

Positive Train Location (PTL)

JARED WITHERS

General Engineer
Office of Research and Development
Office of Railroad Policy and Development

Program Area & Risk Matrix

Positive Train Location (PTL)

Program Areas	Trespass	Grade Crossing	Derailment	Tain Collision	All Other Safety Hazards
Railroad Systems Issues					
Human Factors					
Track & Structures					
Track & Train Interaction					
Facilities & Equipment					
Rolling Stock & Components					
Hazardous Materials					
Train Occupant Protection					
Train Control & Communications				X	
Grade Crossings & Trespass					

Acknowledgements & Stakeholders

Industry Advisory Group

Grant recipient: Railroad Research Foundation

Program Director – Howard Moody

Project manager: Transportation Technology Center, Inc. (TTCI)

- Program Manager Alan Polivka
- Project Manager Paul McMahan
- System Engineer France Collard

Industry advisory group:

- Denise Lyle (CSX), Kevin Kautzman (BNSF), Mike Newcomb (UPRR),
 Tom Schnautz (NS)
- Adrian Hellman (VOLPE)

Positive Train Location (PTL) Description

- Project is to address known limitations of current PTC designs
 - Accurate, dependable head-of-train location is needed, both at train initialization and during train operation
 - Accurate, dependable end-of-train location is needed to support close following moves
- Seeks to reduce opportunity for human error and negative impacts of PTC on operating efficiency.

Preventable Accidents

	2008	2009	2010	2011
Head On Collision	7	5	4	3
Rear End Collision	17	10	9	16

source: http://safetydata.fra.dot.gov/officeofsafety/

End-of-train location derived from:

- GPS position of locomotive
- Crew-entered train length &
- Known switch position

WHAT IF:

Unknown switch position

Is rear-of-train on Track 1, 2 or 3?

Authority might be released prematurely (train still in limits in dark territory)

Invalid Train Length

Applications and Benefits

- ✓ Reduced location uncertainty results in positive track discrimination
- ✓ Positive end-of-train location supports automatic safe release of authority behind the train
- ✓ Rear-of-train protection when shunting cars
- ✓ Closer following moves safely reduce buffer between trains and increase capacity
- ✓ Positive EOT location supports implementation of moving block

How the Technology Works

PTL Development Schedule & budget

TRL 9 FRA Total **Funding:** TRL 8 \$5.3M TRL 7 TRL 6 **Technology** TRL 5 readiness level Component and/ TRL 4 or breadboard validation in relevant environment TRL 3 TRL 2 TRL 1

Outcomes

Proof of Concept Test Results

Key Performance	Req'mt	SAIC P	TL HOT	SAIC PTL EOT		
Parameter	Value	x (Across)	y (Along)	x (Across)	y (Along)	
Position Mean		0.09 m	0.03 m	0.23 m	0.04 m	
Position Std Dev.		0.15 m	0.17 m	0.11 m	0.27 m	
Confidence Level @ 1.2 m	99.999 999997% ("10 9's")	99.999999999+% (> Fifteen "9's")	99.999999998% (Twelve "9's")	99.99999999+% (> Fifteen+ "9's")	99.9991% (Five "9s")	
Velocity Mean		0.01	mph	-0.01 mph		
Velocity Std. Dev		0.09 mph		0.12 mph		
Confidence Level @ 0.1 mph	99.99%	NA* (Note: Reference system accurate to only ~0.07 mph, Invalidating statistics)		NA* (Note: Reference system accurate to only ~0.07 mph, Invalidating statistics)		
Course of Travel (CoT) Mean		0.05 deg		0.14 deg		
CoT Std Dev.		0.25 deg		0.41 deg		
CoT Error @ Confidence Level	67%	99.98%		96.5%		

Key Success Factors

- Reduce train collisions
- Allow track discrimination at PTC initialization without human input
- Positive EOT location supports implementation of moving block
- Support increased capacity through tighter fleeting of trains
- Support automatic authority release behind trains in dark territory
- Protect rear of train when shunting cars
- Provide positive determination of switch and block clearing
- Provide additional input for train integrity determination
- More precise train length measurement improves braking performance predictions

Connected Vehicles Highway-Rail Feasibility Study and Proof of Concept

JARED WITHERS

General Engineer
Office of Research and Development
Office of Railroad Policy and Development

Program Area & Risk Matrix

Connected Vehicles Highway-Rail Feasibility and Proof of Concept

Program Areas	Trespass	Grade Crossing	Derailment	Tain Collision	All Other Safety Hazards
Railroad Systems Issues					
Human Factors					
Track & Structures					
Track & Train Interaction					
Facilities & Equipment					
Rolling Stock & Components					
Hazardous Materials					
Train Occupant Protection					
Train Control & Communications		X			
Grade Crossings & Trespass		X			

Acknowledgements & Stakeholders

- Intelligent Transportation Systems (ITS) Joint Program Office
- Research and Innovative Technology Administration (RITA)
- Volpe Center
- Transport Canada
- Federal Highway Administration (FHWA)
- Federal Motor Carrier Safety Administration (FMCSA)
- Federal Transit Administration (FTA)

Description of Project

- RITA ITS and industry partners are ramping up focus on V2I solutions.
- Opportunity for equipping crossing safety infrastructure with connected vehicles solutions.
- Increased safety at highway-rail crossings.

- 1. Approaching train communicates to crossing gates.
- 2. Activated gates transmit a status signal via DSRC radio.
- 3. Drivers approaching the crossing receive an in-car warning.

Objectives

- Complete feasibility analysis, crash analysis, concept of operations.
- Integrate Digital Short Range Communications (DSRC) into active crossing protection systems to enable in-car warning of an active crossing.
- Conduct proof of concept.
- Coordinate with the OEM and aftermarket industry to implement capabilities in production vehicles

Crash Analysis

Truck-Truck Trailer Vehicle Damage \$ Auto Vehicle Damage \$

Truck-Truck Trailer Crashes

Benefits

- ──Vehicle Damage (FRA Highway-Rail Grade Crossing Accident/Incident Database)
- Consist, Track, Signal, Wayside and Structural Damage (FRA Rail Equipment Accident/Incident Database)
- Economic Cost of a Motor Vehicle Accident based on Maximum Abbreviated Injury Scale (Medical Costs and Vehicle Property Damage)

Operational Scenarios

Operational Scenario	Example
Public Vehicle	Vehicle approaching a crossing will be alerted to the status of the crossing and approaching trains
Trucks and Commercial Vehicles	Vehicle approaching a crossing will be alerted to the condition of the crossing (steep hump or sharp turns)
First Respondent & Emergency Vehicles	Vehicle approaching a crossing will be alerted to the status of the crossing closure to find alternative route

Rail-Highway Connected Vehicle

TRL 9 FRA Total Funding: 500k

TRL 8

TRL 7

TRL 6

TRL 5

TRL 4

TRL 3

TRL 2

TRL 1

Technology readiness level

RL 1

Key Success Factors

- Reduce grade crossing accidents
- Reduce emergency vehicle response time
- Enable cost effective active warning at dark territory crossings
- Keep Rail active in ITS JPO discussions

Break | Nearby Food Options (all within 5-7 minutes walking distance)

- Au Bon Pain: 601 Indiana Ave NW # 1Washington, DC 20004
- Burger King: 501 G Street NW, Washington, DC 20001
- Chipotle: 601 F Street NW, Washington, DC 20005
- Cosi: 601 Pennsylvania Ave NW # 2 Washington, DC 20004
- Dunkin Donuts: 601 F Street NW, Washington, DC 20004
- Firehook Bakery & Coffee House: 441 4th Street NW, Washington, DC 20001
- Jack's Famous Deli: 501 3rd St NW # 2, Washington, DC 20001
- Quiznos Sandwiches: 772 5th St NW, Washington, DC 20001
- Starbucks: 443 7th St. NW, Washington, DC 20004
- Subway: 501 D Street NW, Washington, DC 20001

