
U.S. Department of 
Transportation 

Federal Railroad 
Administration 

Research on Methods for Enhancing Positive 
Train Control Freight Braking Algorithms  

 
Office of Research, Development 
and Technology 
Washington, DC 20590 

DOT/FRA/ORD-18/19  Final Report 
July 2018 

 
 



 

 

 
 
 

 
NOTICE 

This document is disseminated under the sponsorship of the 
Department of Transportation in the interest of information 
exchange. The United States Government assumes no liability for 
its contents or use thereof. Any opinions, findings and conclusions, 
or recommendations expressed in this material do not necessarily 
reflect the views or policies of the United States Government, nor 
does mention of trade names, commercial products, or organizations 
imply endorsement by the United States Government. The United 
States Government assumes no liability for the content or use of the 
material contained in this document. 

 

 
 

 
NOTICE 

The United States Government does not endorse products or 
manufacturers. Trade or manufacturers’ names appear herein solely 
because they are considered essential to the objective of this report. 

 

 
  



 

 i 

REPORT DOCUMENTATION PAGE  Form Approved 
 OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE 
July 2018 

3. REPORT TYPE AND DATES COVERED 
Technical Report - December 2014 

4. TITLE AND SUBTITLE 
Research on Methods for Enhancing Positive Train Control Freight Braking Algorithms 

5. FUNDING NUMBERS 
 

DTFR53-11-D-00008 

Task Order 332 
6. AUTHOR(S) 
Pate, S., Paudel, Y., Anaya, R., and Brosseau, J. 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Transportation Technology Center, Inc. 
55500 DOT Road 
Pueblo, CO 81001 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
U.S. Department of Transportation  
Federal Railroad Administration 
Office of Railroad Policy and Development 
Office of Research, Development and Technology 
Washington, DC 20590 

10. SPONSORING/MONITORING 
 AGENCY REPORT NUMBER 
 

DOT/FRA/ORD-18/19 

11. SUPPLEMENTARY NOTES 
COR: Jared Withers 
12a. DISTRIBUTION/AVAILABILITY STATEMENT 
This document is available to the public through the FRA Web site at http://www.fra.dot.gov. 

12b. DISTRIBUTION CODE 

 
13. ABSTRACT (Maximum 200 words) 
The Federal Railroad Administration (FRA) sponsored a research project, executed by Transportation Technology Center, Inc. 
(TTCI) to investigate methods for enhancing the data used by Positive Train Control (PTC) freight braking algorithms and to 
improve the evaluation process of PTC freight braking algorithms. TTCI researched data available in Umler®, a system used by 
North American railroads for tracking and managing rail cars, and developed methods for using these data to estimate a brake 
force for a train that can be supplied to the PTC system on the locomotive. TTCI conducted and analyzed Monte Carlo simulations 
using these methods, and compared the results to current simulations. TTCI gathered track and operational data from railroads and 
used the data to create a weighted value for each simulated scenario by mapping railroad data into simulated scenarios. a weighted 
evaluation of the algorithm was produced and compared to non-weighted evaluation. Simulation results show improved safety 
performance of the algorithm and improved operational performance of the system when using the Umler®-calculated brake 
force. The results also show that the improvement in the safety and operational performance of the system is the greatest when 
using detailed information from each car to estimate the train brake force using the Umler® data. 

14. SUBJECT TERMS 
Positive Train Control, PTC, Monte Carlo Simulations, PTC enforcement Braking Algorithm, 
Brake Force Calculation, Umler®, PTC Braking Algorithm 

15. NUMBER OF PAGES 
45 

16. PRICE CODE 
 

17. SECURITY CLASSIFICATION 
 OF REPORT 
 Unclassified 

18. SECURITY CLASSIFICATION 
 OF THIS PAGE 
 Unclassified 

19. SECURITY CLASSIFICATION 
 OF ABSTRACT 
 Unclassified 

20. LIMITATION OF ABSTRACT 
 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
 Prescribed by ANSI Std. 239-18 

 298-102 

http://www.fra.dot.gov/


ii 
 

METRIC/ENGLISH CONVERSION FACTORS 
 

ENGLISH TO METRIC METRIC TO ENGLISH 

LENGTH  (APPROXIMATE) LENGTH (APPROXIMATE) 
1 inch (in) = 2.5 centimeters (cm) 1 millimeter (mm) = 0.04 inch (in) 
1 foot (ft) = 30 centimeters (cm) 1 centimeter (cm) = 0.4 inch (in) 

1 yard (yd) = 0.9 meter (m) 1 meter (m) = 3.3 feet (ft) 
1 mile (mi) = 1.6 kilometers (km) 1 meter (m) = 1.1 yards (yd) 

   1 kilometer (km) = 0.6 mile (mi) 

AREA (APPROXIMATE) AREA (APPROXIMATE) 
1 square inch (sq in, in2) = 6.5 square centimeters (cm2) 1 square centimeter (cm2) = 0.16 square inch (sq in, in2) 

1 square foot (sq ft, ft2) = 0.09  square meter (m2) 1 square meter (m2) = 1.2 square yards (sq yd, yd2) 
1 square yard (sq yd, yd2) = 0.8 square meter (m2) 1 square kilometer (km2) = 0.4 square mile (sq mi, mi2) 
1 square mile (sq mi, mi2) = 2.6 square kilometers (km2) 10,000 square meters (m2) = 1 hectare (ha) = 2.5 acres 

1 acre = 0.4 hectare (he) = 4,000 square meters (m2)    

MASS - WEIGHT (APPROXIMATE) MASS - WEIGHT (APPROXIMATE) 
1 ounce (oz) = 28 grams (gm) 1 gram (gm) = 0.036 ounce (oz) 
1 pound (lb) = 0.45 kilogram (kg) 1 kilogram (kg) = 2.2 pounds (lb) 

1 short ton = 2,000 pounds 
(lb) 

= 0.9 tonne (t) 1 tonne (t) 
 

= 
= 

1,000 kilograms (kg) 
1.1 short tons 

VOLUME (APPROXIMATE) VOLUME (APPROXIMATE) 
1 teaspoon (tsp) = 5 milliliters (ml) 1 milliliter (ml) = 0.03 fluid ounce (fl oz) 

1 tablespoon (tbsp) = 15 milliliters (ml) 1 liter (l) = 2.1 pints (pt) 
1 fluid ounce (fl oz) = 30 milliliters (ml) 1 liter (l) = 1.06 quarts (qt) 

1 cup (c) = 0.24 liter (l) 1 liter (l) = 0.26 gallon (gal) 
1 pint (pt) = 0.47 liter (l)    

 1 quart (qt) = 0.96 liter (l)    
1 gallon (gal) = 3.8 liters (l)    

1 cubic foot (cu ft, ft3) = 0.03 cubic meter (m3) 1 cubic meter (m3) = 36 cubic feet (cu ft, ft3) 
1 cubic yard (cu yd, yd3) = 0.76 cubic meter (m3) 1 cubic meter (m3) = 1.3 cubic yards (cu yd, yd3) 

TEMPERATURE (EXACT) TEMPERATURE (EXACT) 

[(x-32)(5/9)] °F = y °C [(9/5) y + 32] °C  = x °F 

QUICK INCH - CENTIMETER LENGTH CONVERSION
10 2 3 4 5

Inches
Centimeters 0 1 3 4 52 6 1110987 1312  

QUICK FAHRENHEIT - CELSIUS TEMPERATURE CONVERSIO
     -40° -22° -4° 14° 32° 50° 68° 86° 104° 122° 140° 158° 176° 194° 212°

  

°F

  °C -40° -30° -20° -10° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 100°
 

 For more exact and or other conversion factors, see NIST Miscellaneous Publication 286, Units of Weights and 
Measures. Price $2.50 SD Catalog No. C13 10286 Updated 6/17/98 



iii 

Contents 

Executive Summary ........................................................................................................................ 1 

Introduction ................................................................................................................. 3 
1.1 Background ................................................................................................................. 3 
1.2 Objectives .................................................................................................................... 3 
1.3 Overall Approach ........................................................................................................ 4 
1.4 Scope ........................................................................................................................... 4 
1.5 Organization of the Report .......................................................................................... 5 

Use of Umler® Data for Estimating Train Brake Force ............................................. 6 
2.1 Umler® Data Research ................................................................................................ 6 
2.2 Simulations using Data from Umler® ....................................................................... 10 
2.3 Brake Shoe Force Measurements of Freight Cars ..................................................... 15 
2.4 Summary ................................................................................................................... 21 

Weighted PTC Braking Enforcement Algorithm Evaluation .................................... 23 
3.1 Overview of Current Enforcement Algorithm Evaluation Methodology ................. 23 
3.2 Description of Weighted Evaluation Methodology ................................................... 23 
3.3 Track Data for Weighted Evaluation ......................................................................... 24 
3.4 Operational Data for Weighted Evaluation ............................................................... 27 
3.5 Simulation Analysis using Weight Evaluation .......................................................... 32 
3.6 Summary ................................................................................................................... 34 

Conclusion ................................................................................................................. 36 

Abbreviations and Acronyms ....................................................................................................... 38 



 

 iv 

Illustrations 

Figure 1. Simulation Software Tools ............................................................................................ 11 

Figure 2. Brake Force Measurements Versus Umler® Brake Force Calculations  for Cars without 
Empty-Load Devices ............................................................................................................ 19 

Figure 3. Brake Force Measurements Versus Umler® Brake Force Calculations  for Cars with 
Empty-Load Devices ............................................................................................................ 21 

Figure 4. Example Histogram and Plot from R ............................................................................ 26 

 



 

 v 

Tables 

Table 1. Nominal Umler® Brake Force Calulation using Train Type ........................................... 8 

Table 2. Maximum Brake Force Calculations for Umler® Method ............................................... 8 

Table 3. Minimum Brake Force Calculations for Umler® Method ............................................... 9 

Table 4 - Train Consist Parameters for Simulation Testing ......................................................... 12 

Table 5. Results for Base Case and Umler® Simulations ............................................................ 14 

Table 6. JIM SHOE Measurements .............................................................................................. 17 

Table 7. JIM SHOE™ Measurements for Empty-Load Equipped Cars ....................................... 19 

Table 8. Simulated Track Grade Bins ........................................................................................... 24 

Table 9. Simulated Track Probabilities ......................................................................................... 27 

Table 10. Data for Intermodal Consists used in Simulations........................................................ 27 

Table 11. Data for Manifest Consists used in Simulations ........................................................... 27 

Table 12. Data for Unit Consists used in Simulations .................................................................. 28 

Table 13. Intermodal Consist Train Lengths ................................................................................ 28 

Table 14. Manifest Consist Train Lengths .................................................................................... 28 

Table 15. Unit Consist Train Lengths ........................................................................................... 28 

Table 16. Example of Combining Similar Trains within a Train Type to get Overall Average and 
Standard Deviation of Train Length ..................................................................................... 30 

Table 17. Intermodal Consist Type and Track Grade Probabilities using  Normal (right-skewed) 
Distribution ........................................................................................................................... 31 

Table 18. Unit Consist Type and Track Grade Probabilities using  Normal (right-skewed) 
Distribution ........................................................................................................................... 31 

Table 19 – Manifest Consist Type and Track Grade Probabilities using  Normal (right-skewed) 
Distribution ........................................................................................................................... 32 

Table 20. Analysis for Simulations with Emergency Brake Backup Disabled ............................ 32 

Table 21. Analysis for Simulations with Emergency Brake Backup Enabled ............................. 33 

 



 

 1 

Executive Summary 

Federal Railroad Administration (FRA) sponsored a research project, executed by Transportation 
Technology Center, Inc. (TTCI) to investigate methods for enhancing the data used by Positive 
Train Control (PTC) freight braking algorithms and the process by which PTC freight braking 
algorithms are evaluated. This work was performed between February 2013 and December 2014.  
TTCI researched data fields available in Umler®, a system used by North American railroads for 
tracking and managing rail cars, to determine if a back-office process could use these data to 
calculate an estimated train brake force. This estimated brake force could then be supplied to the 
PTC onboard segment to provide the system with improved brake force information, improving 
the accuracy of PTC-enforced train stops. Two methods of calculating train brake force using 
data from Umler® were developed from this research: The first method used the consist 
information currently used for PTC along with a train type of unit, manifest, or intermodal, to 
calculate an estimated train break force. The second method used detailed information on a car-
by-car basis to calculate an estimated train break force. Monte Carlo simulations were executed 
using both methods along with the current method of calculating train brake force with summary 
consist data available to the onboard system.  
Results from these simulations show that there is a general increase in the probability of a train 
stopping short of the target, which improves the safety performance of the algorithm, and a 
general decrease in the distance a train stops short of the target, which improves the operational 
performance of the system, when using the Umler®-calculated brake force. The results also 
indicate that the improvement in the safety and operational performances of the system is the 
greatest when using the detailed information from each car to estimate the train brake force using 
the Umler® data. 
TTCI manually measured the brake shoe force on a range of railroad vehicles and compared the 
measurement results with the estimated train brake force using car data from Umler®. Brake 
force values from these measurements show that the estimated train brake force calculated using 
car data from Umler®, for this data set, results in a reasonable brake force estimate. 
TTCI worked with two freight railroads to gather track and operational data. These data were 
then used to develop weighted values for simulated scenarios as part of a Monte Carlo process. 
This determined that some scenarios are much more common than others, which resulted in high 
weighted values for these scenarios.  
The Monte Carlo simulations were evaluated using the weighted values developed in this study 
and compared to the results without the weighted values. Results from the comparison show the 
overall probability of stopping short of the target was higher at 99.86 percent, without using 
weighted values, to 99.71 percent, using weighted values. This indicates that the overall 
probability of the simulated train stopping short of the target is not greatly affected by the 
weighting process. However, there are differences when looking at individual train types, which 
may lead to insights about the braking algorithm performance. 
From an operational performance perspective, the braking algorithm was evaluated using the 
probability of trains stopping greater than 500 feet short of the target, when operating at less than 
30 mph, and greater than 1,200 feet short of the target, when operating at 30 mph or above. The 
comparison indicates there was a significant decrease in the probability of trains stopping greater 
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than 500 feet short of the target when operating under 30 mph with the weighted evaluation. This 
indicates that the braking algorithm performs better, from an operational standpoint, on trains in 
scenarios that are more frequently encountered, when operating at less than 30 mph. For 
scenarios with trains operating at 30 mph or above, there was a general increase in the 
probability of trains stopping greater than 1,200 feet short of the target with the weighted 
evaluation. This indicates that the braking algorithm performs better, from an operational 
standpoint, on trains in scenarios that are less frequently encountered, when operating at speeds 
of 30 mph or greater. Overall, the weighted evaluation gives a different view of how a PTC 
enforcement braking algorithm is performing and provides some insight on how the current 
Monte Carlo scenarios relate to railroad operational data. 
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 Introduction 

The Federal Railroad Administration (FRA) sponsored a research project, executed by 
Transportation Technology Center, Inc. (TTCI), to investigate methods for enhancing the data 
used by Positive Train Control (PTC) freight braking algorithms and the process by which PTC 
freight braking algorithms are evaluated. Existing methods for evaluating PTC braking 
algorithms were developed using Monte Carlo simulation techniques, and methods for improving 
the performance of PTC braking algorithms were identified, simulated and tested. This project 
expanded on these methods, to determine how the algorithms could be improved with better data, 
and how the evaluation process could be improved by weighting the scenarios investigated in the 
Monte Carlo methodology according to their frequency in actual freight railroad operations. 

1.1 Background 
PTC is an emerging train control technology intended to enhance safety. The underlying concept 
of the technology is that movement authorities and speed restrictions are transmitted digitally to 
the controlling locomotive of each train. The locomotive monitors the train’s location with 
respect to its authority and speed limits, and then automatically applies brakes to prevent the 
train from violating any limit in the event of human failure. 
Enforcement braking is an event of last recourse when the locomotive engineer has failed to, or 
is unable to, take adequate action, after being warned by the PTC system. In PTC applications to 
date, the enforcement braking system consists of a full-service brake application, which can be 
followed by an emergency brake application, if needed, in trains that have emergency brake 
functionality enabled. 
A standard methodology was established by which any PTC enforcement algorithm could be 
evaluated to demonstrate that it meets certain design objectives, such as safety and performance 
measures. The Monte Carlo simulation techniques were used to statistically evaluate the 
performance characteristics of the enforcement algorithm as well as small samples of field 
testing used to validate the results achieved from the simulation modeling process. This 
methodology is now being used to verify the performance of production-level enforcement 
algorithms within the industry, to provide better safety and performance data for the system, with 
reduced time and costs associated with lengthy field testing processes that have traditionally 
been required.  

1.2 Objectives 
The objectives of this project are presented below. 

Use of Umler® Data 
The first objective was to evaluate potential improvements in the safety and performance of the 
PTC braking algorithm and to improve the accuracy of the train brake force estimate through the 
use of Umler®1 data.  

1 Umler® is a registered trademark of Railinc Corp. 
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Weighted Evaluation 
The second objective was to assess the methodology for evaluating enforcement algorithms from 
the current approach. The current methodology assumed every scenario simulated has the same 
probability of being seen in revenue service, to a weighted evaluation. However, each scenario 
has a different probability determined by how commonly that scenario is encountered in revenue 
service. The data used from this evaluation presented a clearer picture of how the algorithm will 
perform in revenue service. 

1.3 Overall Approach 
The Umler® fields and database were reviewed to identify fields to help determine car brake 
force. Then a methodology was developed to calculate the brake force for each car using the data 
available. The simulation process was modified so this brake force could be provided to the 
braking algorithm. Simulations were then run using the Monte Carlo variations for three different 
cases; a base case, which uses the Interoperable Electronic Train Management System (I-
ETMS®2) braking algorithm with an onboard brake force calculation; an Umler® train 
information case, which uses an average brake force per train type derived from Umler® data; 
and, an Umler® car information case, which uses a brake force calculated at a car level using 
Umler® data. Analyses showed there is potential benefit by using data from Umler®. 
For the weighted evaluation, operational and track data from the railroads were used to modify 
the evaluation methodology to a weighted scenario approach. The current methodology weights 
every scenario in the simulation test matrix the same during the analysis of the Monte Carlo 
simulations. This study was used to apply weighting, using data received from the railroads, to 
each of the scenarios during the analysis process to evaluate the enforcement algorithm. Results 
from using the weighted evaluation approach were compared against results from the current 
evaluation process.  

1.4 Scope  
The scope of this project focused on the use of individual car Umler® data and developing a 
weighted evaluation methodology to enhance PTC freight braking.  

Use of Umler® Data 
The scope of this task focused on developing and simulating methods for improving the brake 
force supplied to the algorithm using data from Umler®, to calculate the predicted stopping 
distance of a freight train more accurately. These results were compared to the Monte Carlo 
simulations with the same algorithm using a nominal brake force calculation based on car type. 
The scope of this task also included data collection on freight railroad cars. The information 
collected included; measured brake shoe force, brake valve(s) types, stenciled car information, 
empty-load cars, brake rigging type, and other visual inspections. The collected data was used to 
support the method developed to calculate brake force based on information in Umler®. 

2 I-ETMS® is a registered trademark of Wabtec Corporation  
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Weighted Evaluation 
The scope of this task was to develop a weighted evaluation methodology during the analysis of 
the Monte Carlo simulations. The weighted evaluation was produced using operational and track 
data from the railroads. A weighted value was generated for all the scenarios simulated in the 
Monte Carlo test matrix, based on the frequency that scenario was encountered in the operational 
and track data. These weighted values were then used during the analysis of the simulation 
results and compared to the current process.  

1.5 Organization of the Report 
This report is organized in four major sections. Section 1 is the introduction, which includes 
background information and discusses the project’s objectives, scope, and overall approach. 
Section 2 is a detailed description of using Umler® data for estimating train brake force, a 
breakdown of the work completed, and results. Section 3 is a detailed description of the weighted 
PTC braking enforcement algorithm evaluation, a breakdown of the work completed, and the 
results. Section 4 provides a brief summary of conclusions.  
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 Use of Umler® Data for Estimating Train Brake Force 

The braking enforcement function of the PTC system is critical in ensuring that trains comply 
with movement authorities and speed limits. There are a number of parameters that can affect the 
braking distance of a freight train and it is not practical, or even possible, to provide the onboard 
system with all of the information required to predict the stopping distance with absolute 
certainty. Currently, the braking algorithm estimates the train brake force using the information it 
is supplied for the consist, which includes trailing tonnage, number of loaded cars, number of 
empty cars, number and position of locomotives, train length, and number of axles.  
This project explores the concept of using Umler® data to calculate the brake force for the train 
and provide the locomotive onboard computer with the calculated brake force to be used in the 
braking enforcement algorithm. The analysis of the enforcement algorithm, using this force in 
the stopping distance predictions, is compared to the current method to show potential 
improvements.  

2.1 Umler® Data Research 
The Umler® system is an electronic resource that contains information for more than two million 
pieces of equipment used for North American rail transportation. Railroads and equipment 
owners provide equipment information includes: internal and external dimensions, capacities, 
light weight and load limit, build date and re-build date, and many other specific characteristics 
of the freight cars. The data in Umler® was studied and a number of fields were identified as 
applicable for calculating the brake force. A description of these fields is provided in Section 
2.1.1 and the method of calculating the brake force using these fields is outlined in Section 2.1.2. 

Umler® Fields Related to Break Force 
Five fields that pertain to the braking characteristics of cars were identified in the Umler® data. 
These fields are: 

1. Build date/rebuild date 
2. Tare weight 
3. Gross rail load (GRL) 
4. Empty-load equipped 
5. Car type 

The build date/rebuild date field gives information about the Association of American Railroads 
(AAR) braking system specifications placed in the car when it was built or last rebuilt. These 
specifications include minimum and maximum net brake ratios for the freight equipment. 
The tare weight, GRL and the minimum and maximum net brake ratios are used to determine the 
brake force range for the specific car in question. 
The empty-load equipped and car type fields can be used to further define the brake force range 
for the specific car in question. 
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Brake Force Calculation using Umler® Fields 
The information used to calculate brake force using the Umler® approach includes a 
combination of train consist information and data from the Umler® database. Below is a list of 
car data that is used in the brake force calculation, followed by a description of how the data is 
used to calculate the brake force.  

6. Back Office Consist Information 
─ Number of loaded and empty cars 
─ Train type  
─ Number of axles 

7. Umler® Database 
─ Empty-load equipped 
─ Build date or rebuild date 
─ Gross rail load (GRL) 
─ Tare weight 
─ Car type 

For the methodology described below, it is assumed that the data fields used from Umler® 
would be available to the railroads and data within these fields are up-to-date and valid. If data is 
missing in Umler® or data in Umler® is not available to railroads, then additional assumptions 
may need to be used for those cars, which could result in these methods being more conservative 
than current methods of calculating brake force. 

Umler® Brake Force Calculation using Train Type Information 
The method developed for calculating brake force using Umler® data, on a train type level, uses 
a lookup table of empty and loaded car brake forces, based on train type. This method for 
calculating brake force uses the back office consist information, which includes: train type, 
trailing tonnage, number of loaded cars, number of empty cars, number and position of 
locomotives, train length, and number of axles with the brake force values, per train type, 
calculated from Umler®.  
Table 1 shows the nominal brake force values for each train type calculated using the Umler® 
data. These values were calculated by identifying the cars in Umler® that fit into each train type 
and then calculating a brake force for each of the cars, in each train type, based on the calculation 
described in Section 2.1.2, subsection Umler® Brake Force Calculation using Car Information, 
and then using that data to produce a nominal empty brake force and a nominal loaded brake 
force per train type. 
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Table 1. Nominal Umler® Brake Force Calulation using Train Type 

Train Type 
Nominal Loaded Car 
Brake Shoe Force per 

Axle (lbs) at 64 psi BCP 

Nominal Empty Car 
Brake Shoe Force per 

Axle (lbs) at 64 psi BCP 

Unit Freight 0.093∗WCARS
NAXLES

4962 

Unit Aluminum 
Coal 

0.11∗WCARS
NAXLES

3975 

Manifest Freight 5870 5044 
Intermodal Freight 6895 3746 

In Table 1, WCARS is the total GRL (gross rail load) of the cars in the consist and NAXLES is the 
total number of car axles in the consist.  

Umler® Brake Force Calculation using Car Information 
The method developed for calculating brake force using Umler® data, on a car level, includes 
calculating a minimum and maximum brake force for the car based on the car’s build date, GRL, 
tare weight, and car type. Table 2 shows the two different maximum brake force values that are 
calculated based on the car’s build date and car type. The maximum brake force calculations are 
calculated from the AAR specifications for maximum net brake ratio at the time the car was 
built. Maximum force #1 is the maximum brake force the car can have when fully loaded and 
maximum force #2 is the maximum brake force the car can have when empty. The lesser of the 
two values is used for the maximum brake force for that car, assuming the car is not empty-load 
device equipped.  

Table 2. Maximum Brake Force Calculations for Umler® Method 

Build/Re-Build Date Car Type Maximum Force #1 Maximum Force #2 

1998 and Earlier All Car Types GRL * 0.1286 Tare Weight * 0.3857 

From 1999 to 2003 All Car Types GRL * 0.13 Tare Weight * 0.38 

2004 and After All Car Types GRL * 0.14 Tare Weight * 0.32 

Table 3 shows the minimum brake force calculation based on the car’s build date and car type. 
The minimum brake force calculation is based on the AAR specification for the minimum net 
brake ratio at the time the car was built. The calculated minimum brake force also assumes a net 
brake ratio 1 percent less than the AAR specified minimum net brake ratio (e.g., 7.5 percent net 
brake ratio if the AAR specification was 8.5 percent) to account for degradation of the braking 
system over time [1]. 
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Table 3. Minimum Brake Force Calculations for Umler® Method 

Build/Re-Build Date Car Type Minimum Force 

1998 and Earlier All Car Types GRL * 0.07 

From 1999 to 2002 Intermodal (TOFC) GRL * 0.10 

From 1999 to 2002 General Freight and Unit GRL * 0.075 

2003 and After All Car Types GRL * 0.10 

   
Next, a check is made to see if the car is equipped with an empty-load device. This is done by 
looking at the empty-load equipped field in the Umler® database. A check is also made to 
determine if the minimum calculated brake force is larger than the maximum calculated brake 
force. If this is the case, then the car must be empty-load device equipped. If the car is 
determined to have an empty-load device, whether from the Umler® database or the check with 
the minimum and maximum brake forces, then the brake force is calculated using the formula 
below.  

𝐼𝐼𝐼𝐼 𝑐𝑐𝑐𝑐𝑐𝑐 ℎ𝑐𝑐𝑎𝑎 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐿𝐿𝐿𝐿𝑐𝑐𝐿𝐿 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝐷𝐷: 

𝐵𝐵𝑐𝑐𝑐𝑐𝐵𝐵𝐷𝐷 𝐹𝐹𝐿𝐿𝑐𝑐𝑐𝑐𝐷𝐷 = (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 #1+𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)
2

    #1 

The maximum brake force for the fully loaded position can be used in this case because the car is 
equipped with an empty-load device, which lowers the brake force when in the empty position, 
so there is no concern of exceeding the maximum brake force in the empty position. The Umler® 
brake force calculated if the car is empty-load equipped is the average of the maximum and 
minimum brake force for the car. Consist information is then used to determine if the car is 
loaded or empty. If the car is loaded then the empty-load brake force calculated in the above 
formula is used for that car. If the car is empty then the empty-load brake force calculated in the 
above formula is divided by 2. There are a variety of empty-load devices in service that limit the 
brake force of the car, when in the empty position, to 40-60 percent of the loaded brake force. 
For this study, it was assumed that all cars equipped with an empty-load device, are equipped 
with a 50 percent empty-load device. If more information on the type of empty-load device was 
available in Umler®, then a better prediction could be made. 
If the car is not equipped with an empty-load device, then the brake force is calculated by using 
the average of the maximum and minimum brake force for the car, with the maximum brake 
force being the lesser of maximum force #1 and maximum force #2. The same force is used 
whether the car is loaded or empty. The formula for calculating brake force for cars not equipped 
with an empty-load device is shown below. 
 

𝐼𝐼𝐼𝐼 𝑐𝑐𝑐𝑐𝑐𝑐 𝐿𝐿𝐿𝐿𝐷𝐷𝑎𝑎 𝑛𝑛𝐿𝐿𝐸𝐸 ℎ𝑐𝑐𝐷𝐷𝐷𝐷 𝑐𝑐𝑛𝑛 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐿𝐿𝐿𝐿𝑐𝑐𝐿𝐿 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝐷𝐷:, 

𝐵𝐵𝑐𝑐𝑐𝑐𝐵𝐵𝐷𝐷 𝐹𝐹𝐿𝐿𝑐𝑐𝑐𝑐𝐷𝐷 = (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹+𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)
2

   #2 

𝑤𝑤ℎ𝐷𝐷𝑐𝑐𝐷𝐷 𝑀𝑀𝑐𝑐𝑀𝑀𝐷𝐷𝐸𝐸𝑀𝑀𝐸𝐸 𝐹𝐹𝐿𝐿𝑐𝑐𝑐𝑐𝐷𝐷 𝐷𝐷𝑎𝑎 𝐷𝐷𝑒𝑒𝑀𝑀𝑐𝑐𝑒𝑒 𝐸𝐸𝐿𝐿 𝐸𝐸ℎ𝐷𝐷 𝑒𝑒𝐷𝐷𝑎𝑎𝑎𝑎𝐷𝐷𝑐𝑐 𝐿𝐿𝐼𝐼 𝑀𝑀𝑐𝑐𝑀𝑀𝐷𝐷𝐸𝐸𝑀𝑀𝐸𝐸 𝐹𝐹𝐿𝐿𝑐𝑐𝑐𝑐𝐷𝐷 #1 𝑐𝑐𝑛𝑛𝐿𝐿 𝑀𝑀𝑐𝑐𝑀𝑀𝐷𝐷𝐸𝐸𝑀𝑀𝐸𝐸 𝐹𝐹𝐿𝐿𝑐𝑐𝑐𝑐𝐷𝐷 #2  
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Whether the car is equipped with an empty-load device or not, the above calculations assume the 
brake force for the car is the average of the maximum and minimum brake force for that car. For 
this project, the average was used to approximate the brake force, but if additional information 
was available within Umler®, then a more accurate brake force could be calculated for each car. 
This additional information could include: 

8. Actual specifications the car was built to 
─ Loaded brake force ratio 
─ Empty brake force ratio 

9. Brake force measurements from actual car or another car within the same series of 
cars 

10. Empty-load device type, if equipped 
─ 40 percent, 50 percent, or 60 percent empty-load device 

2.2 Simulations using Data from Umler® 
The simulation methodology used was the Monte Carlo process that was developed and 
documented in Task Order 242 [2]. The simulation testing makes use of a set of computer 
software tools to employ a Monte Carlo simulation process that results in a set of output data that 
can be analyzed to identify the statistical probability and confidence that the algorithm will meet 
the specified safety and performance criteria. The Monte Carlo method involves running large 
numbers of simulations with inputs to the simulations randomly assigned on the basis of the 
practical and physical distributions and limits that define the system. Because of the wide range 
of parameters that affect the stopping distance of a freight train and the interdependence of these 
parameters, a deterministic evaluation is not feasible, making the Monte Carlo simulation 
process the preferred method of evaluating the enforcement algorithm.  
The simulation process for this project was modified to include the capability of calculating the 
brake force using the consist information for each simulation and providing the enforcement 
algorithm the calculated brake force to use in the predictive stopping distance calculations.  

Overview of Simulation Testing Process 
The simulation testing process is intended to evaluate the enforcement algorithm over a full 
range of operating scenarios that the system is expected to encounter and considering the 
practical variability of the parameters that can have a significant effect on the stopping distance 
of the train. The simulations are organized into test scenarios, each of which represents a 
potential operating scenario for the system to encounter. Each test scenario is defined by the 
nominal train consist, the nominal track profile, the initial speed and location of the train, and the 
target stopping position. The full Monte Carlo test matrix consists of 4,262 scenarios and a 
subset of 1,528 scenarios was used in this study. 
Multiple braking enforcement simulations were run for each test scenario. The values of the 
parameters that can have a significant effect on train stopping distance were randomly selected 
for each simulation from distributions that represent the practical range of values for the given 
parameter. 
To make the simulation process more efficient, the test scenarios are organized into batches that 
are executed together. A batch could contain any number of test scenarios, each representing a 
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different nominal operating scenario. For this project, each test scenario contained 100 individual 
simulations, each representing a potential specific instance of the test scenario. 
For each individual simulation test, the brake force was calculated for the train, either from the 
onboard calculation or from one of the Umler® calculations, and provided to the algorithm. The 
train was simulated approaching the target at the defined initial speed, the enforcement algorithm 
triggered a brake application to prevent a violation of the stop target, and the response of the 
train was simulated. The result of each individual simulation represents a single possible 
stopping location for the given test scenario with the given enforcement algorithm. The 
aggregate result of the simulations for the entire test scenario then defines the distribution of 
possible outcomes. This data was analyzed to determine the safety and performance 
characteristics of the enforcement algorithm for the given test scenario. These characteristics can 
then be analyzed together to quantify the overall safety and performance characteristics of the 
enforcement algorithm.  

Simulation Testing Tools 
The simulation testing tools used for this project are the same that were developed for Task 
Order 242 [2]. A description of the tools is provided below as well as illustrated in Figure 1: 

11. The Simulation Model, the Train Operations and Energy Simulator (TOES™), is 
a proven, validated train action simulation model that accurately models the 
response of a given train under given conditions, with the ability to modify train, 
track, and environmental characteristics that can affect the stopping distance of 
the train. 

12. The test controller/logger (TCL) is a software application that can generate the 
simulation inputs to the model from input provided by the user, run large batches 
of simulations using Monte Carlo simulation techniques, and log the required 
output. 

13. The enforcement algorithm under evaluation is the PTC braking enforcement 
algorithm, implemented as a standalone software application incorporating a 
common interface to the simulation test components to receive train status and 
command brake enforcement applications. 

 
Figure 1. Simulation Software Tools 

Test Matrix Used 
The test matrix used for this project is a subset of the full test matrix that was defined in Task 
Order 242 [2]. A subset was used to reduce the total number of simulations that needed to be 
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performed for this study, while still maintaining a large enough sample of the different train 
types to quantify any potential improvement from using brake force calculated with Umler® 
data. 
The train consists included in the simulation test matrix represent a range of nominal train 
consists that are regularly and frequently run by the railroads. Each consist is made up of an 
arrangement of nominal cars, each with a given load. The specific car characteristics that affect 
braking performance are set to nominal values, which are then varied in the Monte Carlo 
simulation process. The following three groups of train consists were used in the simulations: 

• Unit freight—Trains consisting entirely of a single car type that are typically all loaded to 
capacity or empty. These are typically bulk commodity trains, such as coal or grain trains. 

• Manifest freight—Trains consisting of a mix of car types and loads. 
• Intermodal freight—Trains consisting entirely of intermodal cars that are typically all loaded 

or empty, although the weight of the loads varies considerably. 
For each train type, a range of train makeups, train lengths, train loading conditions, and 
locomotive arrangements were identified. For both the manifest freight and intermodal trains, a 
pseudo-random process for generating train makeup and car loading was developed. Train make-
ups developed from Task Order 242 [2] were used for this project. Table 4 summarizes the 
consists used for each of the three train types. 

Table 4 - Train Consist Parameters for Simulation Testing 
 Unit Freight Manifest Freight Intermodal Freight 

Train  
Makeup 

Homogenous makeup of: 
• Aluminum hoppers 
• Steel hoppers 
• Covered hoppers 
• Tank cars 
• Refrigerated box cars 
• Multi-levels (vehicular 

flat cars) 

Pseudo-random mix of: 
• Box cars 
• Covered hoppers 
• Gondolas 
• Flat cars 
• Open-top hoppers 
• Aluminum coal gondolas 
• Tank cars 
• TOFC/COFC flats 
• Multi-level cars 

(vehicular flats cars) 

Pseudo-random mix of: 
• Single-platform 

intermodal well cars 
• Three-pack intermodal 

well cars 
• Five-pack intermodal 

well cars 

Train Length 

• 100 cars 
• 135 cars 

 

• 40 cars 
• 100 cars 
• 150 cars 
• 200 cars 

 

• Short (~ 5,000 ft) 
• Medium (~ 7,500 ft) 
• Long (~ 10,000 ft) 

Train Loading 
Condition 

• Fully loaded 
• Fully empty 

Pseudo-random loading from 
historical consist data 

• Loaded with pseudo-
random loading from 
historical consist data 

• Empty with pseudo-
random loading from 
historical consist data 

Locomotive 
Arrangement 

• Head end (100-car 
trains only) 

• Head and rear (100-car 
and 135-car trains) 

• Head, mid, and rear 
(135-car trains only) 

• Head end (40-car and 
100-car trains) 

• Head and rear (100-car, 
150-car, and 200-car  
trains) 

• Head end (short and 
medium trains) 

• Head and rear (short, 
medium, and long 
trains) 
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• Head, mid, and rear 
(150-car and 200-car 
trains) 

• Head, mid, and rear 
(long trains only) 

Simulation Testing 
Simulation testing was completed three times applying three different brake force calculations 
for the enforcement algorithm to use in the stopping prediction calculations. The base case brake 
force is an onboard brake calculation from the current I-ETMS enforcement algorithm; the 
Umler® train type brake force calculation is the brake force calculated by using Umler® and 
train type information; and the Umler® car type brake force calculation is the brake force that 
uses Umler® and individual car information. All three simulation sets used the same test matrix 
made up of consists shown in Table 4. Section 2.2.5 provides a comparison of the results from 
the simulations. 

Base Case Simulations 
These simulations were executed by allowing the onboard system to calculate the brake force for 
the consist based on the back office consist information it receives for each simulation. This is 
the brake force that the enforcement algorithm currently uses. 

Umler® Train Type Simulations 
These simulations were executed by providing the brake algorithm the brake force calculated  
using the back office consist information and the Umler® brake force data per train type, as 
described in Section 2.1.2, subsection Umler® Brake Force Calculation using Train Type 
Information. Every simulation in the test matrix was provided the calculated brake force for the 
consist used in that simulation.  

Umler® Car Type Simulations 
These simulations were executed by providing the brake algorithm the brake force calculated  
using the back office consist information, individual car information,  and the Umler® brake 
force data per car type, as described in Section 2.1.2, subsection Umler® Brake Force 
Calculation using Car Type Information. Every simulation in the test matrix was provided the 
calculated brake force for the consist used in that simulation.  

Comparison of Brake Force Calculation Methods 
To evaluate the potential improvement with each method of brake force calculation, the resulting 
safety and performance metrics using each method were compared. The safety metric is the 
probability the train stops short of the target. The performance metric is the probability that the 
train stops within 500 feet of the target if the train is traveling less than 30 mph and within 1200 
feet of the target if the train is traveling at 30 mph or more. Table 5 shows these results for the 
three different sets of simulations. This table includes the probability of stopping short of the 
target, the probability of stopping short of the performance metric at speeds less than 30 mph, 
and the probability of stopping short of the performance metric at speeds of 30 mph and more. 
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Table 5. Results for Base Case and Umler® Simulations 
 Probability of 

Stopping 
short of 
Target 

Probability of Stopping 
Short of Performance 

Metric <30mph 

Probability of 
Stopping Short of 

Performance Metric 
>=30mph 

Intermodal Base 99.97% 18.08% 15.99% 
Intermodal Umler® Train  99.97% 18.07% 15.09% 
Intermodal Umler® Car  99.99% 18.12% 15.67% 
Manifest Base 99.98% 18.02% 20.30% 
Manifest Umler® Train  99.97% 17.27% 17.04% 
Manifest Umler® Car  99.95% 17.19% 15.59% 
Unit Base 99.60% 14.24% 18.23% 
Unit Umler® Train  99.97% 13.96% 13.29% 
Unit Umler® Car  99.99% 13.90% 13.21% 

 
Table 5 shows that there is a general increase in the algorithm performance, both from an 
increase in the probability of stopping short of the target and a general decrease in stopping short 
of the performance metric, when using the Umler® calculated brake force. This is more 
pronounced when using the individual car brake force Umler® calculation over the train type 
Umler® calculation. 
There is more benefit from the Umler® calculations, using either the individual car brake force 
calculation or the train type brake force calculation, seen in the unit train type, which includes 
unit coal, unit covered hopper, unit multi-level, unit refrigerated box car, and unit tank car trains. 
These different unit train car types are combined when calculating the brake force for the unit 
train type. However, there can be significant differences in brake force between these different 
unit train car types. Since these unit train car types are not all the same, the result is an average 
brake force for unit trains that is significantly greater than the brake force on some of the unit 
train car types and significantly lower than the brake force on other unit train car types.  
This is shown in the more detailed simulation results by comparing the enforcement locations for 
the simulations run using the Umler® train type brake force method and for the simulations 
using the Umler® car brake force method. The enforcement location for three of the unit trains 
(steel coal, covered hopper, and tank) is further from the target when using the brake force 
calculation based on the individual cars, because they all have a lower brake force value per car 
than the average brake force per car calculated using all unit train car types. The opposite is seen 
for the other three unit trains (aluminum coal, refrigerated box, and multi-level) because they all 
have a higher brake force value per car than the average brake force per car calculated using all 
unit train car types. 
Using the Umler® brake force calculation for the individual cars also decreased the number of 
overruns observed in the simulations to 9, compared with 23 observed when using the Umler® 
brake force calculation for the train type. Both Umler® calculated brake force methods resulted 
in a reduction in the number of overruns for the unit train simulations from the base case 
algorithm, which resulted in 277 overruns. Reductions in overruns were predominantly on the 
unit steel coal, unit covered hopper and unit tank trains, all of which enforced further away from 
the target when using the Umler® brake force calculation for train types compared to the base 
case, and enforced even further away from the target when using the Umler® brake force 
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calculations with individual car information. From this observation, it appears the average brake 
force calculated using Umler® data, results in a better estimation of the actual brake force than 
what is currently being used in the base case. 
Similar results can be seen with the manifest and intermodal trains, as all of the cars within those 
trains are not built the same, but the brake force for cars used in manifest and intermodal trains 
do not vary as much as what is seen in the different unit train car types. 
Another potential benefit from using the Umler® brake force calculations is a potential reduction 
in the target offset used. The probability of stopping short of the target using Umler® brake force 
calculations, train type or car type, shows that a reduction in the target offset may be possible, as 
all of the probabilities are at least 99.95 percent, which is greater than the established minimum 
of 99.5 percent. 

2.3 Brake Shoe Force Measurements of Freight Cars 
The brake shoe force on a limited number of freight cars was measured using the equipment 
described in Section 2.3.1 and data collection methods described in Section 2.3.2. 

Equipment Used 
Finding an accurate and efficient method to measure the force applied to a wheel by the brakes 
requires specialized equipment and processes. Inter Swiss Ltd. has a product that uses eight 
button cell load sensors (one per wheel) to collect simultaneous brake force readings on 
stationary cars. Their product, called JIM SHOE™3, is a brake force measurement system that 
uses sensors to replace the brake shoes to accurately measure the force applied by the brakes to 
each wheel. Each JIM SHOE™ contains a load cell that records the force readings and transmits 
it wirelessly to a hand-held device for review. When the brakes are applied, the load cell is 
pressed against the wheel and it measures a force value. A Brake-O Lator™4 Single Car Air Test 
device (BOL™) was used to activate the brakes. The BOL uses an independent air supply to 
charge the brake pipe and the auxiliary and emergency reservoirs to 90 psi and simulate the 
braking action of a train car. The BOL™ provides both brake pipe and brake cylinder pressure 
readings throughout the testing. 
Each set of JIM SHOE™ contains a spare load cell that could be used to replace any sensor that 
ceases recording data. The handheld device (Panasonic Toughbook Tablet) is equipped for 
various forms of data collection, included a pre-programmed process and continuous recording 
for up to an hour. 
Through this project, TTCI acquired this equipment from Inter Swiss Ltd. and worked with them 
to receive on-site training for the proper use of both the JIM SHOE™ and the BOL™. TTCI also 
worked with Inter Swiss Ltd. to provide feedback, which led to a few useful upgrades to the 
handheld device for the JIM SHOE™, and to receive repairs on the equipment when issues 
arose. 

3 JIM SHOE™ is a trademark of Inter Swiss Ltd. 
4 Brake-O Lator™ (BOL) is a trademark of Inter Swiss Ltd. 
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Test Setup and Data Collection 
For the testing conducted at the Transportation Technology Center (TTC), several types of cars 
were chosen, based on availability. These included box cars, flat cars, and hoppers. Each car was 
isolated from the consist, the brake shoes were replaced with JIM SHOE™ sensors, and the 
BOL™ was used to charge the brake pipe pressure to 90 psi, which also charges the auxiliary 
reservoir on the car to 90 psi. After exercising the brakes to ensure there were no issues with the 
braking system on the car and verifying that the brake pipe was in the fully charged state, a value 
was recorded for each brake cell as the zero for the test. The brake pipe pressure was then 
dropped to 50 psi at a full service rate to simulate a full service application. This brake pipe 
reduction is enough for the brake cylinder pressure to reach equalization with the auxiliary 
reservoir on the car. As the brake pipe pressure is reduced the auxiliary reservoir transfers air 
into the car’s brake cylinder via a control valve. The volume ratio between the auxiliary reservoir 
and the brake cylinder is approximately 2.5 to 1, so for 1 psi transferred from the auxiliary 
reservoir, the brake cylinder increases by 2.5 psi. The control value allows for this transfer of 
pressure until both the auxiliary reservoir and brake cylinder are at the same pressure. This 
equalization pressure occurs at a brake reduction of approximately 25.7 psi, from 90 psi brake 
pipe pressure, resulting in 64.3 psi in the auxiliary reservoir (90-25.7) and 64.25 psi in the brake 
cylinder (25.7 * 2.5). The car should be at its full service brake force once the brake cylinder has 
reached an equalization pressure of approximately 64.3 psi. Before a reading was recorded, the 
brake rigging was rapped with hammers, per AAR Manual of Standards and Recommended 
Practices Standard S-401 [3]. This rapping simulates travel over track and the jostling that 
occurs as the brakes apply when the car is moving. After readings were recorded for the full 
service brake shoe force, the brake pipe pressure was dropped to 0 psi at an emergency rate to 
simulate an emergency application. The brake rigging was again rapped before the emergency 
brake shoe force readings were recorded. This process was repeated twice for each car. 
Full service and emergency brake shoe force was recorded for each wheel, as well as information 
about each car such as: car mark, date built/rebuilt, tare and loaded weight, number of axles and 
trucks, service valve and emergency valve type, whether the car was empty-load device 
equipped, type of brake shoes, car length, and axle journal size. Ambient temperature, pressure, 
and weather conditions were also recorded. Brake pipe and brake cylinder pressure readings 
were noted for the fully charged, full service, and emergency service states for each test. Brake 
shoe force and pressure readings were recorded both directly by the handheld device connected 
to the JIM SHOE™ and manually by the engineers running the test. For cars equipped with an 
empty-load device, the car was tested in the empty position and then shims were used to activate 
the device, simulating the loaded position, and the test was repeated. A test implementation plan 
(TIP) was created for this testing. 
Similar testing was completed on a set of intermodal freight cars at a railroad yard. For this 
testing, the cars remained coupled and hand brakes and skates were used to prevent car 
movement. The brake pipe for the car under test was isolated from the other cars and connected 
to the BOL™, and the brake shoes were replaced by the JIM SHOE™. The same process 
described above was used to apply the brakes and record the data. A separate TIP was created for 
the brake force measurement testing at the railroad yard.  
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Data Analysis 
Data was collected from 57 cars; 10 cars were equipped with an empty-load device and 47 cars 
were not. Table 6 shows data from the JIM SHOE™ measurements on the cars without an 
empty-load device, as well as the minimum and maximum brake shoe force calculation using the 
Umler® brake shoe force calculation for individual cars. Umler® data for these cars was pulled 
from the Umler® database using the documented car markings during the testing, and the data 
was used to calculate the minimum and maximum brake shoe force for these cars.  

Table 6. JIM SHOE™ Measurements 

Test Car 
Number 

Average Measured Brake 
Shoe Force for Full Service 

Application (lbs.) 

Umler® Minimum Brake 
Force Calculation (lbs.) 

Umler® Maximum Brake 
Force Calculation (lbs.) 

1 24411 18410 33787 
2 24310 15400 24145 
3 27991 15400 24955 
4 20597 18410 24376 
5 19559 15400 23451 
6 24000 15400 28292 
7 29160 18410 29737 
8 25058 18410 24338 
9 22544 18410 25958 
10 22632 18410 25765 
11 24684 18410 24415 
12 22348 18410 24338 
13 339561 18410 23451 
14 23822 18410 25958 
15 24671 18410 25842 
16 28356 18410 24145 
17 26128 18410 24685 
18 18599 18410 23721 
19 15043 18410 23913 
20 18103 18410 23798 
21 22491 18410 23991 
22 26181 15400 28292 
23 25361 18410 27616 
24 20088 15400 25842 
25 23647 154102 263052 

26 25281 18410 23798 
27 25090 18410 25880 
28 28466 153722 263432 

29 29188 18410 33710 
30 30424 18410 33556 
31 20919 15400 28292 
32 25720 18410 33363 
33 24569 156802 288062 
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Test Car 
Number 

Average Measured Brake 
Shoe Force for Full Service 

Application (lbs.) 

Umler® Minimum Brake 
Force Calculation (lbs.) 

Umler® Maximum Brake 
Force Calculation (lbs.) 

34 167391 18410 24955 
35 24822 18410 32360 
36 20015 18410 25610 
37 20694 18410 25803 
38 24153 18410 25148 
39 24259 18410 24993 
40 18271 18410 25456 
41 19460 15400 28292 
42 20928 15400 28292 
43 23622 154002 282922 

44 21366 15400 28292 
45 15722 18410 23721 
46 24436 18410 23913 
47 24554 15400 28292 

1Brake cylinder pressure build up for both full service and emergency applications were incorrect for these cars 
2Stenciled data was used to calculate maximum and minimum brake force because data was not found in Umler® - 
possible reasons for this include (a) the stenciled car id was recorded incorrectly (b) the stenciled car id was 
unreadable or  (c) the car was removed from service and the Umler® record was deleted. 
As indicated in the first footnote in Table 6 and from test logs described in Section 2.3.2, it was 
observed for test car 13 that the full service brake cylinder pressure built up to 77.7 psi instead of 
the expected 64 psi, causing the measured brake force for this car to be higher than expected. For 
test car 34, the brake cylinder pressure built up to 72 psi for a full service brake set, which is 
higher than the expected 64 psi, but the measured brake force was still lower than expected. The 
observations from these two cars indicate that repair work is needed on test car 16’s braking 
system and test car 34’s braking system.  
Figure 2 shows a graphical representation of the minimum and maximum brake force calculated 
from the Umler® data, as well as the nominal Umler® calculated brake force and the measured 
brake force for each car tested in Table 6. 
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Figure 2. Brake Force Measurements Versus Umler® Brake Force Calculations  
for Cars without Empty-Load Devices 

As shown in Figure 2, the measured brake shoe force falls between the minimum and maximum 
brake force calculations for the majority of the cars tested. For this sample set, the actual 
measured values are distributed around the Umler® calculated value, with the majority larger 
than the calculated value. While the available sample size is not large enough to make a general 
conclusion about the total population of cars, it appears, from those measured, that the method 
developed provides a reasonable estimation of the actual brake force.  
Table 7 shows JIM SHOE measurement data on the cars that were equipped with an empty-load 
device. Each car was tested in the empty position and then shims were used to simulate the 
empty-load device in the loaded position and the car was retested. Umler® data for each of the 
cars was used to calculate a minimum and maximum brake force, for both the empty and loaded 
position. 

Table 7. JIM SHOE™ Measurements for Empty-Load Equipped Cars 

Test Car 
Number 

Average Measured 
Wheel Force for Full 
Service Application 

(lbs.) 

Umler® Minimum 
Brake Force 

Calculation (lbs.) 

Umler® 
Maximum Brake 

Force 
Calculation (lbs.) 

1 – Empty 13,740 14,300 20,020 
1 – Loaded  18,9801 28,600 40,040 
2 – Empty 14,731 14,300 20,020 
2 – Loaded  27,915 28,600 40,040 
3 – Empty 14,826 14,300 20,020 
3 – Loaded  28,849 28,600 40,040 
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Test Car 
Number 

Average Measured 
Wheel Force for Full 
Service Application 

(lbs.) 

Umler® Minimum 
Brake Force 

Calculation (lbs.) 

Umler® 
Maximum Brake 

Force 
Calculation (lbs.) 

4 – Empty 13,330 14,300 20,020 
4 – Loaded  25,352 28,600 40,040 
5 – Empty 15,074 14,300 20,020 
5 – Loaded  28,961 28,600 40,040 
6 – Empty 14,903 14,300 20,020 
6 – Loaded  28,261 28,600 40,040 
7 – Empty 15,596 14,300 20,020 
7 – Loaded  30,344 28,600 40,040 
8 – Empty 12,652 14,300 20,020 
8 – Loaded  24,862 28,600 40,040 
9 – Empty 13,958 14,300 20,020 
9 – Loaded  28,003 28,600 40,040 
10 – Empty 16,005 14,300 20,020 
10 – Loaded  15,9551 28,600 40,040 

1Empty-load device was not fully defeated by the use of shims, so loaded full service brake force 
measurement is not accurate. 

As indicated in the footnote in Table 7 and from test logs described in Section 2.3.2, it was 
observed for test car 1 that during the loaded brake force measurement test the brake cylinder 
pressure built up to 45 psi instead of the expected 64 psi resulting in a lower brake force 
measurement than expected. During this test the empty load device was partially activated as the 
brake cylinder pressure did increase from the empty test, which resulted in a brake cylinder 
pressure of 32 psi, but the empty load device was not totally activated. For test car 10, the brake 
cylinder build up for both the empty and loaded cases was 32 psi, indicating that the empty load 
device was activated during the loaded brake force test. It is assumed that the shims did not work 
as intended for these cars and that if they had an actual load on them that the brake cylinder 
pressure would have built up to the expected 64 psi. 
Figure 3 shows a graphical representation of the minimum and maximum brake force calculated 
from the Umler® data, as well as the nominal Umler® calculated brake force and the measured 
brake force for each car tested in Table 7. 
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Figure 3. Brake Force Measurements Versus Umler® Brake Force Calculations  

for Cars with Empty-Load Devices 
From Figure 3, it appears that the set of cars tested were built towards the minimum end of the 
allowable brake shoe force, but with the small sample of empty-load equipped cars tested, this 
cannot be assumed to apply to the entire population of cars with empty-load devices. 
Overall, a larger data set for both empty load equipped and non-empty load equipped, what 
includes cars built from multiple time periods, would have been ideal to further support the 
calculations developed in this project, but with over one million cars in revenue service spread 
throughout the North America railroads, it was not practical to gather enough data for this study. 

2.4 Summary  
The brake shoe force calculated using Umler® data uses the average of the minimum and 
maximum brake shoe force values for that car, based on the net brake ratio specifications that 
were in place when the car was built. The brake shoe force calculated based on train type uses 
the averages for every car within each train type to best fit a nominal loaded and empty brake 
shoe force for each train type. The brake shoe force calculation using individual car information 
uses specific data from Umler® for that car to calculate a nominal loaded and empty brake shoe 
force. Both Umler® brake shoe force calculations assume that all of the needed data is available 
to the railroads for the purpose of calculating this brake shoe force. As mentioned earlier, if data 
is missing in Umler® or data in Umler® is not available to the railroads, then some conservative 
assumptions may be needed that would reduce the benefit gained by using these methods. 
Using Umler® data to calculate the brake shoe force for the consist, using either a train type or 
an individual car basis, shows some improvement in the overall safety of the enforcement 
algorithm, especially in the unit train types. The Umler® brake force calculations reduced the 
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number of overruns in the unit simulations, from 277 overruns with the base case, to 23 overruns 
using data based on train type, and 9 overruns using data based on individual car type.  
JIM SHOE™ measurements of brake force on freight cars showed that the measured brake shoe 
force falls within, or close to, the minimum and maximum brake shoe force values. The JIM 
SHOE™ measurements combined with the results from the simulations using the Umler® data 
suggest that calculating the brake shoe force using Umler® data produces a reasonable nominal 
value for use in PTC enforcement algorithms. The nominal Umler® brake force values, when 
used in the enforcement algorithm, improve upon the safety objective of the algorithm without 
negatively impacting the performance objective of the algorithm.  
In summary, the Umler® brake force calculations outlined in this project could be used in an 
enforcement algorithm, to calculate a nominal brake force for the consists that improves upon the 
current brake force calculation that is being calculated on board with summary consist 
information.
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 Weighted PTC Braking Enforcement Algorithm Evaluation 

In Task Order 242 [2], the PTC braking enforcement algorithm evaluation assumed all scenarios 
in the Monte Carlo simulation matrix were weighted equally during the analysis of the data. 
Because some operational scenarios are more likely to occur than others, there is the potential for 
less common scenarios to artificially skew the overall results. This project included a research 
effort to gather operational and track data from the railroads to analyze and create a weighted 
value for each of the scenarios simulated. Then, the weighted values were used during the 
evaluation of the algorithm to ensure the overall results are more representative of current 
operations in revenue service. 

3.1 Overview of Current Enforcement Algorithm Evaluation Methodology 
The enforcement algorithm evaluation methodology, developed in Task Order 242 [2], includes 
the analysis of the results of simulation testing to quantify the safety and performance of the 
enforcement algorithm, using a limited set of field testing to support the results of the 
simulations. In order to provide meaningful results from the evaluation, two key parameters were 
identified that describe the safety and performance characteristics of the enforcement algorithm: 

1. Probability of Target Overshoot - The probability that a given train overshoots the 
target stopping location for a given test scenario, with 99 percent confidence. This is 
the primary output of the analysis, as it demonstrates whether or not the enforcement 
algorithm under evaluation meets the safety objective of the system. 

2. Probability of Excessive Target Undershoot — The probability that a given train 
undershoots the target stopping location by more than: 

o 500 feet, if the initial train speed at enforcement is < 30 mph 
o 1,200 feet, if the initial train speed at enforcement is ≥ 30 mph 
This provides an indication of the operational impact of the enforcement 
algorithm. Ultimately, the operational impact is defined by whether the 
enforcement algorithm forces the train crew to slow the train earlier than they 
would otherwise, and what impact that has on other trains on the network as a 
whole. The probability of excessive target undershoot provides an indication of 
the operational impact that can be analyzed for each scenario individually and for 
all of the scenarios combined. 

These parameters are determined for each test scenario from the results of the simulation tests. A 
two-phase analysis methodology is employed, with the first phase being an exploratory data 
analysis (EDA) where data augmentation and validation, data consistency checking, and data 
cleanup is performed. The second phase being the specific statistical analysis, where the 
probabilities for the above parameters are estimated. 

3.2 Description of Weighted Evaluation Methodology 
The weighted evaluation of the enforcement algorithm uses the same results from the simulation 
tests as the current enforcement algorithm evaluation. The weighted evaluation methodology is 
applied to the results in the specific statistical analysis phase, where the probabilities for the 
target overshoot and the excessive target undershoot are estimated. Each scenario is given a 
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weighted value depending on the probability of that scenario existing in revenue service, relative 
to the other scenarios. In the weighted evaluation methodology, scenarios that have a higher 
probability have a higher influence in the overall results of the analysis.  

3.3 Track Data for Weighted Evaluation 
This task in the weighted evaluation study looked at track data from the railroads to determine 
how the actual revenue track profiles fit within the simulated tracks in the Monte Carlo test 
matrix. The track data from the railroads are used to create probabilities of a train being on one 
of the track grades used in the simulations. Table 8 breaks the simulated tracks into bins and 
shows the grade ranges for the real track data used in each bin. The subsections below detail the 
data used from the railroads, the data processing methods, and the analysis and results of the 
data.  

Table 8. Simulated Track Grade Bins 
 2.8% 

Decline 
2.2% 
Decline 

1.7% 
Decline 

1.1% 
Decline 

0.5% 
Decline 

Flat 0.5% 
Incline 

1.5% 
Incline 

Railroad 
Track 
Data 

< -2.2% 
< -1.7% 

>= -2.2% 

> -1.1% 

>= -1.7% 

< -0.5% 

>= -1.1%  

< -0.25% 

>= -0.5% 

<= 0.25% 

>= -0.25% 

> 0.25% 

<= 0.5% 
> 0.5% 

Data Overview 
TTCI worked with two Class I railroads in collecting all mainline track data information, from 
each railroad, for the weighted evaluation study. Data was received in multiple formats to 
determine the best data source for this study. The final format used was raw subdivision data that 
contained at least the following information: 

1. Grade 
a. Beginning and ending milepost data for every grade change 

2. Mileposts 
3. Milepost length 

a. Track footage between mileposts 
4. Subdivision information 

a. Name and line information 
The data was provided by the railroads in Microsoft Access and Excel formats and loaded into a 
Structured Query Language (SQL) database for processing and analysis. 

Data Processing 
The first step in data processing was to identify any subdivisions or any lines within a 
subdivision that did not have valid data or was missing data for grades, mileposts, or milepost 
lengths. Data was considered invalid for subdivisions or lines that only had one grade value for 
the whole subdivision. Subdivisions were excluded from the study if any of the information was 
missing, because complete data is needed for calculating the average grade moving through the 
subdivision. Next, remaining subdivisions with 25 miles of track were discarded. This step was 
taken to eliminate connecting lines and focus on the major subdivisions within the railroad data. 
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The remaining data was used for the study and included 37,015 route miles (74,030 track miles 
when considering both directions along the route), which includes data from the subdivisions in 
each direction.  

Data Analysis 
In the SQL database, a point with track footage and grade information was created every 100 feet 
for the 37,015 miles of track used in this study. The 100 feet track footage and grade points were 
created for each direction in each subdivision. This was done using the track data information 
provided by the railroads and a statistical analysis tool called R5. R is a free software 
environment for data manipulation, data calculations, statistical computing, and graphical 
display. For purposes of data integrity, R was connected to the SQL database through an Open 
Database Connectivity (ODBC) package and the track data in SQL was imported directly to R. A 
program was developed using the R language that created a point that included milepost 
information every 100 feet in each of the subdivisions used for this study. The same ODBC 
package was used to create a table in SQL and write the data that included milepost information 
every 100 feet back to the SQL database. 
Then, the resulting 100-foot “mileposts” were matched to the milepost and grade data for their 
subdivisions. The grades for each 100-foot milepost were extrapolated using the known grade 
values and track footage between given milepost value pairs from the railroad track data. 
Next, relative elevation of 4,600 feet was assigned to the lowest (starting) milepost for each line 
in each subdivision. A relative elevation was used for plotting purposes and to calculate average 
grades. The choice of 4,600 feet was arbitrary, as the true data of interest for this study is the 
actual grade information, not the actual elevation. Again, R was used to calculate an elevation 
value for each of the 100-foot mileposts. The data containing the grade information for each 
point was imported into R using the ODBC connection to the SQL database. The relative 
elevation was calculated for every point and the results were pushed back to the SQL database 
and saved. 
SQL was then used to calculate average grade every two miles, approximated at 10,500 feet, for 
each of the 100-foot mileposts. This was done by starting at the first 100-foot milepost on a line 
and calculating the average grade from that point to 10,500 feet in front of that point, then 
moving to the next 100-foot milepost and repeating until the end of the line is reached. The two 
mile average grade represents the average grade the train would travel over during a 2-mile 
penalty enforcement stop. Actual stopping distances are a function of speed, grade, and consist 
type, but for this study a 2-mile distance was used as a representative value for all stops. 
After computing grades and relative elevations for every 100-foot milepost, histograms and 
elevation/grade profile plots could be readily generated for each line using the graphical display 
functions of R. For this analysis, the plots were generated programmatically in R by once again 
reading the SQL database through an ODBC connection. An example histogram and elevation 
plot is shown in Figure 4.  

5 R, https://www.r-project.org 

https://www.r-project.org/


 

 26 

 
Figure 4. Example Histogram and Plot from R 

The histogram in Figure 4 shows the results of moving through this line in the left to right 
direction on the elevation plot. A similar histogram is developed for the right to left direction, 
and if both histograms are combined, the results are very close to symmetrical around the center 
bin. The reason it is not perfectly symmetrical is that in each direction the starting point is either 
at the beginning of the line, lower milepost value, or the end of the line, higher milepost value, 
and the 100-foot mileposts are created based on those starting locations, so the 100-foot 
mileposts are not exactly the same in each direction. The bins for the histogram were set at -5, -
2.8, -2.2, -1.7, -1.1, -0.5, -0.25, 0.25, 0.5, 1.1, 1.7, 2.2, 2.8, 5. A similar histogram and plot was 
produced for each line, in each direction, and an overall tally of each grade bin shown in Table 9 
was computed for all of the track data, to give a frequency count for each of the bins. Each plot 
includes the minimum grade, maximum grade, average grade for the entire subdivision, and 
standard deviation, as well as the starting and ending milepost information. A handful of lines 
were used to spot check the results from R by doing the same process manually in Microsoft 
Excel and comparing the results.  
The frequency of each track bin in Table 8 was used as well as train operational data from 
Section 3.4 to determine the probability each train type would run on each of the simulated track 
files. Table 9 illustrates these probabilities. 
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Table 9. Simulated Track Probabilities  

 2.8% 
Decline 

2.2% 
Decline 

1.7% 
Decline 

1.1% 
Decline 

0.5% 
Decline Flat 0.5% 

Incline 
1.5% 

Incline Total 

General 
Freight 0.06% 0.23%  1.04% 7.55% 10.21% 61.84% 10.21% 8.87% 100% 

Intermodal 
Freight 0.06% 0.23% 1.04% 7.54% 10.25% 61.79% 10.24% 8.86% 100% 

Unit 
Freight 0.06% 0.23% 1.04% 7.54% 10.20% 61.87% 10.20% 8.87% 100% 

 
Previously these track grades were weighted equally during the analysis of the Monte Carlo 
simulation results, but as Table 9 shows, the data from the railroads show over 80 percent of the 
trains operating on the two miles of simulated track have average grades between +0.5 percent 
and -0.5 percent. This data is used with the study described in Section 3.4 to break down each of 
these train types into each of the consist types and lengths used in the Monte Carlo simulation 
test matrix.  

3.4 Operational Data for Weighted Evaluation 
The major goal of this exercise was to gather operational data from the railroads and determine 
how that data fits in with the intermodal consist, manifest consist, and unit consist train types 
used in the simulation test matrix. TTCI’s scenarios and consist data, shown in Table 10, Table 
11, and Table 12were used to create break points for the lengths of each of the consists used in 
the simulation test matrix. This provided a length range for each of the consists used in the 
simulations that could be compared with the operational data to determine how the operational 
data fits within the consists used in the simulations. The breakdown of train lengths for each 
consist simulated is shown in Table 13, Table 14, and Table 15. 

Table 10. Data for Intermodal Consists used in Simulations 
Train Type Length Load Condition Power Configuration 

Intermodal Short 
Medium 
Long 
Very Long 

Empty 
Loaded 

HE – Head End Power 
DE – Head-Tail Power 
DM – Head-Mid-Tail Power 

Table 11. Data for Manifest Consists used in Simulations 
Train Type Number of Cars Load Condition Power Configuration 

Manifest 0 
3 
10 
40 
100 
150 
200 

Empty 

Loaded 

HE – Head End Power 
DE – Head-Tail Power 
DM – Head-Mid-Tail Power 
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Table 12. Data for Unit Consists used in Simulations 
Train Type Number 

of Cars 
Load 

Condition 
Unit Type Power Configuration 

Unit 100 
135 
200 
260 

Empty 
Loaded 

Coal 
Covered Hopper 
Multi-Level 
Refrigerated Boxcars 
Tank 

HE – Head End Power 
DE – Head-Tail Power 
DM – Head-Mid-Tail Power 

Table 13. Intermodal Consist Train Lengths 
Train Type Train Length (feet) 

Intermodal Small < 6695 
Intermodal Medium >= 6695 and < 9414 
Intermodal Long >= 9414 and < 13341 
Intermodal Very Long >= 13341

Table 14. Manifest Consist Train Lengths 
Train Type Train Length (feet) 

Manifest 0 < 206 
Manifest 3 >= 206 and < 484 
Manifest 10 >= 484 and < 1178 
Manifest 40 >= 1178 and < 4414 
Manifest 100 >= 4414 and < 7815 
Manifest 150 >= 7815 and < 9634 
Manifest 200 >= 9634 

Table 15. Unit Consist Train Lengths 
Train Type Train Length (feet) 

Unit 100 Coal Steal < 6608 
Unit 135 Coal Steal >= 6608 and < 9410 
Unit 200 Coal Steal >= 9410 and < 12950 
Unit 260 Coal Steal >= 12950 
Unit 100 Coal Aluminum < 6094 
Unit 135 Coal Aluminum >= 6094 and < 8677 
Unit 200 Coal Aluminum >= 8677 and < 11944 
Unit 260 Coal Aluminum >= 11944 
Unit 100 Covered Hopper < 7304 
Unit 135 Covered Hopper >= 7304 
Unit 100 Multi-Level < 11396 
Unit 135 Multi-Level >= 11396 
Unit 100 Refrigerated Box < 10211 
Unit 135 Refrigerated Box >= 10211 
Unit 100 Tank < 5431 
Unit 135 Tank >= 5431 

Operational Data from the Railroads 
TTCI worked with the same railroads that provided track data to collect operational data for the 
weighted evaluation study. Data was received in multiple formats and analyzed multiple ways to 
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determine the best data source for this study. The final format used for this study had to include 
operational data collected over a 1-year period that included: 

1. Train type including number of trains for each type 
a. Intermodal freight 
b. Manifest freight 
c. Unit freight broken down into the following categories if possible 

• Coal 
• Grain 
• Tank 
• Multi-level 
• Bulk commodity 
• Other 

2. Average train length per train type 
3. Standard deviation of train length per train type 

Data Overview 
Both railroads provided data to TTCI in Microsoft Excel spreadsheets, but one railroad had the 
operational data by subdivision and the other railroad had operational data across the whole 
network.  
For the data received on a subdivision level, the operational data was matched to the track data, 
from Section 3.3, for that subdivision, and an analysis was performed per subdivision to create a 
frequency table that fits the railroad’s operational and track data into the different simulated train 
consist and track grade combinations. All the frequency tables, from each subdivision, were 
combined to determine the weighted value for each simulated train consist and track grade 
combination for this railroad.  
A similar approach was used for the data received across the whole network, with the operational 
data, in this case, being used across the entire track data set, from Section 3.3, to create a 
frequency table that fits the railroad’s operational and track data into the different simulated train 
consist and track grade combinations. The frequency table was used to determine the weighted 
value for each simulated train consist and track grade combination for this railroad. 
The resulting operational data results from both railroads were combined to produce the 
weighted values for each train consist and track grade combination simulated in the Monte Carlo 
test matrix. 

Data Processing 
For both railroads, the operational data was separated into three train types: unit freight, 
intermodal freight, and manifest freight. Each train type included information on the count of 
trains, the average length of the train, and the standard deviation of the train length.  
For manifest freight and intermodal freight, the trains for each train type were combined to give 
a total number of trains within that train type and an overall average train length and standard 
deviation of the train length for that train type. Table 16 shows an example of how multiple 
trains within a train type were combined. 
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Table 16. Example of Combining Similar Trains within a Train Type to get Overall 
Average and Standard Deviation of Train Length 

Intermodal 
Trains 

Average 
Length 
(feet) 

Standard 
Deviation 

(feet) 

Count of 
Trains 

Weighted 
Average 
Length 
(feet) 

Weighted 
Standard 
Deviation 

(feet) 
Intermodal - 1 7,000 1,500 120 840,000 180,000 
Intermodal - 2 6,200 2,000 100 620,000 200,000 
Intermodal - 3 6,500 1,000 80 520,000 80,000 

Total 6,600 1,533.33 300 1,980,000 460,000 
 
The weighted average length and standard deviation for train length shown in Table 16 were 
calculated by taking the average train length and standard deviation of the train length and 
multiplying it by the count of trains. The overall average train length was then calculated by 
summing the weighted averages and dividing by the total number of trains (1,980,000/300 = 
6,600) and the overall standard deviation of train length was calculated by summing the 
weighted standard deviations and dividing by the total number of trains (460,000/300 = 
1,533.33).  
For unit trains, the trains were broken down to individual unit train types, and then consists for 
each individual unit train type were combined to give a total number of trains within that unit 
train type and an overall average train length and standard deviation of the train length for that 
unit train type using the same process as shown in Table 16. 

Data Analysis 
The average train lengths and standard deviations for unit, intermodal, and manifest trains were 
used to determine how the railroads operational data is categorized into one of the simulated 
train consists, described in Table 13, Table 14, and Table 15 . The operational and track data 
were used to create frequency tables showing how the railroads data best fits within the 
simulated track grade and consist combinations. A count of each simulated consist was needed to 
populate the frequency table. This was created by using the average train lengths and standard 
deviations for each train type and building 100,000 consists from their distributions. The type of 
distribution received from the railroads was not known, but it was assumed normal and three 
different normal distribution types were used to create the consists: Normal (left-skewed), 
standard normal, and normal (right-skewed). The 100,000 consists were then combined with the 
track data, for that subdivision, to create the frequency tables for each distribution type.  
The frequency table created for each subdivision provided information on how the operational 
and track data, from that subdivision, best fits within the simulated train consist and track grade 
combinations. All the frequency tables, from each subdivision and each distribution type, were 
combined to create the overall weighted values for each of the scenarios simulated in the Monte 
Carlo test matrix. 
Table 17, Table 18, and Table 19 show the probabilities for each consist type and track grade 
combination using the Normal (right-skewed) distribution. Some scenarios had smaller than a 
0.01 percent, 1 in 10,000 trains, probability of being operated in revenue services, but was 
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limited to no smaller than 0.01 percent. Values that were greater than 0.01 percent were 
proportionally lowered to maintain an overall value of 100 percent for all of the scenarios. 

Table 17. Intermodal Consist Type and Track Grade Probabilities using  
Normal (right-skewed) Distribution 

BATCH_NAME 2.8% 
Decline 

2.2% 
Decline 

1.7% 
Decline 

1.1% 
Decline 

0.5% 
Decline Flat 0.5% 

Incline 
1.5% 

Incline 
Total 

Int_ShortDE 0.02 0.08 0.37 2.67 3.63 21.91 3.63 3.14 35.45 
Int_ShortHE 0.02 0.08 0.37 2.67 3.63 21.91 3.63 3.14 35.45 
Int_MediumDE 0.01 0.03 0.12 0.88 1.19 7.2 1.19 1.03 11.65 
Int_MediumHE 0.01 0.03 0.12 0.88 1.19 7.2 1.19 1.03 11.65 
Int_LongDE 0.01 0.01 0.03 0.21 0.28 1.69 0.28 0.24 2.75 
Int_LongDM 0.01 0.01 0.03 0.21 0.28 1.69 0.28 0.24 2.75 
Int_VryLngDM 0.01 0.01 0.01 0.02 0.03 0.17 0.03 0.02 0.3 
Total 0.09 0.25 1.05 7.54 10.23 61.77 10.23 8.84 100 

Table 18. Unit Consist Type and Track Grade Probabilities using  
Normal (right-skewed) Distribution 

BATCH_NAME 2.2% 
Decline 

1.7% 
Decline 

1.1% 
Decline 

0.5% 
Decline Flat 0.5% 

Incline 
1.5% 

Incline Total 

Unit 100 Coal 
Steel 0.02 0.09 0.66 0.89 5.39 0.89 0.78 8.72 

Unit 100 Hopper 0.05 0.19 1.35 1.82 11 1.82 1.58 17.81 
Unit 100 Coal 
Alum. 0.03 0.09 0.68 0.92 5.54 0.92 0.8 8.98 

Unit 100 Multi-
Level 0.06 0.21 1.51 2.03 12.32 2.04 1.76 19.93 

Unit 100 Box 0.06 0.2 1.47 1.99 12.04 1.99 1.72 19.47 

Unit 100 Tank 0.04 0.16 1.16 1.56 9.45 1.56 1.35 15.28 
Unit 135 Coal 
Steel 0.01 0.01 0.09 0.12 0.72 0.12 0.1 1.17 

Unit 135 Hopper 0.01 0.02 0.16 0.22 1.3 0.22 0.19 2.12 
Unit 135 Coal 
Alum. 0.01 0.01 0.07 0.1 0.61 0.1 0.09 0.99 

Unit 135 Multi-
Level 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.07 

Unit 135 Box 0.01 0.01 0.03 0.05 0.29 0.05 0.04 0.48 

Unit 135 Tank 0.01 0.05 0.35 0.48 2.89 0.48 0.41 4.67 
Unit 200 Coal 
Steel 0.01 0.01 0.01 0.01 0.04 0.01 0.01 0.1 

Unit 200 Coal 
Alum. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.07 

Unit 260 Coal 
Steel 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.07 

Unit 260 Coal 
Alum. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.07 

Total 0.36 1.09 7.58 10.23 61.63 10.24 8.87 100 
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Table 19 – Manifest Consist Type and Track Grade Probabilities using  
Normal (right-skewed) Distribution 

BATCH 
NAME 

2.8% 
Decline 

2.2% 
Decline 

1.7% 
Decline 

1.1% 
Decline 

0.5% 
Decline Flat 0.5% 

Incline 
1.5% 

Incline Total 

Man_000HE 0.01 0.01 0.01 0.02 0.03 0.16 0.03 0.02 0.29 
Man_003HE 0.01 0.01 0.01 0.07 0.1 0.6 0.1 0.09 0.99 
Man_010HE 0.01 0.02 0.09 0.66 0.89 5.38 0.89 0.77 8.71 
Man_040HE 0.03 0.11 0.51 3.71 5 30.3 5.01 4.36 49.03 
Man_100DE 0.01 0.04 0.2 1.45 1.96 11.87 1.96 1.7 19.19 
Man_100HE 0.01 0.04 0.2 1.45 1.96 11.87 1.96 1.7 19.19 
Man_150DE 0.01 0.01 0.01 0.08 0.11 0.69 0.11 0.1 1.12 
Man_150DM 0.01 0.01 0.01 0.08 0.11 0.69 0.11 0.1 1.12 
Man_200DE 0.01 0.01 0.01 0.01 0.02 0.09 0.02 0.01 0.18 
Man_200DM 0.01 0.01 0.01 0.01 0.02 0.09 0.02 0.01 0.18 
Total 0.12 0.27 1.06 7.54 10.2 61.74 10.21 8.86 100 

Looking at the resulting data in Table 17, Table 18, and Table 19, some large total values can be 
seen in certain simulated consists. With the intermodal consists, a weighted value of over 70 
percent exists in the intermodal small trains, which consist of trains less than 6,695 feet. In the 
unit consists, a weighted value of over 90 percent exists for all unit 100-car consists. In the 
manifest consists a weighted value of over 77 percent exists in the manifest 40-car and 100-car 
consists, which includes trains between the length of 1,178 feet and 7,815 feet. Future 
consideration of adding additional simulated consists in these areas will reduce the weighted 
value in these simulated consists and the results will not be so heavily weighted in these areas. 
Similar tables were created for the standard normal and normal (left-skewed) distributions. The 
tables for each distribution were used to analyze the simulation results with the weighted values 
created by each of the distributions. The results are provided in Section 3.5. 

3.5 Simulation Analysis using Weight Evaluation 
The following tables show the results of the simulation analysis using weighted values from each 
distribution type as well as the simulation analysis using the non-weighted values. Table 20 
shows results with the brake algorithm emergency brake backup function disabled and Table 21 
shows results with the brake algorithm emergency brake backup function enabled. 

Table 20. Analysis for Simulations with Emergency Brake Backup Disabled 

Train Type Distribution Short of Stop 
Target 

Short of 
Performance 

Target < 30mph 

Short of 
Performance 

Target >= 30mph 
Intermodal Non-Weighted 99.99% 28.30% 40.20% 
Intermodal Right Skewed 99.99% 2.95% 44.95% 
Intermodal Standard Normal 99.99% 2.90% 44.92% 
Intermodal Left Skewed 99.99% 2.69% 44.23% 
Unit Non-Weighted 99.99% 27.62% 43.82% 
Unit Right Skewed 99.99% 4.87% 48.44% 
Unit Standard Normal 99.99% 4.86% 48.32% 
Unit Left Skewed 99.99% 4.84% 48.10% 
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Train Type Distribution Short of Stop 
Target 

Short of 
Performance 

Target < 30mph 

Short of 
Performance 

Target >= 30mph 
Manifest1 Non-Weighted 99.97% 32.17% 43.75% 
Manifest1 Right Skewed 99.90% 4.68% 35.76% 
Manifest1 Standard Normal 99.90% 4.57% 35.98% 
Manifest1 Left Skewed 99.91% 4.67% 36.68% 
Combined1 Non-Weighted 99.99% 29.47% 42.48% 
Combined1 Right Skewed 99.94% 3.89% 37.21% 
Combined1 Standard Normal 99.94% 3.80% 37.27% 
Combined1 Left Skewed 99.94% 3.91% 37.67% 

1Manifest simulations for 10-car, 3-car, and light locomotives were not run, because of changes being made to how 
short trains are simulated – Analysis was done without those simulations 

Table 21. Analysis for Simulations with Emergency Brake Backup Enabled 

Train Type Distribution Short of Stop 
Target 

Short of 
Performance 

Target < 30mph 

Short of 
Performance 

Target >= 30mph 
Intermodal Non-Weighted 99.96% 18.20% 14.94% 
Intermodal Right Skewed 99.93% 0.51% 20.43% 
Intermodal Standard Normal 99.93% 0.51% 20.75% 
Intermodal Left Skewed 99.94% 0.53% 21.52% 
Unit Non-Weighted 99.66% 14.77% 18.39% 
Unit Right Skewed 99.39% 1.05% 20.07% 
Unit Standard Normal 99.39% 1.06% 20.09% 
Unit Left Skewed 99.39% 1.07% 20.14% 
Manifest1 Non-Weighted 99.90% 17.86% 19.54% 
Manifest1 Right Skewed 99.74% 0.69% 21.19% 
Manifest1 Standard Normal 99.75% 0.71% 21.27% 
Manifest1 Left Skewed 99.76% 0.73% 21.42% 
Combined1 Non-Weighted 99.86% 17.10% 17.53% 
Combined1 Right Skewed 99.71% 0.81% 20.60% 
Combined1 Standard Normal 99.71% 0.81% 20.68% 
Combined1 Left Skewed 99.72% 0.83% 20.85% 

1Manifest simulations for 10-car, 3-car, and light locomotives were not run, because of changes being made to how 
short trains are simulated – Analysis was done without those simulations 
One of the biggest differences observed in Table 20 and Table 21 is in stopping short of the 
performance objective when the speed is less than 30 mph. For all consist types, with emergency 
brake backup enabled or disabled, there was a significant reduction in the probability of stopping 
shorter than 500 feet from the target when the speed is less than 30 mph. This indicates that the 
simulations that stop within the 500 foot objective are more heavily concentrated in the higher 
weighted scenarios. Looking further into this, with data from Table 17, Table 18, and Table 19, 
there is a weighted value of over 80 percent for simulations run on the following tracks: 0.5 
percent decline, flat, and 0.5 percent incline. The majority of the simulations with speeds less 
than 30 mph on these tracks are run with a speed of 10 mph. Future considerations of adding 
additional speeds for these tracks will spread the weighted value over multiple speeds instead of 
being heavily weighted on 10 mph.  
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From Table 21, it can also be observed that stopping short of the target, for the unit train types 
drops from 99.66 percent to 99.39 percent, which is below the target value of 99.5 percent 
probability of stopping short of the target. This shows that the overruns in the unit simulations 
must be in cases that have a higher weighted value. Looking at the simulation results, it was 
found that over 70 percent of the overruns in the unit train type occur on track grades of 0.5 
percent decline, flat, and 0.5 percent incline, which are the grades with the highest weighted 
values.  About 32 percent of the above overruns also occur in the unit train 100-car consists, 
which are the unit consists with the highest weighted value. Looking further into the data, it was 
further found that 98 percent of the overruns in the unit simulations occur with steel coal, 
covered hopper, or tank trains. As discussed in the Umler® study in Section 2, these train types 
were shown to have lower brake force than the other three unit train types. There are a number of 
ways the overruns in these areas can be reduced, to meet the 99.5 percent probability of stopping 
short of the target and they include: 

1. Using a lower brake force average, in the algorithm, for unit trains 
• This could have a negative impact on the performance of the algorithm, as all unit 

trains will be enforced earlier 
2. Add additional safety target offset to account for the overruns 

• This could have a negative impact on the performance for any scenario that has 
the safety target offset increased 

3. Create additional train types instead of lumping all unit trains into one train type 
• This could improve the safety and performance, as the average brake force would 

be calculated on fewer train types with less variability 
4. Use an off-board brake force calculation – Umler® 

• In Section 2 it was shown that a brake force calculated from Umler® reduced the 
number of overruns without negatively impacting the performance of the 
algorithm 

5. Use of an adaptive brake force algorithm 
• An adaptive algorithm would be able to adjust to brake force calculation errors as 

well as other factors that contribute to braking such as coefficient of friction, 
brake rigging, wet rail, and others. This could have significant benefit in the 
safety and performance of a braking algorithm.  

3.6 Summary 
For the weighted evaluation study, operational and track data was gathered from two Class I 
railroads. The track data consisted of the entire mainline track from each railroad and the 
operational data consisted of consist information collected over a 1-year period.  
The track data was evaluated to find the 2-mile average grade every 100 feet throughout the 
mainline and each 2-mile average grade was assigned to one of the simulated track files. This 
produced a frequency table of how often a simulated track grade was seen in the railroad data, 
based on the 2-mile averages. This frequency table was used with operational data to create 
weighted values for the simulated consist type and track grade combinations. 
The operational data was used to determine how the railroad data best fits within the different 
train consists that are used in the simulations. The average train lengths and standard deviation of 
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train lengths, per train type, were used to determine how the operational data from the railroads 
fits within the simulated train consists. 
By combining the operation and track data, frequency tables were created for all of the train 
consist and track grade combinations that are used in the Monte Carlo simulation matrix. The 
frequency tables were used to create a weighted value for each scenario that was used in the 
analysis of the simulation results. 
From the frequency tables and results of the weighted evaluation, it was observed that there are 
some areas in the Monte Carlo simulation matrix that could be expanded upon in the future, such 
as adding additional consist lengths and train speeds in certain areas. It was also observed that 
some of the scenarios simulated had less than a 1in 10,000 likelihood of being encountered in 
revenue service. These scenarios could be modified or eliminated in the future, as well. 
The weighted evaluation also showed a decrease in the probability of meeting the safety 
objective for the unit trains to 99.39 percent, which is below the target of 99.5 percent. Looking 
at the simulation results, almost all of the overruns in the unit simulations came from the three 
train types with lower overall brake force; steel coal, covered hopper, and tank, but the overruns 
were also observed in areas with a higher probability of being encountered in revenue service. 
There are a number of ways that the overruns could be addressed including, using a lower 
average brake force for all unit consists, using a brake force calculated from Umler® data, or 
using an adaptive brake force algorithm. 
Overall the weighted evaluation gives additional insight on how revenue service operations best 
fit within the simulated test matrix and an analysis on the safety and performance of the 
algorithm with the scenarios weighted from the railroad data.  
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 Conclusion 

The research of Umler® data fields resulted in two methods for estimating train brake force 
using data from Umler®. The first method used the current PTC consist information along with a 
train type to estimate brake force for the train. The second method used detailed information for 
each car in the train to estimate brake force for the train. Monte Carlo simulations, using these 
two methods, show that there is a general increase in the probability of stopping short of the 
target, which improves the safety performance of the algorithm, and a general decrease in 
stopping overly short of the target, which improves the operational performance of the system 
when using the estimated brake force calculations from Umler® versus letting the PTC system 
calculate brake force onboard with less detailed consist information. 
The weighted evaluation study gave an overview of the track and operations over the track for 
two Class I railroads. Using data from this study, the railroads’ operations were mapped to the 
scenarios that are currently in the Monte Carlo test matrix and each scenario was given a 
weighted value using this mapping. The Monte Carlo simulations were then evaluated using the 
weighted value of each scenario to figure out the probability of stopping short of the target and 
the probability of stopping within 500 feet of the target if simulated at less than 30 mph or the 
probability of stopping within 1,200 feet of the target if simulated at 30 mph or greater.  
Results from the comparison show the overall probability of stopping short of the target went 
from 99.86 percent, without using weighted values, to 99.71 percent, using weighted values. This 
shows that the overall probability of the algorithm stopping short of the target is not greatly 
affected by the weighting process. However, there were differences when looking at individual 
train types, which may lead to insights about the braking algorithm performance and where 
improvements could be made. The Monte Carlo simulations evaluated using the weighted values 
also show that there was a significant improvement in the performance of the algorithm being 
evaluated in the scenarios where the train was operated at less than 30 mph, and a slight drop in 
performance in the scenarios where the train was operated at 30 mph or greater. This may 
indicate that future considerations of performance improvements could show concentrated on 
trains operating at 30 mph or greater. 
The weighted evaluation study also gave some insight on how the current Monte Carlo 
simulations fit within the combined railroad operational data received from the two railroads. 
The results of the weighted values created for each scenario could show that a majority of the 
railroad operations mapped to only a few consists in each train type. Consideration should be 
given to adding additional scenarios in these areas to ensure certain scenarios are not weighted 
too high, and proper resolution is available in the more frequent operating scenarios.  
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Abbreviations and Acronyms 

AAR Association of American Railroads 
BOL™ Brake-O-Later 
EDA Exploratory Data Analysis 
FRA Federal Railroad Administration 
GRL Gross Rail Load 
I-ETMS® Interoperable Electronic Train Management System 
ODBC Open Database Connectivity 
PTC Positive Train Control 
SQL Structured Query Language 
TCL Test Controller/Logger 
TIP Test Implementation Plan 
TOES™ Train Operations and Energy Simulator 
TTC Transportation Technology Center  
TTCI 
UMLER® 

Transportation Technology Center, Inc.  
Universal Machine Language Equipment Register 
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