

# Investigating Human-Automation Interaction and Human Error in the Locomotive Cab

Angelia Sebok

This work was supported by the FRA under contract DTFR5312D0006L, TPOC: Michael Jones





- Automated systems are being developed and introduced into the locomotive cab.
- Lessons learned from aviation indicate that automation can help – or hurt – human and system performance.
- This work was performed to investigate human error potential in the locomotive cab when using different automated systems.
- One other key point: human performance researchers benefit from getting into the operational environment, and seeing how operators work in reality. But that's not always possible.



#### Approach to the Human Error Work

#### Performed analyses to investigate human error potential:

- Walkthroughs in CTIL scenarios using automation
- Modeling analyses using the Locomotive Cab Analysis Tool
- Fault tree analyses of actions and error probabilities
- Noticing Salience Expectancy Effort and Value modeling predictions

#### Locomotive cab automation:

- Positive Train Control (Electronic Train Management) System)
- Trip Optimizer



#### CTIL HAI Human Error Evaluation

# Human Error Evaluation Performed at the Cab Technology Integration Laboratory (Volpe)

- 3 professional engineers participated in 3 scenarios on a simulated 17-mile run.
- Run 1: Training and familiarization / manual mode.
  - Run 2: Low workload, automated mode.
  - Run 3: High workload, automated mode. (one engineer did this twice)
- Collected human performance data, operator actions, and simulated train data





#### Manual

- 17-mile segment of track
- Speed restrictions and a quiet zone
- Manual horn and bell control

#### Automation (PTC or TO) – Low Workload

- Same segment of track, same speed restrictions, etc.
- PTC or TO engaged



#### Automation – High Workload

- Same segment of track, same speed restrictions, etc.
- PTC or TO engaged
- Three extra events: A workzone, a temporary speed restriction, and a stopand-protect at a grade crossing.
- Two of the three events were announced by the dispatcher during the run.

#### Scenarios, Events, and Track Profile

Slide 6





#### CTIL Human Error in HAI Evaluation





### Short Summary of Results

- Three errors noted (two in the high workload condition)
  - Failure to notice TO request for information and switch to idle mode
  - Failure to stop before the grade crossing for the stop and protect condition
  - Sustained overspeed by 15 mph



# Trip Optimizer Requests and Changes























## Trip Optimizer Requests and Changes













#### Trip Optimizer Changes





# Failure to Stop Before Grade Crossing

- One error (four opportunities) observed
- Overshot the grade crossing by 370 feet
- Did not anticipate the long downhill grade
- Visual representation of the grade was shown, and conductor reminded of the stop and protect





- Overspeed occurred in a 1.2 mile section at the end of a run
  - The speed restriction was for 45 mph
  - Actual average speed was 58.4 mph (max 63.3 mph)
- Stated an incorrect understanding of the speed restriction
- The indications did not trigger recognition of the overspeed.





#### Summary of Experiences

- Identified errors that could occur when interacting with automation
  - Not noticing a system change
  - Lack of mode awareness
  - Distractions can have a negative impact
- The errors that we found in the CTIL were similar to operating experiences with automation
- Found concerns to investigate further in a human-inthe-loop experiment

CTIL provides an excellent resource for gaining insights into actual operations and evaluating responses to off-nominal conditions