Carolina Seal

VSP Technologies

Six Sigma Fluid Sealing Management

FRA Region 8 - Billings, MT September 2013

Jim Frew

Robert Aliota

Introduction/Goal of Training/NAR Data Review

Introduction

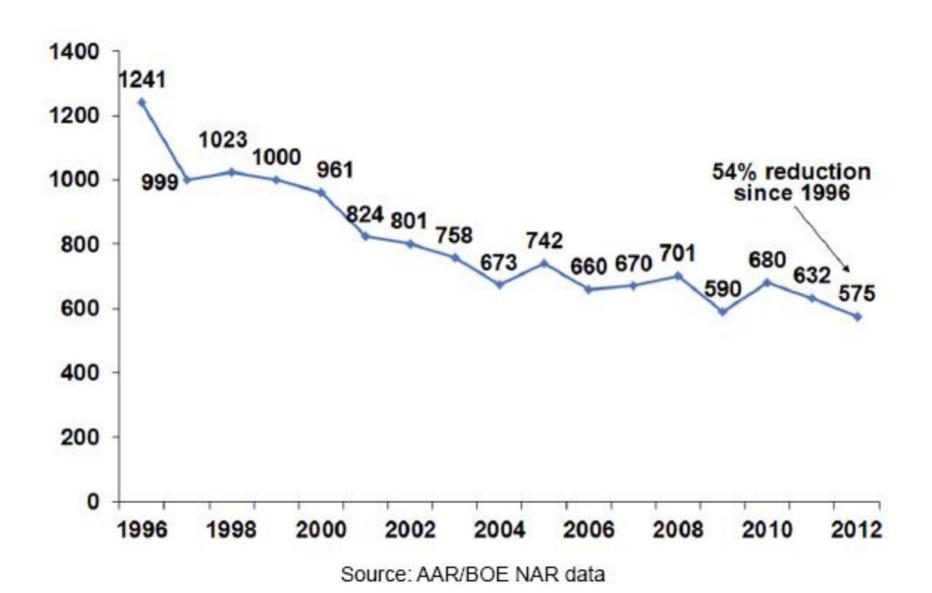
- · Robert Aliota President, Carolina Seal, Inc.
- · Jim Frew Director Transportation, VSP Technologies
- 50+ years of combined fluid sealing experience

Goal of Presentation

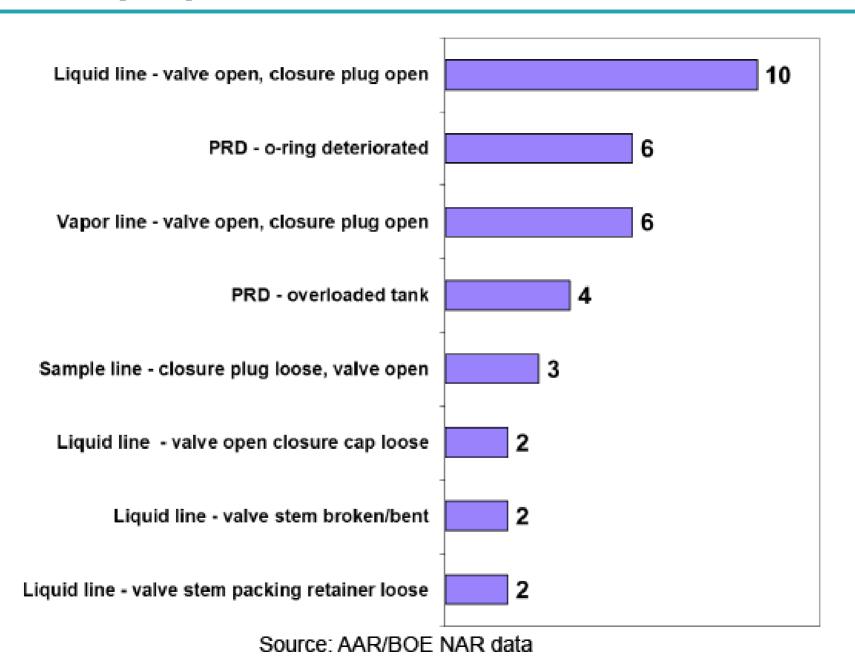
- Better understanding of best practices surrounding o-rings/gaskets/fastener materials
- Importance of proper assembly procedures
- Understanding o-ring & gasket failure modes
- Better understanding of RideTight® Program

NAR Data Review

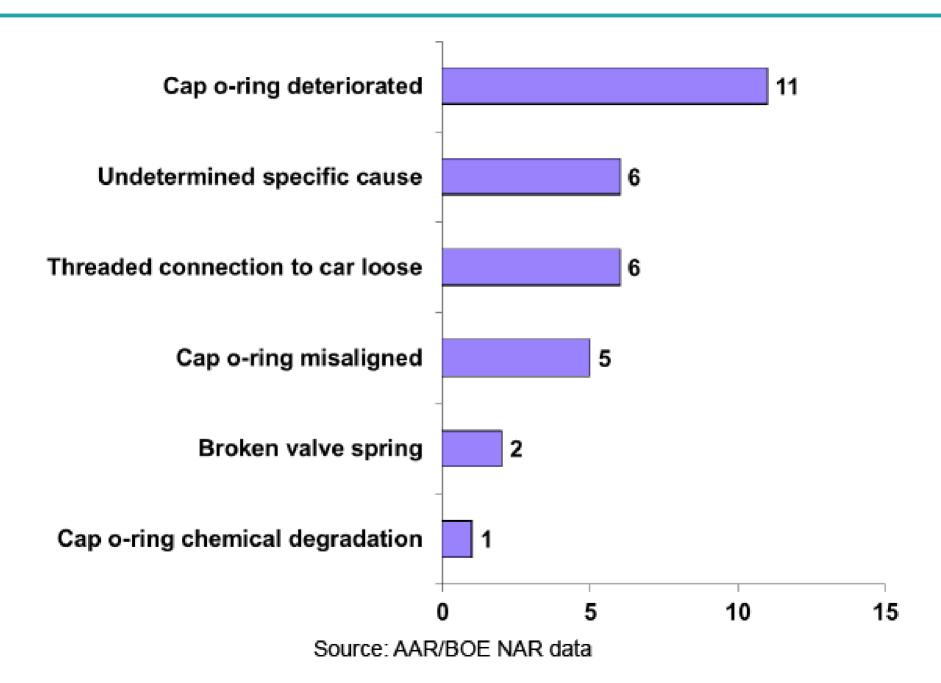
NAR Communications Team


Mission Statement

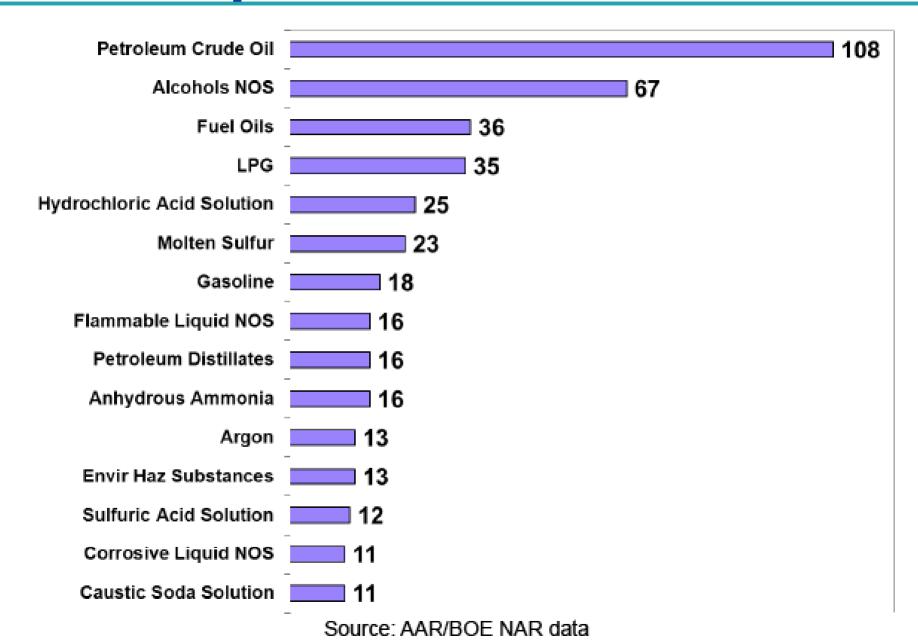
The NAR Communication Committee's overall objective is to provide an information exchange hub with conduits to Shippers, Leasing Companies, Railroads, FRA, AAR, Industry Associations, and Suppliers, allowing for exchange of best practices information within the rail tank car industry. Our primary focus is communicating this information to aid in the prevention of NAR's.


To Learn More About NAR Prevention Go To: http://nar.aar.com

NARs by Year: US & Canada

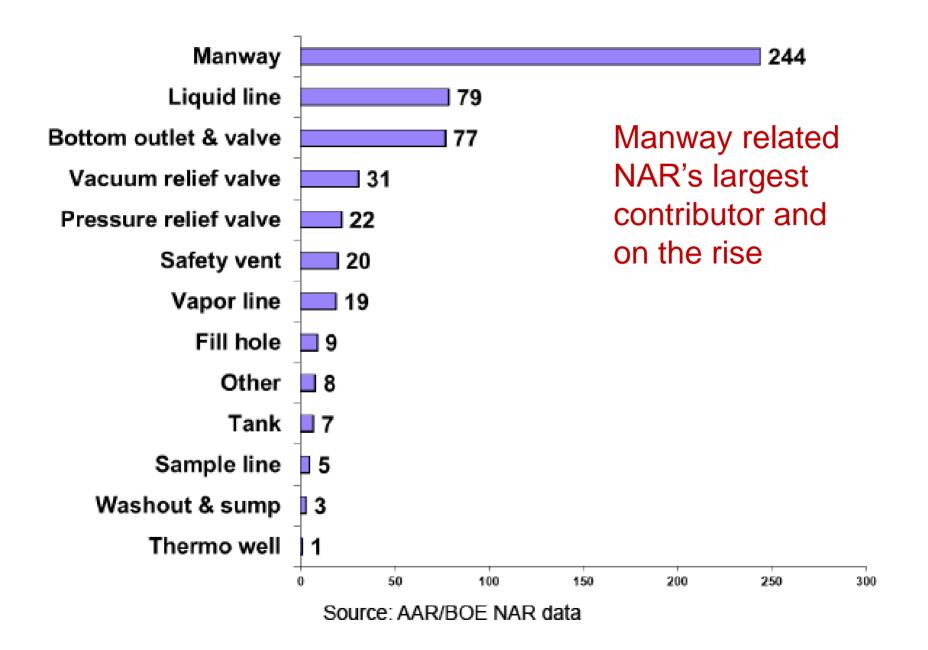


4


2012 Top Specific Causes for Pressure Cars

2012 Vacuum Relief Valve NAR Causes

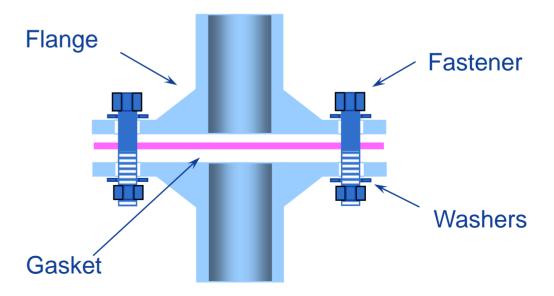
2012 Top Commodities for NARs



VSP Technologies

- Bolted Flange Joint System
- Gasket & Fasteners 101

8


2012 Non-Pressure Car NARs By Component

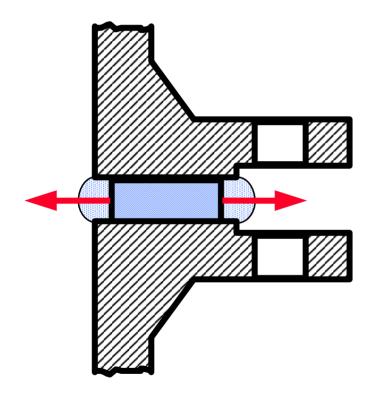
9

The Bolted Flanged Joint System

- Bolted Flanged Joint consists of
 - Flange
 - Fasteners
 - Gasket Material
 - Chemical Compatibility
 - Mechanical Requirements (Thermal, Pressure, Stress)
 - Assembly Considerations (assume controlled procedures are in use)
- All Three Must Work in Harmony

20" GP Manway

- 20" GP Manway typically 6 or 8 bolts 7/8" or 1"
- NPS 20 Class 150 has (20 1-1/8" bolts)
- Typical Torque Values for Manways



Minimum Required Gasket Assembly Stress

Gasket Stress (psi) = <u>Total Bolt Load (lb)</u> Gasket Contact Area (in²) = psi

Gasket Material	Minimum Gasket Stress to Seal (psi)	Maximum Gasket Stress (psi)	Re-Torque Required
1/8" Thick Rubber (Elastomer)	500	1,500	YES
Expanded PTFE w/Corrugated Insert	2,800	10,000 - 15,000	NO
1/8" Thick Compressed Non- Asbestos	4,800	15,000	NO
1/8" Filled PTFE	4,800	10,000 - 15,000	YES

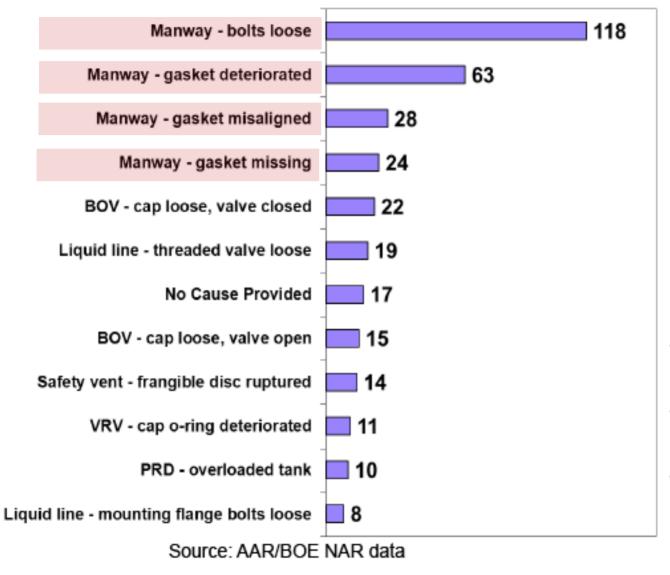
Mechanical Requirements - Load Retention (Creep/Cold Flow)

- Gasket Creep/Cold Flow
 - Gasket Stress Decreases
 - Loss of Fastener Pre Load
 - Fasteners more susceptible to vibration loosening

Ideally it is preferable to choose a materials that does not relax

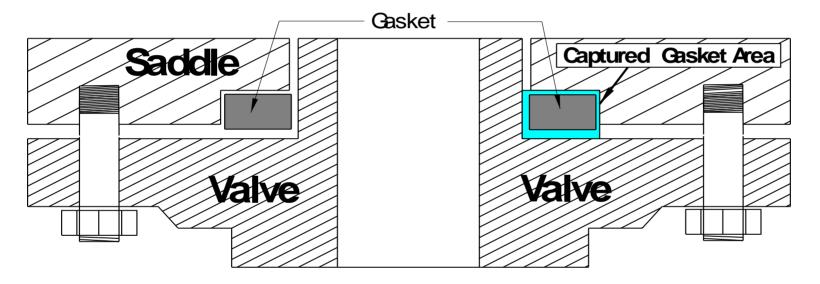
Fracture/Over Compression of Gasket

Typical GP Railcar Manway Gasket Damage


Buna-N (Nitrile) in Asphalt [Buna-N = 200°F, Asphalt = 400°F]

Viton® in Asphalt [Viton® 450°F, Asphalt = 400°F]

Top Specific Causes: Non-Pressure Cars

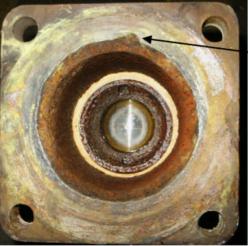


Manway Related NAR's represent 65 % of Top Specific Causes

- Manway bolts loose is the leading cause of NAR's
- Elastomer gaskets are the most widely used
- Loose Bolts can be caused by the relaxation of elastomer (rubber) gaskets

Basic Understanding of Tank Car Flanges

- Flange types (Raised face, flat face, tongue and groove (T&G))
 - 。 Male to Female Flange
 - (ex., Jamesbury 5REB3)


NOTE: Sometimes a ¼" thick gasket is needed to ensure proper compression

Flange Inspection and Cleaning

Before a flange can be reassembled a proper inspection must be performed to ensure the flanges are free of nicks, pits, and/or gouges that could prevent the gasket from performing its intended function reliably. The examples below illustrate flanges with damage that should be documented and reported to the customer to receive approval for reassembly.

Flange Inspection and Cleaning

Before a flange can be reassembled a proper inspection must be performed to ensure the flanges are true and free of contamination. The presence of contamination on the flange sealing surface can prevent the gasket from performing its intended function reliably. The below examples illustrate a flange with contamination and how it should look after being cleaned adequately.

Basic Understanding of Fastener Specification

	Diameter Denos	Yield Strength		3/4" Diameter Fastener Maximum
BOLT Description	Diameter Range	(ksi)	Strength (ksi)	Torque (ft-lbs)
ASTM A193 GRADE B8 Class 1	All Diameters	30	75	100
ASTM A193 GRADE B8 Class 2	1/4" thru 3/4"	100	125	335
	Over 3/4" thru 1"	80	125	
	Over 1" thru 1-1/4"	65	125	
ASTM A307 GRADE B	1/4" thru 4"	36 (1)	60	120
ASTM A320 GRADE L7	1/4" thru 2-1/2"	105	125	350
ASTM A193 GRADE B7	1/4" thru 2-1/2"	105	125	350
ASTM A320 GRADE L7	1/4" thru 2-1/2"	105	125	350
ASTM A449 TYPE 1	1/4" thru 1"	92	120	305
	Over 1" thru 1-1/2"	92	120	
SAE J429 GRADE 5	1/4" thru 1"	92	120	305
	Over 1" thru 1-1/2"	92	120	
SAE J429 GRADE 8	1/4" thru 1-1/2"	130	150	435
ASTM A574	1/4" thru 1/2"	162	180	435
	Over 1/2" thru 2"	153	170	

Note 1: 36 ksi is general accepted value to use for yield with ASTM A307 Grade B

Review of Torque Equation

TORQUE: What is Torque? How is it Calculated? How Accurate is Torque?

Relationship Between Rotational Force and Axial Force

```
Torque = FkD/12 = (ft-lbs)
Where: F = Axial Bolt Force Desired (lbs)
          D = Nominal Bolt Diameter (in)
          k = Nut Factor (aka Friction Factor)
          12 = Conversion from inches to feet
Example: F = 10,000 \text{ lbs}, D = 0.75 \text{ in}, k = 0.2 \text{ and } k = 0.1
Torque (k= 0.1) = [(10,000 \text{ lbs}) \times (0.75 \text{ in}) \times (0.1)]/12 = 62.5 \text{ ft-lbs}
Torque (k= 0.2) = [(10,000 \text{ lbs}) \times (0.75 \text{ in}) \times (0.20)]/12 = 125 \text{ ft-lbs}
```

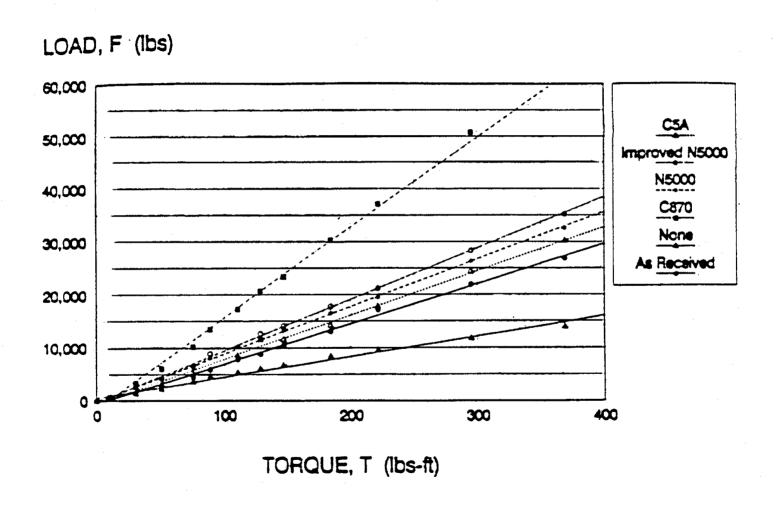
Tools Used to Tighten Manway

Tools Used to Tighten Manway

Provides Controlled Assembly

Uncontrolled Assembly

Zero Torque Wrench before storing



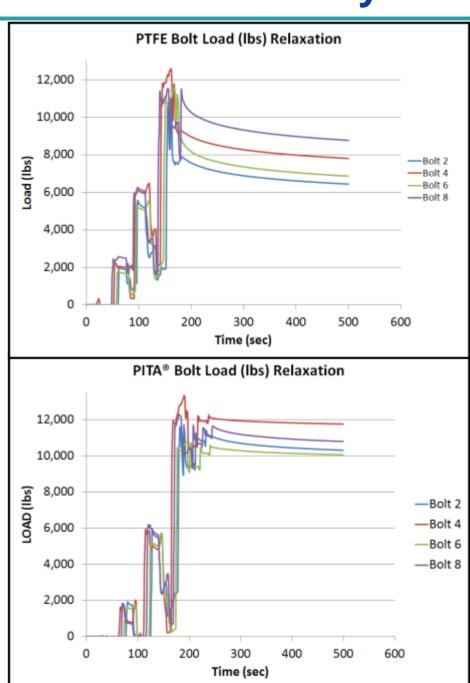
RAD® 350SL

Pneumatic Torque Wrench

LOAD vs. TORQUE (DIFFERENT LUBRICANTS)

Reprinted from "Evaluation of torque coefficients and gasket stress distributions in a bolted flanged joint using different types of lubricants" Ecole Polytechnique of Montreal, Montreal, Quebec, Canada

Gasket Stress with and without Lubrication


Unlubricated Eyebolts Non-Uniform, Lower Overall Gasket Stress

Cleaned & Lubricated Eyebolts
More Uniform, Higher Overall
Gasket Stress Developed

(MQA) Mechanic Qualification Assembly Unit

- Used as Training Tool
- Used for R&D Projects

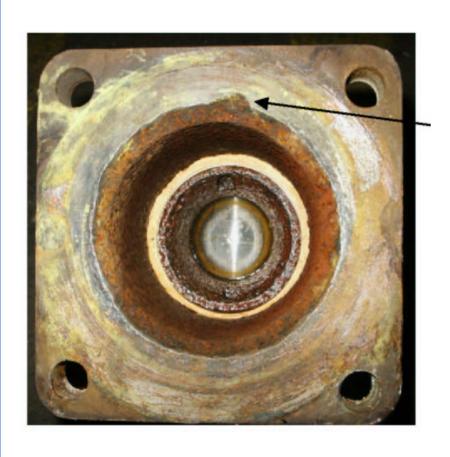
26

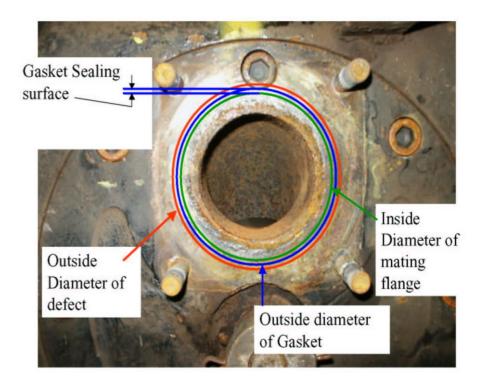
Review Root Cause Examples

- Over Tightening of Manway
- Over Compression of Gasket (2)
- Gasket Material Not Compatible with Media
- Damaged Flange Mating Surface
- Excessive Gasket Stress Caused by Flange Rotation
- Insufficient Gasket Stress Caused by Flange Make Up
- Insufficient Gasket Stress Cause by Flange Assembly
- Insufficient Gasket Stress Caused by Flange Rotation
- Example of Poor Gasket Design/Choice of Material
- Gasket Creep/Cold Flow (2)

Over Tightening of Manway

Over Compression of Gasket

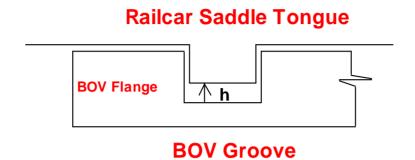



Gasket Material Not Compatible with Media being Transported

Damaged Flange Mating Surface

Over Compression of Gasket

Excessive Gasket Stress Caused by Flange Rotation



Leak Path Created Due to Insufficient Gasket Compression

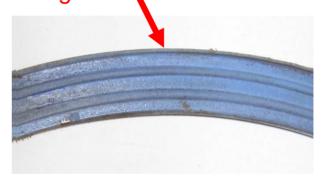
Properly Compressed Gasket

Following Proper Assembly Procedures will Ensure Flanges are Assembled Parallel Avoiding Flange Rotation

Insufficient Gasket Stress Caused by Flange Make Up

Car	Date	BOV Groove	Saddle Tongue	
Number	Measured	Depth (in)	Length (in)	h (in)
Α	Dec-03	0.313	0.219	0.094
В	Dec-03	0.313	0.250	0.063
С	Dec-03	0.219	0.219	0.000
D	Jan-04	0.219	0.156	0.063
Е	Jan-04	0.219	0.281	-0.063
F	Jan-04	0.281	0.188	0.094
G	Jan-04	0.219	0.219	0.000

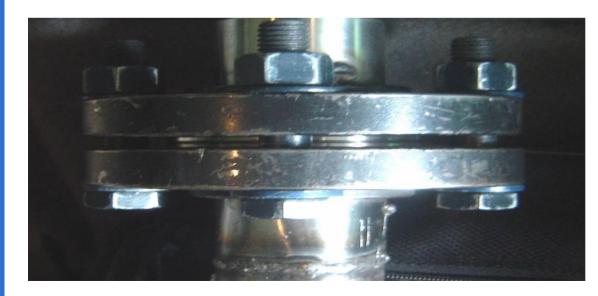
Depending on Gasket Thickness a Highly Compressible Gasket May Not be Compressed Sufficiently with Car Numbers A, B, D, and F


The Gaskets Compressed Thickness should be greater than "h"

Insufficient Gasket Stress Caused by Flange Assembly

This quadrant as shown is the area where the leak was observed. Note the lack of witness groove marks on the gasket

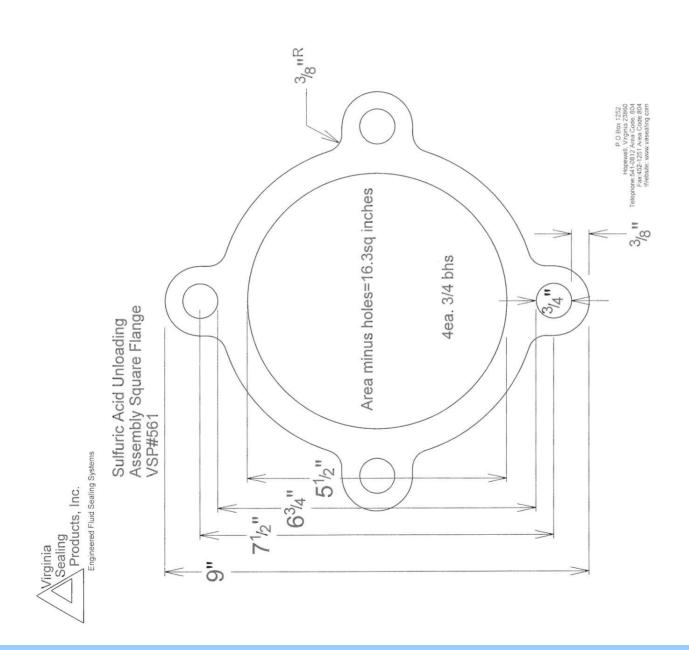
The witness grooves from the flange are clearly visible in this quadrant of the gasket



There are no corresponding imprints on this quadrant of the gasket

Insufficient Gasket Stress Caused by Flange Rotation

Example of a Flange assembled and Rotated



Example of a Flange assembled Parallel

Example of Poor Gasket Design/Material Choice

Example Solution

Carolina Seal

Commonly Used O-Ring compounds (Chemical Transportation)

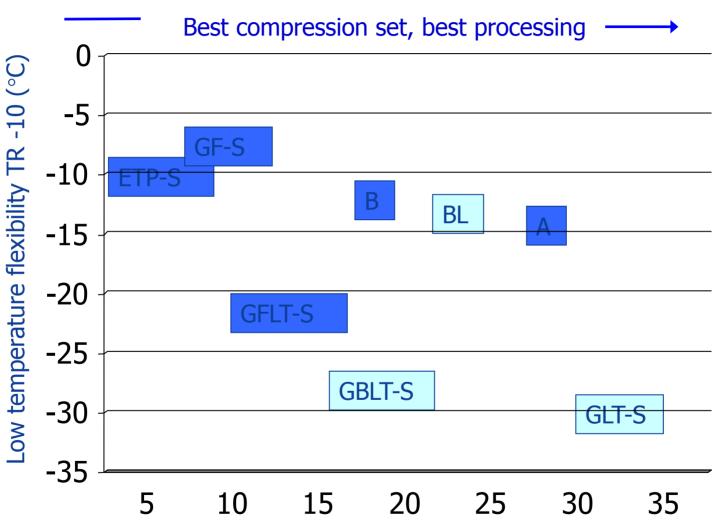
- Buna-N (Nitrile)
- **EPDM**
- Neoprene
- Viton® A
- Viton® B
- Viton® GF-S
- Viton® GF-LT
- Viton® ETP (Extreme)

- Perfluoroelastomers (FFKM) - \$\$\$
 - Simriz®
 - **Kalrez®**
 - . Chemraz®
- FDA Sanctioned Grades

NORDEL Simriz® Kalrez® Chemraz®

Material Selection Considerations

- Chemical Compatibility Rating?
- Physical Properties of the Elastomer (Pedigree)
- Pressure High / Low / Constant?
- Temperature High / Low / Constant?
- Operating Conditions Static / Dynamic?
- Length of Service Expectations
- O-Ring Management Strategy Consolidation of Materials v. Lowest Cost per Commodity
- Technical Information Available

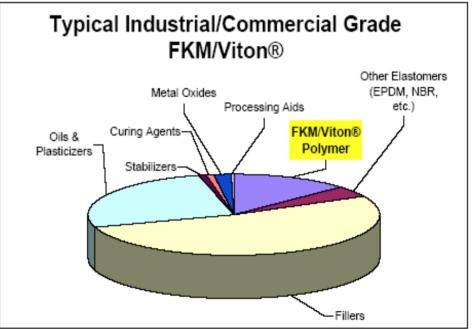

Relative Performance of Viton®

Viton® Products	Α	В	GF-S	GF-LT	ETP-S
Curing System	bisphenol	bisphenol	peroxide	peroxide	peroxide
Fluorine Content	66%	68.5%	70%	67%	67%
Heat Resistance	All Vitor	® products ha	ve outstandin	g thermal pro	perties
Chemical Resistance	0	•	00	00	BEST
Base Resistance	Х	Х	0	©	BEST
Low Temperature Properties	©	•	0	00	0
Compression Set Resistance	BEST	00	00	00	•
Relative cost of polymer	Low	Low	Low	Medium	High

BEST = Excellent ❖ ❖ = Very Good ❖ = Good O = Fair X = Poor

Viton® Material Properties


Volume swell upon immersion in M15/7d/room-temperature (%).

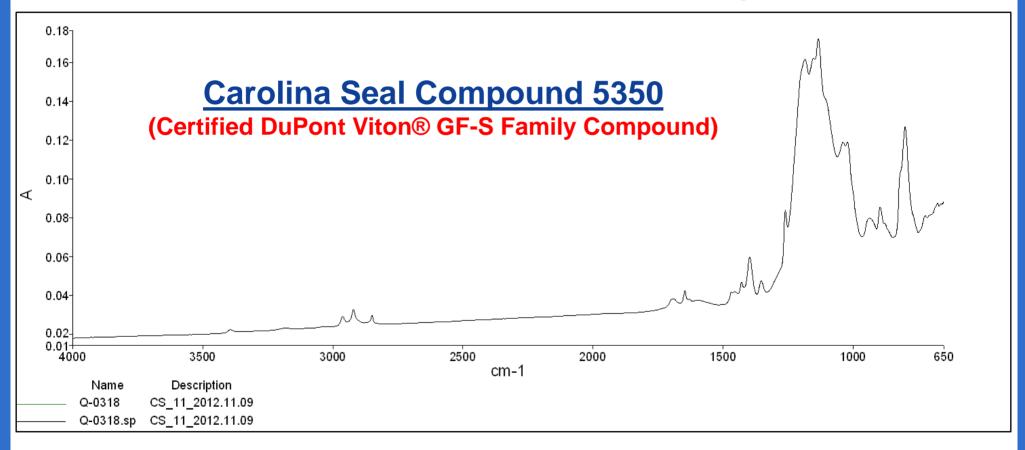

← Higher fluorine content = Best fluid resistance

Supply Chain for Elastomers

More concern with elastomer supply chain, FKM example below
 FKM(Viton®) EPDM, Buna-N(Nitrile) Neoprene, etc

FKM (Viton®) fluoroelastomers are supplied to compounders in a "gum" (pure) state. These fluoroelastomer "gums" must be compounded with several other materials and "cured" to produce a properly cross-linked fluoro-elastomer sheet or o-ring. The relative ratio of FKM "gum" to all of the other materials in the compound should be in the range of 85% to 60% by weight, however to reduce cost, there are some grades with an FKM content as low as 1% to 17%. As a result, there can be considerable variation in chemical compatibility within the same grade of FKM elastomer products made by different compounders.

Lacking any industry compounding standards, elastomer compounders are free to vary the types and amounts of all consituents within the elastomer products they manufacture. The result is a wide, confusing array of different grades of Viton® and FKM sheets and o-rings identified as "Premium" grade, "Industrial" grade or "Commercial" grade. Typically, the lower "grades" of FKM or Viton® materials are compounded with minimal amounts of fluoroelastomer polymer, and an overabundance of processing aids, fillers and even other elastomers such as Neoprene or Nitrile. Users of low grade fluoroelastomer materials should be aware of the chemical compatibility limitations that are encountered with this grade of material.


CSI - Material Analysis (FTIR Spectrometer)

FTIR (DNA) Graphical Representation

- In-House FTIR Testing
- The 'DNA' of Each Incoming Shipment of O-Rings is verified

"Trace Elements" Can Impact Recommendations

Material Safety Data Sheet

Creation Date 21-Oct-2009

Revision Date 21-Oct-2009

Revision Number 1

1. PRODUCT AND COMPANY IDENTIFICATION

Product Name Ethyl Alcohol Denatured

Cat No. A407-1: A407-4: A407-20: A407-200: A407-500: A407P-4: A407RB-19:

A407RB-200: A407S-4: A407SK-4

Synonyms Ethanol, denatured; Grain alcohol, denatured; Ethyl hydroxide, denatured

Recommended Use Laboratory chemicals

3. COMPOSITION/INFORMATION ON INGREDIENTS

Haz/Non-haz

Component	CAS-No	Weight %
Ethyl alcohol	64-17-5	92 - 93
Methyl alcohol	67-56-1	3.7
Methylisobutyl ketone	108-10-1	1.0 - 2.0
Ethylacetate	141-78-6	< 1.0
Toluene	108-88-3	0.07

A Thorough MSDS Review Is Required

Material Recommendation Chart

COMMODITY:	Ethan	ol			CAS#:							
⇒ CSI MATERIAL #	BUNA	EPDM	NEOP	Viton® A	Viton® B	Viton® GF-S	Viton® ETP	Chemraz® 505	Kalrez® 6375	Kalrez® 1050LF	Simriz® 7295	Other
RESOURCE 🌓		\			\							
Resource 1	1	1	1	В	Α	Α	Α		Α	Α		
Resource 2	3	1	1	3	\							
Resource 3	3	1	1	3	1		1				1	
Resource 4	A to 140* AB to 200* NR DYN.	A 100% to 200*	A 100% to158*	B 100% 70*- 350*	A	А	А	Α	А	А	А	
Resource 5								1				
Resource 6	1	/ 1	1	3								
Resource 7	O	/ A	Α	Α	/			Α	Α	Α		
Resource 8	1	/ 1	1 \	1	/			1	Α	Α		
1					/							

Note various ratings for Buna-N and Viton A

Also, note various ratings for Dynamic vs. Static applications

Specific Language is Important

Material Recommendation Chart

MATERIAL -	BUNA	EP-PC	NEOP	4273A	4273B	5350	5176	C505	K6375	K1050	7295	Other
RESOURCE												
Resource 1	4	3	4	D	D	D	D		Α	D		K 2035
Resource 2	4	3	4	4			-					
Resource 3	4	3	4	4			4				1	
Resource 4	NR	C / NR	NR	NR	NR	NR	NR	A/B	Α	NR	Α	
Resource 5							-	1				
Resource 6	4	4	4	4								
Resource 7	D	C / NR	D	D			-	С	Α			
Resource 8	4	2	4	4			-	3	1			
Resource 9												
Resource 10												
Resource 11											7301	NOTE

Improper Material Selection Can Lead To

- Premature failure / leakage
- Property damage
- Excessive labor costs (tear downs & rebuilds)
- Costly down-time of tank car no movement
- Environmental fines, penalties, clean-up cost
- Catastrophic injury or death
- Lowest priced part (could) = highest overall cost

O-ring Failure Modes

Chemical Degradation

Installation Damage

O-ring Failure Modes

Spiral Failure

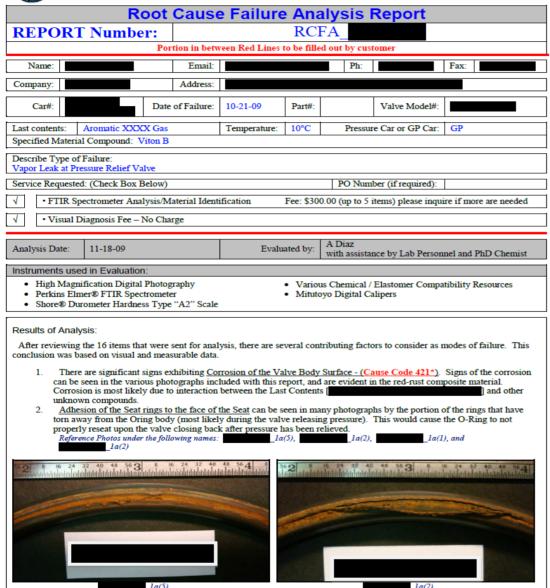
Abrasion

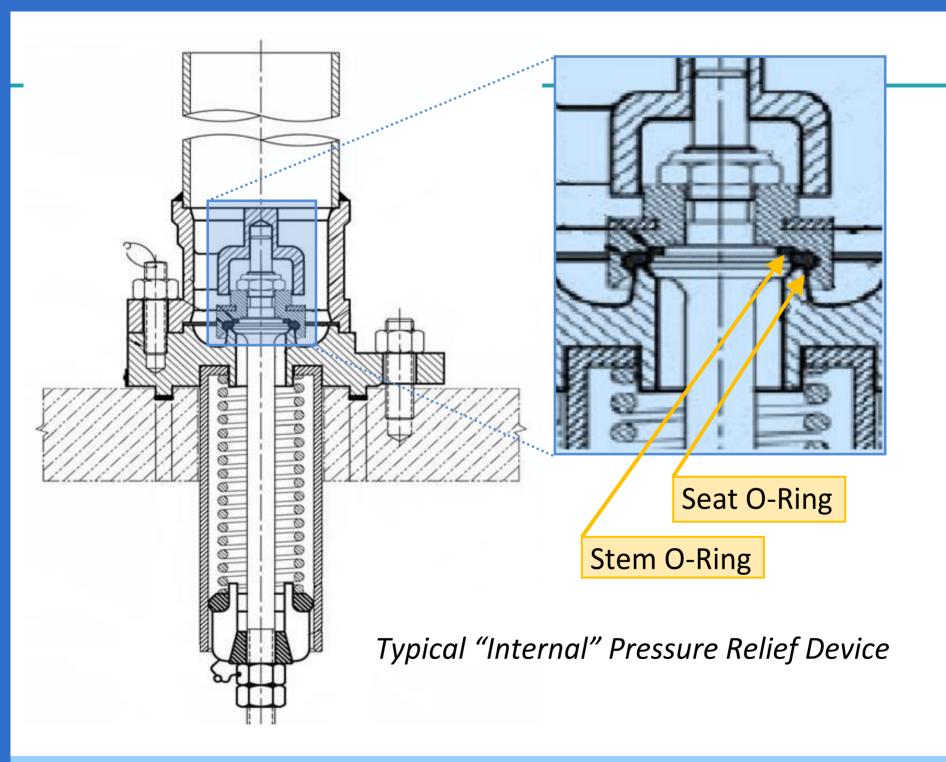
O-ring Failure Modes

Contamination

Compression Set

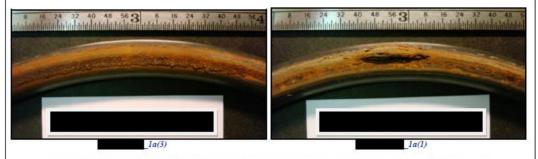
Weathering/Ozone Can Deteriorate O-Rings

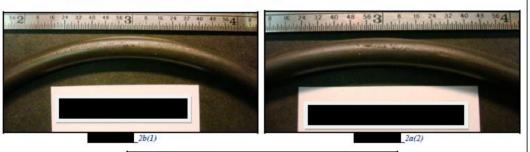

Informal Poll to Repair Shops

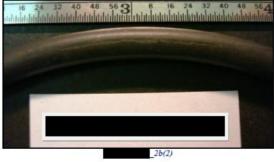

What are the most common types of O-Ring failures you see during disassembly?

- Missing O-Rings at Vacuum Relief Valves
- Cuts, gouges, pieces of the O-Rings missing
- O-Rings that get stuck to the unloading nozzle due to how tacky/sticky a material is. (I.e., Asphalt Service)
- O-Ring Degradation
- Getting them applied properly slid over, sitting in grooves correctly....and that's with lubrication.
- Compression Set
- Contamination or mechanical failure due to valve discharge

Root Cause Failure Analysis Reporting



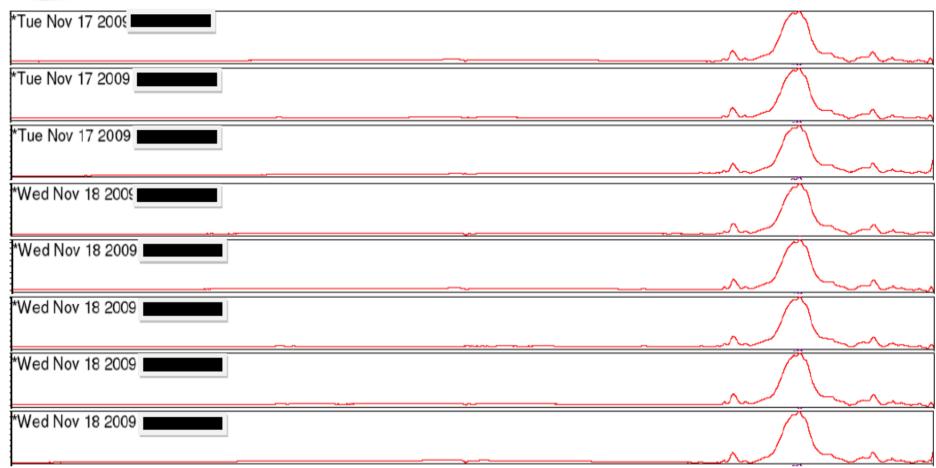



Results of Analysis (Cont'd):

4. Commodity residue, coupled with the adhesion, is also a contributor to the <u>pitting and surface degradation</u> seen in the following photographs of the Stem O-Rings. This is intensified by minor swell of the elastomer in the presence of the commodity vapors. The stem O-Rings do not exhibit the same level of degradation, but should be pointed out as contributing factors to the valve's failure.

Reference Photos under the following names:

5. Based on the many resources that are used within Carolina Seal for determining suitable / recommended elastomers; Cyclopentadiene and Butadiene would receive an overall 'B' rating. 'B' rated elastomers are defined as having the potential for < 30% volume swell, < 30% loss of tensile strength, and minor chemical attack (based on immersion testing) causing chemical attack on the backbone of the elastomer. Dynamic applications such as PRVs can intensify the affects of chemical attack on elastomers. Chemical Degradation is defined under Cause Code 664*.</p>


*NAR Cause codes are AAR specific to Reclosing Pressure Relief Devices

FTIR Results for 16 Items removed from in

cars

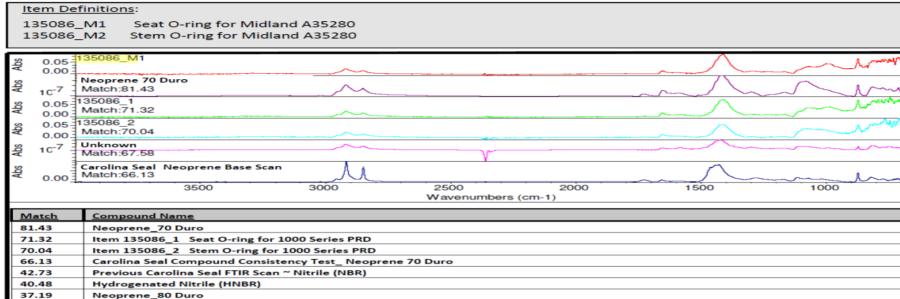
service

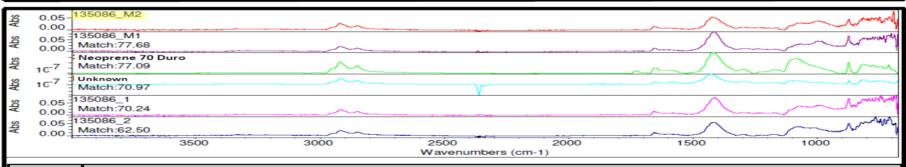
The Graph below is of an "Industry Standard" Terpolymer Fluoroelastomer (FKM) used as a cross reference to the above scanned elastomeric materials.

• 94.73% match to "Industry Standard" Terpolymer Fluoroelastomer (FKM) "Viton®" family compound

Terpolymer Fluoroelastomer
Match:94.73

Shore 'A' readings for


Car Number	O-Ring	Reading 1	Reading 2	Reading 3	Average
Car Number					
IILA ZSUUOI	Seat	51.0	51.0	50.5	50.8
	Stem	50.0	54.0	51.0	51.7
u-				-	-
TILX 290075	Seat	50.5	50.5	50.5	50.5
	Stem	50.5	50.5	50.5	50.5
TILX 290082	Seat	50.5	52.5	51.0	51.3
	Stem	52.0	51.5	52.0	51.8
I -					
TILX 290084	Seat	51.0	50.5	53.5	51.7
	Stem	52.0	51.0	51.0	51.3
	Otom	02.0	01.0	01.0	0110
TIL V SONOOA	Seat	51.0	52.0	50.5	51.2
HEA ZOVUOT					51.8
	Stem	50.8	52.0	52.5	31.0
TILX 290110	Seat	51.0	53.5	52.5	52.3
	Stem	51.0	51.5	52.5	51.6
					,
TILX 290137	Seat	53.0	53.5	54.5	53.7
	Stem	53.0	55.0	56.5	54.8
		-	-		
TILX 290155	Seat	50.5	50.5	51.0	50.7
	Stem	55.5	52.0	51.5	53.0
l-					
70 Duro Base		70	72	71	71



Verifying the "DNA" of an O-Ring Material:

<u>Match</u>	Compound Name
77.68	135086_M1 Seat Oring for A35280 PRD
77.09	Neoprene_70 Duro
70.24	Item 135086_1 Seat O-ring for 1000 Series PRD
62.50	Item 135086_2 Stem O-ring for 1000 Series PRD
58.43	Carolina Seal_Neoprene Base Scan
48.78	Neoprene_80 Duro
46.87	Neoprene_70 Duro
46.68	Neoprene
45.02	Neoprene

Failure Analysis Investigation

- Seek expertise Root Cause Failure Analysis
- Understand most common types O-Ring failure
- "Specific" language needed to describe actual failure
- Improve documentation and data collection
- Create Corrective Action Plans to prevent recurring break-downs
- Adjust S.O.P.s to put corrected procedures in place
- Request supplier assistance for o-ring design, selection & material compatibility issues

Importance of Documentation & Traceability

- Seek supplier assistance if there is missing data
- Documentation & Traceability data for:
 - Cure Dates
 - Batch #s
 - Specific Material Identification
 - Part #s
 - Origin of material (cradle to grave)
- Audit Trail Documentation is Key
- Committing to new disciplines on the front end leads to less pain and headaches on the back end for everyone!

Carolina Seal – Repair Kit Packaging

All Components
Packaged Together
for each Kit

Each Component Individually Bagged w/ Color Coded Label

CSI - Individual Component Labeling

CSI Part Number

Last portion is the compound identification number

OEM Component Number

Correlates to OEM Drawings and Prints

M-545-11-5350

(545-11)

Tracing No. A-5177

Expiration: 1Q2027

Color Coded Material Identifier

Tankcar compounds will have specific colors to help eliminate variables and lessen the chances for mistakes

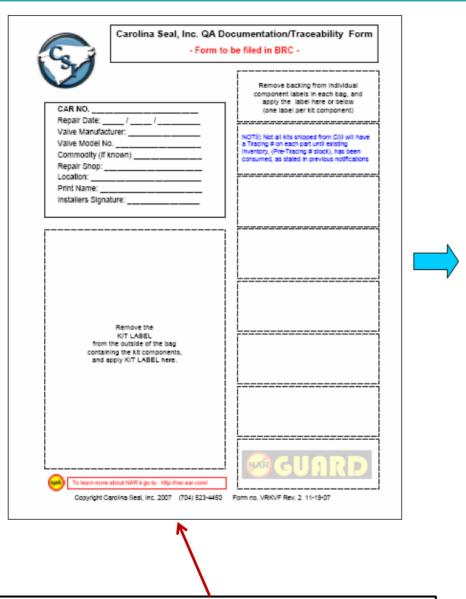
Tracing Number

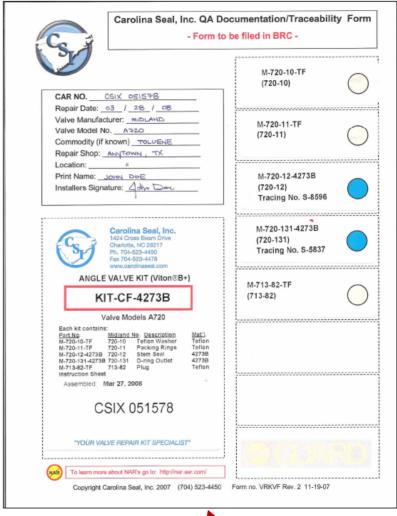
Held in CSI's internal database to capture information such as:

- Purchase Order
- Supplier and Location of Plant
- Date Items Received
- Qty's Received
- Cure Date / Batch

Expiration Date

This timeframe is a "Best Practices" methodology based on SAE ARP5316 and informed judgments


Label is backed with


Adhesive

These labels are provided with each component and designed to be used with Carolina Seal's "QA Documentation / Traceability Form"

CSI - Sample QA / Traceability Form for BRC Filing

Uncompleted QA/Traceability Form

Completed QA/Traceability Form w/Color Coded Labels

66

Shelf Life/Packaging / Storage Considerations

- Polyethylene , (Ideally heat sealed), or Kraft bags
- (Per ARP5316, Rev.B)
- Relative humidity of storage area to be < 75% r h.
- Avoid contamination by oil, grease, debris, dirt
- Storage temperature < 100°F (38°C).
- Store away from direct sources of heat such as boilers, radiators and direct sunlight.
- Exclusion of ozone generating electrical devices.
- Store O-Rings free from superimposed tensions and compressive stresses or deformation.
- Avoid contact with liquids or semi-solid materials like gasoline, greases, acids, cleaning fluids...
- Avoid storing different O-Ring materials with one another unless material type clearly noted.
- Ideally you should apply the FIFO principle, (First In- First Out), to keep inventory turning.
- Parts should be properly labeled to prevent misuse.
- Anything you can do to prevent dust, dirt, debris, oil, grease, etc. from being introduced onto to the o-ring before installation should be done.
- Quality Assurance Documentation & Traceability is suggested to log type of o-ring was used.

Controlling the "Controllables"

Things you have control over up front:

- Supply Chain Selection Partnering with Experts in the Field
- Selection of Pedigree Materials Proper Chemical Compatibility Analysis & MSDS Review
- Proper storage, handling and packaging of stored materials to prevent contamination...
- Establishing a consistent plan and adhering to your own "Business Rules" for success

Things you have control over when using the parts:

- Adhering to proper FIFO Inventory Methods when pulling parts from stock
- Proper installation methods being applied
- Proper Quality Assurance, Documentation & Traceability forms kept on file

Things you have control over after use:

- Properly identifying Root Cause Failures to help establish Corrective Action steps
- Adjust Standard Operating Procedures to reflect the new procedures to be followed
- Continuing Education for Process Improvements and Best Practices