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PREFACE

The Office of Research and Development of the Federal Railroad Administration sponsors
a program of research on rail integrity. One of the key findings of this research is that residual
stress has a strong influence on the formation and propagation of fatigue cracks in the rail head.
Thus, there are important safety and economic reasons for better understanding of the factors
which tend to increase or decrease residual stresses in rails. Such understanding requires both
a theoretical model to provide a logical framework and experimental results to guide the
development of the model.

This report summarizes the results of an investigation of an improved experimental stress
analysis procedure. Up to 1990, rail residual stresses were measured solely by means of
destructive sectioning with strain gauges and metrological microscopes used to measure quantities
from which the released stresses could be estimated. To obtain a comprehensive stress field map
with this technique required the cutting of a long rail section, as well as a transverse slice, an
extremely labor-intensive approach. The use of moire grating in place of strain gauges, first
demonstrated in 1990, opened a pathway to a potentially much cheaper and more accurate
approach. The saving of labor and handling problems encountered with strain gauges made it
possible to consider, for the first time, working with two slices (one transverse and one oblique)
instead of the single transverse slice and long section. The work reported here demonstrates that
the alternate procedure is workable, but further improvements of both accuracy and economy are
needed to obtain a truly practical method for mapping rail residual stress fields. It appears that
the desired procedure can be developed in the next phase of the research program.
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1. INTRODUCTION

The residual stresses in rails produced by rolling cycles are studied experimentally by
moire interferometry. The dissection technique is adopted for this investigation. The basic
principle of the dissection technique is that the residual stress is released elastically by creating
free boundaries when the specimen is cut into small pieces. In this study, instead of cutting
small pieces, we cut the rail into thin slices first, and then cut grooves on the surface of the slice
to produce many smail grid elements with right angles. When the elements are small enough,
it is assumed that the edges of the element are the stress free boundaries and thus relax the
residual stress near the surface of the slice. The resulting deformation is measured by moire
interferometry.



2. EXPERIMENT METHOD

Moire interferometry is a high-sensitivity optical method of measuring in-plane
deformations of solid bodies [1]. Figure 1 is the experimental setup used in this investigation.
A collimated and coherent laser beam is split into two beams with one impinging on the
specimen and the other on the mirror. The beam propagating to the mirror is also reflected onto
the specimen. Therefore, there are two plane waves illuminating the specimen grating. The
incident angle of the two beams are so arranged that their + 1 diffraction orders form the grating
surface emerging along the z direction. When the specimen grating is deformed, the wave fronts
of the two diffraction beams are warped. It is the interference of these two diffraction beams that
results in the forming of the moire fringe pattern. A compound lens is used to collect diffraction
beams to form an image of the specimen. The specimen is mounted on a rotation stage which
is rotatable about the z axis. The specimen is aligned in such a way that the fringes representing
one displacement field, for example the u-field, are recorded first, the specimen is then rotated
90 degrees to allow the formation of the v-field fringes for recording. The rotation stage is
controlled by a stepping motor with a minimum step being 0.01 degrees. This rotation stage is
also used to perform rotation mismatch when the sign of strain needs to be determined.
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FIGURE 1. THE EXPERIMENTAL SETUP



3. EXPERIMENT PROCEDURE

Two sets of slices arc investigated in this study. For each set, one slice is cut
perpendicular to the longitudinal direction of the rail and the other is inclined 45 degrees to the
rail axis (refer to Figure 2). The cross-sectional surface of each slice is carefully ground flat.
The grinding direction is parallel to the x-axis so the top edge of the rail head remains sharp after
grinding. A high-frequency (1200 line/mm) cross-line diffraction grating is replicated on each
specimen with epoxy PC-10C. The ratio of the hardener and the resin is reduced and a very thin
and relatively flexible grating is formed on the flat surface of the slices. Most of the head
portion of the rail specimen is covered by the grating and the experiment data are collected over
an area about 50 x 30 mm.

The specimen is mounted on the rotation stage and is precisely guided with three fixed
pins. After the interferometer is adjusted to a null field with the uncut specimen, the specimen
is taken to the shop for cutting, while the interferometer is kept in the adjusted position. Cutting
is done by a circular diamond blade on a general grinder. Initially, four cuts are made at one
corner of the specimen to produce at least one separate grid element. The specimen is brought
back to the interferometer and the rotation stage is adjusted till the minimum number of fringes
are observed at the uncut region. The resulting fringe pattern is taken. This fringe pattern in the
grid element is to be used later, after all other grooves are cut, to calibrate the position of the
specimen. This is possible because the displacements in that free grid element should not change
with any additional cuts. The cuts are made every 4 mm with 4 mm to 6 mm depth. 1t is
assumed [2] that when the ratio of depth to grid element length is 1 to 1.5, such a depth is
sufficient to release most of the residual stresses. To minimize thermal stresses due to
machining, the cutting is done with very slow feed rate and the specimen is cooled by a strong
vacuum machine. Generally 10 x 15 grid elements are made for each slice. The specimen is
then positioned precisely in the interferometer by matching the fringe pattern of the first free
element. The u and v displacement fields are then recorded (Figures 3 and 4). For the
determination of the sign of strain, rotation mismatch fringes are added to the patterns as shown
in Figures 5 and 6.
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OF STRAIN SIGNS (RAIL A5, OBLIQUE SLICE)
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OF STRAIN SIGNS (RAIL #1, OBLIQUE SLICE)
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4. ANALYSIS OF THE EXPERIMENTAL RESULTS

The strains are approximated by taking the average fringe spacings at the center of the
grid elements. The strain components are calculated using,

w2
€ s_ 1)
14
€, = — )
yy Syy
1 1
yo= |+ L |p 3)
-5 %)

where p is one half of the pitch of the specimen grating, and §; (i.J = x,y) are fringe spacings
along x and y axes, that is, the distances between two intersected points of the fringes on the x
and y axes, respectively. Since the pitch of a grating is the inverse of its frequency, p is equal
to 0.417 um for our case.

The signs of the strains are determined by the mismatch fringe patterns. According to
reference [3], when a small rotation is imposed on the reference grating, the moire fringes will
rotate along the same direction if the normal strain components are positive, and in the opposite
direction if negative. As for the shear strain, if the crossed fringe spacing (S, or S,) becomes
smaller when the reference grating is rotated, the shear strain has the same sign as the rotation;
if the crossed fringe spacing becomes larger, the shear strain has the opposite sign. The rotation
mismatch is easily achieved by simply rotating the specimen in our experimental set up.

In order to calculate the stress and strain components in the longitudinal direction of the
rail, two assumptions are made. First, all strain components are assumed to be constant along
the z direction, and the second, the z direction is assumed to be one of the principal directions.
The strain components €,€,, and v,, are extracted from the vertical slice, and ¢,,,¢€,,- and 7,
are from the oblique slice. The inclined slice is cut along the 45 degree direction from the
longitudinal direction (refer previously to Figure 2). Denoting (x’,y”) as the coordinate system
in the oblique slice, we have the following strain transformations,
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€E_= € /1.4 (4)

XX XX
= LY v ety 5)
eyy = 2 ey/y’ 2! Yylzl
€, = —(Gz/z/ ey/y, Yy/z/) (6)
Yy = 71_'(7,/,/ + Y i) @)
2
Yo = %(Yz’x’ i %) @®
2

Yzy . €z/z/ - ey/y" (9)

Assuming z being a principal direction we can solve for ¢,

eu = 2€y/yl - Eyy’ (10)

since v,, and v, are zero. The contour lines of strain components thus calculated are shown in
Figures 7 and 8. These strains are due to the released stresses. The stress components are
calculated from the strain components by Hooke’s law but an additional negative sign is
imposed, because the residual stresses have the opposite sign as that of the released stresses.
Figures 9 and 10 show the contours of stress components of the two rails.
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10b. Contours of Oyy in KSI

FIGURE 10. CONTOURS OF RESIDUAL STRESS COMPONENTS OF RAIL #1
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4.1 Principal Stresses

It is known that the principal values of the stress deviator are the three roots of the
following cubic equation [4],

M-I -1 =0 1y

where, A denotes any one of the principal deviator stresses, II,, 11, are the second and the third
invariant of the stress deviator. The three independent roots of equation (11) can be expressed
explicitly by,

[ SIS

I
oy = 2cose)(5H7, k=123 12)
where

3
2 ] 13)

0, =@, + 2 m (14)
3
@, = @ - 2 T (15)
3
Then the three principal stresses are,
o, =0+ 0, k=123 (16)
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where ¢ is the spherical stress tensor, i.e.,

(0, + 0, + 0,). a7

Figures 11 and 12 show the contours of the principal stresses. A convention is taken such that
the three principal stresses are in a sequence of o; > 0, > 0.

4.2  Principal Directions
The secondary principal directions in the x-y plane are first determined since the z

direction is assumed to be a principal direction. The angle between the maximum secondary
principal direction and the x-axis is,

8, = = arctan —2—. (18)

N =
Q
I
Q

The secondary principal stresses are then obtained by transforming the o,,, 0,, and 7,, onto the
secondary principal directions. A comparison is made among the two secondary principal
stresses and a,,. If o, is the largest stress, it would be the maximum principal stress, otherwise,
the maximum secondary principal stress would be the maximum principal stress. The angle
between the maximum principal direction and x-axis is mapped in Figures 13 and 14. Figures
13a and 14a are the distributions of those points whose maximum principal stress direction are
coincident with the z axis.
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5. DISCUSSION

The study reported here is an extension of the work reported in reference [2]. Compared
to the specimen in Reference 2, the area covered by moire is much larger (approximately 50 x
30 mm vs. 24 x 30 mm) and the grid element from which the average strain value is taken is
smaller. The number of stress released grids is increased from 49 to 150. Two slices cut from
the same rail at two different angles are analyzed. All the components of the three-dimensional
stress tensor are solved based on two assumptions. The first assumption which states that all
strain components are independent of z coordinate is validated by the result of rail A5. Since
the inclined angle for the oblique slice is between z,y and z’,y’ axes and the x axis remains
unchanged, the strain component ¢,, must be the same for both the vertical slice and the oblique
slice when y’ is projected onto y. And the experimental results show that there are sufficient
similarities between e, of the vertical slice and that of the oblique slice (refer back to Figures
7a and 7b) taking into account the fair amount of the experimental error due to the averaging
process with each grid element. It should be noted that the y axis of the oblique slice is the
projected value in Figure 7b. The stress components are obtained from the strain components
of both slices, they are not inspected for the two slices individually. In other words, the stress
components of one point have to be calculated from the strain components of the corresponding
points of the two slices.

However, the story of the other rail is different. One could not say that the distribution
of €, is the same for the vertical slice and for the oblique slice of this rail (refer back to Figures
8a and 8b). It is believed that the machining stress introduced by the cutting process is much
larger for the oblique slice of this rail than that of rail AS. This is because the thickness of this
oblique slice is only 0.25 inches. During the cutting process the specimen is held on the grinder
by a magnet table. For a thin slice, the magnet field intrudes into the surface of the slice and
magnetizes the cutting chips. As a result, the magnetized chips could not be sucked by the
vacuum and accumulated quickly around the ends of the cutting grooves. The ventilation was
disrupted and the heat generated by cutting resulted in machining stresses. Based on our
experiences, the thickness of a slice should not be less than half an inch. The experimental error
for this rail is therefore larger than that for rail AS.

There is a shell at the corner of Rail #1, where the rail contacts the wheel. The crack
is closed after the stress releasing. The detected maximum stress around this shell is in the
longitudinal direction whereas the shear stress in the x-y plane has a highest value here. While
the vertical slice has a shell, but the oblique slice does not. This is another reason for the
discrepancy between the values of ¢, obtained from the vertical and oblique slices.

For both rails near the top edge of the rail head the maximum principal stress tends to
be aligned with the longitudinal axis of the rail (refer to Figures 13 and 14). The maximum
stress values are generally the same for the two rails except that the first principal stress reaches
as high as 117 KSI at one comer of rail #1 (see Figure 12a). This high stress is in the y
direction. One assumption taken in this analysis is that the z axis is one principal direction.

44



This means that the stress component o, is one principal stress but not necessarily o;. It can be
seen from Figure 13a and 14a that the maximum principal stress, i.e., o, of large portion of the
rail section is in the z direction.

The dissection technique adopted here can give only the average strain value at the center
of one grid element. It may also involve more or less machining stresses during the grid cutting
process. In addition, the grid cutting and the measurement of the discrete fringe patterns are
time consuming processes. The cost of the labor and machine is very high. A proposed study
is the application of the heat treatment to the rails to release the residual stresses. A new
technique of making gratings which can sustain high temperature is in progress. If the residual
stress can be released by the annealing process, one can produce moire fringes throughout the
specimen surface without breakage. As a result a much more detailed and accurate analysis can
be made. Errors due to machining process will be completely circumvented. A continuous
fringe pattern can be digitized and easily analyzed.

If the residual stresses are released by the heat treatment, laser speckle may also be used
to investigate the released deformation. The surface of the slice of the rail can be treated by
acid etching to generate suitable roughness so that a uniform speckle field can be attained under
the illumination of a laser. Specklegrams are then to be taken before and after the annealing
process. It is possible to obtain the displacement field by the whole field analysis of the
sandwiched specklegrams. The advantage of laser speckle method is that the surface treatment
of the specimen is simple and easy. However, the sensitivity and the accuracy of the
measurement are lower than moire interferometry, and it needs post optical processing to extract
the displacement contour maps.
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