to a new interval starts at the beginning of the third stage with the selection of 

the first unit in the first group to be inspected. The procedure calls for immediate change to 

the new rate of inspection while continuing the same cyclic order of inspecting units of the 

population. The percentage of the population found failed at inspection and the corresonding 

percentage of the population th'!t is failed at a given point in time, change with each monthly 

inspection until the new interval, T2, is established (at the end of T2 units of time) when the 

entire population has been inspected. 

In the fourth stage, the percentage of units found failed at inspection settles, within a 

subsequent T2 units of time, to a corresponding percentage of the population that is failed at a 

given point in time. 

Thus, the entire process of phase-in comprising the transition to the percentage of the 

population that is failed at a given point in time at the new inspection interval, T2, occurs 

within two T2 units of time. 
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5. EXPECTED VALUE OF FAILED UNITS AND THE UPPER 
PREDICTION LIMIT 

When a regular inspection interval has been established, i.e., when the population has been 

inspected once in the first interval, T1, and all units have been repaired upon inspection where 

necessary, there are two measurable quantities that are relatable to the failure rate, A: the 

percentage of the population found failed at inspection, R, and the percentage of the 

population that is failed at a given point in time, F. Data from each inspection show the 

number of that part of the population that was failed at the time of inspection and required 

repairs. (See Table 8-1.) The proportion of the population found failed at inspection in the 

interval, T, is determined by dividing the total number of units found failed on inspection, D, 

by the number of units in the population, N. Hence: 

R=D/N. 

The percentage of the population that is failed, F, at a given point in time, however, is 

unknown. Its relationship with the inspection interval must be determined. Then, changes in 

the inspection interval can be used to control the percentage of the population that is failed at 

a given point in time. 

Using a probabilistic approach, E(R) and E(F), respectively, the expected values of the 

percentage of the population found failed at inspection, R, and the percentage of the 

population that is failed at a given point in time, F, can be related to the failure rate, A, and to 

the inspection interval, T. R and F are random variables. E(R) and E(F), average values that 

are representative of some distribution of values, are the fixed but not known expected values. 

If each distribution remains the same, the expected value of each random variable would be 

observed again and again very many times. In that case, the portion of the population 

expected to be found failed at inspection is 

E(R)=l-e -A.Ti 
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and the portion of the population expected to be failed at a given point in time is 

(A more detailed description is found in Appendices A and B.) The quantities are found for 

different inspection intervals, T1 and T2• The case where the percentage of the population 

found failed at inspection, R, and the percentage of the population that is failed at a given 

point in time, F, refers to different inspection intervals that will be of particular interest. The 

two equations can be combined, eliminating the failure rate, A, so that the expected portion of 

the population in a failed state at any given time is 

E(F)=l + 1-(1-E(R)K) 
K loge(l -E(R)) 

where K is the ratio of the new inspection interval to the previous inspection interval: 

This expression is used to relate the expected value of the percentage of the population in a 

failed state at a given point in time, E(F), at the new interval, T2, to the expected value of the 

percentage of the population found failed at inspection, E(R), at the earlier interval, T1, and to 

the ratio of the new interval to the earlier interval, K. 

It is important to remember that E(R) and E(F) are abstract quantities and have to be related 

to quantities that are real and measurable. In much of the remainder of this report, that 

relationship is developed in terms of Rand F, which are real and measurable. Since E(R) 

and E(F) are average values of some distributions, a limit which will be exceeded by the 

percentage of the population that is failed at a given point in time, F, in no more than some 

small percentage of all possible cases, must also be established. This limit, F0 , sometimes 

called the upper confidence or upper prediction limit is a function of the population size, N, 

6 



the percentage of the population found failed at inspection, R, and the probability that F is 

greater than Fu. The relationship, in effect, says, that F will exceed Fu (e.g., 5%) in no more 

than a (e.g., 2%) of all cases and is equivalent to being (1-a) (e.g., 98%) confident that a 

given quantity of units in service will not be in a failed state. 

The derivation of the formula for Fu is described in Appendix A. The derivations of some of 

the variances used in Appendix A are described in Appendix B. The formulas to determine 

the upper prediction limit and the new inspection interval along with the code for performing 

the calculations and a few simple examples are described in Appendix C. The simulation 

testing developed to study the performance of the formula for Fu is described in Appendix D. 

The results of several simulation test runs appear in Appendix E. A possible approach to 

choose and update the inspection interval is suggested in Appendix F. Additional comments 

on the use of the formulas are given in Appendix G. 

Note: When the expected value of the percentage of the population found failed at 

inspection, E(R), is very small and the ratio of the current inspection interval to the previous 

inspection interval, K, is moderate, an approximation of the expected value of the portion of 

the population that is failed at a given point in time is: 

K 
E(F)~-E(R). 

2 

If a measured percentage of the population found failed at inspection, R, is substituted for the 

expected value, E(R), in the above equation, the percentage of the population that is failed at 

a given point in time, F, can be estimated and can provide statistical bounds for F based on 

the percentage of the population found failed at inspection, R, usually, for a previous 

inspection interval before the given time for F. (Graphical results for the upper prediction 

limit in Section 7 when compared with the above equation evaluated in terms of R show 

close agreement for a large population and deterioration as the population decreases. This 

equation is offered only to show the approximate dependence involved and can be quite 

inaccurate in many cases. Much more accurate estimates are discussed in Appendix A.) 
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6. SIMULATION TESTING 

Determination of an exact formula for the upper prediction limit, Fu, specified in terms of the 

population size, N, the percentage of the population found failed at inspection, R, the initial 

inspection interval, T1, the new inspection interval, T2, and the probability, a, that the upper 

prediction limit will be exceeded by the percentage of the population that is failed at a given 

point in time appears to be beyond the capability of current statistical techniques. However, 

an asymptotic formula for Fu has been derived that works well when the number of failures 

in the entire population, NR, is large. In this case, both the percentage of the population 

found failed at inspection, R, and the percentage of the population that is failed at a given 

point in time, F, tend to be normally distributed. (See Appendix A). 

Though probability theory is useful for determining the form of the function for the upper 

prediction limit, Fu, when the number of units in the population found failed at inspection, 

NR, is large, the theory is not capable of accurately determining the upper prediction limit 

when the number of units in the population found failed at inspection is not large. Thus, 

repeated simulations for determining the upper prediction limit in terms of population size, 

the percentage of the population found failed at inspection, the current and new inspection 

intervals, and the probability that the upper prediction limit will be exceeded, have been used 

to predict the performance of the proposed asymptotic formula. Each simulation study (which 

generates separate data on each unit of the population) is repeated many times (10,000 to 

200,000) at each choice of the parameters. 

Results of the simulation studies enable comparison between the excess of the percentage of 

the population that is failed at a given point in time, F, greater than the upper prediction limit, 

Fu, for many representative choices of the other parameters and the probability, a, that F is 

greater than Fu. Simulations can show the amount that Fu would have to be increased in 

order to limit the exceedances to a of all cases when Fu is not large enough. Conversely, 

they can also show how much the proposed value for Fu could be decreased and still limit 

exceedances to the desired level when Fu is too large. 
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The results of repeated simulation studies discussed in Appendix D show that as long as the 

expected value of the percentage of the population found failed at inspection is not less than 

1 % and the population size is not less than 100, the formula appears to be satisfactory, being 

too conservative in some cases and not conservative enough in others. The formula usually 

errs on the conservative side and usually differs only slightly from the true upper prediction 

limit, Fu, which is exceeded in exactly a of all cases. 

7. TYPICAL RESULTS OF THE ANALYSIS 

Graphical evaluations of the formula for the upper prediction limit are presented in two 

different figures. Individual curves are plotted in both figures for a given upper prediction 

limit and confidence level. 

The curves in Figures 7-lA to 7-lD, each representative of a given population size, show 

how the time interval ratio is related to the percentage of the population found failed at 

inspection. For the hypothetical maintenance problem, the 12,000 unit population curve of 

Figure 7- lA, redrawn as Figure 8-1, is used in the determinations of the inspection interval 

required to limit light bulb failures and the allowable variation in the percentage of bulbs 

found failed at inspection before the inspection interval is required to be changed. 

In Figures 7-2A to 7-2H, two curves, evaluated for different inspection interval ratios, are 

plotted to relate the percentage of units found failed at inspection to the population size. The 

inspection interval ratios are selected to establish the boundaries limiting the region at the 

allowable variation in the percentage of bulbs found failed at inspection in the hypothetical 

maintenance problem. 
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8. SOLUTION RESULTS APPLIED TO A HYPOTHETICAL MAINTENANCE 
PROBLEM 

A 12-story building illuminated with 1,000 light bulbs on each floor serves as an example of 

the application of the statistical procedure of inspection and repair to maintain a given 

percentage of the bulbs in service. The goal is to permit, with 95% confidence, that no more 

than 5% of the bulbs are to be failed at a given point in time. 

In Stage 1, all 12,000 light bulbs are divided into 12 groups. The routine calls for all of the 

bulbs to be inspected in a given regular uniform, floor- by-floor, sequence. A different group 

is inspected each month during the 12-month inspection interval. Bulbs found failed are 

replaced, but the number of bulbs found failed is not recorded. The amount of time to 

inspect all of the bulbs in the in-service population is the same as the inspection interval for 

each bulb. 

In Stage 2, the number of failures in each group, recorded for the 12-month inspection 

interval, is shown in the first column of Table 8-1. The results are tallied at the end of each 

month and at the end of the inspection interval. Of the entire in-servive population of bulbs, 

1800 bulbs (i.e., 15% of the population) are found failed and replaced. 

According to Figure 8-1, the goal of 5% can be reached when the inspection interval is 

reduced by a factor equal to the inspection interval ratio, K=0.59. The new inspection 

interval (in months) is selected to be (T2=KT1=0.59 x 12=7.08 months) 7 months. When 

monthly inspections are conducted for this new inspection interval, the inspection interval 

ratio for K= 1 (since inspections now are set to occur at a fixed interval) determines an upper 

bound of 9.1 % for the percentage of bulbs found failed at inspection, R, that corresponds to 

5% for the upper prediction limit of bulbs in a failed state at a given point in time. 

The second column of Stage 2 shows the same number ( 1800) of failures rearranged for the 7 

groups needed to inspect the bulbs in 7 months. The new group size consists of about 1714 

bulbs which are located on the equivalent of 1 5/7 floors. 
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Inspection Stage 
lnspeclion Month 1 2 

1 141 

2 138 

3 152 

4 126 

5 158 

6 139 

7 163 

8 161 

9 157 

10 174 

11 137 

12 154 

TOTAL 1800 -

Table 8-la. Failures Within 12 Groups 
of Equal Size for an Inspection 
Interval of 12 Months. 

Inspection Sta2e 
lnspeclion 2 3 4 5 Month 

1 240 249 152 153 

2 245 226 164 147 

3 250 203 152 158 

4 259 181 145 163 

5 274 163 147 158 

6 280 149 164 165 

7 252 137 132 172 

TOTAL 1800 1308 1056 1116 

Table 8-lb. Failures Within 7 Groups of 
Nearly Equal Size for An Inspection 
Interval of 7 Months. 

TABLE 8-1. DEFECTIVE BULBS FOUND AT MONTHLY INSPECTIONS IN A 
FIXED POPULATION OF 12,000 BULBS 
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In Stage 3, the inspection interval changes from 12 months to 7 months. Inspections are 

conducted according to the new group size. At each monthly inspection, the time interval of 

inspection for bulbs not yet inspected in Stage 3 decreases by 517 month. At the end of the 

first monthly inspection, 1 517 floors are inspected while each of the previous 10 217 floors 

have not been inspected for 10 2/7 months representing an inspection interval for the entire 

population of bulbs of 11 2/7 months. Each successive monthly inspection represents another 

517 month_ decrease in the interval until, at the end of 7 months, the 12-month inspection 

interval is reduced to 7 months. 

In the meantime, the data collector needs to be aware of the change of the number and 

location of bulbs to be inspected in each new group. At the end of Stage 3, the data collected 

show that 10.9% of the bulbs were found failed at inspection. 

During Stage 4, the percentage of bulbs found failed at inspection decreases to the upper 

bound of 9.1 % (determined earlier) that corresponds to the upper prediction limit of 5%. At 

the end of stage 4, data indicate that 8.8% of inspected bulbs were found failed and did not 

exceed the upper bound or the upper prediction limit. Thus, the 5% goal was reached within 

14 months of the change of the inspection interval from 12 months to 7 months. In 

subsequent inspections, the data_ collector continues to calculate the percentage of bulbs found 

failed at inspection in order to determine when an update is required and how the interval 

should be changed. 

When the new inspection interval of 7 months was selected, the maintenance department also 

allowed the percentage of the bulbs found failed at inspection to vary by 1.3% before 

requiring an adjustment of the inspection interval. The upper bound on the percentage of the 

bulbs found failed at inspection for the 7-month inspection interval, as discussed earlier, was 

not to exceed 9.1 %. Therefore, the percentage of bulbs found failed at inspection could vary 

between the upper bound of 9.1 % and a lower bound of 7.8% without requiring the inspection 

interval to be changed. When the percentage of the bulbs found failed at inspection becomes 

less than the lower bound, the new inspection interval should be increased. According to 

Figure 8-1, the lower bound corresponds to an inspection interval that has increased in 
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9. LIMITATIONS 

The procedure discussed in this paper is intended for use _in adjusting inspection intervals in 

order to control the percentage of the population that is failed at a given point in time. The 

procedure tends to be more satisfactory for large populations and relatively less satisfactory 

for small populations for two reasons: 

1. For very small populations of less than I 00 units, the analytical techniques break 

down and fail to sustain the accuracy of the formula. The formula was developed 

using asymptotic techniques which are good for large populations and robust for 

intermediate populations. For very small populations, the formula ultimately fails to 

estimate the upper prediction limit of the percentage of the population that is failed at 

a given point in time. 

2. Even if the formula were exact in its prediction of probabilities for very small 

populations, a small population size, still, requires more frequent inspections to 

overcome the loss of statistical precision in evaluating the percentage of the population 

that is failed at a given point in time and the high probability that this percentage not 

exceed the upper prediction limit by a certain amount. 

(See also Apppendix G.) 
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APPENDIX A.DERIVATION OF THE FORMULA FOR Fu 

The purpose of this section is to derive the formula for the upper prediction limit F0 for F. There 

are three major aspects to this derivation; a good point estimate or mean, a good prediction band 

based on the various sources of variation, and simulation testing of the prediction limit and level. 

First, recall the meaning of F and of its prediction limit. F has meaning in a given population 

at a given time and represents the fraction of units that would be found failed if all units were 

to be examined simultaneously. Conversely, (1-F) is a measure of "availability." F is never 

measured, although it is an actualized or potentially measurable quantity. Instead, the fraction, 

R, found failed at inspection, is observed. In one inspection cycle of interval, T, every unit is 

inspected exactly once. All units are assumed to be inspected with the same delay, T, so that 

the units are always inspected in the same order and each unit, when it is inspected, was last 

inspected and repaired T units of time before. (The failure times are assumed independent and 

exponentially distributed. All units are assumed repaired and restored to initial conditions when 

found failed at inspection.) 

Now, let us find a prediction limit for F in an inspection interval, T2, based on the value of R 

observed in an earlier inspection interval, T1• Then, 

E(R)=l-e -u, 

and, 

(See Appendix B for more details.) 
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Combining the two equations, 

where, 

E(F)=l + l-(l-E(R))x 
K Ioge(l-E(R)) 

That is to say E(F) is related to E(R) and K through the function F(x,y) by the equation: 

E(F)=F(E(R),K) 

where, 

l-(l-x\Y F(x,y)=l+ F • 
y Ioge(l-x) 

Let aF denote the standard deviation in F, that is, 

NF is actually the sum of N Bernoulli (zero-one) random variables, Xi, where E(X)=Pi· Then, 

the expected value of the number of units of the population in a failed state is, 

N N 
N E(F)=LE(x;)=LPi 

i=l i=l 

where, 

-lt. 
P;=l-e ' 
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and, the expected value of the fraction of the population in a failed state is, 

N 

LP; Tz 

E(F)=~z_!_ Jo-e-J.1)dt. 
N Tzo 

Since the X/s are independent, 

N 

VAR[NF] =N2a~= L P;O -P;). 
i=l 

Thus, 

The result is 

Since, 

E(R) = 1 -e -l\ 

we have 
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So, 

where, 

Now let, 

2 (1-e-P)-.5(1-e-2P) 
aFzV(p)=------

Np . 

p = -K loge(l -E(R)). 

F=E(F)+a F~F • 

Then, if NF is large, ~F is approximately normally distributed with mean zero and variance one. 

Similarly, if RN is large and, 

where, (see Appendix B), 

a R=JE(R)(l-E(R))/N 

then, ~R is approximately standard normal as well. 

Since F(R,K) has derivatives of all order in R, then, using the Taylor series expansion, 

1 F(R,K) =F(E(R),K) + F 1(E(R),K)a R~ R +0(-) 
N 

where, F'(E(R),K) denotes the derivative of F(E(R),K) with respect to its first argument and 

0(1/N) denotes, unspecifically, terms of order 1/N. 
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Therefore, 

Consequently, 

1 F-F(R,K)=oft-0(-)zcrfl 
N 

where, T} is a standard (mean zero, variance one) normal random variable and, 

Therefore, when N is large, 

Where Za is a standard normal _deviate, i.e., if X is any standard normal random variable, then 

Za is a quantity such that Pr(X>Za)=a.. Consequently, Pr(T}>Za)=a. and since T}=(F-F(R,K))/cr, 

we can say that Pr((F-F(R,K))/cr>Za)""a.. From this argument, the expression given above follows 

immediately. (For values of Za, see Appendix C.) 

If E(R) is known, a and then consequently, F0 , an upper prediction limit for F, can be found. 

Since terms of the order 1/N in the calculation of the prediction limit are neglected and noting 

that a is of the order of 1/Nv', E(R) is also approximated in the expression for cr. Substitution of 

R for E(R) for the upper prediction limit would still be approximately correct for large N. 

However, the upper prediction limit would err on the low side since, 
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and a would become a function of R. Variations in R would underestimate a, at times, leading 

to an increased incidence of F exceeding Fu. However, if 

is substituted for E(R) in a, a conservative estimate of Fu can be found. (For values of Z~ see 

Appendix C.) More precisely, R~ is substituted for E(R) in the expressions for aR and Op, and R 

is substituted for E(R) in F'(E(R),K) since the latter quantity decreases with E(R). 

Note that R~ is itself in the form of a confidence limit for R. For small values of Z~ this is a 

mildly biased estimate of R. For larger values of Z~ it becomes a strongly biased estimate 

(almost surely an overestimate) or strongly conservative (safely pessimistic) estimate of R. Only 

simulation can determine the value of Z~ to use with each value of a. This is dealt with in the 

sections on simulation. 

Note that F'(R,K) can be approximated adequately by 

F'(R,K)-ll.F _F(R+.56,K)-F(R-.56,K) h ~-~ -- were u- -. 
ll.R 6 ' N 

Therefore, the final expression for the upper prediction limit is 

where, 
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and 

As N approaches infinity, Fu becomes an exact upper a prediction limit. The error goes to zero 

faster than the offset, F0 -F(R,K). 

The results of some simulation runs appear in Appendix D and suggest that this expression, when 

applied to calculate an upper 0.975 prediction limit, is nearly always conservative if Z11 is chosen 

to be 2.5. The formula and its performance are not very sensitive to this parameter. Further 

simulations suggest that z11 values of 2.1, 2.2, and 2.3 for a=0.05, 0.03, and 0.02 respectively, 

work satisfactorily. 

Note: R is the number of failed units divided by N. When no units fail, a slight modification 

(see Appendix C, Step 2) works better and is reported in "Experimental Statistics" by 

Mary Natrella, National Bureau of Standards Handbook 91, 1963. In such a case, instead 

of R=O, R=0.25/N is used. This modification, ascribed to Bartlett, who proposed it in 

a different context, improves performance in the simulation. Bartlett's modification also 

calls for a symmetric treatment of the symmetric case when all units fail. The full 

Bartlett modification should be used considering that failure of all units is unlikely to ever 

occur. 
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APPENDIX B. DERIVATION OF VARIAN CE FORMULAS 

Let D1 denote the number of units which fail between inspections. Then, 

where Xi equals 1 if unit i fails between inspections and Xi equals 0 if unit i does not fail. Then, 

where T is the inspection interval and A is the failure rate. Then D1 is binomially distributed 

Bin(n,p) with n=N and p=l-e-u. We denote D/N by R. Then, 

Now, 

a R=JE(R 2)-(E(R))2 =JE(R)(l-E(R))/N. 

Since the Xi's are independent and, 

we have 

N 

VAR[NR] =N2a;= L a!;" 
i=l 
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Since Xi is a Bernoulli or binary random variable we have 

and 

N N L a;j=E E(X;)(l-E(X;))=N(l-e-J.T)e-u. 
i=l i=l 

Then, 

2 (1-e -u)e -u E(R)(l-E(R)) a - ------R- N - N . 

Next, let D1 be the number of in-service units which are in a failed condition at some specific 

time. Then, 

where Xi = 1 if unit i is failed at the given moment in time. Then, 

where ~ is the amount of time since the last inspection of unit i. Since this is a uniform 

inspection, unit i will not have been inspected for an approximate interval of time of (i/N)T. 

Here, as a convenience (without loss of generality), we take the units as being numbered with 

the most recently inspected having the lowest numbers. Therefore, 

N N _ _j_J..T 
E(D,) = L E(X;) = L (1-e N ). 

i=l i=l 
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We approximate the sum by the corresponding integral, 

Actually, the integral is more accurate than the sum since the exact time that unit i was inspected 

is not exactly (i/N)T but is distributed between (i/N)T and ((i-1)/N)T, which the integral reflects. 

Denote D/N by F. Then, 

D T -A.1\ 
E(F)=E(-')~lJo-e-u)dt=l- (1-e '. 

N T 0 AT 

Since 

N 

N E(F)=E(D,)=L, E(Xi), 
i=l 

then o/=E(F2)-E(F)2 is obtained in a similar way used to get aR
2

, so that 

2 1 N 2 1 N 
ap=-~ ax=-~ E(X.)(1-E(X.)), 2L i 2L I I N i=I N i=I 

After substitution, 
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to yield 

0
2 _ (1-e -.l.')- .5(1-e -2.l.') 
p- N'AT . 

Note that if R refers to a given inspection interval of duration T1 while F refers to a separate 

inspection interval of duration T2 then we may solve the expression for R for A. Since, 

-log (1-E(R)) 
E(R) =1-e -.l.Ti we have ').. = e • 

T1 

This expression for A, then, may be substituted into expressions for E(F) and O"p and will be used 

in further developments. 
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APPENDIX C. DETERMINATION OF Fu AND T2 

In this section, the formula for Fu is applied in examples to demonstrate the calculation of an 

upper prediction limit and a new inspection interval. Both types of calculation are implemented 

in a BASIC program listing that is also included. Representative graphical evaluations are found 

in Section 7 to permit a rapid and approximate determination of Fu and T2 • 

C.1 Procedure to Calculate Fu 

The following procedure outlines the steps required to calculate the value of Fu, the upper 

prediction limit. 

Step 1. Determine the values of the following quantities: 

N The population size 

D The number of units in the entire population which were found defective in one 

inspection cycle 

T1 The length of the inspection cycle in units of time,i.e., the original inspection 

cycle - when D was measured 

T2 The length of the new inspection cycle related to F 

Step 2. Calculate R as follows: 

If D>O and D<N then, R=D/N (the usual case) 

If D=O then, R=.25/N (no defects, an unusual case) 

If D=N then, R=l-.25/N (should never happen, included for 

completeness) 
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Step 3. Calculate K: 

Step 4. Calculate the conditional expected value of F: 

Step 5. Calculate value of Za: 

If a=.05, then Za=l.644854 

If a=.03, then Za=l.880794 

If a=.02, then Za=2.053749 

F(R,K) =l + 1-(1-R)x 
K loge(l-R) 

za is determined by the normal distribution in the following familiar way: If x is a standard 

normal random variable with mean=O and variance=l, then Pr(X>Za)=a (see Figure C-1 ). 

Step 6. Determine value of Z~ by a: 

If a=0.05, then Z~=2.l 

If a=0.03, then Z~=2.2 

If a=0.02, then Z~=2.3 

These values are determined by simulation and are not nearly as critical as the values of Za. 

Step 7. Calculate the compensated value of R for use in parts of the formula: 
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Step 8. Calculate an estimated derivative of F(R,K): 

ll.F = F(R+.55,K)-F(R-.55,K) where 5 = lR. 
ll.R 5 , . ~ N 

Step 9. Calculate the point estimate of the variance in F: 

and 

V(p)= {l-e '"')-.:>{l-e ~'"') 

Np 

Step 10. Calculate the point estimate of the variance in R: 

Step 11. The complete formula for Fu is: 

Note: If R is very small and N is sufficiently large, then the above formula is well approximated 

by: 

KR F --+Z 
U 2 IX 
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This latter estimate should not be used for calculation because it can be much less accurate than 

the formula given in Step 11 and is intended only to be a rough and qualitative indicator of how 

the more accurate formula behaves as a function of its arguments when R is small. 

C.2 Procedure to Calculate T 2 

The following procedure outlines the steps required to calculate the value of T2, a new inspection 

interval given D, N, Fu, and a. 

The problem is how to determine T2 when a desired value for Fu is given. This value will be 

referred to as FT, the target value. The formula, given in Step 11, is solved for K. A value of 

T2 is found with the equation, T2=KTI" To solve for K we proceed iteratively as follows: 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Choose an initial value for K, such as K=l. 

Calculate Fu using the formula of Step 11, above, and the assumed value for K 

or the current best value. 

If FT/Fu is very close to 1 so that I (FT-Fu) I /Fu:::::0.001, then the calculation is 

complete and the current value of K is the solution. 

Otherwise, adjust K by the following formula: New K = Old K*(FT!Fu), then go 

back to Step 2. Iterate through Steps 2, 3 and 4 as many times as necessary to 

bring the ratio, FT/Fu, satisfactorily close to 1. The resulting value of K is the 

ratio of T/T1, where T 1 is the old inspection interval and T2 is the length of the 

inspection interval which results in the specified (or target) value, FT of Fu. 
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C.3 A BASIC Program to Calculate Fu and K 

This section is devoted to a description of how to use a BASIC program to calculate Fu and K. 

Fu is calculated as a function of N, R, K, and a.. K is calculated as a function of FT, N, R, and 

a.. The program is listed in Figure C-2. It is written in Quick Basic and is readily converted to 

any other dialect of BASIC. Since it requires a simple numerical calculation with only minimal 

keyboard input and output, it is also easily converted to FORTRAN, C, or Pascal. (The program 

prompts twice for keyboard entry of numerical inputs.) 

The following numerical examples illustrate the procedures to calculate the values of the upper 

prediction limit and the new inspection interval. Examples 1 and 2 show how respective values 

for Fu and K are calculated. Example 3 shows the inverse relationship between the calculations 

of Fu and K. 

Example 1. Given the following values: N=lOOO, R=0.05, K=l.5, 

a.=0.03, determine Fu based on the procedure to calculate the upper prediction limit. 

First, determine Za. and z13 with a. by Steps 5 and 6 of the procedure in Appendix C.l. For the 

value of a.=0.03, then Za.= 1.880794 and z13=2.2. 

Now, run the Quick Basic Program for calculating Fu. When asked if the user wants to calculate 

Fu, or K, enter 1 to request the former (as directed by the prompt). After the second prompt asks 

for R, N, K, Za., and Z13, enter their respective values: 0.05, 1000, 1.5, 1.880794, and 2.2. The 

result is Fu=0.05432. 

Example 2. Determine the inspection interval ratio using R=0.1, N=300, FT=0.05, Za.=1.644854, 

and Z13=2.1. (Za. and Z13 are evaluated for a.=0.05. See steps 5 and 6 of Appendix C.l.) 

Run the Quick Basic Program to calculate K by entering 2 at the first prompt. At the second 

prompt, enter the following values: 0.1, 300, and 0.05, respectively, for R, N, FT, as well as the 

values of Za.=1.644854 and Z13=2.l. The result is K=0.56256. 
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FIGURE C-2. QUICK BASIC PROGRAM FOR CALCULATING K OR Fu 

DECLARE SUB FFNL (XXP!, KXP!, FXP!) 

R=0.1: N=100: T2=1: ZA=1.645: ZB=2.5: FT =0.05: RN=1.2: EP=0.00001 

PRINT 

ST: 

PRINT "ENTER 1 IF YOU WANT TO CALCULATE FU; ENTER 2 IF YOU WANT TO CALCULATE K"; 

INPUT IC 

IF IC=2 THEN 

PRINT "INPUT R, N, FT, ZA, ZB" 

lt\IPUT R, N, FT, ZA, ZB 

KR=1 

GOSUB SOLV 

PRINT "K="; KR 

END 

ELSE 

IF IC <> 1 THEN GOTO ST 

PRINT "INPUT R, N, K, ZA, ZB" 

INPUT R, N, KR, ZA, ZB 

GOSUB FUF: PRINT "FU="; FU 

END IF 

END 

SOLV: 

ITT: 

GOSUB FUF 

RF=FT/FU: KR=KR*RF 

IF RF <1-EP OR RF>1+EP THEN GOTO ITT 

RETURN 

END 

UT: PRINT "X"; ITS; KR; FUU; JN; N 

PRINT #1, N, KR 

CLOSE 

END 

FCC: 

FU= 1-((1-RU)"KU-1)/(KU*LOG(1-RU)) 

RETURN 
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FIGURE C-2. QUICK BASIC PROGRAM FOR CALCULATING K OR Fu (Cont.) 

FUF: 

DP = SQR (R*(1-R)/N) 

RB=R+ZB*DP 

CALL FFNL (R, KR, FF) 

ALT =-KR*LOG(1~RB) 

VF=((1-EXP(-RL T))-0.5*(1-EXP(-2*RL T)))/RL T 

DP=SQR(R*(1-R)/N) 

PU=R+DP*0.5 

PL=R-DP*0.5 

CALL FFNL(PU, KR, FUU) 

CALL FFNL(PL, KR, FUL) 

DF=(FUU-FUL)/DP 

FU=FF+ZA*SQR((VF+RB* (1-RB)* DF*DF)/N) 

RETURN 

SUB FFNL (XXP, KXP, FXP) 

U=XXP:KR=KXP 

FXP=1-((1-U)11 KR-1 )/(KR*LOG(1-U)) 

END SUB 
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Example 3. To demonstrate the relationship between the calculations for Fu and K, data from 

example 2, used to calculate K, will be used to find the value of Fu. 

Respond with 1 to the first prompt to request calculation of Fu. Enter the specified values of 

R, N, Za, and Z~, along with the computed value of K=0.56256, all found in example 2. The 

output value of Fu is the same as the input value of 0.05 for FT in example 2 and shows that 

the two types of calculation performed by this program are the inverse of each other. 
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APPENDIX D. SIMULATION TESTING OF THE FORMULA FOR Fu 

This appendix describes a simulation developed to study the performance of the formula for 

F0 • Although the formula is compensated for the effect of finite sample size, its form was 

derived under ideal conditions assuming that the sample size is sufficiently large not to 

require compensation. It is common practice to derive an expression that is proved to be 

accurate asymptotically, e.g., as the sample size goes to infinity, and to use that expression 

with the expectation that it will be approximate, yet sufficiently accurate, in non-asymptotic 

cases when the sample size is finite. It is necessary to know for what ranges of parameters, 

especially, for the population size, N, that the formula remains accurate. The simulation must 

be faithful and based on a model with the exact characteristics, e.g., constant failure rate, etc., 

of the conceptual model. 

The simulation is constructed according to the following procedure: 

First, prescribe values for the four parameters: N, the size of the population being simulated; 

E(R), the expected value of R; T1, the length of the inspection interval when R is observed; 

and T2, the length of the inspection interval when F is to occur. 

Next, determine values of R and F by different independent simulations. R is determined by 

where each Xi is an independent binary random variable indicating that unit i failed (Xi=l) 

between inspections or did not fail (Xi=O). Thus, R is simulated by taking the sum of N 

independent binary random variables and dividing the sum by N. Each Xi is simulated by 

adding a 1 with probability E(R) and a zero with probability 1-E(R), i.e., Pr(Xi=l)=E(R). 

Recall (from Appendix B) that E(R) and A are related by 
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F is determined in a separate simulation in a similar manner with some important differences. 

F is also of the form, 

where each Xi is an independent binary random variable; however, each Xi does not have the 

same probability of taking the value 1. The units are numbered in the order in which they are 

inspected. (i=l indexes the first unit inspected; i=N indexes the last unit inspected.) Then, 

-),i-dT. 

Pr(X;=l)=l-e N 
2 

where d is a number between 0 and 1. The value of d has very little to do with the outcome 

since, on the average, i is of the order of N/2, but for completeness, a single random value is 

assigned to d each time F is simulated. Now, both R and F have been generated using 

standard statistical programming techniques. 

Next, the value of the upper prediction limit is determined by the formula for Fu (see 

Appendix A). For given values of N, E(R), T1, and T2, many independent pairs of R and F 

are generated, each in the manner described above. The number of independent complete 

simulations will be denoted by NSIM. 

Based on the simulations, two statistics, as, and q, are calculated. 

For very large values of NSIM, the observed fraction, as, the fraction of cases where F 

exceeds Fu, approaches the true value of a for the given parameters. 
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The qth quantile from the top is the largest value of (F-Fu) which determines the fraction q. 

In the cases presented, q is the intended fraction of cases where F exceeds Fu and is the 

intended value of a. The qth quantile value is, then, the amount by which Fu would need to 

be increased for it to actually be an a upper prediction limit on F. 

The following three steps are used to perform the simulation: (1) choose 3 values for N, 3 

values for T2, and 3 values for E(R) with T, fixed at 1 without loss of generality; (2) at all 27 

combinations of values of these parameters, simulate NSIM pairs R, F with NSIM chosen to 

be greater than 10000, preferably, 100000; and (3) calculate the two statistics, a, and q, to 

summarize the run at each combination of parameters. 

Table D-1 presents the results of some simulations. For each case represented in this table, a 

is 0.025. Z~ is taken to be 2.5. (A somewhat smaller value is examined for this case in 

Appendix E.) NSIM is 80000 which means that each line in the table reports on 80000 

separate simulations. 

Note that the last three of seven columns in Table D-1 indicate the three input parameters. 

Columns 5, 6, and 7 list T2, E(R), and N, respectively, for each of the 27 cases. The results 

are listed in the first four columns. 

Column 1 contains the most important result, the value as, i.e., the observed fraction of NSIM 

cases in which F exceeds Fu. The goal is to obtain a conservative upper a prediction limit 

a=0.025. The value of the fraction should be less than 0.025 in most instances. In this run, 

there was only one exception. 

Column 2 gives the 0.025 quantile of Fu-F and is positive except in cases where the first 

column exceeds 0.025. A positive value indicates the amount by which Fu exceeds the 0.975 

upper prediction limit of F. Since the absolute numerical value of the 0.025 quantile is 

always small, it appears that the formula for Fu-F, although conservative, is not causing Fu to 

be too large by an appreciable amount for the cases considered. Negative values in column 2 

indicate the cases where Fu falls short of being conservative and (in their absolute value) the 

D-3 



TABLE D-1. SIMULATION RESULTS 

a= .025 z., = 1.96 z~ = 2.5 NSIM = 80,000 

Observed Fraction .025 Quantile Average Value Average Value T2 E(R) N 
Exceeding Limit of (Fu - F) of (Fu - F) of Fu 

0.02224 0.003437 0.10537 0.17895 3.00 0.0500 100 

0.01616 0.009582 0.07361 0.09611 3.00 0.0150 100 

0.02164 0.001996 0.12733 0.56846 3.00 0.3500 100 

0.01912 0.002435 0.05595 0.12917 3.00 0.0500 300 

0.02375 0.000023 0.03708 0.05945 3.00 0.0150 300 

0.02195 0.001587 0.07637 0.51430 3.00 0.3500 300 

0.01883 0.002433 0.04186 0.11508 3.00 0.0500 500 

0.02006 0.001189 0.02736 0.04968 3.00 0.0150 500 

0.02427 0.000818 0.05856 0.49742 3.00 0.3500 500 

0.02634 -0.000153 0.05221 0.07728 1.00 0.0500 100 

0.01096 0.001930 0.03412 0.04165 1.00 0.0150 100 

0.02199 0.001791 0.09904 0.28706 1.00 0.3500 100 

0.01818 0.001651 0.02721 0.05234 1.00 0.0500 300 

0.02488 0.000146 0.01706 0.02456 1.00 0.0150 300 

0.02378 0.000424 0.05544 0.24345 1.00 0.3500 300 

0.01904 0.001103 0.02022 0.04542 1.00 0.0500 500 

0.02034 0.000147 0.01254 0.02007 1.00 0.0150 500 

0.02395 0.000471 0.04252 0.23038 1.00 0.3500 500 

0.01775 0.000660 0.03460 0.04731 0.50 0.0500 100 

0.01416 0.002914 0.02229 0.02604 0.50 0.0150 100 

0.02338 0.001825 0.07389 0.17500 0.50 0.3500 100 

0.02159 0.000738 0.01791 0.03063 0.50 0.0500 300 

0.01812 0.000255 0.01115 0.01491 0.50 0.0150 300 

0.02284 0.000840 0.04111 0.14141 0.50 0.3500 300 

0.01980 0.000578 0.01329 0.02602 0.50 0.0500 500 

0.02107 0.000500 0.00815 0.01193 0.50 0.0150 500 

0.02386 0.000393 0.03114 0.13166 0.50 0.3500 500 
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amount by which Fu would need to be increased to make it conservative. There is only one 

such case in this run and the amount (1.5 X 10-4) is negligible. 

Columns 3 and 4 give the average values of (Fu-F) and of Fu, respectively. The average 

value of (Fu-F) is especially interesting since it shows by how much the observed value of F 

is increased, on average, to produce the prediction limit and is an indication of the necessary 

cost of conservatism. We have referred to this as the confidence margin. This indicates the 

amount by which the upper prediction limit exceeds the mean average value. 

Table D-2 is similar to Table D-1. The values of Za and Z~ are the same, 1.96 and 2.5, 

respectively. Other parameters are somewhat different. The values of N are 200, 600, and 

1800. The values of E(R) are 0.01, 0.03, and 0.09. The values of T2 are 0.5, 1.0, and 2.0. 

The number of repetitions of each case is 200000. Table D-2 shows that the formula yields 

conservative values for Fu for all values of the three variable parameters considered. In no 

case did the value in column 1 exceed 0.025. Comparison of column 2 with column 3, as in 

the case of Table D-1, can show that if the formula is modified into an exact upper prediction 

limit the modification will be small. (The extent of the modification to column 2 will be 

small compared to the average amount by which Fu already exceeds Fin column 3.) 
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TABLE D-2. SIMULATION RESULTS 

a= .025 z" = 1.96 z~ = 2.5 NSIM = 200,000 

Observed Fraction .025 Quantile Average Value Average Value T2 E(R) N 
Exceeding Limit of (Fu - F) of (Fu - F) of Fu 

0.02008 0.003136 0.03056 0.04060 2.00 0.0100 200 

0.01774 0.001923 0.04527 0.07503 2.00 0.0300 200 

0.01835 0.003807 0.06584 0.15403 2.00 0.0900 200 

0.01922 0.000722 0.01552 0.02552 2.00 0.0100 600 

0.01974 0.001394 0.02369 0.05348 2.00 0.0300 600 

0.02043 0.001417 0.03541 0.12420 2.00 0.0900 600 

0.01880 0.000481 0.00811 0.01805 2.00 0.0100 1800 

0.02018 0.000496 0.01264 0.04251 2.00 0.0300 1800 

0.02159 0.000583 0.01961 0.10822 2.00 0.0900 1800 

0.01646 0.000992 0.01899 0.02398 1.00 0.0100 200 

0.02193 0.000202 0.02829 0.04345 1.00 0.0300 200 

0.02019 0.002239 0.04296 0.08872 1.00 0.0900 200 

0.02214 0.000113 0.00961 0.01461 1.00 0.0100 600 

0.01910 0.000948 0.01480 0.02988 1.00 0.0300 600 

0.01997 0.001161 0.02314 0.06883 1.00 0.0900 600 

0.02042 0.000244 0.00497 0.00999 1.00 0.0100 1800 

0.02106 0.000298 0.00789 0.02298 1.00 0.0300 1800 

0.02231 0.000316 0.01276 0.05844 1.00 0.0900 1800 

0.01643 0.001481 0.01230 0.01482 0.50 0.0100 200 

0.02000 0.000358 0.01862 0.02621 0.50 0.0300 200 

0.02096 0.001180 0.02885 0.05206 0.50 0.0900 200 

0.01953 0.000126 0.00622 0.00874 0.50 0.0100 600 

0.02050 0.000641 0.00969 0.01727 0.50 0.0300 600 

0.02058 0.000692 0.01541 0.03863 0.50 0.0900 600 

0.02087 0.000141 0.00322 0.00574 0.50 0.0100 1800 

0.02255 0.000154 0.00516 0.01273 0.50 0.0300 1800 

0.02266 0.000195 0.00843 0.03166 0.50 0.0900 1800 
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APPENDIX E. RESULTS OF SEVERAL SIMULATION TEST RUNS 

This appendix reports on several simulation runs of the type introduced in Appendix D. Each 

run of the simulation program is represented by a separate table. Each table is headed by a 

statement of the value of a and the two quantities, Zo. and Z~, which depend on a and apply 

to all the simulation runs represented by the table. The values of Zo. and Z~ are as determined 

in Appendix C. 

Each row represents 80,000 complete simulations under the conditions stated in the last three 

entries in the row for T2, E(R), and N, respectively, similar to the entries in Table D-1 in 

Appendix D. The first four columns are also as described in Appendix D, with the exception 

of different values for a. The first column contains the actual proportion of the 80,000 runs 

in which F exceeded Fu and is the quantity which should be less than a. Column 5 contains 

an entry, not given in Appendix D, for the average value of F. 

Note that in the tables of this appendix, the third, fourth, and fifth columns contain the 

average values of Fu, (F0 -F), and F, respectively, and that columns 4 and 5 add up to the 

corresponding value in column 3. Also, it may be noted that the values of Z~, here, are 

generally smaller than those in Appendix D and, so, somewhat more of the cases show a 

proportion of exceedances (column l) in excess of a. However, the amount of change in F0 

needed to produce an exact a prediction limit (column 2) is small compared to the average 

value of F (column 5) in nearly every case. Therefore, the somewhat less conservative values 

are recommended for use in this appendix and in the section describing the calculations. A 

slightly larger value of Z~, however, could be used and should result in a more conservative 

upper prediction limit which would differ little from that examined here. 
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TABLE E-1. SIMULATION RESULTS 

a= .02 za = 2.05375 z~ = 2.3 N_SIM = 80,000 

2 3 4 5 6 7 8 

Observed Fraction .02 Quantile Average value Average value Average value 
where F exceeds of(Fu-F) of Fu of (Fu - F) of F T2 E(R) N 

Fu 

0.00655 0.006541 0.06010 0.05018 0.00993 2.0 0.010 100 

0.01436 0.006541 0.07089 0.05585 0.01504 2.0 0.015 100 

0.02045 -0.003459 0.08102 0.06091 0.02011 2.0 0.020 100 

0.01509 0.004432 0.04764 0.03764 0.01001 2.0 0.010 150 

0.02059 -0.002235 0.05798 0.04305 0.01493 2.0 0.015 150 

0.02183 -0.002235 0.06750 0.04758 0.01992 2.0 0.020 150 

0.02022 -0.001646 0.04123 0.03114 0.01009 2.0 0.010 200 

0.02405 -0.001646 0.05097 0.03601 0.01496 2.0 0.015 200 

0.02052 -0.001646 0.05998 0.04003 0.01995 2.0 0.020 200 

0.00594 0.002193 0.03608 0.03109 0.00499 1.0 0.010 100 

0.01091 0.002193 0.04237 0.03486 0.00750 1.0 0.015 100 

0.01570 0.002193 0.04834 0.03829 0.01006 1.0 0.020 100 

0.01072 0.001483 0.02838 0.02343 0.00495 1.0 0.010 150 

0.01846 0.001483 0.03421 0.02668 0.00754 1.0 0.015 150 

0.01999 0.000189 0.03970 0.02963 0.01007 1.0 0.020 150 

0.01619 0.001121 0.02435 0.01936 0.00499 1.0 0.010 200 

0.01965 0.000202 0.02991 0.02243 0.00749 1.0 0.015 200 

0.01957 0.000202 0.03500 0.02507 0.00993 1.0 0.020 200 

0.01030 0.003298 0.02269 0.02020 0.00249 0.5 0.010 100 

0.01464 0.003298 0.02651 0.02274 0.00377 0.5 0.015 100 

0.01655 0.003298 0.03009 0.02507 0.00502 0.5 0.020 100 

0.00261 0.002197 0.06300 0.06049 0.00251 0.5 0.010 150 

0.00575 0.002197 0.04226 0.03850 0.00377 0.5 0.015 150 

0.00988 0.002197 0.03441 0.02936 0.00505 0.5 0.020 150 

0.00495 0.001639 0.06460 0.06206 0.00254 0.5 0.010 200 

0.00945 0.001639 0.03668 0.03288 0.00380 0.5 0.015 200 

0.01380 0.000632 0.02777 0.02272 0.00504 0.5 0.020 200 
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TABLE E-2. SIMULATION RESULTS 

a= .03 za = 1.8808 ~ =2.2 NSIM = 80,000 

2 3 4 5 6 7 8 

Observed Fraction .02 Quantile Average value Average value Average value 
where F exceeds of (Fu - F) of Fu of (Fu - F) of F T2 E(R) N 

Fu 

0.00684 0.013124 0.05533 0.04540 0.00993 2.0 0.010 100 

0.01529 0.003124 0.06551 0.05051 0.01500 2.0 0.015 100 

0.02362 0.003124 0.07513 0.05504 0.02008 2.0 0.020 100 

0.01588 0.002143 0.04409 0.03404 0.01005 2.0 0.010 150 

0.02659 0.002143 0.05376 0.03881 0.01495 2.0 0.015 150 

0.03060 -0.000963 0.06296 0.04306 0.01990 2.0 0.020 150 

0.02229 0.001632 0.03825 0.02833 0.00992 2.0 0.010 200 

0.03142 -0.000522 0.04753 0.03258 0.01495 2.0 0.015 200 

0.03271 -0.000522 0.05613 0.03625 0.01988 2.0 0.020 200 

0.00579 0.000085 0.03308 0.02807 0.00501 1.0 0.010 100 

0.01106 0.000085 0.03899 0.03151 0.00748 1.0 0.015 100 

0.01696 0.000085 0.04464 0.03456 0.01008 1.0 0.020 100 

0.01161 0.000077 0.02613 0.02111 0.00502 1.0 0.010 150 

0.01920 0.000077 0.03167 0.02424 0.00743 1.0 0.015 150 

0.02378 0.000077 0.03690 0.02685 0.01005 1.0 0.020 150 

0.01695 0.000067 0.02250 0.01744 0.00506 1.0 0.010 200 

0.02375 0.000067 0.02780 0.02028 0.00752 1.0 0.015 200 

0.02743 0.000067 0.03266 0.02256 0.01010 1.0 0.020 200 

0.01003 0.002826 0.02072 0.01826 0.00247 0.5 0.010 100 

0.01608 0.001258 0.02427 0.02052 0.00375 0.5 0.015 100 

0.02050 0.001258 0.02765 0.02256 0.00509 0.5 0.020 100 

0.00391 0.005802 0.05706 0.05456 0.00250 0.5 0.010 150 

0.01030 0.000832 0.03835 0.03458 0.00377 0.5 0.015 150 

0.01657 0.000832 0.03154 0.02652 0.00503 0.5 0.020 150 

0.00775 0.002451 0.05810 0.05561 0.00248 0.5 0.010 200 

0.01634 0.000618 0.03284 0.02910 0.00374 0.5 0.015 200 

0.02255 0.000618 0.02595 0.02091 0.00504 0.5 0.020 200 
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TABLE E-3. SIMULATION RESULTS 

a= .05 za = 1.64485 z~ = 2.1 NSIM = 80,000 

2 3 4 5 6 7 8 

Observed Fraction .02 Quantile Average value Average value Average value 
where F exceeds of (Fu - F) of Fu of (Fu - F) of F T2 E(R) N 

Fu 

0.02727 0.008788 0.04911 0.03923 0.00987 2.0 0.010 100 

0.04287 0.008788 0.05857 0.04368 0.01489 2.0 0.015 100 

0.04808 0.000008 0.06760 0.04761 0.02000 2.0 0.020 100 

0.04364 0.005911 0.03940 0.02934 0.01006 2.0 0.010 150 

0.04784 0.000213 0.04852 0.03343 0.01509 2.0 0.015 150 

0.04134 0.000213 0.05713 0.03714 0.01999 2.0 0.020 150 

0.04749 0.000247 0.03436 0.02434 0.01002 2.0 0.010 200 

0.04449 0.000247 0.04315 0.02816 0.01499 2.0 0.015 200 

0.04025 0.000247 0.05127 0.03129 0.01998 2.0 0.020 200 

0.03726 0.007419 0.02921 0.02422 0.00499 1.0 0.010 100 

0.05272 -0.000186 0.03467 0.02710 0.00758 1.0 0.015 100 

0.05733 -0.000186 0.03987 0.02990 0.00997 1.0 0.020 100 

0.05150 -0.000065 0.02325 0.01827 0.00498 1.0 0.010 150 

0.05916 -0.000065 0.02839 0.02090 0.00749 1.0 0.015 150 

0.05541 -0.000065 0.03327 0.02329 0.00998 1.0 0.020 150 

0.05889 -0.000026 0.02012 0.01516 0.00496 1.0 0.010 200 

0.05476 -0.000026 0.02501 0.01753 0.00749 1.0 0.015 200 

0.04480 0.000657 0.02957 0.01964 0.00993 1.0 0.020 200 

0.01949 0.001100 0.01822 0.01576 0.00246 0.5 0.010 100 

0.03221 0.001100 0.02149 0.01771 0.00377 0.5 0.015 100 

0.04127 0.001100 0.02456 0.01957 0.00499 0.5 0.020 100 

0.02030 0.005758 0.04949 0.04698 0.00252 0.5 0.010 150 

0.03135 0.003631 0.03362 0.02987 0.00375 0.5 0.015 150 

0.03810 0.003631 0.02776 0.02272 0.00504 0.5 0.020 150 

0.02980 0.002732 0.05046 0.04793 0.00252 0.5 0.010 200 

0.03721 0.002732 0.02934 0.02555 0.00379 0.5 0.015 200 

0.03847 0.000583 0.02275 0.01772 0.00503 0.5 0.020 200 
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TABLE E-4. SIMULATION RESULTS 

a= .02 z" = 2.05375 z~ = 2.2 NSIM = 80,000 

2 3 4 5 6 7 8 

Observed Fraction .02 Quantile Average value Average value Average value 
where F exceeds of (Fu - F) of Fu of (F - Fu) of F T2 E(R) N 

Fu 

0.00686 0.005940 0.05936 0.04934 0.01001 2.0 0.010 100 

0.01370 0.005940 0.07008 0.05524 0.01483 2.0 0.015 100 

0.01896 0.000723 0.08022 0.06042 0.01980 2.0 0.020 100 

0.01436 0.004026 0.04722 0.03726 0.00996 2.0 0.010 150 

0.02211 -0.002641 0.05730 0.04239 0.01491 2.0 0.015 150 

0.02293 -0.002641 0.06682 0.04680 0.02002 2.0 0.020 150 

0.01973 0.000678 0.04084 0.03083 0.01001 2.0 0.010 200 

0.02324 -0.001953 0.05059 0.03561 0.01497 2.0 0.015 200 

0.02099 -0.001953 0.05952 0.03956 0.01995 2.0 0.020 200 

0.00593 0.001817 0.03560 0.03058 0.00503 1.0 0.010 100 

0.01137 0.001817 0.04190 0.03442 0.00748 1.0 0.015 100 

0.01680 0.001817 0.04776 0.03772 0.01004 1.0 0.020 100 

0.01149 0.001233 0.02810 0.02308 0.00502 1.0 0.010 150 

0.01875 0.001233 0.03405 0.02650 0.00755 1.0 0.015 150 

0.02374 -0.002279 0.03943 0.02932 0.01012 1.0 0.020 150 

0.01681 0.000935 0.02409 0.01910 0.00499 1.0 0.010 200 

0.02246 -0.000066 0.02961 0.02208 0.00754 1.0 0.015 200 

0.02436 -0.000066 0.03472 0.02468 0.01004 1.0 0.020 200 

0.00975 0.003950 0.02237 0.01991 0.00247 0.5 0.010 100 

0.01435 0.002983 0.02617 0.02245 0.00372 0.5 0.015 100 

0.01709 0.000852 0.02971 0.02470 0.00501 0.5 0.020 100 

0.00264 0.001982 0.06206 0.05954 0.00252 0.5 0.010 150 

0.00587 0.001982 0.04206 0.03832 0.00374 0.5 0.015 150 

0.00851 0.001982 0.03376 0.02875 0.00501 0.5 0.020 150 

0.00543 0.001480 0.06324 0.06069 0.00255 0.5 0.010 200 

0.00922 0.001480 0.03581 0.03201 0.00380 0.5 0.015 200 

0.01339 0.000454 0.02745 0.02241 0.00504 0.5 0.020 200 
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TABLE E-5. SIMULATION RESULTS 

a= .03 za = 1.8808 z~ = 2.2 NSIM = 80,000 

2 3 4 5 6 7 8 

Observed Fraction .02 Quantile Average value Average value Average value 
where F exceeds of (Fu - F) of Fu of (Fu - F) of F T2 E(R) N 

Fu 

0.00666 0.013124 0.05528 0.04528 0.01000 2.0 0.010 100 

0.01592 0.003124 0.06546 0.05052 0.01493 2.0 0.015 100 

0.02342 0.003124 0.07505 0.05509 0.01996 2.0 0.020 100 

0.01474 0.002143 0.04417 0.03426 0.00992 2.0 0.010 150 

0.02620 0.002143 0.05380 0.03896 0.01484 2.0 0.015 150 

0.03105 -0.000963 0.06288 0.04307 0.01982 2.0 0.020 150 

0.02307 0.001632 0.03824 0.02825 0.00999 2.0 0.010 200 

0.03139 -0.000522 0.04755 0.03267 0.01488 2.0 0.015 200 

0.03216 -0.000522 0.05614 0.03636 0.01978 2.0 0.020 200 

0.00555 0.000085 0.03304 0.02806 0.00498 1.0 0.010 100 

0.01156 0.000085 0.03899 0.03145 0.00754 1.0 0.015 100 

0.01634 0.000085 0.04458 0.03455 0.01003 1.0 0.020 100 

0.01101 0.000077 0.02617 0.02120 0.00498 1.0 0.010 f50 

0.01939 0.000077 0.03182 0.02429 0.00754 1.0 0.015 150 

0.02331 0.000077 0.03699 0.02697 0.01002 1.0 0.020 150 

0.01706 0.000067 0.02249 0.01744 0.00505 1.0 0.010 200 

0.02391 0.000067 0.02781 0.02030 0.00751 1.0 0.015 200 

0.02747 0.000067 0.03266 0.02258 0.01009 1.0 0.020 200 

0.01119 0.002826 0.02072 0.01821 0.00251 0.5 0.010 100 

0.01535 0.001258 0.02427 0.02054 0.00373 0.5 0.015 100 

0.02060 0.001258 0.02765 0.02258 0.00506 0.5 0.020 100 

0.00451 0.005802 0.05718 0.05467 0.00251 0.5 0.010 150 

0.01021 0.000832 0.03846 0.03472 0.00374 0.5 0.015 150 

0.01646 0.000832 0.03153 0.02649 0.00505 0.5 0.020 150 

0.00774 0.002451 0.05814 0.05563 0.00251 0.5 0.010 200 

0.01650 0.000618 0.03281 0.02907 0.00374 0.5 0.015 200 

0.02217 0.000618 0.02586 0.02083 0.00503 0.5 0.020 200 
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TABLE E-6. SIMULATION RESULTS 

a = .05 za = 1.64485 z~ = 2.2 NSIM = 80,000 

2 3 4 5 6 7 8 

Observed Fraction .02 Quantile Average value Average value Average value 
where F exceeds of (Fu - F) of Fu of (Fu - F) of F T2 E(R) N 

Fu 

0.02730 0.009282 0.04966 0.03977 0.00989 2.0 0.010 100 

0.04091 0.009282 0.05919 0.04435 0.01484 2.0 0.015 100 

0.04797 0.000621 0.06817 0.04816 0.02001 2.0 0.020 100 

0.04290 0.006242 0.03995 0.02995 0.01000 2.0 0.010 150 

0.04865 0.000631 0.04893 0.03392 0.01501 2.0 0.015 150 

0.04302 0.000631 0.05753 0.03770 0.01983 2.0 0.020 150 

0.04747 0.000565 0.03469 0.02471 0.00999 2.0 0.010 200 

0.04465 0.000565 0.04347 0.02847 0.01500 2.0 0.015 200 

0.03950 0.000565 0.05162 0.03166 0.01995 2.0 0.020 200 

0.03296 0.007722 0.02957 0.02456 0.00500 1.0 0.010 100 

0.03955 0.000202 0.03504 0.02761 0.00743 1.0 0.015 100 

0.04025 0.000202 0.04031 0.03033 0.00998 . 1.0 0.020 100 

0.04103 0.000197 0.02351 0.01849 0.00503 1.0 0.010 150 

0.04024 0.000197 0.02878 0.02123 0.00754 1.0 0.015 150 

0.03520 0.000197 0.03363 0.02356 0.01007 1.0 0.020 150 

0.04181 0.000171 0.02032 0.01530 0.00502 1.0 0.010 200 

0.03620 0.000171 0.02524 0.01774 0.00750 1.0 0.015 200 

0.03191 0.000886 0.02982 0.01988 0.00994 1.0 0.020 200 

0.02008 0.001293 0.01847 0.01597 0.00250 0.5 0.010 100 

0.03171 0.001293 0.02173 0.01800 0.00373 0.5 0.015 100 

0.04038 0.001293 0.02482 0.01985 0.00497 0.5 0.020 100 

0.02104 0.005930 0.05059 0.04808 0.00251 0.5 0.010 150 

0.03310 0.003822 0.03427 0.03051 0.00376 0.5 0.015 150 

0.03755 0.003822 0.02809 0.02305 0.00505 0.5 0.020 150 

0.02974 0.002876 0.05125 0.04874 0.00251 0.5 0.010 200 

0.03819 0.002876 0.02944 0.02565 0.00379 0.5 0.015 200 

0.03879 0.000735 0.02298 0.01792 0.00506 0.5 0.020 200 
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APPENDIX F. UPDATE OF THE INSPECTION INTERVAL 

Within a given level of confidence a, the relationship that governs the upper prediction limit 

of the percentage of the population in a failed state at a given point in time (after the new 

inspection interval is established), Fu, depends on the population size, N, the percentage of 

the population found failed at inspection, R, and the previous and new inspection intervals, T1 

and T2• In addition to determining the length of the inspection intervals, adjustment of the 

new interval is required periodically to maintain or to change a given upper prediction limit. 

When the procedure is instituted, the upper prediction limit and the initial inspection interval 

may be based on past practice or some other reasonable engineering estimate. Data collected 

during the initial inspection will determine the length of the new inspection interval, which 

will remain in effect until replaced by a regular or emergency update. Procedures to monitor 

the need to update are in effect at all times and are outlined below. 

The following is a possible suggested approach offered without further analysis to choose or 

update the length of the inspection interval or the equivalent inspection frequency. 

F.1 Regular Update 

A regular update is performed when two inspection intervals have been completed since (1) 

the original calculation of the inspection interval, (2) the last regular update, or (3) the last 

change in length of inspection interval resulting from an emergency update. 

At a regular update, the length of the inspection interval in months (T2) is recalculated in 

months (using the formula for Fu in Appendix C.1, Step 11) based on the data accumulated 

during the most recent inspection interval, i.e., the most recent T2 months. 

F.2 Emergency Update 

At each monthly inspection, the percentage of units found failed during the four most recent 

monthly inspections should be reviewed. An emergency update should be performed when 
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the percentage found failed for those four inspections R4 is greater than 

R4>R +Z ~ R,, . o v N 
4 

where, 

R4 is the percentage found failed in the last 4 months, 

N4=4N/T2 is the number of units inspected during the 4-month interval, 

R0 is the percentage R estimated at the last update and, 

Zr is a standard normal deviate to be chosen (see Notes l and 2 below) so that emergency 

updates caused by random variations are rare, 

The emergency update should consist of three steps: 

1. Recalculate the length of the required inspection interval based on data from the 

inspections performed during the latest T2/2 months. 

2. After 6 additional months, recalculate the length of the inspection interval based on 

the latest 12 months of data. 

3. Resume monitoring the criterion for an emergency update and await the next regular 

update. 

Note 1: The quantity, y, to use in determining the standard normal deviate, Z'I' is still to be 

determined (possibly with the use of simulations). Some "back of the envelope" 

analysis suggests that y.=:::l/( 4n) may be a good value to try in the simulations. 
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Note 2: An emergency update should not be performed when the procedure calls for 

lengthening the inspection interval. Further, all increases in inspection interval at 

regular updates should be for only half the indicated amount. 

Note 3. The formula for calculating the new inspection interval may be used in 

circumstances where, unlike those circumstances in Appendix C, different amounts 

of data, based on other than one observation for each unit in the population, is used 

to determine the percentage of units found failed at inspection. It can be based on 

QN observations where Q may be greater or less than a significant fraction of 1. 

If, during the inspection interval T 1, the data collected over a fraction of the time 

interval of QT1 is to be used, the total number of observations for failure is QN. In 

this case, N is replaced by QN in the calculation of SR. (Therefore, all calculations 

except Step 10 in Appendix C.1 remain unchanged.) The derivation of the formula 

for the case when Q is not 1 is changed only by the substitution of QN for N. 

Note that the simulations of Section 5 and the appendices all refer to the case Q=l. 

There is no reason to assume that they would change much. 
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APPENDIX G. COMMENTS 

This paper is based on the assumption that it is desired to ensure the actual percentage of 

units failed in service to be less than some amount (e.g., 5%) with some level of confidence 

(e.g., 98%) for each population at a given point in time in the future with the prescribed 

inspection schedule in effect. This requirement is less demanding than requiring the expected 

value of units failed in service to be less than 5% with 98% confidence for each population. 

Even less demanding is the requirement that the expected value of the units failed in service 

over the sum of a number of populations is to be less than 5% with 98% confidence and can 

be achieved in such a way that each population contributes in achieving the goal. The most 

demanding requirement is studied in this paper and achieves the safety which has a guarantee 

not just in general but under the particular circumstances. 

Finally, recall that the formulas are derived for a specific idealized model. A most important 

assumption from a practical point of view is the constant failure rate. This paper does not 

deal with the consequences of failure rates that vary with time and whether or not repair 

restores failure rates to their initial values. Even to demarcate those cases where the 

predictions are conservative from those where they are not would be difficult. All that can be 

done here is to warn that predi~tions using these formulas may be inaccurate to an extent 

determined by the variability of the failure rates. 
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