2017 FRA Rail Program Delivery Meeting

FRA & The Next Generation of High Speed Rail Equipment

Robert C. Lauby

FRA, Associate Administrator for Railroad Safety & Chief Safety Officer

Today's Presentation

- Existing regulations governing High-speed Operations
- Railroad Safety Advisory Committee (RSAC) Engineer Task Force (ETF) - Objectives & Vision for HSR

Development of standards to accommodate new & innovative technologies

Existing Regulations Governing high-speed rail operations

Existing Passenger Regulatory Environment

Transit Vehicles ("Shared Use")

Tier I - Conventional

Tier II

Max. Speed: 79 mph

Interoperable with freight: no

Carbody:

o Built to customer specifications

Not compliant w/ 49 CFR §229 & 238

Interior attachments: no requirement

Passenger Occupied Lead Car: yes

Glazing: typically complies with 49 CFR § 223

Brake System: varies (may incl. track brakes)

Inspection/Maintenance: varies

NOTES:

Requires waiver from FRA Safety Board

Max. Speed: 125 mph

Interoperable with freight: yes

Carbody:

Strength based protection

o 800,000-lbs buff-load frame

o Structure fully compliant w/ 49 CFR §229 & 238

Interior attachments: 8g/4g/4g

Passenger Occupied Lead Car: yes

Glazing: complies with 49 CFR § 223

Brake System: traditional pneumatic

- complies with 49 CFR § 229

Inspection/Maintenance: periodic

NOTES:

 Traditional "FRA compliant" locomotives and passenger cars Max. Speed: 150 mph (current) / 160 (proposed)

Interoperable with freight: yes

Carbody:

Uses some Crash Energy Management (CEM)

o 2,100,000-lbs buff-load power car

o 800,000-lbs buff-load trailers

Interior attachments: 8g/4g/4g

Passenger Occupied Lead Car: no

Glazing: complies with 49 CFR § 238, Subpart E

Brake System: traditional pneumatic

- complies with 49 CFR § 238.431

Inspection/Maintenance:

Continuous Maintenance (Based on ITM plan)

NOTES:

• Acela is the only Tier II equipment in operation

For discussion purposes only. Not the official position of FRA/USDOT.

DC Rouse

ETF Vision & Objectives

Vision:

Create passenger equipment regulatory environment incorporating "service proven" designs, advanced technology, and a systematic approach to safety.

Tier II

(e.g. NEC)

Up to 160m

Tier I – conventional & <u>alternative crashworthiness</u>, speeds up to 125mph

Tier II — 160 mph maximum authorized speed on existing ROW (i.e. NEC)

Tier III — interoperable w/ all tiers up to 125 mph, dedicated ROW <u>up to 220 mph</u>

Tier IV — Technology specific HSR projects and "other" technologies for **insular systems**.

Proposed Additions to Passenger Regulatory Environment

Tier I - Alternative Crashworthiness

Tier III

Other (Tier IV)

Max. Speed: 125 mph

Interoperable with freight: yes

Carbody:

Performance based protection

Uses Crash Energy Management (CEM)

o Alternative to 49 CFR §229/238 compliance

o Follows Engineering Task Force (ETF) criteria

Interior attachments: 8g/4g/4g

Passenger Occupied Lead Car: yes

Glazing: complies with 49 CFR § 223

Brake System: traditional pneumatic

- complies with 49 CFR § 229

Inspection/Maintenance: periodic

NOTES:

· Currently allowed by Safety Board waiver

Allows use contemporary design techniques

Max. Speed: 220 mph (dedicated ROW)
125 mph (shared track)

Interoperable with freight: ≤ 125 mph

Carbody:

o Performance based protection

Uses Crash Energy Management (CEM) features

o Follows Engineering Task Force (ETF) criteria

Interior attachments: 8g/4g/4g

or 5g/3g/3g (if justified)

Passenger Occupied Lead Car: yes

Glazing: follows ETF recommendations

Brake System: technology neutral

- based on ETF recommendations

Inspection/Maintenance:

Continuous Maintenance (Based on ITM plan)

NOTES:

Utilizes system safety approach

• Allows use of "service proven" designs worldwide

Max. Speed: 0-220+ mph

(for dedicated Right-of-Way ONLY)

Interoperable with freight: no

Carbody:

o Built to customer specifications

o Not compliant w/ 49 CFR §229 & 238

Interior attachments:

· per customer specification

Passenger Occupied Lead Car: yes

Glazing: likely to follow ETF requirements

Brake System: per customer specification

Inspection/Maintenance:

Continuous Maintenance

NOTES:

 Requires FRA special approval, typically under a Rule of Particular (RPA)

For discussion purposes only. Not the official position of FRA/USDOT.

DC Rouse

The growing role of alternative compliance"

- FRA's is developing proposed rules to provide alternatives for meeting crashworthiness requirements
- ► The adoption of these performance based regulations will allow for:
- Better incorporation of contemporary design techniques and standards
- A means to provide compatibility for highspeed equipment to operate intermixed with conventional
- The standards were developed with industry input through FRA's Railroad Safety Advisory Committee's (RSAC) Engineering Task Force (ETF)

What is "Tier III?"

Tier III defines the requirements for next generation very high-speed trainsets

Key features are:

- Allows maximum authorized speeds of up to 220 mph
- Provides complete interoperability with conventional passenger & freight operations up to 125 mph
- Designed to harmonizes with "service proven" international standards and design methodologies
- Follows on the inspection and maintenance regime established for service proven trainsets.

Tier III regulatory approach

<u>Guiding principle:</u> conceive performancebased regulations which accommodate existing service-proven designs <u>WITH MINIMUM</u> <u>MODIFICATIONS.</u>

Approach:

- Systematic consider safety from a "system" perspective
- ► Technology Neutral some metrics must be defined by the system and technology implemented, not prescribed

Rotary eddy current brake (courtesy of Wikipedia)

Regulations that make up Tier III requirements Trainset Structure/Crashworthiness

- Interior Attachments
- Glazing
- Brake System

NPRM 1

- **Emergency Systems/Lighting**
- Safety appliances
- General Safety (part 229)
 - Cab Conditions noise, general conditions, sanitation
 - Cab Equipment alerters, event recorders, cab lights
 - Exterior Appurtenances headlights, aux lights, marker lights
 - Electrical systems current collectors, circuit protection, insulations, treatment of high voltage, conductors, motors/generators, energy storage, power dissipation, EMI/EMC, etc.
- Trainset Flectronics
- Compliance testing and start-up procedures
- Inspection Testing Maintenance

NPRM 2

Tier IV Concept

- Tier IV would:
 - Establish a formal means to address FRA regulated insular services
 - Would cover ANY type of technology at any speed range
 - Would require insular and protected ROW with NO grade crossings

Rules of Particular Applicability

- ► A Rule of Particular Applicability (RPA) is a regulation that applies to a specific railroad or a specific type of operation.
- ► FRA is currently considering a request from Texas Central Railway (TCR) to issue an RPA for its proposed HSR operation.
- Any resulting RPA will:
 - ▶ Be technology specific; and
 - Address all aspects of TCR's operation (HSR infrastructure, equipment and personnel).

In short...

- ► FRA's HSR strategy is designed to encourage the development of both:
 - A robust intercity passenger rail network; and
 - Standalone systems utilizing new & innovative technology & equipment.

2017 FRA Rail Program Delivery Meeting

Thank you!