
### RSI-AAR Railroad Tank Car Safety Research and Test Project

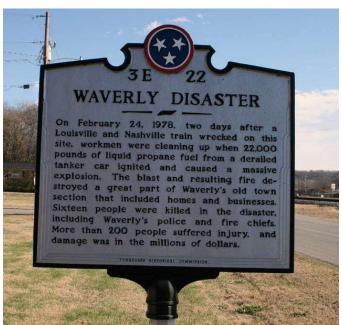


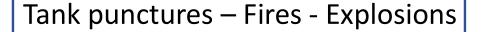
FRA Hazmat Seminar - Houston, TX August 2018

John Byrne



- Formation of the Safety Project
- Initial Focus and Outcomes Design Features
  - Protection for pressure tank cars
  - Protection for general purpose tank cars
- Stub sill inspections & TCID
- AFFTAC
- Tank Car Accident Data
- Recent Analysis Conditional Probability of Release
- Changes in Fleet CPR for Flammable Liquids
- Flammable Liquids Progress Reports





1970s - Significant Derailments / Accidents Involving LPG

1970 - Crescent City, Illinois

1974 - Decatur, Illinois

1978 – Waverly, Mississippi







#### AAR Tank Car Committee – Taskforce

- Tank Car Builders / NTSB / DOT
- DOT Class 112A / 114A Accident Review
- 10 Year PeriodKey Findings:

Majority of significant fires and explosions were caused by the couplers of adjacent cars impacting tank heads.





#### 1970 - Railroad Tank Car Safety Research and Test Project

- Collaborative Effort between
  - Railway Progress Institute
  - Association of American Railroads
- Formed to conduct and oversee accident analysis
  - Data Collection
  - Statistical Analysis
  - Engineering Design
  - Testing

Focus: Improve damage resistance of tank cars



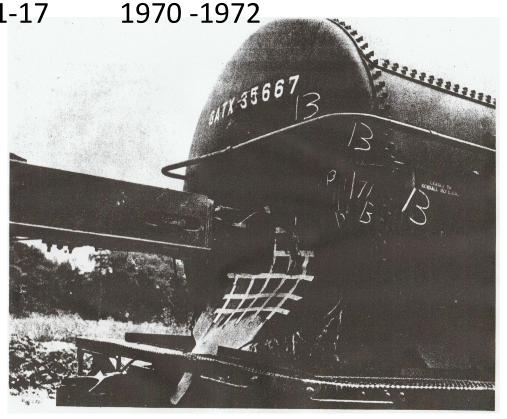
Statistical Analysis – RA 01-2-3

December 4, 1970

Scope: Ruptured Tank Cars 1958 – 1970

- 28 Accidents
- 64 Tank Cars 63 exposed to fire

#### **Key Findings**


- No single feature of car design appears to represent a critical deficiency that can be corrected by immediate remedial action.
- Fire is a prerequisite to violent rupture.
- Commodity = LPG, Propane, Butane
- Primary failures cause by head and shell punctures



## RSI – AAR Safety Project - History

Tank Car Head Study RA 05-1-17 1

- Drop weight test on 1/12 scale Heads
- 1/5 scale impact tests
- Full scale impact tests
  - Without head shields
  - With head shields
- Study estimated that ½" steel plate head shields would increase puncture speed by 100%
- Would have prevented 36% 58% of head punctures that occurred to 112A tank cars between 1965 -1970



#### Development of Double Shelf Couplers - 1974



- Accident analysis suggested that couplers of adjacent cars were one of the leading causes of shell punctures.
- Top and bottom coupler shelves considered as a solution to coupler disengagement during derailments.
- ASF initiated initial design and testing.
- Full scale testing of shelf couplers lead to redesign of shelves and recommendations
- Retrofit of all 112A tanks and new tank cars



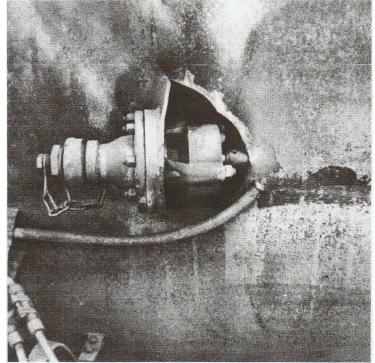


#### HM-144 -

- Implemented 1977
- DOT 112 /114
- Flammable Compressed Gas
- Head Shields
- Shelf Couplers
- Thermal Protection
- Retrofit of 20,000 tank cars
- Estimated \$200 Million



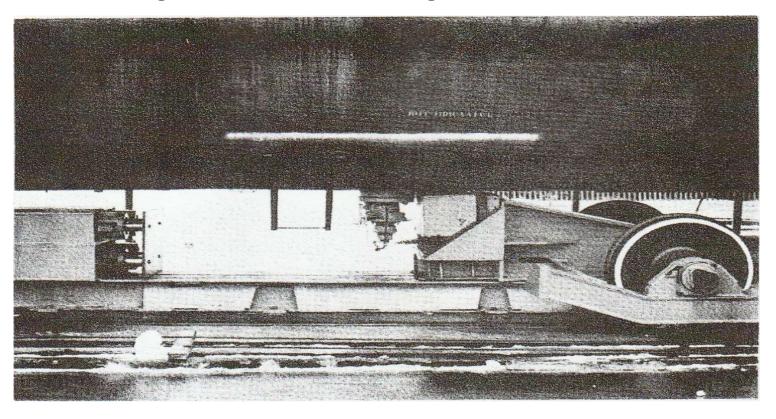



#### Improving Puncture Resistance of DOT 111s

#### Based on accident analysis 1965 – 1970

- Bottom Outlets, non-pressure cars
- Safety valve nozzles, non-pressure cars
- · Bottom washout
- Brake Reservoir bracket
- Sump
- Top unloading valves
- Manway or protective housing
- Stub sills and bolsters
- · Shell punctures
- Welds

RA-09-1-24 1973


"The tank car appurtenance which has shown the highest vulnerability is the bottom outlet on non-pressure non-insulated stub sill cars."





**Bottom Fittings Protection Test Program** 

1978





### RSI – AAR Safety Project - History

#### **Bottom Fittings Protection Test Program**

Bottom Discontinuity Mandated on new tanks - 1/1/1978

#### Five designs tested (E10)

- Fatigue Tests non-destructive
- Impact Tests destructive

#### Recommendations

- Shallow skids / longer fatigue life
- Need reinforcement pads
- Avoid Transverse welds
- Profile of skid should be continuous
- Lock valve handles or stow separately

All Hazmat Cars Retrofitted by 1994 Estimated Cost = \$70 million





Stub Sill Inspection Programs (SS-2, SS-3)

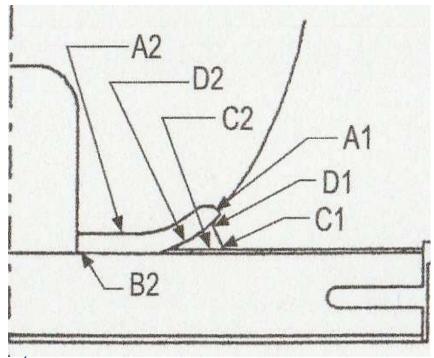
- 1991 AAR creates a program for inspection of pre 1984 built stub sill cars
- 1992 FRA issues EO-17 (Referenced O&M Circular No.1)
  - Jacketed tanks 5 years
  - Non-jacketed tanks 7 years
  - Tanks with greater than 400K miles on accelerated schedule
  - All inspection data submitted to the RPI/AAR Safety Project for Analysis
  - Stub Sill Working Group determined need for design enhancements head braces / sill pad extensions
  - RSI/AAR Safety Project develop SILSPEC Program and database



#### Stub Sill Inspection Programs (SS-2, SS-3)

- 1999 SS-3 Program Started
  - Interim program pending development of DTA
  - Recurring inspection requirement
  - Harmonized with Tank Qualification with high mileage exceptions

#### RSI/AAR Safety Project


- Managed Upload Program & Databases
- Design Specific Reports
- Quarterly Review of Records

SS-2 = 116,535 Inspection Records

SS-3 = 233,045 Inspection Records



#### Stub Sill Design and Inspection

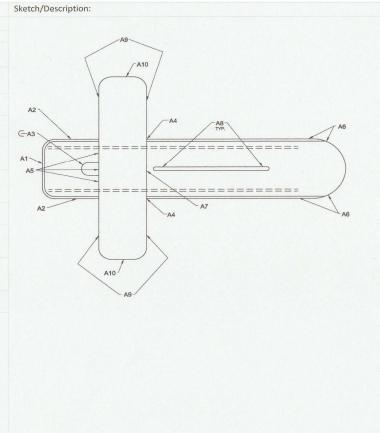


Point of Failure Moved Inboard

| . Car Reporting Mark and Number                                                                                                                                   |                                                            | Inspection Performed     by (Company)               |                   |                         |                              |                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|-------------------|-------------------------|------------------------------|-------------------|
| 3. Stencil Class                                                                                                                                                  |                                                            | 4. Shop Loc. (Town) State or Province               |                   |                         |                              |                   |
| 5. Built Date                                                                                                                                                     |                                                            | 6. Date of Inspection Mo Day Yi                     |                   |                         |                              |                   |
| 7. Car Jacketed? (Y,N)                                                                                                                                            |                                                            | 8. Reserved (design specific)                       |                   |                         |                              |                   |
| 9. Reserved (design specific)                                                                                                                                     |                                                            | 10. Original AAR Certificate of Construction Number |                   |                         |                              |                   |
| 11. Builder                                                                                                                                                       |                                                            | 12.                                                 | Stub Sill Design  | Style (as inspec        | ted)                         |                   |
| 13. Total Mileage to Nearest 1,000 (actual cumulative mileage requ                                                                                                |                                                            |                                                     | Note: Lines       | 10 - 13 Provided        | By Car Owner                 |                   |
| Transverse Weld Cracks (if more<br>Enter max crack length to nearest 1/4 inch. (0, .2<br>Enter 0 if no crack.                                                     | than one, record<br>5, .5, .75)<br>Inspection<br>Technique | A-END<br>Number<br>of Cracks                        | Maximum<br>Length | Inspection<br>Technique | B-END<br>Number<br>of Cracks | Maximum<br>Length |
| 14. A-1 Pad to Tank<br>15. B-1 Pad to Sill (if no head brace)<br>16. C-1 Head Brace to Sill<br>17. D-1 Head Brace to Pad<br>18. E-1 Other - Car Builder Specified |                                                            |                                                     |                   |                         |                              |                   |
| Longitudinal Weld Cracks (if more<br>Enter max crack length to nearest 1/4 inch. (0, .2                                                                           | 5, .5, .75)                                                | A-END                                               |                   |                         | B-END                        |                   |
| Enter 0 if no crack. Enter N/A if item not applicable                                                                                                             | Inspection<br>Technique                                    | Number<br>of Cracks                                 | Maximum<br>Length | Inspection<br>Technique | Number<br>of Cracks          | Maximum<br>Length |
| 19. A-2 Pad to Tank<br>20. B-2 Pad to Sill<br>21. C-2 Head Brace to Sill<br>22. D-2 Head Brace to Pad<br>23. E-2 Other - Car Builder Specified                    |                                                            |                                                     |                   |                         |                              |                   |
| Parent Metal Cracks (if more than or                                                                                                                              |                                                            |                                                     |                   |                         |                              |                   |
| Enter max crack length to nearest 1/4 inch. (0, .2<br>Enter 0 if no crack.<br>Enter N/A if item not applicable                                                    | 5, .5, .75)<br>Inspection<br><u>Technique</u>              | A-END<br>Number<br>of Cracks                        | Maximum<br>Length | Inspection<br>Technique | B-END<br>Number<br>of Cracks | Maximum<br>Length |
| 24. Tank<br>25. Pad                                                                                                                                               |                                                            |                                                     |                   |                         |                              |                   |
| 26. Sill Webs<br>27. Sill Top Flange<br>28. Sill Bottom Flange                                                                                                    |                                                            |                                                     |                   |                         |                              |                   |
| 29. Head Brace<br>30. Other - Design Specific                                                                                                                     |                                                            |                                                     |                   |                         |                              |                   |
|                                                                                                                                                                   |                                                            |                                                     | Car Owner's Re    |                         |                              |                   |

**jrb1** john r. byrne, 8/14/2018

#### Tank Car Integrated Database (TCID)


- Safety Project developed in 2012 with FRA funding
- Eliminated use of multiple forms
  - SS-3 Stub Sill Defect Data Outboard of Body Bolster
  - R-2 Non-accident damage (cracks/dents/buckles/corrosion)
  - R-1 Tank Repairs / Alterations / Conversions
- Improved Scope and Accuracy of Data Collection
  - Stub Sill Design Templates for Tank Qualification Inspections
  - Include Inboard Sill/Pad Welds and BOV Saddle / Skid / Sump
  - Differentiates Accident Damage / Non-Accident Damage
  - Differentiates Continuous / Non-continuous Sill Pads



| Location  | Designations:                                            |                                              |                                                              |
|-----------|----------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|
| Pad-to-Ta | ank (Designated with an 'A' co                           | odes)                                        |                                                              |
| Code      | Description                                              | Location                                     | Includes                                                     |
| A1        | Outboard sill pad-to-<br>tank transverse weld.           | A- & B-Ends                                  | Full length of weld, including portion around corner of pad. |
| A2        | Front sill pad longitudinal welds.                       | AR, AL, BR, BL                               | Full length of weld to termination at bolster pad.           |
| A3        | Fillet weld in outboard sill pad-to-tank cutout.         | A- & B-Ends                                  | Full length of weld.                                         |
| A4        | Sill pad longitudinal weld.                              | AR, AL, BR, BL                               | 6" of weld from termination.                                 |
| A5        | Outboard sill pad-to-<br>bolster pad transverse<br>weld. | A- & B-Ends                                  | Full length of weld.                                         |
| A6        | Inboard termination of sill pad longitudinal welds.      | AR, AL, BR, BL                               | Last 6" of weld to termination.                              |
| A7        | Sill pad-to-bolster pad transverse weld.                 | A- & B-Ends                                  | Full length of weld.                                         |
| A8        | Sill pad-to-tank slot welds.                             | A- & B-Ends<br>(2 to 16 places<br>per car)   | Last 6" of weld at each end of slot.                         |
| A9        | Bolster pad-to-tank transverse weld.                     | ARO, ARI, ALO,<br>ALI, BRO, BRI,<br>BLO, BLI | 36" from junction with sill pad.                             |
| A10       | Top of bolster pad longitudinal weld.                    | AR, AL, BR, BL                               | Full length of weld.                                         |

Use the "Generic Tank Head Brace." template for head brace defects. Use the "Generic Body Bolster." template for body bolster defects. Use the TCID "Record Shell/Sill Damage" button for:

- All parent metal defects.
- All structural defects outside the scope of these templates.



Tank Car Integrated Database (TCID)

**Enables Recording and Retention of Alterations and Conversions** 

- Change Category (Alteration / Conversion)
- Drawing / Part / Document / Commodity
- Approval Reference
- Comments scope of alteration or conversion

TCID Program and Database funded by Safety Project - managed by Sims Professional Engineering



#### 2018 - TCID Transition to Railinc

- Improve integration with existing industry data improve accuracy
  - UMLER file link TCID Updates
  - Synchronize TCID data values (Specification / Components)
  - Link TCID to AAR Approvals 4-2, 4-5
  - Manage access to data current owner Link to EIN
  - Potential integration with component tracking
- Railinc dedicated user support
- Tank car owners share cost of enhancements



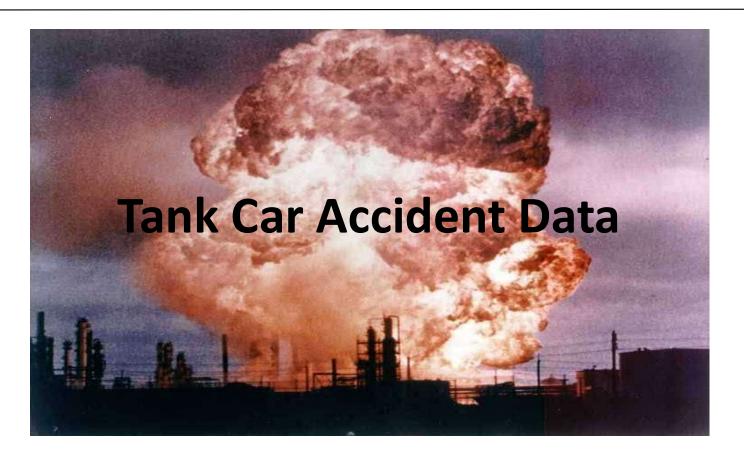
AFFTAC – Analysis of Fire Affects on Tank Cars

#### A Model that performs......

- a Transient
- Physics-based simulation of the Heat exchange
- Stresses, Expansions
- Flow through safety relief device
- Deterioration of insulation for a tank car exposed to fire.



AFFTAC Model - RA 16-01

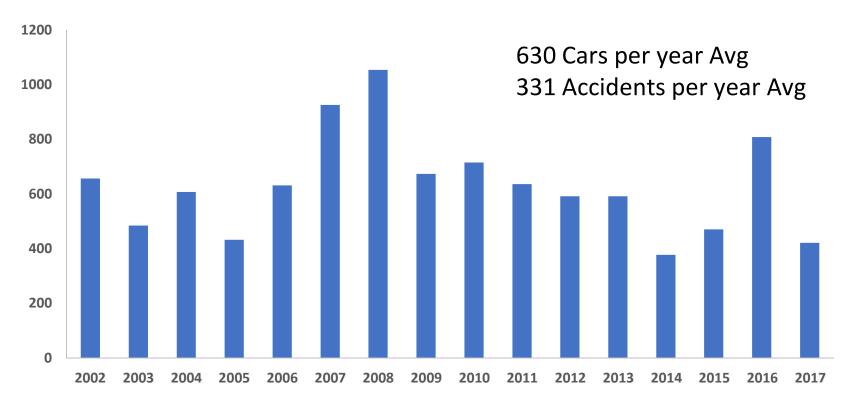

Analysis of Tank Cars with Flammable Commodities

- Ladings included crude oil, ethanol and propane
- API provided thermodynamic properties for 7 crude oils
- 6 different tanks modeled 117J, (4) 117R, 1 Pressure Tank
- 4 different PRDs 75psi 294psi start to discharge
- 3 Thermal Protection Materials
  - Degraded Fiberglass, Ceramic Fiber, Degraded fiberglass + ceramic fiber

#### AFFTAC Model - RA 16-01

- 200 simulations run to final time
- Final time = tank burst or tank empty
- Results
  - All cars equipped with degraded fiberglass exceeded 100 minutes
  - Met 49CFR 179.18 performance requirement








| Location of Accident             | Corpus Christi<br>Texas | Melville, Sas. | Crescent City, Illinois |           |               |           |
|----------------------------------|-------------------------|----------------|-------------------------|-----------|---------------|-----------|
| Date of Accident                 | Feb. 4, 1970            | June, 1970     | June 21, 1970           |           |               |           |
| Car Number                       | CELX 2022               | UTLX 90179     | NATX 32025              | SOEX 3252 | NATX 33990    | SCMX 3445 |
| ICC/DOT Class                    | 111A100W1               | 112A340W       | 112A340W                | 112A340W  | 112A340W      | 112A400W  |
| Date Built                       | -66                     | 1-69           | 3-66                    | 9-69      | 3-66          | 11-69     |
| Insulation?                      | No                      | No             | No                      | No        | No            | No        |
| Full Underframe?                 | Yes                     | No             | No                      | No        | No ,          | No        |
| Capacity: U S Gallons            | 20,850                  | 33, 800        | 32,700                  | 33,680    | 33,800        | 33,600    |
| Lading                           | Ethylacetate            | Propane        | Propane                 | Propane   | Propane       | Propane   |
| Exposed to fire prior to rupture | Yes                     | Yes            | Yes                     | Yes       | Yes           | Yes       |
| Type of Failure                  | Rupture                 | Rocketing      | Rocketing               | Rocketing | Rocketing     | Rocketing |
| Tank Material:<br>Type of steel  | A212GrB                 | TCl28GrB       | A2l2GrB                 | TCl28GRB  | Ml28GrB       | TCl28GrB  |
| rank inside<br>liameter          | 104"                    | 117.925        | 120-3/8/102.614         | 119       | 118.616/102.8 | 118.537   |
| Weld joint<br>efficiency         |                         | .9             | . 9                     | 1.0       | .9            | 1.0       |
| Shell thickness                  |                         | .687           | .812                    | . 625     | .692          | .732      |
| lead thickness                   | ,                       | .687 .         | .693                    | . 687     | .600          | .782      |
| Valve setting-psig               | 75                      | 280.5          | 280.5                   | 280.5     | 280.5         | 330       |



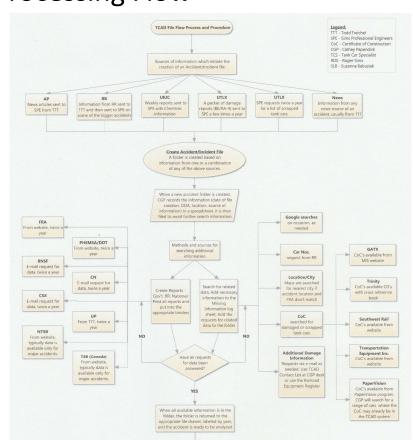
#### Tank Cars Added to Accident Database since 2002





#### Accident Data Collection – Information Sources

- University of Illinois
- News Articles
- Railroads
- Car owners
- FRA
- NTSB / TSB


| Date       | Carrier Code | Location of RR Station | State or Province | Reporting Marks Initials |
|------------|--------------|------------------------|-------------------|--------------------------|
| 11/23/2017 | CSX          | Waycross               | GA                | TILX                     |
| 11/24/2017 | CN           | Edmonton               | ON                | TILX                     |
| 11/24/2017 | UP           | La Marque              | TX                | GBRX                     |
| 11/24/2017 | UP           | La Marque              | TX                | TILX                     |
| 11/24/2017 | UP           | La Marque              | TX                | UTLX                     |
| 11/24/2017 | UP           | La Marque              | TX                | TAEX                     |
| 11/24/2017 | UP           | La Marque              | TX                | TAEX                     |
| 11/24/2017 | UP           | La Marque              | TX                | GBRX                     |
| 11/27/2017 | CSX          | Lakeland               | FL                | PGTX                     |
| 11/27/2017 | CSX          | Lakeland               | FL                | DVLX                     |
| 11/27/2017 | CSX          | Lakeland               | FL                | CPDX                     |
| 11/27/2017 | CSX          | Lakeland               | FL                | CPDX                     |
| 11/27/2017 | CN           | Surrey                 | BC                | PROX                     |
| 11/27/2017 | CN           | Winnipeg               | MB                | GATX                     |
| 11/28/2017 | CN           | Chicago                | IL .              | UTLX                     |
| 11/28/2017 | CN           | Chicago                | IL                | UTLX                     |
| 11/28/2017 | CN           | Chicago                | IL .              | UTLX                     |
| 11/28/2017 | CN           | Chicago                | IL                | UTLX                     |

Information collected both car damage and accident information



#### TCAD - Data Acquisition and Processing Flow

- File Creation
- Analysis & Coding
- Data Entry
- Data Review & Edit
- Quality Control
- Add UMLER Data
- File Completion
- Quarterly Reports





#### As of 6/30/2018:

- 48,588 Tank Car Records 66 data fields (attributes & damage)
- 30,695 Accident Records 24 data fields

#### **Latest New Fields:**

- Unit train yes/no (definition: train was all tank cars except buffer cars)
- Presence of fire at derailment
- Top nozzles (number)
- Top fittings protection (detail in the new UMLER field)
- Car exposure to fire (was previously left to catch-all Narrative field)
- Bottom outlet valve type
- Bottom outlet valve handle securement



Statistical Analysis of Tank Car Safety

Conditional

Probability of

Release

$$CPR_{CAR} = 1 - (1 - CPR_{H}) (1 - CPR_{S})(1 - CPR_{T})(1 - CPR_{B})$$



#### Latest CPR Study – TWP – 17

#### Data Included:

- Accident occurred 1980 through 2011
- Car was built 1970 or later
- Loaded cars only
- Stub-sill cars
- Tank car classes DOT/TC-111, 211, 105, 112, 114, 120
- Tank steel specs TC128, A515, A516 only
- Truck capacity 100 tons or more and 4 axles only
- Damaged by impact (as opposed to strictly by fire exposure).



The Number of Tank Car Records Used in Each Component Regression And the Number of Accidents Damaging Those Cars

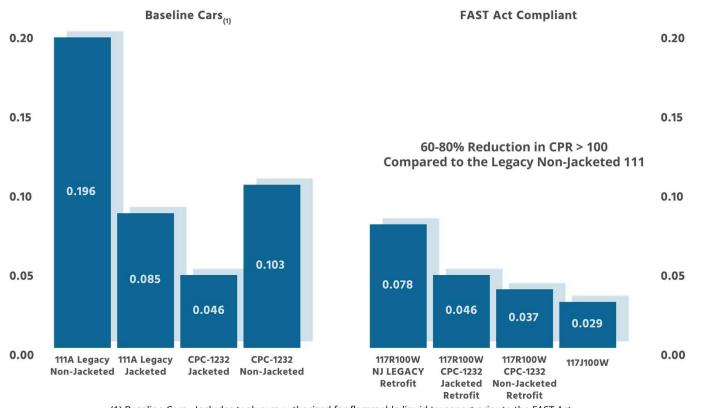
| Component              | Tank Cars | Accidents |
|------------------------|-----------|-----------|
| Shell                  | 7,165     | 4,993     |
| Head                   | 4,467     | 2,464     |
| <b>Bottom Fittings</b> | 5,484     | 3,905     |
| Top Fittings           | 4,467     | 2,175     |

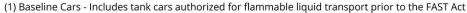


### CPR – Average Mainline Conditions

- Derailment Speed = 26 mph
- 11 Cars Derailed
- Car is Halfway Back in Derailment String 6<sup>th</sup> Car

Source: FRA mainline and siding freight train accidents for the period 2003-2012





# CPR > 100

Released Quantity is greater than 100 gls. Adjusted to filter out minor releases that Would not be expected to cause a pool fire



#### RELATIVE CPR > 100 OF FLAMMABLE LIQUIDS CARS

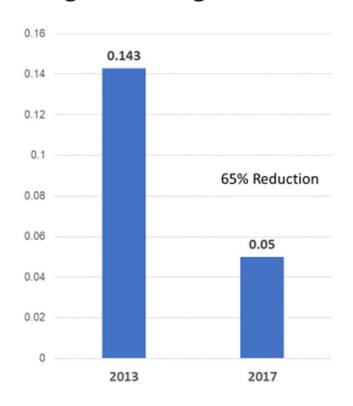






## Fleet Average CPR Calculation

Sum of (CPR > 100 for each Car Specification X Number of Trips Made for that Specification)

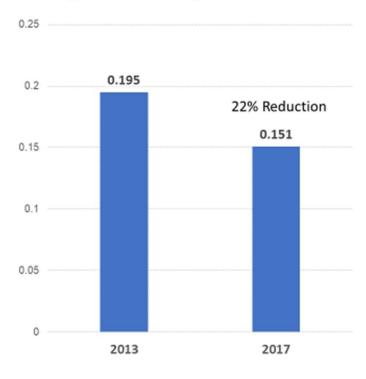

= Fleet Average

CPR > 100

otal Number of Trips Made for all Car Specifications



### Change In Average Fleet CPR > 100 for Crude Oil (2013 vs. 2017)

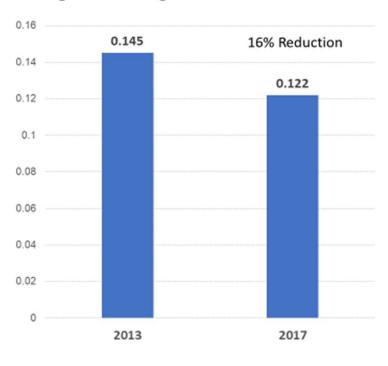



#### **Key Factors:**

- 99.6% Reduction in DOT 111 Shipments
- 86% Reduction in Non-Jacketed CPC-1232 Shipments
- 272% Increase in Jacketed CPC-1232 Shipments
- 31% of Crude Oil Shipments in 117J, 117R and 120J Specification Tanks
- 3/1/2018 Deadline for DOT 111 Removal



### Change In Average Fleet CPR > 100 for Ethanol (2013 vs. 2017)




### **Key Factors:**

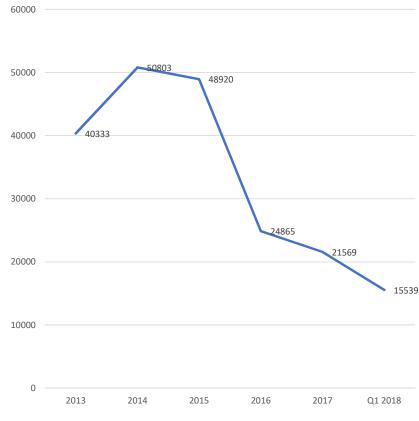
- Total Shipments Increased by 22%
- · 15% Reduction in DOT 111 Shipments
- CPC-1232 shipments Increased by 1220%
- 10% of Shipments Made by CPC-1232 Tanks
- Use of DOT 117 & 120 Car specifications Increased to 21% of Shipments
- 5/1/2023 Deadline for DOT 111 Removal



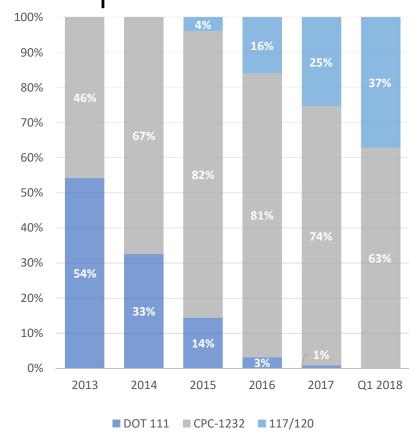
### Change In Average Fleet CPR > 100 for Other Flammable Liquids (2013 vs. 2017)



#### Key Factors:

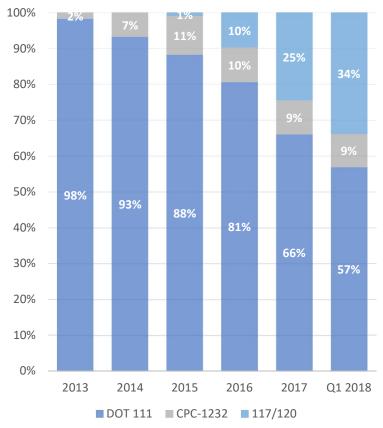

- Total Shipments Increased by 32%
- 3% Reduction in DOT 111 Shipments
- Use of CPC-1232 Specification Tanks Increased by 433%
- · 24% of Shipments Made by CPC-1232 Tanks
- DOT 117/120 Specification Tanks Made over 23K Shipments or 7% of Total Shipments
- 5/1/2025 Deadline for DOT 111 Removal (packing group I)
- 5/1/2029 Deadline for DOT 111 Removal (packing group || & || ||)




# 2018 Flammable Liquid Fleet Progress Report

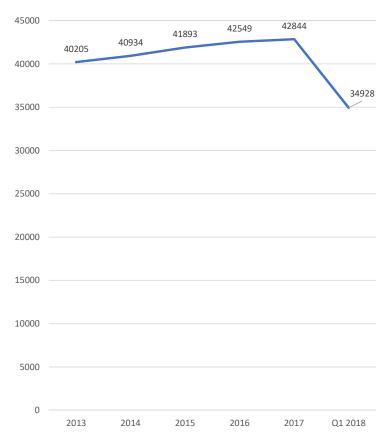


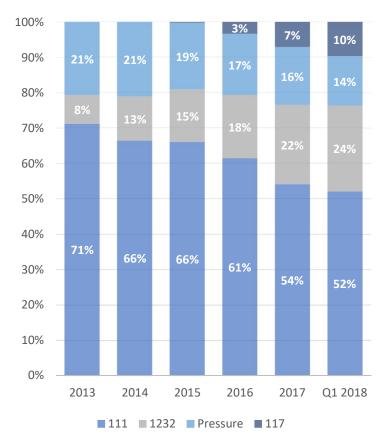
# Crude Oil Fleet Size & Composition





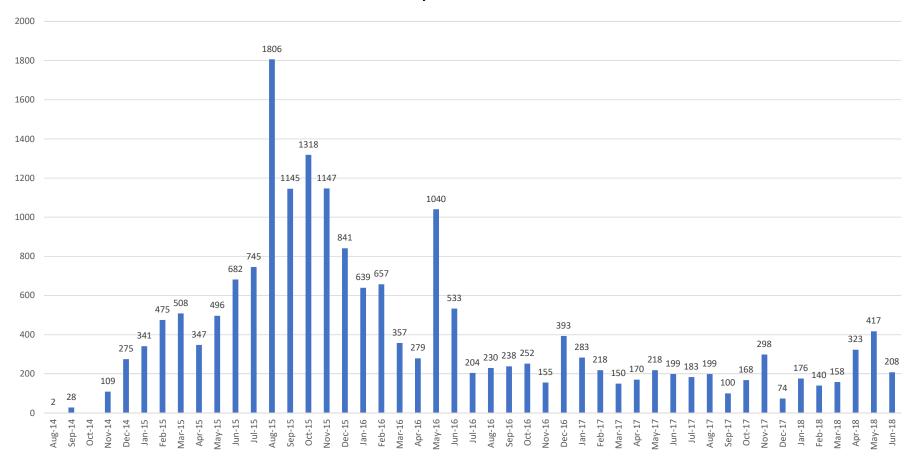




# Ethanol Fleet Size & Composition



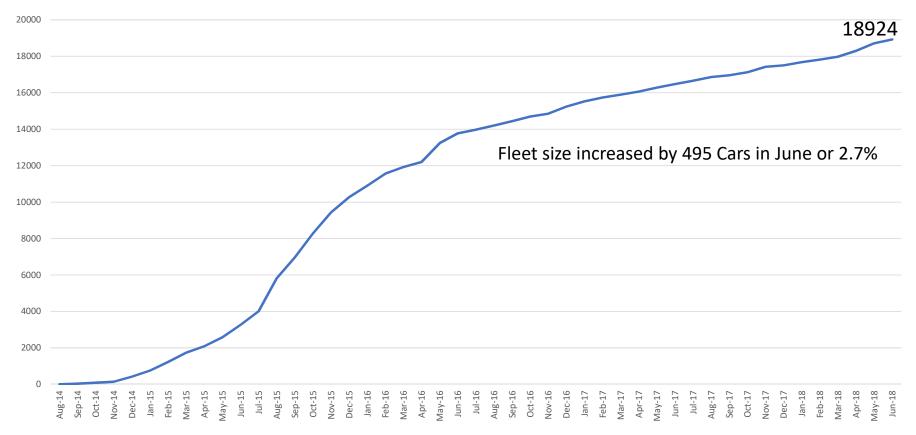



Source : Association of American Railroads


# Other Flammable Liquids

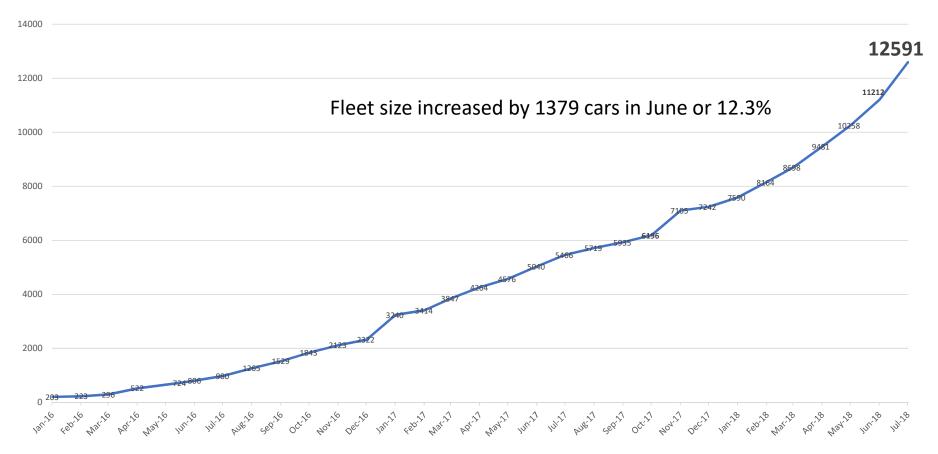





Source: Association of American Railroads

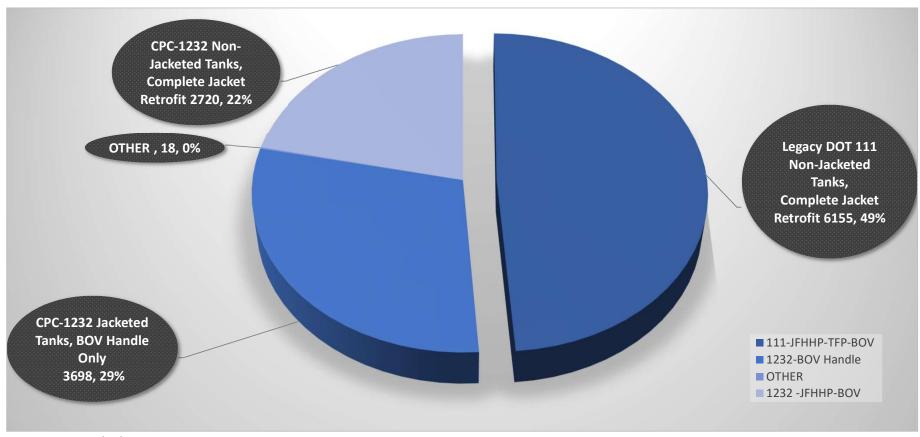
### DOT 117J & 120J200 Monthly Production




Based on 7/1/2018 UMLER File

# DOT 117J & 120J200 Fleet Growth




Based on 7/1/2018 UMLER

## DOT 117R Fleet Growth



Based on 7/1/2018 UMLER

# DOT 117R Fleet Composition



Based on 7/1/2018 UMLER

# Thank You

tankcarresourcecenter.com