Human Factors Evaluation of an Experimental Locomotive Crew Station

Matt Isaacs Operations Research Analyst Volpe Center

Transportation Research Board Annual Meeting January 2017

U.S. Department of Transportation

Federal Railroad Administration

OFFICE OF RESEARCH & DEVELOPMENT

Advancing transportation innovation for the public good

Rationale

- AAR-105 was principally developed before automation and computer displays.
- Adding displays has a limit and risks lowering out-the-window visibility.
- Advances in technology allow for more ergonomic designs.
- Engineers experience vibration and spend extensive time in a seated position.

- Capability for both seated and standing operation
- Ergonomic improvements
- Reconfigurable controls (to enable future iterations)
- Vibration dampening
- Ability to view and operate displays and controls from 180 degrees of chair rotation
- Enhanced comfort, including adjustability, headrest and footrest

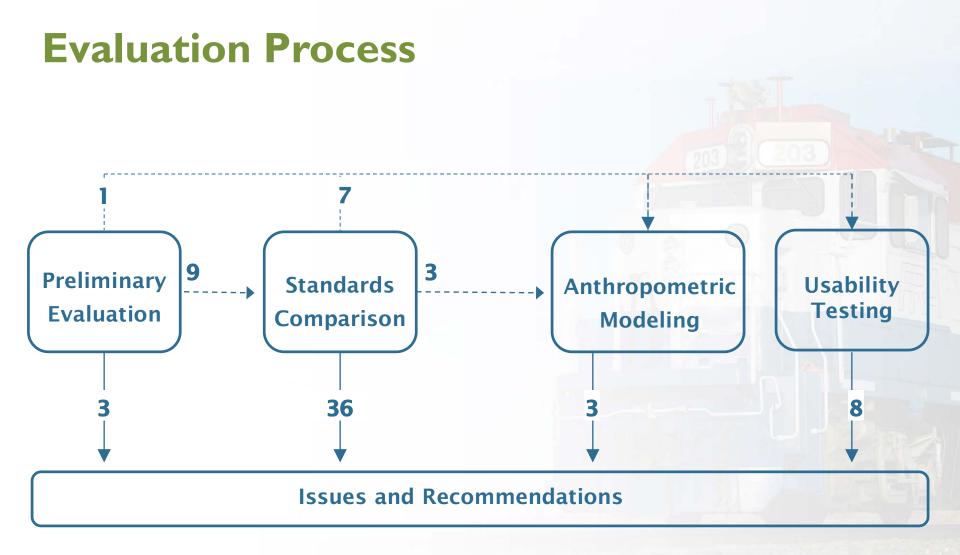
FRA Volpe 3

- Capability for both seated and standing operation
- Ergonomic improvements
- Reconfigurable controls (to enable future iterations)
- Vibration dampening
- Ability to view and operate displays and controls from 180 degrees of chair rotation
- Enhanced comfort, including adjustability, headrest and footrest

FRA Volpe 4

- Capability for both seated and standing operation
- Ergonomic improvements
- Reconfigurable controls (to enable future iterations)
- Vibration dampening
- Ability to view and operate displays and controls from 180 degrees of chair rotation
- Enhanced comfort, including adjustability, headrest and footrest

- Capability for both seated and standing operation
- Ergonomic improvements
- Reconfigurable controls (to enable future iterations)
- Vibration dampening
- Ability to view and operate displays and controls from 180 degrees of chair rotation
- Enhanced comfort, including adjustability, headrest and footrest



FRA Volpe 6

Roles

- FRA: Provide basic requirements for the crew station and fund construction and analysis.
- QinetiQ North America: Build crew station according to FRA specifications; integrate with CTIL.
- Volpe: Evaluate the crew station using the CTIL simulator and human factors evaluation processes, making recommendations for improvement and noting areas of cab design that need further research.

FRA Voipe 8

Preliminary Evaluation

- Gain a high-level understanding of potential problems, and help focus later activities
- Evaluations made using general usability practices
- Full integration of ELCS into CTIL allowed evaluators to interact with the prototype

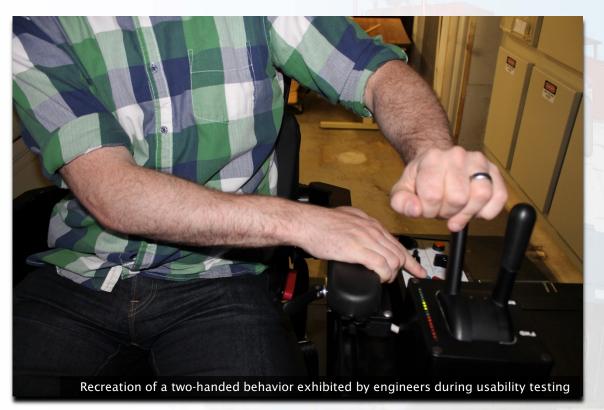
Standards Comparison

- Used military human factors standard MIL-STD-1472G (DoD, 2012) to address every feature of the design
- Evaluated both the experimental control station and the AAR-105
- Also measured egress space, control forces, clearances and heights

MIL-STD-1472G drawings showing critical aspects of buttons

10

Anthropometric Modeling


- Created CAD models of all designs
- Used CTIL's RAMSIS software to model:
 - Clearances
 - Reachability
 - Viewing angles
 - Comfort level of key positions
- RAMSIS provides representative users for virtual testing. Sizes used:
 - 95th percentile male
 - 50th percentile female
 - 50th percentile male

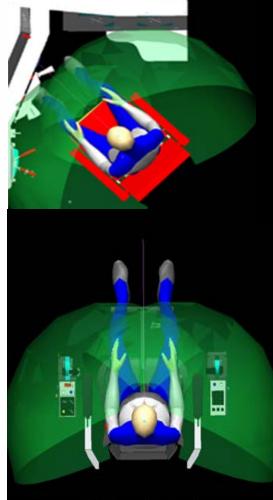
Usability Testing

- Put engineers through 7 scenarios in CTIL simulator based on concerns raised in earlier phases
- 4 freight engineers, 4 passenger engineers
- CTIL enabled collection and analysis of quantitative data and recording of user actions and comments
- Usability measured using System Usability Scale (Bangor, Kortum & Miller, 2008)

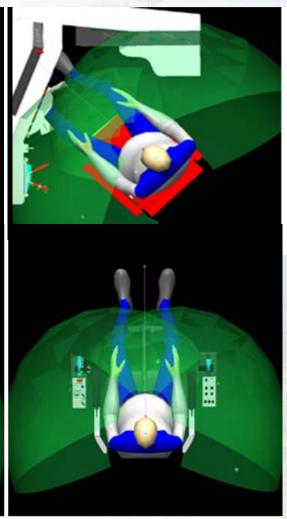
Usability Testing

Used binomial probability to sort patterns of behaviors in to three groups using $\alpha < .05$:

- Small Minority (5%): three of eight participants (p=0.006).
- Substantial Minority (20%): five of eight participants(p=0.010).
- Majority (50%): seven of eight participants (p=0.035).


Population Behavior Rate	Probability of Subject Failures								
	0 subjects	1 subject	2 subjects	3 subjects	4 subjects	5 subjects	6 subjects	7 subjects	8 subjects
5%	1.000	.337	.057	.006	.000	.000	.000	.000	.000
20%	1.000	.832	.497	.203	.056	.010	.001	.000	.000
50%	1.000	.996	.965	.855	.637	.363	.145	.035	.004

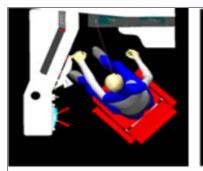
One-tailed probability matrix for a sample size of eight



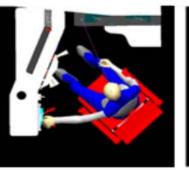
Reachability

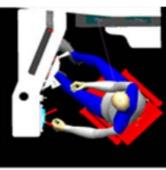
- Even with an adjustable chair, most controls are at the edge of reach extents if engineer wants to use back support.
- Experimental crew station places controls well within reach extents for all users

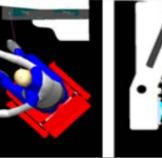
50th Percentile Female

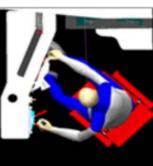


FRA




AAR-105: Body Positions


- Controls oriented to user, but not plane of motion
- Two areas of focus for engineer means twisting and reaching.
- Controls require exerting high force far from the body
- Moving seat closer to the throttle means moving away from the automatic brake



50th Female

95th Male

Throttle

Automatic Brake

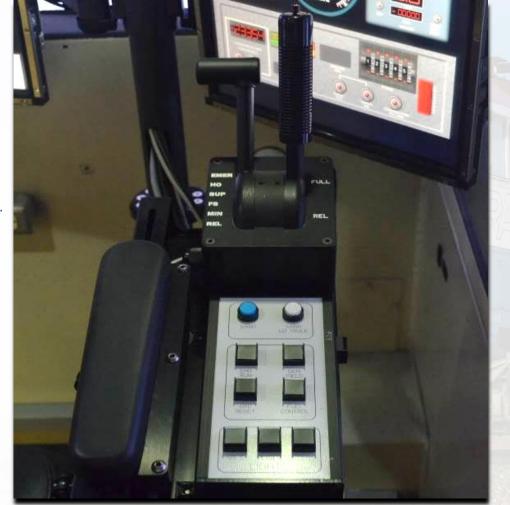
Both

Comfort Comparison

- "Most comfortable" body positions for each task were measured using RAMSIS Body Discomfort score
- Score based on 1-8; 8 is most *un*comfortable
- Derived from an ergonomics study in which drivers rated discomfort in different areas of the body for different positions (Meulen, 2006)
- Differences greater than 1 considered significant

Discomfort	50 th Perc	entile Female	95 th Percentile Male		
Туре	AAR-105	Experimental crewstation	AAR-105	Experimental crewstation	
Neck	5.1	2.3*	4.6	2.2*	
Shoulders	3.5	2*	4	2.3*	
Back	2.8	1.7*	2.4	1.8	
Buttocks	2.3	1.3*	2.3	1.4	
Left Leg	3.5	2.1*	2.7	2	
Right Leg	3.5	1.9*	2.4	1.7	
Throttle Arm	5.2	1.7*	3.9	2*	
Other Arm	2.8	1.9	1.8	2	
Overall Discomfort	6.1	3.3*	5.1	3.5*	

* Difference greater than 1


Example Issue I:Automatic Brake

Preliminary Evaluation

- The detents on the automatic brake are regularly spaced, unlike current brake designs.
- The "service range" appears small:
 - NYAB: 3.28 inches from minimum to release.
 - ECS: 1.76 inches from minimum to release

Standards Comparison

- Found three standards recommending against combining regular controls and emergency ones.
- Found one standard cautioning against enabling accidental actuation.

Voit

Example Issue I:Automatic Brake

Usability Test

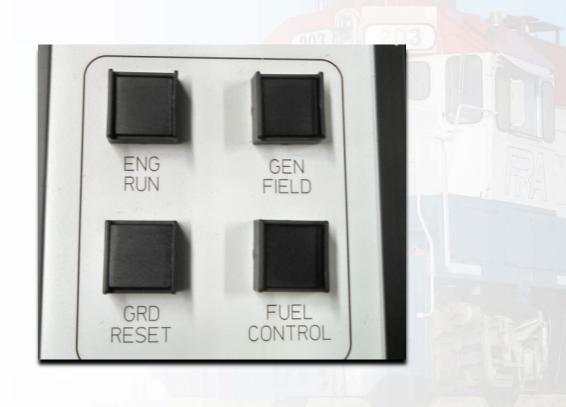
 Eight engineers were asked to make four automatic braking applications using a non-moving simulated train.

Findings based on usability test performance data for over-braking

Thraings based on asability test performance data for over braking						
Task	Failures	Expected Frequency Based on Probability Matrix				
Minimum service application	0 out of 8	Not significant (less than 5%)				
Full service application	0 out of 8	Not significant (less than 5%)				
15 pound application	4 out of 8	Small minority (greater than 5%)				
20 pound application	5 out of 8	Large minority (greater than 20%)				

- Comments from engineers echoed this performance:

"I think I had to look down a couple of times. Between the minimum and the full service it just seemed a little short."


"For only going five pounds it seemed you go a very long way. And [now] that's full service...20 pounds in less distance than what you go to minimum."

Example Issue 2: Push-buttons

Preliminary Evaluation

Which of these functions are active and inactive? Which buttons stay active when released?

Example Issue 2: Push-buttons

Preliminary Evaluation

Which of these functions are active and inactive? Which buttons stay active when released?

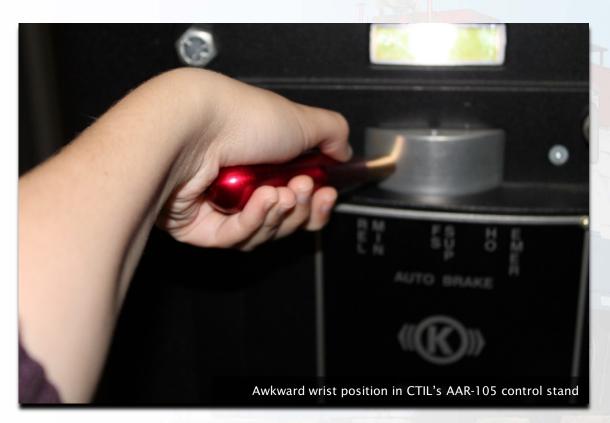
Example Issue 2: Push-buttons

Usability Test

When presented with a "stopped engine" scenario, 7 of 8 engineers were unable to find the problem of a Fuel Control button being placed in the "off" position, despite looking directly at the button panel in all cases (expected majority).

Example Issue 3: Upward Visibility

- Standards Comparison: "Upward visibility shall extend to not less than 15 degrees above the horizontal."
- Anthropometric Analysis


Degrees of upward visibility using experimental crewstation

Test Case	CTIL Seated	CTIL Standing
95th Percentile Male	none	none
50th Percentile Male	1.13°	none
50th Percentile Female	4.38°	5.25°

Follow-on Work

- How do different AAR-105 control configurations affect key postures?
- Identify near-term and/or low-cost ergonomics upgrades to current designs.
- Conduct a time motion study to understand control use frequencies in various types of operations.
- Evaluate desktop-style configurations

