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analytically predicting the effect of geometric imperfections on
the buckling of railroad track in the vertical plane, when subjected

to uniform thermal expansions.
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Cambridge, Mass. was the technical monitor for the work under this
contract, and his cooperation and suggestions are gratefully
acknowledged. The guidance and useful comments provided by
Professor Arnold D. Kerr of Princeton University during the course
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1. INTRODUCTION

In a recent survey of the literature on vertical track buckling,
A. D. Kerr [1]*discussed the various aspects of the problem indicating that
the use of linearized analyses may lead to incorrect results. Then it was shown
by Kerr and El-Aini in [2] and by El-Aini in [3] that for the problem of vertical
track buckling, due to constrained thermal expansion, the response of a quasi-
linear formulation is very close to that of a formulation with higher non-
linearities.

In both references [2] and [3], the track was assumed to be perfectly
straight. The fact that an actual track may encounter different types of
geometric imperfections makes it necessary to examine the effect of these
imperfections on the post-buckling response of the track structure.

In 1973, Kerr [4] showed on a model, which exhibits the charac-
teristic features of a track in the vertical plan, that the presence of
initial imperfections reduces the range of safe-temperature increase.

In view of the above findings and because of the potential importance
of the obtained results in railroad mechanics, 1t seemed necessary to solve
the problem of vertical track buckling with geometric imperfections, which
is the subject of this report,

For mathematical convenience, geometric imperfections may be classified
into two main categories: (A) the imperfection region is larger than the span
of 1lift-off and (B) the imperfection region is smaller than the lift-off
span, as shown in Figure 1.

In the following analysis, the problem is formulated using a variational
approach to ensure mathematically consistent differential equations, boundary

conditions and matching conditions [5].

#*Numbers in brackets denote references
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The results are presented for "light" and "heavy" tracks. The first
corresponds to a track with wood cross ties and 57 kg/m rails (115 1b/yard)
and the second corresponds to a track with concrete cross ties and 68 kg/m

rails (136 1b/yard).



2. FORMULATION OF THE PROBLIM
In the following analysis, the track will be idealized by an equivalent
infinite beam of uniform cross section resting on a rigid foundation. The
following additional assumptions are made:

1) The beam is subject to a uniform-temperature increase of magni-
tude T. This increase is measured from the neutral laying
temperature of the track. In addition a uniformly dis-
tributed weight of intemsity q is assumed to be acting
along the reference axis of the beam.

2) The beam is assumed to undergo deformations in the x-z plane
only, which are symmetric with respect to the origin (x = 0).

3) The deformed configuration is assumed to consist of two re-
gions: a lift-off region, -a & x 2 a, and an attached outer
region.

L) The foundation resistance, to the axial displacements of the beam
elements, is represented by a series of linear springs with
stiffness coefficient kh (Winkler model), acting at the center
line of the beam and throughout the attached region [2].

5) The initial imperfect state is stressless.

6) The beam is made of homogeneous, isotropic and linearly elastic
material with modulus of elasticity E.

With the above assumptions, two types of geometric imperfections

will be discussed in the following section.
2.1 CASE (A): THE IMPERFECTION REGION IS LARGER THAN THE SPAN OF LIFT-OFF
In this case, the initial imperfected shape is assumed to be of the form
—g—[ld»cos-?*]; L cxgh 3 £ > a
wo(x) =
0 ; elsewhere

=L



A
A
8

u (x) =0 - 1)

-

The deformed equilibrium configuration for this case is schematically
presented in Figure 2.
Assuming the validity of the plane section hypothesis and using the

theory of Ref., [6], it follows that

- (4 A -
e, =f{u _+ W W xx) oT 2)

where ( ) < d( )/dx and o is the coefficient of thermal expansion. The
2
(%) terms refers to the deformations of the reference x-axis.
Denoting the lift-off region by (1) and the attached region by (2),

it follows that

* A * A
up = uy + u, 5 u, = u2 + uo
* ~ * A
wl = wl + wo 3 Wy = w2 + wo 3)
where the star denotes the total deflections.
Substituting (3) into (2) it follows that
* "
= + E, : i=1, 2 L)
ixx 0XX ixx
where
1
= + =y 2 -
oxx (ub,x 2 wo,x) B5 ,xx 5)
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and

g, = (g, - zw, ) - aT 6)
ixx ixx i,xx
and
R ~ 1 - ~
€. =u, +=w? 4w, w 7)
1xx i,x 2 "i,x i,x 0,x

Since the initial state is stress free, Hooke's law may be written as
o, _ = E&, 8)
Utilizing the principle of stationary total potential energy, the

differential equations of equilibrium together with the boundary condi-

tions are derived from the condition

8 = 0 9)
where
I=(U-w 10)
and
U = the elastic strain energy of the system
and
W = the work potential of the surface and body forces.

Because of the assumed symmetry of deformations, U and W may be written as:

oo co
1

U=2|( LEe~2 dA)dx + 2 (LEgsz)ax+2J =k, uldx
0 2 1xx N 2 2xx a 2 h 2

and A A 11)



Because of the constraint that GO together with all its higher deriva-
tives have to be identically zero, a number of Lagrange multipliers have
to be used to insure a mathematically consistent formulation.

Let

o

- o Sl oy
I = T+ 2| Awydx + 2x2w2(a) + 2A3w2(a) 5 12)
a

where Al, Az and A3 are Lagrange multipliers. Now the D.E.'s* and B.C,'s*

are obtained from
8T = 0 13)

Performing the integration over the area, it follows that

# a © N .
= ]
n J Fodx + J F dx + 2aw,(a) + 2A3w2(a) , 1k)
0 a
where

F. = EA(. -aT)® + EIw> _ -2qw 15)
1 1xx 1.,xx 1

F, = EA(e -aT)2 + ETW2 + Pt = 2qw,. + 2\, W - 16)
2 2XX 2, XX kh 2 2 12

*
Noting that a is a variable end point, the first variation of I , following

(71, is

Sa + 2A26w2
x=a

1

* a ©
s8I =6 J F,dx + & J Fdx + (F,~F,)
o a 172

X=a

+ 2)\_ 5w/ ) 17)

372

Xx=a

*Denote differential equation and boundary conditions respectively.

8-



Conducting the variations in (17), it follows that

a
1 1sa v .
* = - - -
EGH /{ [(EAel),x]Gul + [(Ele,x.x),xx [EAEl(WO,x + Wl,x)],x Q]Gwl}dx
0

+f{['(EA€1),x + Kk u)Jeu, + [(EIwe,xx),xx - [EAe:g(wo’x + w2,X)],X -q+ >‘1]5W2}"i

a

+{-[mae Jow, - [mAcw, - (B1e, ) lev, - ez, o Jom L}

Y

(Fl - F2)6a + [EAelsul - EAezdue] + [EAel»ix - (EI"l,xx),x]5"1

.

o] [

A

) -A2]5§2+(EI§’ ) &w

- [BAeyw, = (EIWE,x.x ,X l1,xx’ °"1,x

2,

- 0+
[EIWQ,H_)\3]GW2,X}X=& + {(EAsz)ﬁu2

oo g 189, ¢ lmr, dew b =0 18)

- (EIw
» 2,%x — .

[EAEZWQ,X

where

ei= eixx—aT, i=1.2

A

Since a is a variable endpoint, the variations of the functions Uy

A A A Py

A .
u2, wl, w2, wl,x and w2,x at x = a are interrelated in bhe manner described

in [2] and [3], as follows:

Gni(a.) = 6n - ny x(a.)Ga, i=1,2 , 19)

b

and ni(x) stands for any of the above-mentioned functions.
Applying the fundamental lemms of calculus of variations and noting

the continuity of the beam at the separation point, the D. E.'s are:

-9~



Ele,xxxx - [EA(Elxx - 0‘T)(WO,X * Wl,x) ,x &
—[EA(elxx - aT)]’ =0
and
EIWZ,::xxx - [EA(EE}QC - oT)(w = 2,x)],x = (q - 1)

=
N>
"
n
5 >
W
1
B
"
1t}
[es]

The boundary and transversality conditions reduce to:¥*

at x = 0:
ul(O) =0
wl’x(O) =0
Wi,xxx(o) =0
at x = a:
wi(a) = W2(a)
wi’x(a) B wz’x(a)
EIwi,xx(a) . EIW2,xx(a) A3
—Ele, (a) —EIWZ’ (a) - A2
y (a) = uz(a)
EAel (a) = EAE2xx(a) ,
and
* ¥ =
T. C. Wl,xx(a) wz’xx(a)

20.a)

20.b)

2l.a)

x = w 21.b)

2l.c)

22.a)

22.b)

22.¢)

22.4d)
22.¢)
22.£)
22.8)
22.h)

22.1)

22.3)

* For details and comments on the difficulties encountered with the dis-
continuities of the Winkler model, at the separation point, refer to [2].

*#%¥ T, C. denotes transversality condition.

-10-



at x = =,

(k) u2(m) =0 22.k)
;e(m) =0 22.1)
m v, (=) =0 22.m)
From T. C. (22) (j) and B. C. (22) (f), it follows that
A, =0 23)

which implies the continuity of bending moments at the separation point,
while B. C. (22)(g) indicates a discontinuity of the shearing forces

at x = a., This is attributed to the neglection of the shear deformation
in the strain energy expression.

2,2 ANALYTICAL SOLUTION OF CASE (4)

Integrating (20.b) once it follows that
-EA(e; - oT) = Const. = N - 2h)

Substitution of (24) into D. E, (20.a), it becomes

o 2 A 2
+ E * _ F
ewox ¢ M T TR Vo, 25)
where
k2= N/EI; q* = q/EI . 26)

Utilizing the expression for wb(x) in (1), the general solution to

D. E. (25) takes the form

- = . g¥* _ Xy
wi(x) A+ Ax + A3 cos kx + A sin kx + ;s x pcos(zrd 27)

-11-



where Al’ A2, A3 and Ah are constants and

2
0 = k<f 28)

2[(n/£)2 - «2]

Because of symmetry around the origin, it follows that
A, A =0 29)
and the general solution reduces to

A

w (x) = A

1

*
2] mX
+ + - _—
1 A3 cosx %Eg-x p cos 7 30)

Substitution of equations (30) and (21.c¢) into B.C.'s (22)(d) and

(22) (e), it follows that

A3 = [%;é-+ %ﬂ-sin(%i)]/K sin ka | 31)
and
2
A, = - Ay coska - g;%—-+ p cos(%éﬁ 32)

Substitution of (31) and (32) into (30), it follows that

gs, , or ., T8
- _ 57

k sin xa

(cos kx - cos ka) +

A

*
E%Z(xz - a2) - p(cos %?—— cos %?) ; 02 x S ay

£ > a. 33)
The transversality condition (22)(j) gives an additional equation to

determine the unknown a for any given value of k, namely:

#*
[9—§'+ k 2T sin EE-] 2
- - £ £ + Cul + p(%) cos %i =0 . 34)
tan ka K2

-12-



In the limit if f -+ 0, (34) reduces to

tan ka = ka 35)
which is the transversality condition for the case without imperfection.
The solution for the axial displacement in the lift-off region is
obtained as follows:

Equation (20.b) may be written as

: R L
EA 2 1l,x l1,x o,x

I 36)
Integrating (36) once and noting B. C. (22)(a), it follows that
x
w (x) = (= ==+ al)x - J (% Wi £ VLY g)da . 37)

Considering D. E. (21.b) and noting equations (8) and (21.c), it reduces to

-

u - 82u, = 0 38)

2 9 XX 2 ’

where

g2 = (k, /EA) . 39)

The general solution of D. E. (38) is

B _ -B8x +Bx
u2(x) = Cle + 02e s 40)

Because of the regularity condition (22)(k) at », it follows that

hence,

az(x) = c e PX b1)

~13-~



B. C. (22)(i) reduces to

Ba
=& _ N
c, = e (- T aTl . 43)
and the solution to az(x) becones
,\ o~B(x-a)
uy(x) = Zp——{- g+ o] bl

Now, substitution of (44) and (37) into B. C. (22)(h) gives

a9 . R
T = {(%KQ + zi?i:ti:; i-JO(E-Wi’X + wi,xwo,x)dx}/a s 45)
Ba

which is the temperature increase corresponding to a state of lift-off over
a span 2a.

The process of evaluating the post-buckling response may be summar-
ized as follows:

1) For a chosen value of the axial load N, (34) is solved iteratively
through a Newton-Raphson scheme to determine the corresponding value of a.

~

2) Knowing N and a, the solution for Wl

tegrals in (4L5) can be evaluated in closed form.

(x) is determined and the in-

3) The use of (45) gives the temperature increase correspon-

~

ding to the equilibrium state wl(x).
Typical values of the track parameters are listed in Table 1. They
correspond to a track with wood ties (light track) and a track with

concrete ties (heavy track).

-14-



TABLE 1 TYPICAL VALUES OF TRACK PARAMETERS

Track

Parameter

Light track

Heavy track

Weight of rail, [8]

Weight of track
structure (q) #*

Cross-sectional area
of two rails (A)

Moment of inertia
of two rails (I)

Axial

resistance of the
foundation (kh)
(estimate)
Modulus of
elasticity (E)

of rails

Coefficient of ther-
mal expansion

57 kg / m(115 1b/yd)

315 kg/m
0.,01L45 m?

5.47x1077 m

5x10 kg / m/m

2.lxlOlo kg/m?

10.5xlo'6

68
680

0.0172

8.0x107°

5x10

2.lxlOlO

10.5x10"

kg / m(136 1b/yd)

kg/m

kg/m/m

kg / m?

To demonstrate the basic features of the solution, the results for an
example problem are shown in Figures 3, 4, 5 and 6. For this particular
example the imperfection span, 2f, is chosen to be 100 meters, while the
imperfection amplitude f is varied from 0.0 to 1.0 meter.

Figure 3 shows the equilibrium branches for different values of f.
For each value of f, the response consists of two branches. The first branch
is vertical and corresponds to the pre-buckling state. The second branch
bifurcates from the vertical one+ and shows a minimum below which the only
state of equilibrium is the undeformed state. It may be shown, using the
Lagrange stabllity criteria, that the vertical branch is stable while the
second branch is unstable between the bifurcation point and the point of
minimum and is stable elsewhere [4]. The temperature increase corresponding

to the point of minimum is referred to as the "safe" temperature increase.

*Weight is estimated for a track with the following characteristics:
6500 tieplates, 13,000 spikes, 4500 anchors/mile [9].

+Except for £ = 0.0.

3250 ties,

~15-
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Increasing the amplitude of imperfection from 0.0 to 1.0 reduces
slightly the critical temperature from 45° to 37°C, while the drop in
the bifurcation temperature is extremely sharp. It drops from < for £ =0
to 54°C for £ = 1.0,

In Figure 4, the relation between the axial load and the maximum dis-
placement is shown. The bifurcation loads are related to the bifurca-
tion temperatures in Figure 3, through the relation

N o= EAaT, 46)
where the subscript b denotes the bifurcation point.

Tt is thus obvious that increasing the imperfection amplitude will
sharply reduce the bifurcation loads. For small values of the imper-
fection, the bifurcation loads may be higher than the yield loads for the
rails? however, buckling may still occur at temperatures much lower than
the bifurcation temperatures by giving the track a disturbance large
enough to put it on the unstable part of the equilibrium branch. These
disturbances may be encountered during the maintenance process oOr due to
waves produced by the moving trains.

A similar set of graphs, figures 5 and 6, are presented for the case of
the track with concrete ties. The critical temperature increase 1is higher
than those of the track with wood ties. It may be as high as 62°C for
the straight track and 53°C for an imperfection of 1.0 meter. The bifurca-
tion temperatures are also much higher in this case, so are the corresponding
bifurcation loads.

It thus may be that for the case of a heavy track with concrete
ties, the chance of buckling is much lower than in the case of a

light track.

*
For a rail of yield stress 4,900 kg/cm2 (70,000 psi), the necessary in-

crease in temperature to cause yielding is 2 3°C, and the corresponding
axial load (in two 57 kg/m rails) is T1 x 10" kag.
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2.3 CASE (B):

THE IMPERFECTION REGION IS SMALLER THAN THE LIFT-OFF REGION

In this case, the geometric imperfection is assumed to be in the same

form as in Case (A); but on a small span such that the span of lift-off is

larger than the span of imperfection; i.e.,

and

The deformed equilibrium configuration is shown in Hgure 7.
The procedure of the derivation of the D. E.'s and B. C.'s is the

same as for Case (A).

wo(x) - % [1 + cos %];
0 5

0 ; — g

ug (x)

mId - [BACe =)oy vy )] =
—[EA(Elxx - aT)]’X =0
BTy oee = EAGE . = o, 1 = a
~[EA(c,, - o1)] =0
and
BIvy e = [BA(Eg, = alhwy 1 = (¢ - 1)
-[EA(;3xx - aT)]’x + kh§3 =0
;3(x) N ;3,x(X) 3 Q%’xk(x) E eee £ 0

=21~

-L=x 5L

elsewhere

A

A

A

£<a

A

A

The D. E.'s will take the following form:

lin

L7)

48.a)

48.b)

48.c)

48.4)

L8.e)

L8.t)

48.g)
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The boundary and transversality conditions reduce to:

at x = 0:
at x = £:
at x = a:
Te €2

at x = o

u, (0)

v, (0)

EIW2,xx(a)

_EIWé,xxx(a)

A

w2,xx(a)

1, (=)

3
w3(°°)

W O

2.4 ANALYTICAL SOLUTION OF CASE (B)

Integrating D.-E. (48.b) once,

it follows that

—EA(slxx - oT) = const., = N

—23-~
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Substitution of (50) into (LB.a), it becomes

-~ 2/\

+ K W
W1, xxx%

- % 2 .
1,xx -k v 51)

0,xx

The general solution of D. E. (51), making use of symmetry around the

origin, is
wl(x) = Al + A3 cos kx + Rlx2 - R2 cos %55 0 £x =2 52)
where
*
R, = S5 R, = K 53)
1l 2k 2 T 2
2[(5) - «?]
£
Integrating D. E. (48.d) once, it follows that
-EA(e2xx - oT) = const. = N¥ - 5L4)
Utilizing B. C. (L9).(e), it follows that
N# =N . 55)
Making use of (54) and (55), D. E. (48.c) reduces to
A 24 = g%
. + Kk Vo xx = 4 : 56)
The general solution of (56) is
wz(x) =C, +Cx+ 03 cos kx + C) sin kx + Rlx2; L2x2a . 57)

The constants in wi(x) and we(x), Al’ A_, Cl’ 02, C3

termined by substituting equations (52) and (57) into B. C.'s (49(f), (g),

and Ch,can be de-

(h), (i), (£), (m). The result may be written in the following form:

~24-



[l cos k& -1 -4 -cos k& -sin k4 {Al -R,
0 —kzin kAl 0 -1 ksin k& -kecos ki A3 0
0 -k2cos k& 0 0 k2cos k& k2sin k| |[c (I)2r
1 L e 58)
0 k3sin k£ 0 0 —k3sin kg k3cos k4 C2 0
0 0 1 a cos Ka sin Ka C3 —Rla2
[0 0 0 1 -Kksin ka KCOoS K& Ch —Rla .
N A . 4 N

However to solve for the unknown constants in equation (58), the value of a
should be known for a given value of k. This requires the use of one more
B. C.; namely, T. C. (49)(p).
Substitution of (57) into (49)(p) gives

C3 k2 cos ka + G, k2 singa - q*k2 =0 59)
Since the solution for a depends on C3 and q+, the process of determining
the constants reduces to the solution of a set of non-linear algebraic
equations. The solution may be obtained through an iterative scheme. Evalu-
ating the constants for a given value of a and ¢ will define completely
;i(X) and ;2(x). Now one may proceed to evaluate the corresponding increase

in temperature as follows:

Equation (50) may be rewritten as follows:

A A A

= -N - l 2
LI (Fr+e?) - (5 Ve T Vo 1,x) 60)
Integrating once, noting B. C. (49)(a), it follows that
u = (2L + gT)p - (w2 +w w )d . 61
1 (8 (EA e J 2 1,x O,x1,x % )

0
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Similarly, (48)(d) gives

A

= (=N Lo
Uy o = (gg * ol - ZVs 62)
Integrating once, (62) becomes
uz(a) = u2(.€) + (EAT-'- aT)(a - L) - J sz,xdx . 63)
L
Noting B. C. (49)(d), (63) becomes
~ £ a
= (=N i 1 - _ i,
ug(a) = (EA + oT)a - Jo (2 i + Vo x l,x)dx [2 > wg’x ax . 6L)
The general solution of D. E. (48)(f), noting (48)(g), is
u(x) = De "B DB 65)
where B is defined in (39).
Using B. C. (L49)(q), (65) becomes
a.(x) = D&% 66)
3 1 .
Substitution of (66) into B. C. (L9)(k), it follows that
+Ba
_ = =N
Dl = (EA + aT) i 67)

and (66) becomes
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(x) = s (E—A‘+ oT) - 68)

Using B. C. (49)(j), it follows that

69)
. (a + %)

which is the increase in temperature corresponding to the obtained equilib-

(x).

) a
Lo e i [ae
- {N_ 4+ 202 Y1,x M wo,x"’l,x)d'x g3 Yo, x dx}/a
]

rium configuration of w,(x) and w

1

The numerical results of an example problem are presented in Figures

2

8 and 9 for the same track parameters of Case (A). The span of imperfection,
2, is taken to be 1.0 meter, while the imperfection amplitude, f, varies
from 0.0 to 0.1 meter.

In Figure 8, the relation between the increase in temperature and the
corresponding maximum deflection is presented. The bifurcation temperatures,
although sharply reduced by increasing the imperfection amplitude, are still
higher than those in Case (A) (for the same f/£ ratio); e.g., an f/% ratio
of 1/50 corresponds to a bifurcation temperature of 53°C in Case (A4),

Figure 3, while the corresponding value in Case (B) is 360°C, Figure 8.
This observation is found to be valid for different imperfection spans.

In this example problem the safe-temperature increase as well as the post-
buckling response on the stable parts of the equilibrium branches is
slightly affected by increasing the imperfection amplitude. The relation
between the axial load in the lift-off region and the maximum deflection is
shown in Figure 9. It should be noted that the bifurcation loads, although
dropping at the same rate as the bifurcation temperatures, exceed the yield
loads for the rails. However, buckling may still occur at lower temperatures
by giving the track enough energy to reach the unstable part of the
equilibrium branch.
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10*x
120 ~ £=0.0
CASE (B)
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FIGURE 9. AXIAL LOAD IN BUCKLED REGION VS. MAXIMUM
DEFLECTION FOR CASE (B) (LIGHT TRACK)
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3. DISCUSSION OF RESULTS

In the preceding sections the example problems were solved for particular
values of the imperfection span, 2%, to show the effect of varying the imper-
fection amplitude on the bifurcation temperature as well as on the safe tem-
perature increase.

Since the imperfection spans encountered in the field may vary from
very short spans in the case of localized imperfection to very long spans
in cases of slopes or shallow hills, it is important to examine the effect
of varying the imperfection span on the safe temperature increase. Figure 10,
shows the relation between the safe temperature increase, which is denoted by
Ty, and the imperfection half span % for positive imperfections.

The matching of the two solutions in Cases (A) and (B) occurs when the lift-—
off span coincides with the imperfection span. Noting that the formulation of
the problem is in the Lagrange coordinate system, matching occurs when

L=a
where a is the Euler coordinate of the separation point
and a=a+ Gl(a)
However, for all practical purposes a = a,

In Figure 10, it should be noted that compared to the straight state,
positive imperfections give lower values for the safe temperature increase ex-
cept on relatively short spans.

This finding may seem rather unusual, based on physical intuition,
however, the fact that TS is not a bifurcation temperature but rather a point
of minima on a non-linear response curve may justify this behavior.

A similar set of graphs can be obtained for the concrete tie track, simply
by using the corresponding track parameters in the analyses. The results

will be similar except for a higher safe temperature increase.
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4. CONCLUSIONS AND RECOMMENDATIONS

The analysis of the problem of vertical buckling of tracks with geo-

metric imperfections shows that:

1)

2)

3)

4)

5)

6)

A perfectly straight track does not exhibit bifurcation points

from the undeformed branch, while the imperfect track does.

Increasing the imperfection amplitudes reduces the bifurcation

loads significantly. This is of some importance because if the
imperfection is large enough, the bifurcation temperature may be

as low as the safe temperature increase, and a very small disturbance
may cause the track to buckle.

For the same f/f ratio, the bifurcation temperature and the cor-
responding axial load are much higher in Case (B) than in Case (A).

By increasing the imperfection span, the safe temperature increase
approaches that of a perfectly straight track.

The bifurcation temperature as well as the safe temperature increase
are both increased by increasing the weight of the tracks.

The fact that the bifurcation loads may be higher than the yield loads
of the rails does not mean that failure will occur only by yielding.

If at lower temperature, that are higher than the safe temperature, the
track is given enough energy to reach the state of unstable equilibrium
it will snap through to the state of stable equilibrium. Such energy
may be given either by the waves caused by the moving trains or by

lifting the track during any maintepnance process,

Since small vertical imperfections (which always exist in an actual track)
strongly reduce the buckling temperature, it follows that the weight of

the unit track and its flexural rigidity in the vertical plane (quantities
which do not change significantly with time) are the dominant factors for

vertical buckling.
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APPENDIX

REPORT OF INVENTIONS

After a diligent review of the work performed under
this contract, no innovation, discovery, or invention
was made. The work involved developing and improving
the predictive capability of vertical track buckling

analyses.
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