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In June 1991, the Track Loading Vehicle (TLV) was used
to conduct a series of tests on the Big Creek Through
Truss bridge on Norfolk Southern Railroad in Tennessee.
The tests were conducted to determine the utility of the
TLV as a bridge testing machine. The bridge response to
both static and dynamic loads appiied by the TLV bogie
was measured.

The results of these tests indicate that the TLV can be
used as a bridge testing machine in the study of bridge
member forces under heavy axle loads. It provides an
alternative option to experimentally determine force
distribution among bridge members. The vibration testing
of a bridge using the TLV gives an additional aspect to
bridge testing under controlled loads. Since deterioration
of a structure would manifest itself as discrepancies
between intermittently measured values of frequencies or
damping, a periodic determination of them using the TLV
provides a means to monitor a bridge member for damage
or structural deterioration. The TLV is capable of
conducting a wider range of static and dynamic tests on
short span bridges which can be straddled by the TLV
trucks and loaded solely by the centrally located load
bogie.

The results indicate that the TLV provides a means to
synthesize the effect of various loads on a bridge, and to
determine the load distribution among bridge members.
The measured axial forces were found to differ from those
computed using analytical methods -- measured forces
were often lower. This difference was attributable to truss
connection fixities.

Results from the TLV dynamic tests simulating cyclic
loading induced by passage of vehicles on the bridge

indicated a general increase in axial forces over static
forces in all bridge members. The resulting impact factor,
as a percentage increase of axial force in a member, was
determined to be least in end posts and most in diagonals.
The maximum impact percentages in bridge members were
found to be lower than 35 percent. It was found that a
large impact occurred only in a member with low static
axial force.

Vibration testing of the bridge using the TLV proved to be
useful in identifying natural frequencies and to measure
damping. Resonance curves could be developed by
plotting the excitation frequency versus peak amplitude of
member axial force. The frequencies corresponding to
dominant peaks in these curves were found to be the
natural frequencies of bridge members. The frequencies
thus determined were 3, 7 and 13 Hz for the first three
natural modes of member vibrations.

The member axial force magnification at natural
frequencies was used to determine member modal
dampings. The damping values were found to be
inversely proportional to relative amplitude of member
vibrations.

Copies of the AAR Report: "BRIDGE TESTS BY USING THE TRACK
LOADING VEHICLE" are available from the Document Distribution
Center, Chicago Technical Center, 3140 South Federal Street,
Chicago, Illinois 60616. The AAR report number is R-837; the price
is $10.00 for member raiiroads and $100.00 for non-members.
Hllinois residents please add 8.75 % sales tax. The cost includes
surface mail postage if mailed within North America. There will be

a surcharge for any overseas mail. Checks should be made payable
to the Association of American Railroads. This report was issued in
December 1993. A report list is available upon request.
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other kind of damage resulting from the use or application of this
report or its contents. Any attempt to apply the information
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EXECUTIVE SUMMARY

In June 1991, the TLV was used to conduct a series of tests on
the Big Creek Through Truss Bridge on Norfolk Southern Railroad in
Tennessee. The test program was undertaken to determine the
utility of the TLV as a bridge testing machine. The TLV's
capabilities to apply controlled static and dynamic loads were used
to determine force distribution among the bridge members and
predict an accurate dynamic response of the bridge structure. This
was the first time that a device like the TLV was ever used for a
bridge test.

The tests were conducted under both stationary and moving TLV
conditions. The bridge response was determined by measuring member
strains using strain gages. The strains were converted to the
corresponding member axial forces to investigate the bridge
response to controlled loads. Under the stationary TLV condition,
the bridge response to both static and dynamic loads applied at
various panel and in-between panel points on the bridge was
measured. In these tests, the dynamic characteristics of the
bridge were investigated by exciting the structure at frequencies
up to 15 Hertz. The in-motion tests, on the other hand, were
conducted to determine the effect of test speed on the bridge
member forces. These tests were first run at 10 and 20 mph under
a constant bogie-wheelset load of 33 tons. The tests were then
repeated under a constant bogie-wheelset load of 39 tons.

The stationary static test results were used to determine the

experimental axial force influence lines for various bridge members
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as the TLV load configuration travelled across the structure. It
was found that the TLV influence lines could be used to synthesize
axial forces in bridge members due to any moving load on the
bridge. These influence lines thus could be used to determine the
actual load distributiow among various bridge members. The static
test results also showed that experimental axial forces in members
could significantly differ from the corresponding analytically
determined forces due to truss connection fixities and also due to
the specific location of a strain gage on a member.

Dynamic simulation of bridge stresses, arising from the
passage of freight car axles, was done by conducting the TLV impact
tests at various locations on the bridge. The applied bogie-
wheelset load was sinusoidally varied in these tests. For each
load application on the bridge, the axial forces in various bridge
members were determined. The dynamic amplification analysis was
then done in terms of variation of impact percentages or forces in
various bridge members. The results showed that the least impact
percentage occurred in end posts and the most in diagonals. The
maximum impact percentages in the bridge members were found to be
lower than 35 percent. It was found that a large impact percentage
occurred only when the static axial force in a member was small to
start with.

The axial forces measured during the TLV resonance tests were
used to develop resonance curves for various bridge members. These
curves were obtained by plotting excitation frequencies against the

corresponding peak axial forces in the members. The dominant peaks
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in these curves correspond to the natural vibration modes of the
bridge members. It was determined that bridge resonance occurred
at fregquencies of 3, 7 and 13 Hertz, corresponding to the first
three vertical vibration modes. Due to the added mass of the TLV
consist on bridge, it was estimated that these frequencies would be
somewhat lower than the actual natural frequencies of vibration of
the bridge structure. It was determined that a member resonance
curve remained unaffected by the added mass of the TLV consist on
the bridge. This isolation of member vibrations from the effect of
added mass was found to provide a useful tool in ascertaining the
vibrational characteristics of a truss bridge structure using the
TLV.

The modal damping in a bridge member was determined using the
dominant peak magnification in the member axial force resonance
curve. As expected for framed steel structures, the bridge member
dampings as a percentage of the critical damping, in the first
natural mode, were found to vary from about 0.07 for end post and
bottom chord to 6.49 for the hanger. The percentage of a member
modal damping was found to be inversely proportional to the
relative amplitude of the ensuing vibration.

It was determined that there were limitations in the use of
the TLV for the long-span Big Creek Bridge tests. Some of these
limitations were: a) the TLV consist did not represent a real train
loading on the bridge; b) the unloading of the TLV trucks, equal in
magnitude to the bogie-wheelset applied load, remained a permanent

part of the applied load to the bridge, and could not be isolated



from the bogie-wheelset loads; ¢) the determined impact percentages
might be high because of lower static stresses due to the lighter
weight of the TLV consist; and d) the trial nature and limited
scope of these TLV tests.

Finally and in spite of the above mentioned limitations, the
results indicate that the TLV can be used as a bridge testing
machine in the study of bridge member relative forces under heavy
axle loads. The test vehicle provides a strong alternative option
to experimentally determine the actual load distribution among
various bridge members. The vibration testing of a bridge by using
the TLV gives an additional aspect to bridge testing under
controlled loads. The TLV can provide a means to monitor a bridge
member for damage or structural deterioration since such
deterioration could be detected as discrepancies Dbetween
periodically measured values of frequencies or damping. Lastly,
the TLV 1is capable of conducting a wider range of static and
dynamic tests on short span bridges which can be straddled by the

TLV trucks and loaded solely by the centrally located load bogie.
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1.0 INTRODUCTION

The dynamics of railroad bridges excited by the action of
moving trains is of great interest. There are no known cases of
railroad bridge failure due to the traffic induced vibrations.
There, however, are numerous examples of fatigue failure of bridge
members due to the cyclic loading induced by the passage of
vehicles. Recent developments in structural analysis techniques
have made it possible to calculate the dynamic response of a bridge
coupled to a train loading. The correlations of such analytical
results with full scale measurements have, however, been very
limited. Also, the response to the moving traffic has been
measured for different types of bridges, but the studies of the
natural frequency and damping behavior of the railway bridges and
their members have been lagging.

A bridge structure is subjected to a series of load pulses as
each axle of a train passes over it. Excitation frequencies
resulting from these pulses depend on the wheel base, the truck
spacing and the car length; and increase with speed from zero to
about 15 Hz at 60 mph. Discrete track irregularities and wheel
tread surface anom;lies are some other parameters which can induce
cyclic excitations&to a bridge structure. This type of cyclic
loading can excite a bridge resonance when the driving frequency
coincides with one of the bridge natural frequencies, producing
larger displacements and forces than those produced under static
loads.

In addition to the great interest in the dynamics of railrocad



bridges as mentioned above, an ascertainment of the remaining
fatigue life and the requirement of increased Cooper E-Ratings with
modern traffic of the existing railroad bridges are also widely
recognized. The continuing trend toward heavier loads angﬁ
increased traffic could result in an accelerated reduction in the
life expectancy of the existing bridges.

Bridges represent a sizable capital outlay, and require a
regular inspection to preserve the route integrity and safety. The
costs are continually increasing for bridge inspection and
maintenance. Because funds are limited for new bridge construction
and for repair, rehabilitation, and strengthening of existing
bridges, a careful evaluation needs to be made of all available
research and technology to ensure optimum use of the resources.

In a needed effort to bring about a systems view, several
research projects, under the auspices of the Association of
American Railroads (AAR)'s new Vehicle Track Systems Program, were
initiated in 1985. These projects are intended to analyze vehicle
and track interaction problems to reduce track and equipment costs,
and to improve the safety of train operations. The gquantification
of the lateral strength characteristics of in-place railroad track
and the determination of the load environment under various types
of operating conditions are among the major elements of this
research program.

The Track Leoading Vehicle (TLV) was built by the AAR in 1989
to be used as a major research tool to measure the strength of in-

place track, to further enhance the understanding of derailments,



and to help in the determination of the strength of railway track
structures and bridges under heavy axle loads. The potential
utilization of the results obtained from the TLV is to develop
better track inspection techniques, to build vehicles which cause
less damage to the track, and to identify track locations requiring
immediate maintenance.

As evident, a complete survey of structural strength of
bridges, under the modern train traffic, 1is insurmountable in
regards to the vast number of different types of railroad bridges.
Notwithstanding this task, a bridge research program was initiated
in 1987 under the joint auspices of the AAR and the National
Science Foundation (NSF) [1]'. The program is intended for the
study of stresses and impacts to enhance the understanding and
estimation of dynamic response and fatigue life of the bridges and
their members. The TLV participation in this program was jointly
funded by the Federal Railroad Administration (FRA) and the AAR.
The FRA support in the testing of the TLV falls under the auspices
of the Track Train Interaction Derailment Analysis Project under
Task Order 6 of Contract DTFR53-86-C-00011. The various elements
of this Task Order are:

Sub-task 6a) Testing and Validation of Current Rail
Restraint Criteria.

Sub-task 6b) Track Lateral Strength Tests.

Sub-task 6c) Demonstration of the TLV as a Bridge Test
Loading Machine.

Sub-task 6d) Rail Uplift Tests for Rail Longitudinal Force
Measurement.

Numbers in brackets refer to References listed in Section
7.0



This report presents the results from tests conducted under
Sub-task 6c of the Task Order 6.

A number of typical bridges were selected for study under the
AAR and NSF Bridge Research Project. These bridges were
instrumented to obtain static and dynamic load spectra under unit-
trains and intermodal traffic. Some of the results from this on
going project are given in References 2, 3 and 4.

The selectivity in only testing the typical bridges also
imposes limitations on such a test program. No matter how
detailed, the results apply directly only to the bridges tested,
and it is necessary to find some pattern underlying the results.
The results from typical bridge tests would, therefore, require
inferences to judge the behavior of other and non-typical bridges.
A theoretical guide is helpful in achieving a similar and parallel
end, and it is in this direction that the concept of the TLV load
configuration influence 1line 1is proposed to be used. In this
regard, a preference therefore, could be in testing of more bridges
under the TLV's controlled static and dynamic loads, and in finding
methods to apply these controlled test results to determine the
structural strength of bridges.

Since the TLV provided capabilities in applying controlled
static and dynamic loads through the bogie-wheelset, and the fact
that the bridge-test problem is amenable to an approach by the
influence line theory, it was decided to ascertain the potential of
the TLV to test a railway bridge structural response. It was

important for this study that the TLV bridge experiments be




conducted to evaluate the bridge structure characteristics as well
as those of the loads rolling over the bridge. It was also equally
important that methods be found to realistically apply these
results to those under real train loads. It was the assessment of
applicability of the TLV as a bridge loading device which made the

basis of this report.
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2.0 TRACK LOADING VEHICLE DESCRIPTION

The TLV 1is designed to simulate controlled derailment
scenarios and provide controlled load environments to quantify the
dynamic response characteristics of track [5,6,7]. The vehicle
applies computer controlled loads to the track and measures the
track response while either stationary or moving.

The design of the TLV is based on an extensive 1list of
functional reguirements selected to enhance and further the
understanding of the phenomena that take place at the wheel/rail
interface. The vehicle was designed to perform extensive
measurement and data collection tasks over a diverse range of
applications. Typical applications include tests of vertical and
lateral track strength, track panel shift, gage widening, flange
climb derailments, wheel/rail force/creepage relationships,
wheel/rail wear, and rail corrugations.

The TLV consists of a loading platform, adapted from an SD45X
locomotive underframe, carried by two-axle locomotive trucks. A
fifth wheelset is mounted in a load bogie underneath the center of
the vehicle. A new superstructure, providing the required strength
and stiffness, was constructed over the underframe. The super-
structure is a welded structure which is mainly constructed with
various structural frames and I-beams welded to channel sections
extending the length of the vehicle. A special load frame was
constructed at the center of the vehicle and is used for supporting
the vertical actuators. For stiffness, the sides and the top of

the vehicle are completely covered with 1/4 inch sheet plates.



Exhibit 1 shows a photo of the TLV.

The load bogie is attached to the car frame to apply loads
using the vertical actuators suspended from the car body and to
measure responses. It is equipped with two servovalve controlled
hydraulic actuators and associated load application mechanisms, a
stub axle wheelset, a loaded gage measurement system, and other
support equipment. A close-up photo in Exhibit 2 shows the stub
axles and bearing arrangements, and the load application linkage
mechanisms utilized in the gage widening load bogie.

Planned test scenarios necessitate the use of an active
hydraulic control system. The hydraulic system consists of a
hydraulic power supply, two 55-kip vertical, two 39-kip lateral,
and two 39-kip gage widening actuators, servovalves, hydraulic
service manifolds, and electronic control components. A six
channel customized electro-hydraulic control system, MTS 458.10
series, is used to control the servovalves, hydraulic pressure and
interlocks, and to accommodate computerized control sequences. All
actuator channels are equipped with both force and stroke feedback.

A hydraulic pump with maximum flow capacity of 70 GPM is used
to supply oil at 3,000 psi to the actuators. Electrical power for
the vehicle is obtained from an on-board 250 KW diesel generator.
This power supply provides energy for the hydraulic pump and for
auxiliary uses such as lighting, heating, power tools, etc.

The TLV is operated from the AAR-100 Research Car which is
equipped with electro-~hydraulic control and data acquisition

systems. The digital data collection software is configured to




Exhibit 1.

L.

A Photo of the Track Loading Vehicle with the Load Bogie Underneath the
Center of the Vehicle.



Exhibit 2.

Track Loading Vehicle Load Bogie with Split

Axle and Gage Widening Load Application
Mechanisms.
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perform data collection, transfer and storage tasks. Comprehensive
control software is used to provide supervisory control over the
hydraulic system. Exhibit 3 shows a photo of the TLV computer
system which resides inside the AAR-100 Research Car.

Computer controlled vertical and gage spreading loads are
applied to the track structure by hydraulic actuators through the
load bogie and split-axle wheelset. The loaded and unloaded track
gage as well as the gage widening loads are measured. These
measurements are used to determine the gage widening resistance of
track. During operation, the TLV control system compensates for
small irregularities in the track vertical and lateral alignments.
Active intervention by the computer is also required during the
transition from tangent to curves. Various fail safe mechanisms
have been built into the TLV system in case of hydraulic power or

computer failure.
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3.0 OBJECTIVE AND METHODOLOGY - ; ) ’ S,

The TLV bridge tests were conducted on the Big Creek Through
Truss Bridge of Norfolk Southern Railroad in Tennessee. These
tests were an addition to the ongoing tests on this bridge under
the AAR's bridge test program. The primary objective of these
tests was to assess the use of the TLV as a bridge testing machine.
This report, therefore, is a companion to the report "gtatic and
Dynamic Testing of a Through-Truss Bridge" ([8].

The tests using the TLV were devised to gather as complete a
bridge response as possible. As such, these tests consisted of the
evaluation of structural characteristics of the bridge, and also
generation of characteristics of loads rolling over the bridge.

Test data were thus collected for frequency sweep and discrete
frequency tests up to 15 Hz for the fundamental bridge structure
characteristics. Characteristics of the bridge and its members, in
terms of the resonant frequencies and damping within this frequency
range, were thus determined.

The characteristics of 1loads rolling over the bridge were
ascertained by collecting data for stationary static tests,
stationary steady-state dynamic tests, moving tests and the moving
bounce test. The stationary static tests were conducted to
determine influence lines for assessing the effect of variation in
the magnitude of loads and also composition of the trains. The
stationary steady-state dynamic tests giving impact variation and
the moving tests were conducted to determine the effect of speed on

the magnitude of moving loads in terms of impact percentages. The
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moving bounce test was conducted to simulate vehicle dynamics on
the bridge.

These Big Creek Bridge tests using the TLV were the first such
tests in an attempt to investigate usefulness of the TLV as a tool
in bridge testing. It was expected that test results would provide
enough information to synthesize the effect of any train

composition on the bridge.
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4.0 TEST PROGRAM

4.1 TEST CONSIST

The TLV test consist comprised of a 4-axle locomotive, AAR-100
Research Car and the TLV, as shown in Exhibit 4. The consist
weights and axle spacings are also shown in this exhibit.

Computer controlled vertical wheel loads were applied to rails
on the bridge structure by hydraulic actuators through bogie frame
and the split-axle wheelset. The response of critical bridge
members, in terms of strains, was measured by the two existing
wayside data acquisition systems. The measurement of applied wheel
loads was made by the onboard data collection system. The

measurements were digitized at 256 samples per second.

4.2 TEST BRIDGE

The test bridge was a 156 foot, 3 inch long through-truss
located on the Norfelk Southern line between Knoxville, TN, and
Asheville, NC. The bridge was built in 1919. The open deck on the
bridge was supported on floor beams at 26 feet and 1/2 inch
centers, and stringers on 6 feet and 6 inch centers. The deck had
10" x 10" wood ties, 10 feet long, spaced on 18 inch centers. Each
truss was composed of six panels. The trusses were spaced 16 feet
8 inch on centers. The bridge orientation was east-west. A 5-
degree left hand curve on west approach to the bridge extended up
to the first interior floor beam on west end of the bridge.
Correspondingly, a speed restriction of 25 mph existed on this

bridge. The bridge had a single track with 132RE jointed rails.
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TEST CONSIST USING TLV

June 1891

TRACK LOADING VEHICLE AAR-100 LOCOMOTIVE

QO O 00 0OC OO0 OO0 QQ
1 ! ! | l ] L1 ] | I |
b | P b I .
76" 9 18'10° 18'10° 9 78" 9'3" g% 50'10°  8'6" 9'3' 8'4'9'0.25° 24'10.25' 9'0.25°

Wt of the TLV = 270,000 b
Wt of the AAR-100 car = 138,000 b
Wt of the locomotive = 242.000b

Exhibit 4. The TLV Test Consist on Bridge, and Consist
Weights and Distances Between Axles [8].
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A railroad map of the area and a photograph of the bridge are
shown in Exhibit 5. A schematic of the bridge is shown in Exhibit
6. Details of cross-sections and corresponding section properties

of various bridge members are given in Ref. 8.

4.3 INSTRUMENTATION

As noted before, the bridge response in terms of strains of
various critical members was measured by wayside data acquisition
systems. This system consisted of two personal computers capable
of collecting 32 channels of information on each system. A total
of 64 channels of data could thus be collected at any one time.

In accordance with implementation plan of the AAR's Bridge
Research Program, a number of critical truss members and floor
system members had existing instrumentation to measure strains.
The truss members, according to this plan, were instrumented to
determine the mean axial stresses and extent of bending arising due
to fixity in the connections. Similarly, the stringers and floor
beams were instrumented to determine fixity of stringer connections
to the floor beams, and the fixity of floor beam connections to
trusses. Diagonals and end posts, bottom and top chords, and
hangers of only the west half of both the north and south trusses
were instrumented. This arrangement was dictated partly by the dry
access underneath west side of the bridge, and the basic assumption
that response of east half of the bridge would be similar due to
symmetry.

A complete listing of the instrumentation is given as an
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appendix in Ref. 8. Included in this appendix are the listing and
locations of data channels, table of scale factors, sectional
properties of truss and floor system members, and drawings and
circuit diagrams for the instrumentation.

In brief, the instrumentation as shown in Exhibit 7, included
channels for the rail vertical and lateral wheel loads; stringer
and floor beam end moments; top chord axial force and in-plane
bending; bottom chord axial force; end post axial force; hanger for
axial force and in-and-out of plane bending; diagonal for axial
force and in-and-out of plane bending; top bracing for axial forces

and moments; and bottom brécing for axial forces.

4.4 THE TLV TESTS

A variety of stationary, moving and forced vibration tests
were made on the Big Creek Bridge. The stationary test condition
included separate applications of static and steady-state dynamic
vertical wheel loads; while moving condition required the
application of various vertical wheel 1loads when moving at
different speeds. In forced vibration tests, steady-state response
at a wide spectrum of loading frequencies was measured to determine
natural frequencies and damping of the bridge structure as a whole
and its members. Tests were also made to slowly sweep the
frequency range of first three modes of the bridge vibrations.

A detailed test 1og‘of the TLV tests, describing the loading
condition for various tests, is given as an appendix in Ref. 8, and

is not reproduced in this report. Each test procedure is, however,
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described 1in the following sections. It should, however, be
mentioned that gages were zeroed before each test to remove any

thermal effect.

4.4.1 Stationary Tests

Stationary TLV tests were performed under two 1loading
conditions, static and the steady-state dynamic. These tests were
conducted under heavy axle loads applied by the bogie-wheelset.
The loads were applied to rails at the bridge panel points and
center of panel lengths, in succession, from east to the west end
of the bridge. The load application points pertained to various
positions of.the TLV bogie-wheelset along span of the bridge. The
center of panel length locations were included to give a sufficient

number of load positions for plotting of the influence lines.

4.4.1.1 The TLV Influence Line Tests

These tests were made to determine strains in the bridge
members due to static wheel loads, as the bogie-wheelset was moved
across the bridge. Both 33 and 39-ton axle loads applied by the
bogie-wheelset were used in these tests. Information about static
stresses in the bridge members as well as a comparison with the
classical analytical results were gathered. Moreover, these
results were used to generate experimental influence lines of axial
force in the bridge members.

A word of caution is needed regarding application of the

controlled wheel loads in these tests. The test consist comprised
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of a locomotive and the AAR-100 instrumentation car followed by the
TLV. As such, bridge loading included not only the bogie-wheelset
applied loads but also’consist weight on the bridge. Also, a
definite unloading of the TLV truck wheels occurred when bogie-
wheelset was applying loads to the bridge. As explained in the
following, the effect of the TLV consist weight was eliminated, and
unloading of the TLV truck wheels was accounted for when computing
the influence line or factor due to the TLV load configuration. A
uniform unloading of the TLV truck wheels was assumed. According to
this assumption, an unloading equal in magnitude to applied load by
the bogie-wheelset was equally divided among the TLV truck wheels.

To eliminate effect of the TLV consist weight, static tests
for each bogie position on the bridge were conducted in two modes:
1) no load applied by bogie-wheelset, corresponding TLV wheel load
= (TLV weight)/8 and 2) a specified load, P, applied by the bogie-
wheelset, corresponding TLV wheel load = (TLV weight - P)/8. As
appafent, a subtraction of bridge member responses in Mode 1 from
the corresponding responses in Mode 2 eliminated effects from the
consist weight while retaining effects from the TLV load
configuration.

Henceforth, the TLV load configuration, Exhibit 8, for each
truss, is defined to consist of the weightless TLV with a series of
wheel loads in the same positions as the TLV wheelsets including
the bogie-wheelset. Also, the bogie-wheelset wheel load, in the TLV
load configuration, will be equal and opposite to sum of the

remaining four wheel loads, each of equal magnitude. The TLV load
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configuration for influence line is assumed to have a wheel load of

unity at the bogie-wheelset.

4.4.1.2 The TLV Impact Tests

American Railway Engineering Association (AREA) Manual for
Railway Engineering stipulates accounting of impact load on bridges
as a percentage of the live load. Furthermore, this impact load
is directed in these AREA specifications to be applied vertically
at top of each rail on the bridge. It is left to the designer to
determine maximum effect in a bridge member due to the impact load.
The impact load for bridge design therefore is treated as a rolling
load which arises from the dynamics of railway cars on the bridge.

The TLV impact tests, to include vehicle dynamic effect, were
an extension to the static influence line tests described above.
In these tests, the bogie-wheelset was used to apply dynamic
vertical wheel 1loads to bridge while the test consist was
stationary corresponding to a loading location (panel point or the
center of panel). It should be ﬁoted that mass of that portion of
the TLV consist which was on bridge, in a test, would couple with
the ensuing bridge vibration.

Using a typical wheel base of 70 inches for 100-ton cars, the
axle load frequency, at a point on the bridge, ranges from 2.5 Hz
to 6.3 Hz for train speeds from 10 to 25 mph. Similarly, using a
typical truck spacing of 40 feet, frequency range for the above
speeds is from 0.37 to 0.92 Hz. Resulting vehicle dynamic effects

therefore, must ensue with respect to these excitation frequencies
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and the particular vehicle type. The natural frequencies of
vibration of heavy freight cars, empty and loaded, are in a range
from about 2.5 to 6.0 Hz for pitch and bounce modes, from about 0.6
to 2.0 Hz for upper and lower roll modes, and from about 3.5 to 5.0
Hz for the twist mode.

It is, in general, expected that the track on a bridge is well
‘maintained. Also, CWR (continuously welded rail) is generally used
on bridges to reduce the vehicle excitations due to joints. In
spite of all of this, a train may enter the bridge.-with initial
conditions of bounce and pitch, rock-and-roll, and the sway and yaw
motions. Due to the trial nature and limited scope of the TLV
bridge tests, only a median frequency of 4 Hz, instead of the widé
frequency spectrum noted above, was used. The TLV impact tests at
this frequency were then conducted to simulate the effect of
vehicle dynamics on the bridge due to heavy freight cars.

Correspondingly, mean wheel loads of 33 and 39 kips by the
bogie-wheelset were sinusoidally applied at 4 Hz at different
locations on the bridge. A dynémic amplitude of 20 percent of the
respective mean wheel load was used to generate the sinusoidal load
pulses. Though the TLV consist could not generate vibrations
comparable to those from a real train lcad, a relative
understanding of the magnification of stresses in bridge members,
in terms of dynamic load factors from these tests, was to be

gathered for each of the load positions.
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4.4.2 Forced Vibration Tests

Dynamic tests of full-scale structures are generally conducted
to determine such basic structural dynamic properties as natural
frequencies, mode shapes and the amount of energy dissipation or
damping associated with each mode. Such dynamic characteristics of
the Big Creek Bridge structure were determined by conducting forced
vibration tests in the frequency range up to 15 Hz. The types of
forced vibration tests conducted were: 1) discrete frequency tests
(resonance tests) using the steady-state sinusoidal excitation,

and, 2) the wvariable frequency sinusoidal excitation tests

(frequency sweep tests).

" 4.4.2.1 Resonance Tests

The steady-state resonance tests of the Big Creek Bridge were
conducted by synchronized application of sinusoidally varying
vertical wheel loads using the bogie-wheelset. Static vertical
wheel loads of 15 kips applied at top of the L3L3 central floor
beam, were sinusoidally varied at +/-5 Kkips at each discrete
frequency of interest. Unlike the one time application of 33 or
39-kip wheel loads at a bridge location in the TLV impact tests,
lower wheel loads of 15 kips at a spectrum of applied frequencies
in these tests were used to maintain the wheel load pulses for a
longer time.

The discrete frequency used in these tests began at 0.5 Hz,
and was increased in steps of 0.5 Hz to 6 Hz. From 6 Hz to 15 Hz,

the discrete frequency was varied in steps of 1 Hz. A preliminary
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finite element analysis had indicated that tests up to 15 Hz will

include at least first three modes of the bridge vibrations.

4.4.2.2 Frequency Sweep Tests

These tests wer; also conducted at the same L3L3 floor beamn
position as above tests, but by continuously varying the excitation
frequency of sinusoidally varying loads of 15+/-5 kips applied by
the bogie-wheelset. So that an appreciable amplitude of vibration
was built up at each natural frequency of bridge vibrations, these
tests were conducted in three frequency sweeps: 0 to 5 Hz, 5 to 10
Hz and 10 to 15 Hz. In each of the above sweeps, frequency was
raised from lowest to the highest value in 250 seconds, resulting
in a sweep rate of 0.02 Hz per second. It was determined that this
sweep rate was small enough for a resonant peak built up to large
enough magnitude.

Accelerometers on top of each interior floor beam, near its
connection with the north truss, were used to measure the aggregate

response of north truss. Bridge member responses were not measured

in these tests.

4.4.3 Moving Tests

During moving tests, the TLV consist was moved across the
bridge from east to west at speeds of 10 and 20 mph. The test
procedure consisted of applying bogie vertical wheel loads of 33
and 39 kips at each speed. The effect of speed on amplification of

member stresses was determined in these tests.
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The second type of load application by the bogie-wheelset
included an axle bounce simulation as it moved across the bridge.
As noted previously in the section for TLV impact tests, bounce
frequency varies from about 6.0 Hz for the empty cars to about 2.5
Hz for loaded cars. Though the TLV was capable of sinusoidally
applying wheel loads between 2.5 and 6.0 Hz, it was decided for
safety against bogie-wheelset derailment on the bridge to apply
loads at 1 Hz while moving at 2 mph. The mean vertical bogie wheel

loads of 33 kips were sinusoidally varied by +/~7 kips in the test.
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5.0 TEST DATA ANALYSIS

The axial force response of some selected Big Creek Bridge
members is presented in this demonstration study. The analysis was
carried out for hanger L1Ul, diagonal L2Ul, end post LOUl, top
chord Ul1lU2, and the bottom chords LOL1 and L1L2. Results of each

test are given in the following subsections.

5.1 STATIONARY TEST RESULTS

It was expected that a comparison of theoretically calculated
primary member stresses with those from the TLV tests would clarify
extent of the secondary stresses due to rigid joint connections.
Also, it was expected that an experimental static influence line
for any selected bridge member would be obtained using the TLV load
configuration. This would then lead to an assessment of the actual
force distribution among various members. Moreover, dynamic
augments would be determined from magnification of member stresses

in the TLV impact tests.

5.1.1 The TLV Influence Line Results

First of all, the theoretical (primary) and experimental axial
force responses of various bridge members to the full TLV test
consist loading are compared. As an aid to determining the
theoretical responses of bridge members, theoretical influence
lines for the critical members are given in Exhibits 9 and 10.

Typical strain histories in hanger L1Ul, when bogie-wheelset

loads of 0, 33 and 39 tons were applied at floor beam L1L1 on west
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half of the bridge, are given in Exhibits 11, 12 and 13,
respectively. The corresponding hanger axial strain response was
obtained by taking the average of strain readings from Channels 13,
14, 15 and 16. These axial strain responses are shown, in
exhibits, as the "ave. of channels" histories.

The axial forces in north truss members with the bogie-
. wheelset midway on west bridge panel L2L3 are shown in Exhibits 14,
15 and 16. Exhibit 14 shows the axial forces resulting from Mode
1 loading when bogie-wheelset did not apply any vertical load to
the bridge. Exhibits 15 and 16 give results for Mode 2 1loading
when the bogie-wheelset first applied 33 and then 39 tons of
vertical loads, respectively. A complete set of north truss axial
force exhibits for Mode 2 1loading under 39 tons 1is given in
Appendix A.

The position of bogie-wheelset in these exhibits is marked
"bogie" on the bridge sketch; and is also described in terms of
distance with respect to the east panel point L0O. Test consist
wheel loads, in kips, are noted in the sketch. Axial forces in the
truss members are compressive if negative and tensile if positive.
Also the axial forces in parentheses are from the tests. The east
and west truss reactions, and the floor beam reactions, given in
the exhibits, are only from the tﬁeoretical analysis of truss.
Positions of the TLV, AAR-100 instrumentation car, and the
locomotive, only within the bridge confines, are drawn and labelled
in the exhibits.

An examination of bridge response in the static tests showed
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that axial forces in top chord and web members such as hangers,
diagonals, and the end posts, were quite close to each other
between test and the theory. In the bottom chord however, the
axial forces were substantially lower than those given by the
theory. It appeared that such a difference in the test results
could occur due to two basic reasons: 1) close proximity of strain
gages and higher overall bending at lower chord joints, and 2) out
of plane bending, and sharing of forces at joints due to framing
action of the floor system and bottom bracing with the bottom
chord. A case of such a drastic difference between theory and the
test results, in bottom chord, is shown in Exhibit 17 for one of
the static load cases on south truss. It is suggested that bottom
chord should be instrumented near the center of its panel length
for axial force tests.

Furthermore, the vertical member L2U2 connecting at right
angles to top chord could, in theory, not sustain any axial force.
Test results in Exhibits 14 to 16, however, showed that this member
shared in supporting the consist load on bridge. It was believed
that the discrepancies between theoretical and the test results
arose due to semi-rigidity of the truss connections. The
connections, generally analyzed to allow free rotation, caused a
redistribution of applied loads through the structure. Secondly,
misalignment of members in comparison to the design drawings would
also lead to some differences in theoretical and the test results.

Theoretical and test axial forces from application of the TLV

load configuration are shown in Exhibits 18 and 19. The results
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Theoretical and Experimental Axial Forces in South Truss Members due to
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Tons Applied on East Bridge Panel L1L2.
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the Stationary TLV Load Configuration with Bogie-Wheelset Static Load of
33 Tons Applied on West Floor Beam L2L2.
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in Exhibit 18 correspond to the bogie load per truss of 33 kips and
in Exhibit 19 to 39 kips. Explanatory notes, given in conjunction
with previous exhibits for the full consist load, also apply to
these exhibits. As evident in these exhibits, isolation of the
bogie~wheelset applied loads from consist weights results in a net
upward loading on the TLV truck wheels. This net upward loading on
each of the TLV truck wheels is equal to one-fourth of the wheel
load applied by the bogie-wheelset. Again, the discrepancy between
theoretical and the experimental axial forces in these exhibits is
attributable to rigid connections in the truss and a possible
unequal unloading of the TLV trucks.

As evident from Exhibits 18 and 19, accompanied unloading at
the TLV trucks imposes certain physical limits on bridge tests by
using the TLV. If unloading at the TLV trucks is not to affect
results, then a bridge of span length leés than the distance
between inside wheels of the TLV trucks can only be tested for
stresses/defects. For a truss hanger, this limitation will imply
a panel length on each side of the hanger as being less than one-
half the distance between inside wheels of the TLV trucks.
Otherwise, alternative methods need to be found, such that any
train load on any bridge could be synthesized from the use of
influence lines created using the TLV load configuration concept.

Such axial force influence lines are shown in Exhibits 20 and
21 for diagonal L2Ul1 and hanger L1Ul, respectively, of the north
truss. Similar influence lines for top and bottom chord members

and end posts of both the north and south trusses are given in
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Diagonal L2Ul of North Truss by Using the TLV
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Appendix B. The "top" or "bottom" or "left" or "right" label, at
bottom, on'left hand side in exhibits refers to location of strain
gage channel/s along the length of a member. The corresponding
channels were used in the analysis of experimental data for the
respective member.

The middle graph in each influence line exhibit shows the
customary (classical) axial force influence line for highlighted
member in the truss sketch. This graph represents axial force in
the highlighted member when a unit load traverses the bridge span.
Using this customary influence 1line and superposition, the TLV
theoretical influence line for highlighted member, 1s derived due
to passage of the TLV load configuration on bridge. The TLV
theoretical influence line is given as the first graph in the
respective exhibit. The last graph in these exhibits is derived
from test results. Also, like first graph, the last graph gives
axial force in highlighted member as the TLV load configuration
moves across the bridge span.

It is postulated that force in a truss member due to any one
wheel load at any position on bridge can be found by a recurrent
application of the respective TLV experimental influence line,
similar to last graph in the influence 1line exhibits. The
recurrence of influence line application is needed due to the
idealization of any one wheel 1load on bridge according to a
sequence of TLV load configurations. That is, any one load on
bridge is assumed to be the bogie wheel load accompanied with equal

and opposite loads, each one-fourth the magnitude of the bogie
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wheel load, applied at locations corresponding to the TLV truck
wheels.

In the above idealization, the combination of bogie load and
the TLV truck wheel loads which are in opposition to bogie 1load
make the first of a series of equivalent TLV load configurations.
The unused TLV truck wheel loads which are in the same direction as
bogie 1load constitute remainder of the one wheel 1load being
simulated, and are in turn converted into other equivalent TLV load
configurations. The remainder from each previous idealization is
treated in a similar manner. Such an idealization of any one wheel
load on bridge into a series of equivalent TLV load configurations
then makes application of the TLV experimental influence line
possible in discerning the corresponding effect in a bridge member.
And the effect in a bridge member of each such wheel load on bridge
thus can be accumulated.

It is to be noted that a superposition of results from a
series of idealized TLV load configurations and corresponding TLV
experimental influence lines is implied. 1In spite of this linear
combination of results, the method can not be construed to only
represent a linear bridge response. This is so because the TLV
experimental influence lines are used in the superposition of
responses.

As might now be apparent, the idealization of any one wheel
load on bridge into a series of equivalent TLV load configurations,
has a load-fanning effect across the bridge span. Some portion of

the idealized wheel load may thus spill out of the bridge span. 1In
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each recurrence, the idealized load at bogie-wheelset generates a
remainder of one-fourth of the bogie load. Since each cycle of
application of the TLV experimental influence line diminishes the
accompanied remainder by a factor of four, it is believed that any
spillage that may occur due to the ensuing load-fanning effect will
be insignificant. It is estimated that effect in a member of any
~one wheel load on a bridge, with proper augmentation for dynamic
effect of speed, can adequately be represented by a recurrent

application of the respective TLV influence line.

5.1.2 The TLV Impact Test Results

As mentioned in Section 4.4.1.2, results of these tests are
preliminary, and have a limited application due to the trial nature
and limited scope of the tests. At best, a relative comparison of
dynamic axial force amplifications in bridge members, at the one
test load frequency used, be made from these tests.

The results are presented as a set of typical strain time
histories in hanger L1Ul in Exhibit 22. Explanation of channels in
the exhibit is same as that given earlier under the static
influence line results. The results from these tests were used to
determine percentage differences of maximum dynamic axial forces in
members from the corresponding maximum static axial forces as
impact percentages.

The impact pércentages for hanger L1Ul and diagonal L2U1l of
north truss, with respect to various positions of bogie-wheelset on

the bridge, are shown in Exhibits 23 and 24. The impact percentage
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Exhibit 22. Strain Histories in West Hanger L1Ul1 (Lower End) of North Truss due to

the Stationary TLV Test Consist with Bogie-Wheelset Sinusoidal Load of
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exhibits for other members are given in Appendix C. The member to
which results apply is highlighted in each of the exhibits. "Top",
"bottom", "left", or "right" labels on right hand side in exhibits
refer to physical 1location of strain gage channels on the
highlighted member. The static and dynamic axial forces in
highlighted member are also given in these exhibits.

A maximum impact percentage of about 28 in hanger and about 30
in diagonal is evident in Exhibits 23 and 24, respectively. The
corresponding maximum dynamic and static axial forces in hanger
were 4.26 and 3.32 kips, respectively, with respect to bogie-
wheelset position mid-way between panel points L2 and L3 on east
side of the bridge. Also, the mean dynamic wheel loads applied by
bogie-wheelset were 33 kips each, while rest of the test consist
was on west side of the bridge. Similarly, the maximum dynamic and
static axial forces 1in diagonal were -6.21 and =-4.78 Kkips,
respectively, and pertained to 39 kip dynamic wheel load applied by
the bogie-wheelset. The corresponding position of the bogie-
wheelset was mid-way between panel points LO and L1 on west side of
the bridge.

As 1s apparent from a study of impact percentages and
corresponding axial forces, the occurrence of maximum impact
percentage might not coincide with maximum response of the member
to loads. 1In fact, the maximum axial force in hanger L1Ul in these
tests occurred at its upper end when position of 33-ton bogie-
wheelset load was at floor keam LOLO on east side of the bridge.

The corresponding maximum dynamic and static axial forces in hanger
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were 61.88 and 62.05 kips, respectively, and gave a negative impact
percentage of 0.27. The negative impact percentage occurred
because dynamic response was lower than the corresponding static
response. On the other hand, maximum dynamic and static forces in
diagonal L2Ul, also at the upper end, were 99.27 and 89.48 kips,
respectively, corresponding to 33-ton bogie-wheelset load applied
at floor beam L3L3 on the bridge. The resulting impact percentage
was only 10.95.

For a structure like the Big Creek Bridge, stress reversal is
a remote possibility, and can occur only in those members in which
static stresses are quite low to start with. In all of the TLV
impact tests, such a reversal occurred only for stresses at the
lower cross-section of hanger L1Ul1 of north truss. The
corresponding loading condition consisted of applying 39-kip mean
bogie wheel load at a position mid-way between panel points L1l and
L2 on east side of the bridge. The resulting maximum dynamic and
static axial forces were -1.95 and 6.82 kips respectively, and gave
an impact percentage of 128.6. This stress reversal impact
percentage is shown in Exhibit 25.

Exhibit 26 shows maximum 1impact percentages for various
members of north truss. As seen in this exhibit, least impact
percentage occurred in end post and the most in diagonal. The
maximum impact percentages were however lower than 35 in all
members. The design impact percentages in hanger L1Ul recommended
by the AREA, would be about 45.3 for 33-ton axle load and 46.5 for

39-ton axle load. Similarly, the AREA impact percentages for
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diagonal L2U1l would be about 27.3 for 33-ton axle load and 28.5 for
39~-ton axle load. A comparison between the AREA impact percentages
and maximum experimental impact percentages in Exhibit 26 shows a
good agreement for diagonal, while the AREA percentages for hanger
are almost 100% higher. The higher AREA impact percentages in
bridge members reflect a rather prudent conservatism in the design
of members which may experience bending.

It can be concluded that impact percentage in a bridge member
is load position specific, and may require a similar treatment as
that of static axial force in terms of influence line. Also, it
should again be pointed out that larger differences in impact
percentages occur only when static member forces are small to start
with. Avknowledge of variation of impact percentages, similar to
those given in Exhibits 23 and 24, are therefore, deemed essential
for the analysis of member forces in a bridge.

Some limitations of the TLV impact tests can be stated in the
following: a) the TLV consist does not represent a real train
loading on the bridge; b) the effect of AAR-100 instrumentation car
and locomotive can not be subtracted, in attempting to isolate the
TLV effect, due to vibrations of the bridge; c) the sinusoidal
excitation by the TLV bogie-wheelset at 4 Hz may not be sufficient
to induce comparable bridge vibrations due to a real train lcading;
and d) impact percentages shown 1n the exhibits may be high because
of lower static stresses due to lighter weight of the TLV consist.

In spite of the above mentioned limitations, the impact tests

using the TLV provided a means to assess the relative magnitudes of
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impact percentages in various members of the Big Creek Bridge.

5.2 FORCED VIBRATION TEST RESULTS

The resonant frequencies were obtained by identifying the
frequencies at which a member experienced its relative maximum
response amplitudes. A relationship of member structural response
with respect to steady-state load freguencies, known as the
resonance curve, was used for this purpose.

In reading the forced vibration test results, 1t however,
should be noted that the TLV mass and also mass of that portion of
the AAR-100 instrumentation car which was on bridge did couple with
bridge vibrations. Due to added masses, the resulting bridge
frequencies might be lower than the bridge natural frequencies. On
the other hand, member resonant (characteristic) vibrations will
not be affected by added mass to the bridge, except the fact that
resulting resonant vibrations may have greater amplitudes. This
happens because the member vibrations depend only on its material
and sectional properties, and its end connections. Also, as long
as bridge has been excited at a certain mode, the steady-state
member vibrations will occur with respect to that mode only. The
independence of member resonant vibrations provides a rather very
useful criterion in quantifying vibrational characteristics of the
bridge structure due to a realistic forced vibration test using the

mT
Loy .
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5.2.1 Resonance Test Results

The resonance curve for axial force measured in hanger L1Ul of
north truss 1s shown in Exhibit 27. Similar curves for various
other members of north truss ére given in Appendix D. In Exhibit
27, dominant response peaks at frequencies of 3, 7 and 13 Hz
correspond to the 1st, 2nd and 3rd natural mode, respectively.
Similar dominant peaks at 3, 7 and 13 Hz were also evident for
other members of the bridge (Appendix D). Based on concurrent
member dominant responses at these frequencies, it was concluded
that 3, 7 and 13 Hz were also bridge resonant frequencies
corresponding to the first, second and third bending mode,
respectively.

Assuming a linear response, any change in length of a bridge
member is directly proportional to the axial force in that member.
As such, member damping at resonance, was computed using
information from the axial force resonance curve of that member.
Furthermore, it was assumed that although these calculations
pertained to the particular response of a member in the bridge, an
overall damping in bridge could be attained from these values.

An estimation of member modal damping was made by determining
its response magnification factor at a corresponding resonant
frequency. The dynamic magnification factor was determined as the
ratio of maximum or resonant response to the corresponding static
response. The damping ratio was then found as one-half of the
inverse of the dynamic magnification factor [9].

The percentages of critical damping computed using the dynamic
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magnification at resonant frequencies for various bridge members,
are given in Exhibit 28. For axial resonant response of hanger,
the damping ratios were computed to be 6.49, 2.08 and 1.72,
respectively, at 3, 7 and 13 Hz. As can be seen, these damping
ratios decrease as the resonant frequency increases. A study of
strain histories and also the resonance curve in Exhibit 27 shows
that hanger strain amplitudes progressively increase at higher
resonant fregquencies. This inverse relationship thus explains the
decreasing damping percentages at higher modes in the hanger. Such
a systematic decrease of damping ratio, at higher modes, for other
members of the bridge was not apparent. From a close examination
of vibration amplitudes it was found that extent of a member
vibration magnification, and thereby the damping ratio, depended on

that member’s position in the overall structure of the bridge.

5.2.2 Sweep Test Results

It is required in a sweep test that power supplied by the
excitation source be maintained at a constant level during the
sweep. It was unfortunate that spectral power of the TLV exciter
actuators varied in these tests. As an example, Exhibit 29 shows
the power spectrum of the bogie-wheelset actuator load at left

wheel for the 0-5 Hz sweep test. As can clearly be seen in this

5 .

exhibit, the actuator power was not constant in the test. A
depression 1n spectra occurred at about 3 Hz, and the actuator
power rose towards end of the sweep. As such, data from these

tests could not be used.
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MODE NUMBER

1 2 3
BRIDGE COMPONENT FREQUENCY, Hz
3 7 13
MEMBER SYMBOL | SIDE GAGE DAMPING
LOCATION RATIO

HANGER L1U1 WEST TOP 6.49 | 2.08 | 1.72

HANGER L1U1 WEST | BOTTOM | 6.24 | 2.27 | 1.69
DIAGONAL L2U1 WEST TOP 1.86 | 1.14 | 8.30
DIAGONAL L2U1 WEST | BOTTOM | 1.65 | 1.02 | 4.55
END POST LOU1 WEST TOP 0.07 | 0.03 | 0.10

BOTTOM LOL1 WEST LEFT 0.07 | 0.04 | 0.07
CHORD

BOTTOM L1L2 WEST RIGHT 0.37 { 0.18 | 0.34
CHORD

TOP U102 WEST RIGHT 1.37 1 0.81 | 3.64
CHORD
Exhibit 28. Damping Ratios in Various Members of North

Truss from the Results of the TLV Steady-State
Sinusoidal Tests on the Bridge.
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5.3 MOVING TEST RESULTS

The results of moving tests are presented in terms of the
strain histories in hanger L1Ul of north truss. The histories of
strain measurements at the upper end of hanger L1Ul are given in
Exhibits 30 and 31 for bogie-wheelset loads of 33 and 39 tons,
respectively, at 10 mph speed. Similarly, these results at 20 mph
speed are given 1in Exhibits 32 and 33. The bounce test results,
also in terms of strain of this hanger, are given in Exhibit 34.
The channel identifications in these exhibits are same as those
given earlier in Exhibit 11 of Section 4.1.1.

As seen in these exhibits, the shape of strain history of each
channel is similar, except magnitude of the respective strain. Due
to symmetry of the cross-section and symmetrical placement of the
channels, difference in the magnitudes of strain increases due to
bending of the hanger. The maximum axial strains are 112.14 and
112.15 microstrains, respectively, at 10 and 20 mph for bogie-
wheelset load of 33 tons. The corresponding axial force will be
about 62.4 kips at both the speeds. The effect of speed on stress
was found to be negligible for the maximum positive (tensile)
response of hanger in this test. The maximum compressive axial
strains in hanger are 20.3 and 22.29 microstrains at 10 and 20 mph,
respectively; and give corresponding compressive axial forces of
11.3 and 12.4 kips. A dynamic amplification at 20 mph of about
9.8, with respect to the response at 10 mph, occurred.

The hanger axial responses under 39-ton bogie-wheelset load

are: maximum tensile strain 111.5 microstrains (62.05 kips axial
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force) at 10 mph, 116.33 microstrains (64.74 kips axial force) at
20 mph, and a dynamic amplification of 4.3. The corresponding
maximum compressive strains are 19.95 at 10 mph and 22.87 at 20 mph
giving a dynamic amplification of about 14.6. The maximum tensile
strain in bounce test was 111.5 microstrains (62.05 kips axial
force), and maximum compressive strain was 20 microstrains (11.13
kips axial force). The bounce test results were found to be
similar to the moving test results at 10 mph for 33-ton bogie-

wheelset load.
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6.0 SUMMARY AND CONCLUSIONS

In June 1991, the TLV was used to conduct a series of tests on
the Big Creek Through Truss Bridge on the Norfolk Southern Railroad
in Tennessee. This was the first time that the TLV was used for a
bridge test. The primary objective of these tests was to determine
the usefulness of the TLV as a tool in bridge testing. Based on
axial force results presented in this report, the following
observations and conclusions were made:
1. The results indicated that tests, conducted under controlled
static and dynamic loads using the TLV, can be used in the study of
stresses in railroad bridges.
2. Limitations, however, were imposed on testing due to the TLV
truck centers (47 feet) being shorter than span length (about 156
feet) of the bridge. As a result, the bridge structure was
subjected to additional loads both from the TLV trucks and other
vehicles of the test consist resting on the bridge.
3. In the Stationary tests, bridge responses with and without the
external bogie load were measured to isolate the bogie load from
other test consist loads on the bridge. The subtraction of no-
bogie-load results from corresponding bogie-load results was found
to eliminate the effect of loading by the AAR-100 instrumentation
car and the locomotive on the bridge. This subtraction, however,
did not eliminate the TLV truck-load effect. 1In fact, a residual
effect due to unloading on the TLV trucks (about 8 kips per wheel
under 33 ton bogie-wheelset load) remained.

4. The TLV static influence lines of various bridge members were
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determined by using the isolated bogie-wheelset load and the
accompanying TLV truck unloadings. It was postulated that such
influence lines, with appropriate augmentation for dynamic effect
of speed, could be used to synthesize stress-time histories in
members due to any moving load on the bridge. A determination of
force distribution among various bridge members could thus be made.
5. The results suggested that significant differences could exist
between the theoretically calculated stresses and those measured
during the test. It was believed that this discrepancy was due
largely to the partial fixity of the truss connections. The
partial fixity of connections, unlike the assumption of free
rotation in theoretical analysis of a truss, could cause a
redistribution of the applied loads through the bridge structure.
6. It is also believed that the difference between the test and
theoretical stresses could occur due to the specific location of
strain gages on the member. It is suggested that strain gages
should be placed near the center of the bottom chord panel length
for axial force measurement. |

7. The TLV impact tests were conducted to simulate the dynamic
conditions due to passing axles of heavy freight cars at different
locations on the bridge. The impact percentage, computed as the
difference Dbetween maximum dynamic axial response and the
respective maximum static axial response, was found to be the least
in end posts and the most 1n the diagonals. The maximum impact
percentages, 1n general, were lower than 35.

3. It was found that a large impact percentage occurred only when



the static axial response of the member was small to begin with.
Also, the occurrence of the maximum impact percentage did not
coincide with the maximum response of the member to applied loads.
9. Some of the limitations of the TLV impact tests could be
stated as follows: a) hangers created a frame with the floor beam
such that axial stress and the bending stress occurred
simultaneously, mainly in the vicinity of the floor beam knee
braces, b) some bending also occurred in all bridge members due to
the fixity in the member connections, c¢) the TLV consist did not
represent a real train loading on the bridge, d) the effect of the
TLV trucks, AAR-100 instrumentation car, and locomotive could not
be eliminated in dynamic tests, and e) impact percentages might be
high due to lower static stresses resulting from the lesser weight
of the TLV consist.

10. Despite the limitations mentioned above, it 1s believed that
the TLV provided a viable means to determine relative dynamic
amplifications in various members due to impact loading.

11. The vibrational charactefistics of the bridge structure were
determined by conducting frequency sweep and resonance tests using
the TLV. It was determined from a study of power spectra of the
TLV actuator loads that the power supplied by the bogie-wheelset to
the bridge did not stay constant during frequency sweep tests. The
calculation of the bridge resonance frequencies from an analysis of
the frequency sweep test data was, therefore, not pursued any
further.

12. The dynamic tests showed that bridge member resonances
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occurred at frequencies of 3, 7 and 13 Hz corresponding to the lst,
2nd and 3rd natural (extensional) modes, respectively. It was,
therefore, believed that these frequencies were also the bridge’s
natural frequencies corresponding to the 1lst, 2nd and 3rd vertical
bending modes, respectively. It 1is estimated that these
frequencies are somewhat lower than normal mode frequencies of the
bridge due to the added mass of the TLV consist on the bridge.
13. The dynamic behavior of a bridge member depends on its
geometrical and material properties, and its local end conditions.
The added mass of the TLV consist on the bridge should, therefore,
not affect the bridge member characteristic vibrations. It is thus
assumed that the member resonance curves provide a rather
indispensable tool in ascertaining the vibrational characteristics
of a truss bridge structure using the TLV.

14. As expected for framed or skeletal steel structures [10],
bridge member dampings in the first natural (extensional) mode were
found to vary from about 0.07 (end post and bottom chord) to 6.49
(hanger) percent of critical damping. At higher modes, the damping
percentage for the hanger decreased as the resonant frequency
increased. For other bridge members, the damping percentage
decreased in the second mode, and then increased in the third mode.
15. The percentage of member modal damping was found to be
inversely proportional to the relative amplitude of the member
vibration.

16. In general, damping of a member depends on the nature of its

material (structural or viscous damping), the extent of looseness
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in its connections (frictional damping), its location in the
structure, and the frequency mode of its vibration. It was found
that the amplitude of the vibration during resonance depended
greatly on member location in the bridge structure; and was,
therefore, an important factor in governing the amount of member
modal damping.

17. The most susceptible member to vehicle dynamics was found to
be the hanger. The effect of speed rising from 10 to 20 mph in
moving tests was found to be equal to a dynamic amplification of
4.3 for the tensile-force response of the hanger.

The vibration testing using the TLV gives an additional aspect
to bridge testing under controlled loads. The resonance tests are
seen to have a powerful capability to identify member natural
frequencies and modal damping, and thereby those of the bridge.
Moreover, a periodic monitoring of natural frequencies and damping
of bridge members can be used to detect structural damage. In
addition, determination of natural frequencies and mode shapes by
tests can be used for a statistical identification of the structure
wherein structural design parameters of mass and stiffness are

iteratively modified until analysis and test results agree.
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8.1 APPENDIX A: Axlial Forces in North Truss
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Theoretical and Experimental Axial Forces in North Truss M'embers due to
the Stationary TLV Test Consist with Bogie-Wheelset Static Load of 39

Tons Applied on East Floor Beam LOLO.
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Theoretical and Experimental Axial Forces in North Truss Members due to
the Stationary TLV Test Consist with Bogie-Wheelset Static Load of 39

Tons Applied on East Bridge Panel LOL1.
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the Stationary TLV Test Consist with Bogie-Wheelset Static Load of 39
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Tons Applied on West Floor Beam L2L2.
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8.2 APPENDIX B: The TLV Influence Lines
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Exhibit B3.
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(Lower End) of North Truss by
Load-Configuration Concept.
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Exhibit B6.

Influence Lines of Axial Force in West Top
Chord U1lU2 (Right End) of North Truss by Using
the TLV-Load-Configuration Concept.
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Exhibit B7.
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Chord LOL1 (Left End) of North Truss by Using
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Chord L1L2 (Right End) of North Truss by Using
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8.3 APPENDIX C: The TLV Impact Percentages
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8.4 APPENDIX D: Rescnance Curves of Members
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Exhibit D1. Resonance Curve of the Axial Force in West Hanger L1Ul (Upper End) of

North Truss from the Results of the TLV Steady-State Sinusoidal Tests on
the Bridge.
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Exhibit D2. Resonance Curve of the Axial Force in West Hanger L1Ul1 (Lower End) of

North Truss from the Results of the TLV Steady-State Sinusoidal Tests on
the Bridge.
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Exhibit D3. Resonance Curve of the Axial Force in West Diagonal L2Ul (Upper end) of

North Truss from the Results of the TLV Steady-State Sinusoidal Tests on
the Bridge.
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Exhibit D4. Resonance Curve of the Axial Force in West Diagonal L2Ul (Lower End) of

North Truss from the Results of the TLV Steady-State Sinusoidal Tests on
the Bridge.
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Exhibit D6. Resonance Curve of the Axial Force in West Top Chord U1U2 (Right End) of

North Truss from the Results of the TLV Steady-State Sinusoidal Tests on
the Bridge.
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Exhibit D7. Resonance Curve of the Axial Force in West Bottom Chord LOL1 (Left End)

of North Truss from the Results of the TLV Steady-State Sinusoidal Tests
on the Bridge.
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Exhibit DS8. Resonance Curve of the Axial Force in West Bottom Chord L1L2 (Right End)

of North Truss from the Results of the TLV Steady-State Sinusoidal Tests
on the Bridge.
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Exhibit D9. Resonance Curve of the Axial Force in West Bottom Chord L2L3 (Left End)

of North Truss from the Results of the TLV Steady-State Sinusoidal Tests
on the Bridge.








