

Radio Network Overview and Network Design Principles

Kee Himsoon Pam Siriwongpairat

Meteorcomm Research

Disclaimer

This work was funded in whole or in part by the Federal Railroad Administration, US Department of Transportation under U.S. Government Grant FR-TEC-0003-11-01-00, and is therefore subject to the following license: The Government is granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable worldwide license in this work to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or behalf of the Government. All other rights are reserved by the copyright owner.

By downloading, using, or referring to this document or any of the information contained herein you acknowledge and agree:

Ownership

This document and the information contained herein are the property of Meteorcomm LLC ("MCC"). Except for the limited rights granted under the above license, you obtain no rights in or to the document, its contents, or any related intellectual property all of which are the property of MCC.

Limited Use and Non Disclosure

This document is protected by copyright, trade secret, and other applicable laws.

Disclaimer of Warranty

This document and all information contained within this document or otherwise provided by MCC, and all intellectual property rights within, are provided on a an "as is" basis. MCC makes no warranties of any kind and expressly disclaims all warranties, whether express, implied or statutory, including, but not limited to warranties of merchantability, fitness for a particular purpose, title, non-infringement, accuracy, completeness, interference with quiet enjoyment, system integration, or warranties arising from course of dealing, usage, or trade practice.

Disclaimer

Assumption of Risk

You are responsible for conducting your own independent assessment of the information contained in this document (including without limitation schematic symbols, footprints and layer definitions) and for confirming its accuracy. You may not rely on the information contained herein and agree to validate all such information using your own technical experts. Accordingly, you agree to assume sole responsibility for your review, use of, or reliance on the information contained in this document. MCC assumes no responsibility for, and you unconditionally and irrevocably release and discharge MCC and its affiliates and their respective officers, directors, and employees ("MCC Parties") from any and all loss, claim, damage or other liability associated with or arising from your use of any of the information contained in this document.

Limitation of Liability & Disclaimer

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

In no event shall MCC or the MCC parties be liable for any indirect, incidental, exemplary, special, punitive, or treble or consequential damages or losses, whether such liability is based on contract, warranty, tort (including negligence), product liability, or otherwise, regardless as to whether they have notice as to any such claims.

Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the Federal Railroad Administration and/or U.S. DOT

Trade or manufacturers' names any appear herein solely because they are considered essential to the objective of this report.

Disclaimer

Hazardous Uses

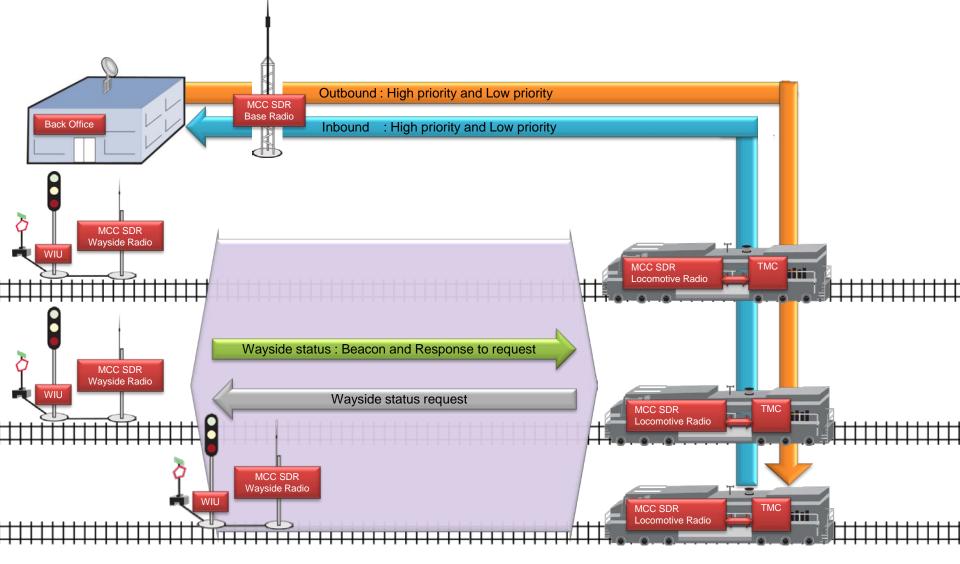
None of the information contained in this document may be used in connection with the design, manufacture or use of any equipment or software intended for use in any fail safe applications or any other application where a failure may result in loss of human life or personal injury, property damage, or have a financial impact or in connection with any nuclear facility or activity or shipment or handling of any hazardous, ultra hazardous or similar materials ("Hazardous Uses"). MCC disclaims all liability of every kind for any Hazardous Uses, and you release MCC and the MCC Parties from and shall indemnify MCC and the MCC Parties against any such liability, including, but not limited to, any such liability arising from MCC's negligence.

Copyright and Trademark

Meteorcomm® and ITCnet® are registered trademarks of Meteorcomm LLC., and may not be used without express written permission of Meteorcomm LLC.

Trade or manufactures name may appear herein solely because they are considered essential to the objective of this report. The United States Government does not endorse products or manufacturers.

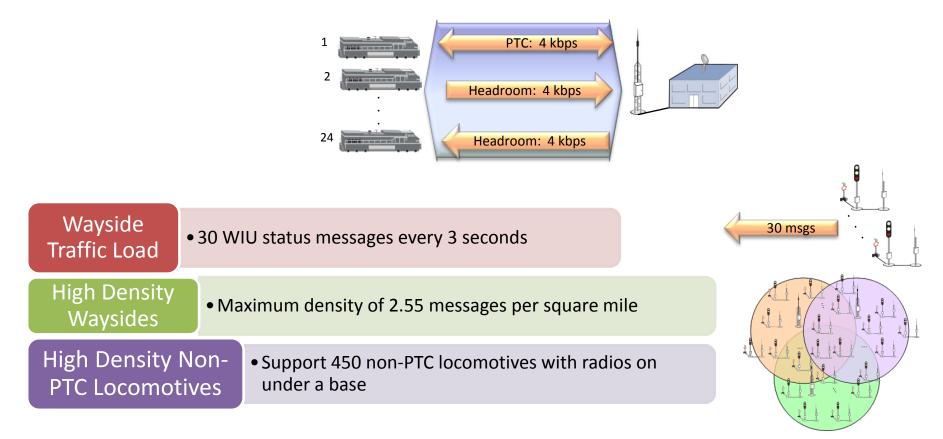
Document Number: 00002152-A



Outline

- Radio network overview
 - Basic components of PTC radio network
 - Radio characteristics
 - ITCnet® protocol
- Network design principles
 - Network design overview
 - Base and wayside coverage planning
 - Base frequency planning
 - Wayside slot planning

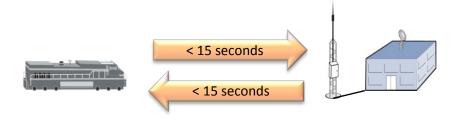
Radio Network Overview

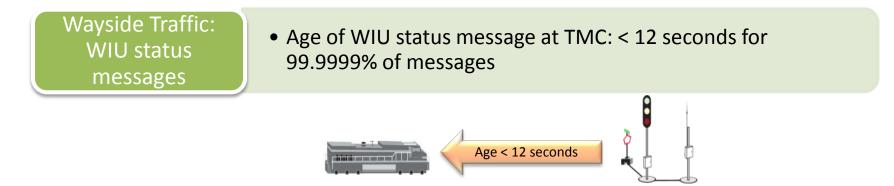


ITC Requirements

• Throughput

Office-Loco
Traffic Load• 4 kbps PTC (inbound or outbound)
• 8 kbps Headroom (4 kbps inbound and 4 kbps outbound)

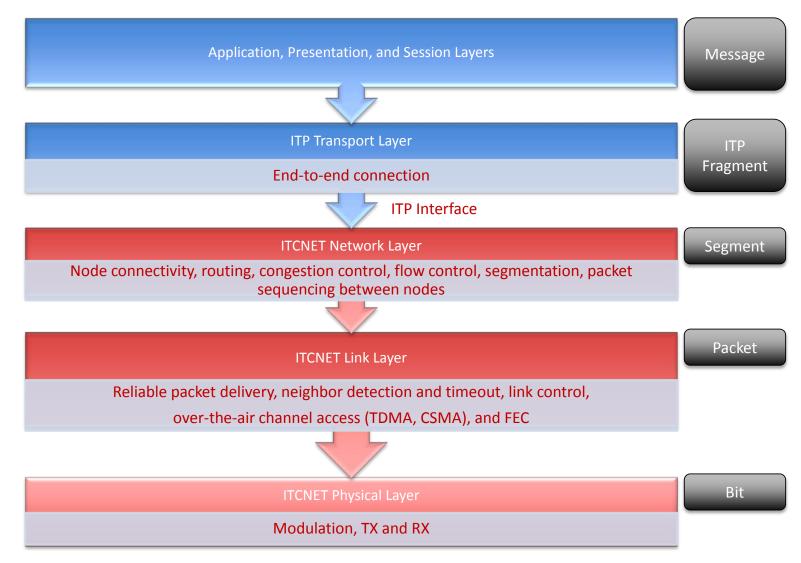




ITC Requirements (Cont.)

• Latency and Reliability

Office-Loco Traffic: PTC messages • Latency of high priority outbound/inbound messages: < 15 seconds for 99.9% of messages

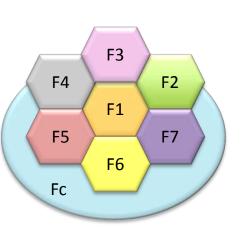


©2012 Meteorcomm LLC. All Rights Reserved.

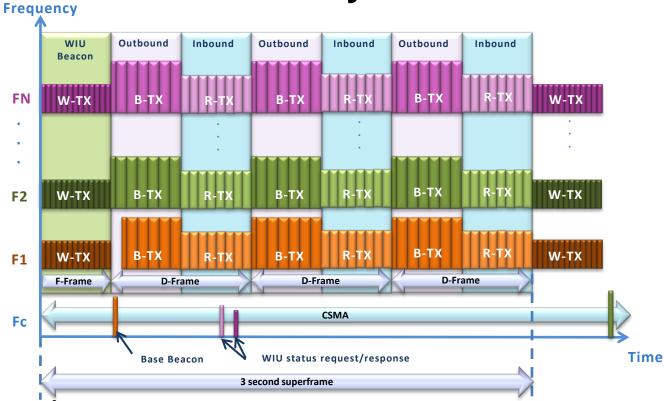
Overview of ITCnet Protocol

ITCnet Physical Layer

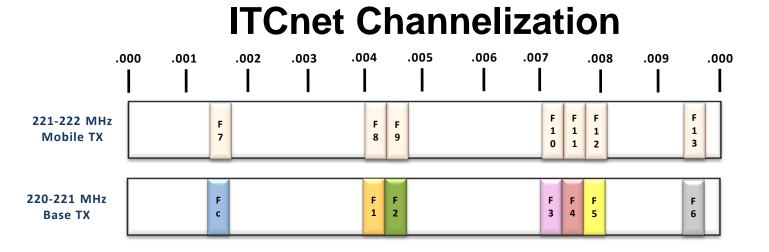
• Characteristics of ITC Radios


	Wayside	Locomotive	Base	
	Radio	Radio	Radio	
Application	Fixed remote installations	Mobile remote installations	Base station installations	
Frequency Band	217.6 - 222.0 MHz	217.6 - 222.0 MHz	217.6 - 222.0 MHz	
TX Modulation	"∕₄ DQPSK	"∕₄ DQPSK	"∕₄ DQPSK	
TX Bit Rate	16 kbps	16,32 kbps	16,32 kbps	
Peak TX Power	25 Watt	50 Watt	75 Watt	
Average TX Power	12.5 Watt	25 Watt	37.5 Watt	
Channel Spacing	25 kHz	25 kHz	25 kHz	

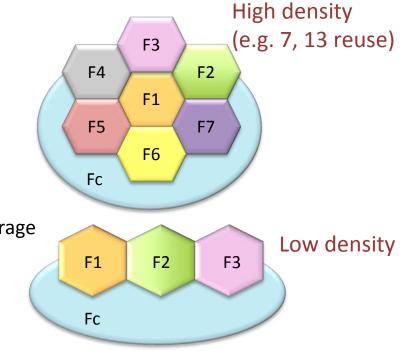
• Number of physical receive channels


Radio Type	Primary Receive Channels	Diversity Receive Channels
Wayside	2	0
Locomotive	8	8
Base	8	8

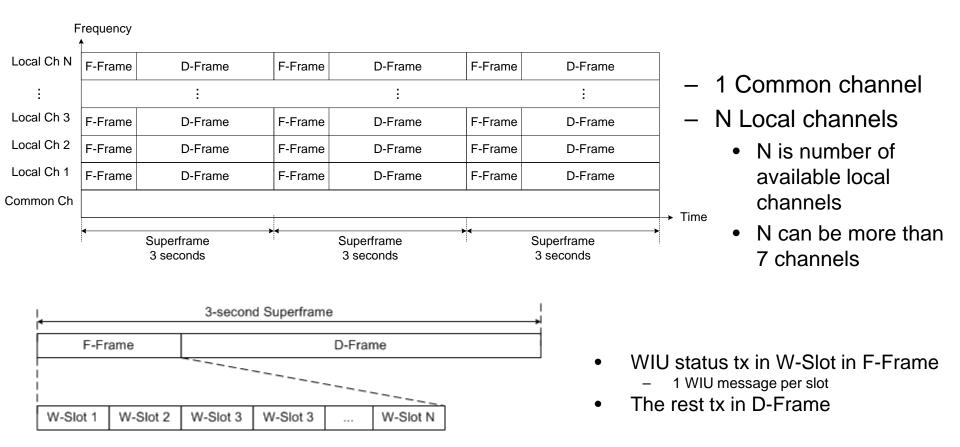
ITCnet Link Layer



1 Common channel
 + N Local channels

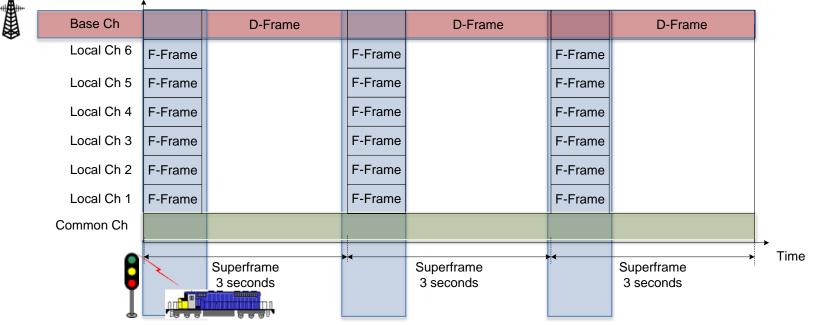


- Local channel: 3-seconds superframe
 - F-Frame: WIU status beacons
 - D-Frame: outbound and inbound traffic from remotes under a base
- Common channel is accessed by CSMA. The common channel supports
 - Base beacon for remote to select a base
 - WIU status request and response in 'panic' mode; WIU beacon on
- Tx in F-Frame slots rely on GPS timing; Tx in D-Frame slots rely on base polling
- Base beacon is transmitted in both local and common channels
 11/13/2012
 ©2012 Meteorcomm LLC. All Rights Reserved.



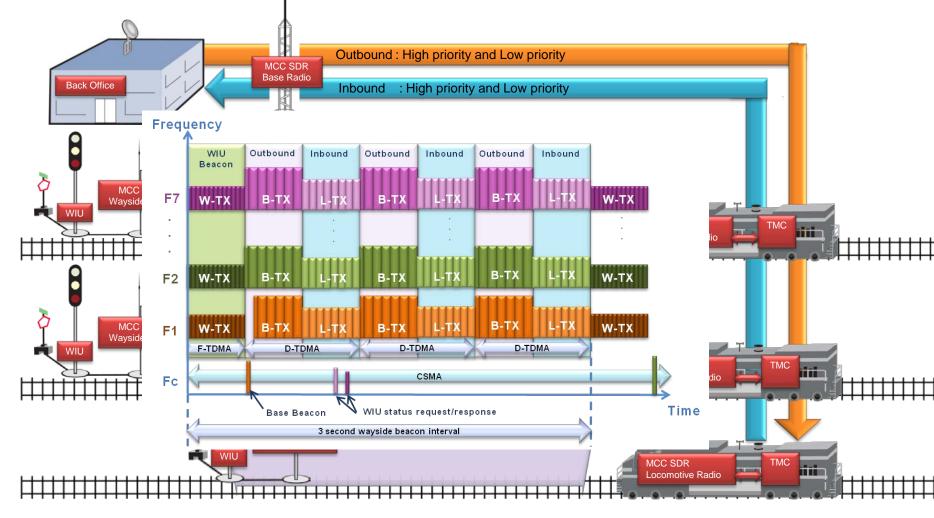
- 14 Nation 25kHz channels available
- One 25kHz channel is set as common channel; the rest are set as local channels
- Common channel is shared by all bases and remotes
- Local channel is used to support
 - WIU status messages
 - Traffic between base and remotes under base coverage
- Frequency reuse is applied to local channels to increase spectral efficiency and mitigate co-channel interference

ITCnet Channel Structure

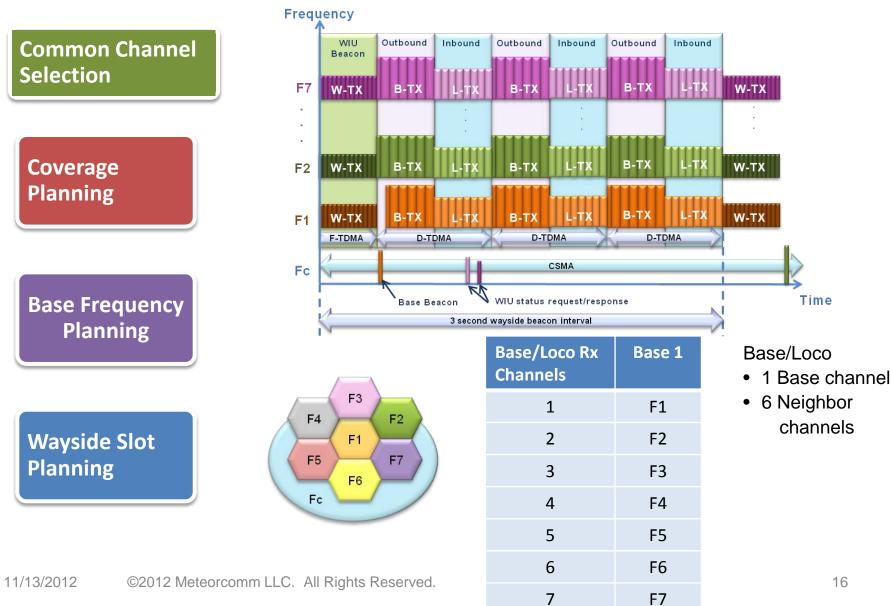


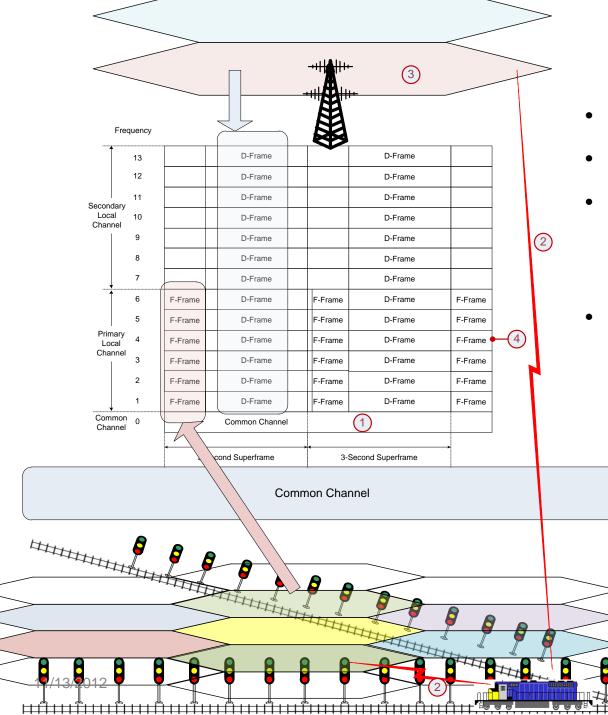
ITCnet (Cont.)

- Base/Locomotive radios
 - 8 Receive channels
 - 1 Common channel
 - 7 Local channels
 - 1 to connected base for base-locomotive communication during D-Frame
 - 6 to receive WIU status during F-Frame


Frequency

©2012 Meteorcomm LLC. All Rights Reserved.

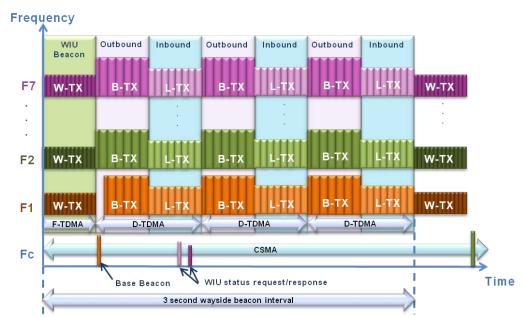


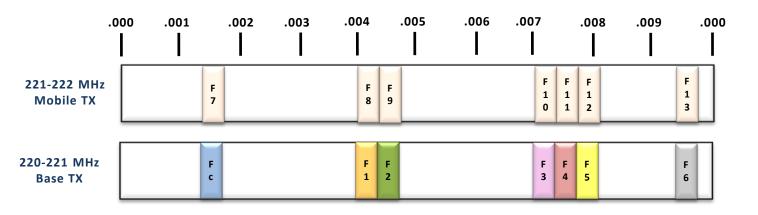

Network Design Overview

Network Design Principles

Network Design Principles

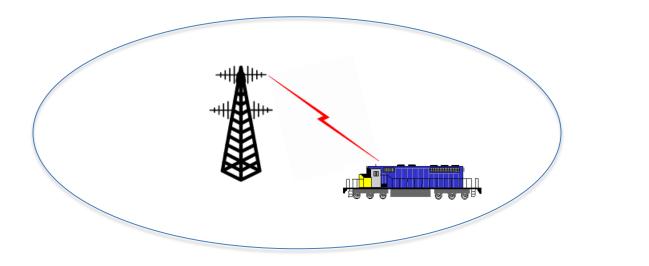
- Decouple base frequency planning and wayside slot planning
- All WIU status beacons are TX only in primary local channels
- Base/Loco radio RX channel tuning:
 - 1 Common ch
 - 6 Primary local ch
 - 1 Connected base local ch
- Base beacons are TX in local channels and common channel

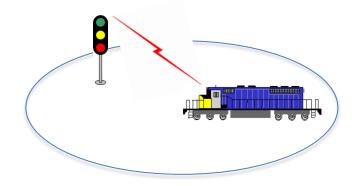

Network Design Steps


- Common channel selection
- Coverage planning
- Base frequency planning
- Wayside slot planning

Common Channel Selection

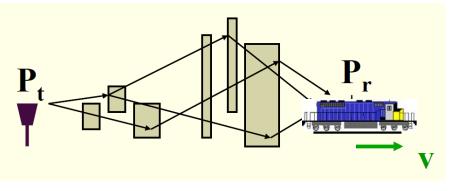
- Nationwide channel
- Base Tx frequency
- Low interference
 - Co-channel interference
 - Adjacent channel interference
 - Intermodulation interference

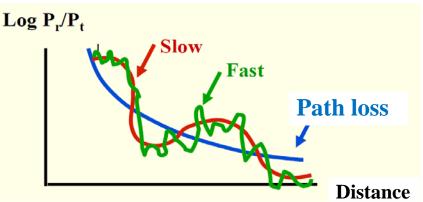



Coverage Planning

• Base Coverage

- Base-Locomotive link budget


- Wayside Coverage
 - Wayside-Locomotive link budget



Propagation Characteristics

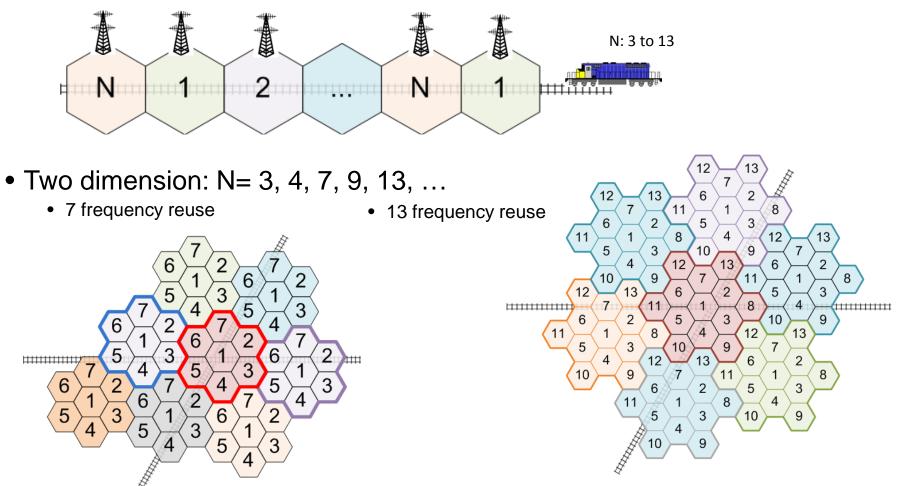
Signal propagation over wireless channels

Three main components

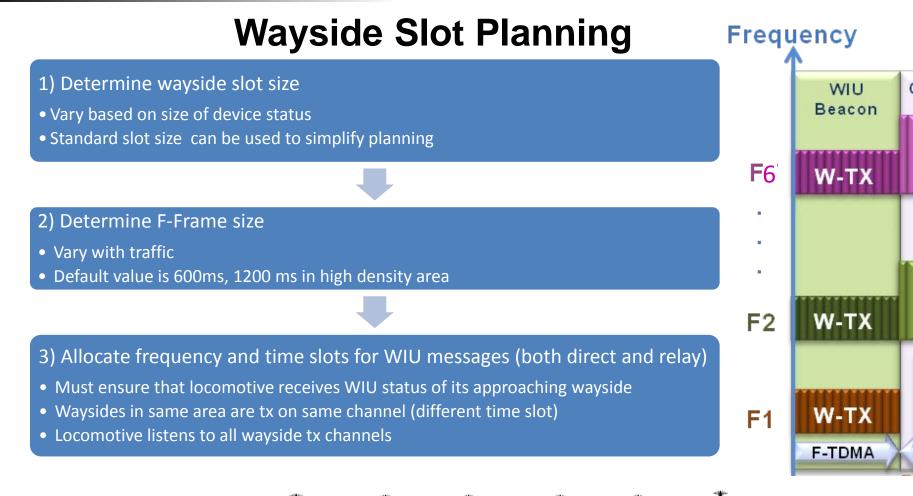
- Path Loss
 - Signal loss over distance between the Tx and Rx
- Shadowing or slow fading (due to obstructions)
 - Log-normal distribution with standard deviation σ of 6 dB

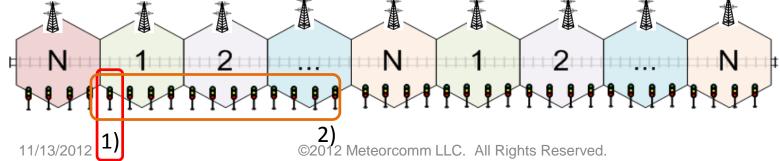
• Multi-path Fading or fast fading

Channel Model (CM)	Environment	Description	Tap Number	Relative Delay (us)	Average Relative Power (dB)	Tap-gain process
CM1	Rural	Flat Rayleigh fading	1	0	0	Rayleigh
CM2	Urban	Frequency	1	0	0	Rayleigh
		selective Rayleigh fading	2	15	-8.6	Rayleigh
1/13/2012		©2012 Mete		All Rights Reserved		


11/13/2012

©2012 Meteorcomm LLC. All Rights Reserved.




Base Frequency Planning

- Assign frequency to each base for D-Frame communications
- Cellular frequency reuse scheme
- One dimension

ITCnet Packet

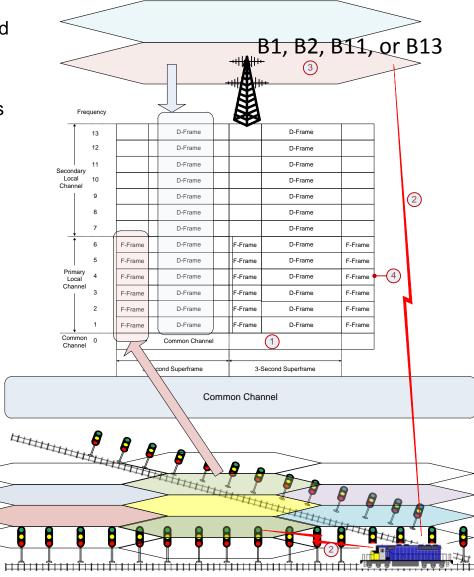
WIU Status

Outbound/Inbound Data

- FEC Encoding
 - Code rate 0.75 4 bytes FEC per 12 bytes data

WIU Packet Size

EMP Header	12	Bytes	
Bit rate	16	kbps	
FEC rate	0.75		


		•	•		_	6	-	•	•	4.0	٦	size of device status
	1	2	3	4	5	6	7	8	9	10	1	(bytes)
0	19	19	20	20	21	21	22	22	23	23		(0)(00)
10	26	26	27	27	28	28	29	29	30	30		
20	31	31	34	34	35	35	36	36	37	37		
30	38	38	39	39	42	42	43	43	44	44		
40	45	45	46	46	47	47	50	50	51	51		
50	52	52	53	53	54	54	55	55	58	58		
60	59	59	60	60	61	61	62	62	63	63		
70	66	66	67	67	68	68	69	69	70	70		
80	71	71	74	74	75	75	76	76	77	77		
90	78	78	79	79	82	82	83	83	84	84		
100	85	85	86	86	87	87	90	90	91	91		
110	92	92	93	93	94	94	95	95	98	98		
120	99	99	100	100	101	101	102	102	103	103		 Packet size (ms)
130	106	106	107	107	108	108	109	109	110	110		
140	111	111	114	114	115	115	116	116	117	117		
150	118	118	119	119	122	122	123	123	124	124		
160	125	125	126	126	127	127	130	130	131	131		
170	132	132	133	133	134	134	135	135	138	138		
180	139	139	140	140	141	141	142	142	143	143		
190	146	146	147	147	148	148	149	149	150	150		
200	151	151	154	154	155	155	156	156	157	157		
210	158	158	159	159	162	162	163	163	164	164		
220	165	165	166	166	167	167	170	170	171	171		
230	172	172	173	173	174	174	175	175	178	178		
240	179	179	180	N/A								

Frequency Reuse – Fixed Wayside Beacon Channels

- All locomotive radios tune to same common channel and 6 wayside beacon channels
- Only connected base channels are different
- Locomotive listens to all wayside tx channels regardless of which base it connects to

Loco RX		Connec	ted Base	
Channel	B1	B2	B11	B13
7	F1	F2	F11	F13
6	F6	F6	F6	F6
5	F5	F5	F5	F5
4	F4	F4	F4	F4
3	F3	F3	F3	F3
2	F2	F2	F2	F2
1	F1	F1	F1	F1
0	FO	FO	FO	FO

©2012 Meteorcomm LLC. All Rights Reserved.

Wayside Slot Planning Results

- Wayside slot planning
 - Conduct slot planning
 - Output the slot plan

1	Slot plan			
2	Message ID	Channel_No	Offset_Time	Slot_Size
3	707643121005	126	0	30
4	707643121505	126	30	30
5	707643122005	126	60	30
6	707643120505	126	90	30
7	707643120506	126	120	30
8	707643120507	126	150	30
9	707643120005	126	180	30
10	707643122505	126	210	30
11	707643119506	126	240	30
12	707643119505	126	270	30
13	707643119507	126	300	30
14	707643123005	126	330	30
15	707643119005	126	360	30
16	707643118505	126	390	30
17	707643124005	126	420	30
18	707643116505	126	450	30

©2012 Meteorcomm LLC. All Rights Reserved.

Summary

- Radio network overview with PTC system components and overview of ITC radio and protocol
- Network design principles overview with coverage planning, frequency planning, and wayside slot planning

Questions

If you have any questions, please contact our Service Desk (<u>https://support.meteorcomm.com/home</u>)